JP2014109034A - Surface treatment method of structural member - Google Patents

Surface treatment method of structural member Download PDF

Info

Publication number
JP2014109034A
JP2014109034A JP2012262260A JP2012262260A JP2014109034A JP 2014109034 A JP2014109034 A JP 2014109034A JP 2012262260 A JP2012262260 A JP 2012262260A JP 2012262260 A JP2012262260 A JP 2012262260A JP 2014109034 A JP2014109034 A JP 2014109034A
Authority
JP
Japan
Prior art keywords
structural member
film
aqueous solution
coating
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012262260A
Other languages
Japanese (ja)
Other versions
JP6106416B2 (en
Inventor
Takashi Nakano
貴司 中野
Masato Kanetome
正人 金留
Hironori Onizuka
博徳 鬼塚
Tomomi Yoshinaga
智美 吉永
Takayuki Fujita
隆之 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012262260A priority Critical patent/JP6106416B2/en
Publication of JP2014109034A publication Critical patent/JP2014109034A/en
Application granted granted Critical
Publication of JP6106416B2 publication Critical patent/JP6106416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment method of a structural member capable of suppressing corrosion by forming a thick coat on the surface of the structural member.SOLUTION: A surface treatment method of a structural member includes the first step for forming the first coat 11 on the surface of the structural member 10 by oxidizing the surface of the structural member, and the second step for forming the second coat 12 on the first coat 11 of the structural member by supplying aqueous solution containing metal ion after the first step. Preferably, the metal ion is trivalent ion and the ion radius is 40 pm or more and 110 pm or less.

Description

本発明は、構造部材の表面処理方法に関するものである。   The present invention relates to a surface treatment method for a structural member.

一般に、原子力発電所や火力発電所等の発電プラントにおける蒸気発生器に設けられた熱交換器の配管(構造部材)等は、低合金鋼等の金属材料で構成されている。このような構造部材では、使用環境により腐食を起こして溶出したり、表面に腐食生成物が付着したりすることがある。   In general, piping (structural member) of a heat exchanger provided in a steam generator in a power plant such as a nuclear power plant or a thermal power plant is made of a metal material such as low alloy steel. Such a structural member may cause corrosion and elution depending on the use environment, or a corrosion product may adhere to the surface.

上述の腐食生成物は、ボイラの配管やオリフィス等の表面に付着して、過熱障害や流路閉塞による流量計誤指示等の不具合を起こす可能性がある。また、蒸気発生器内の伝熱管に付着して、伝熱障害を起こしてしまうおそれがある。
さらに、原子力発電所においては、腐食生成物が放射化されて放射性物質として他の機器や配管に付着してしまうこともある。
The above-mentioned corrosion products may adhere to the surface of boiler piping, orifices, etc., and may cause problems such as overheating failure and flow meter error indication due to flow path blockage. Moreover, there exists a possibility of adhering to the heat exchanger tube in a steam generator, and causing a heat-transfer failure.
Furthermore, in a nuclear power plant, corrosion products may be activated and adhere to other equipment and piping as radioactive materials.

そこで、発電プラントの健全性の観点から、構造部材の腐食を抑制する表面処理方法が提案されている。
例えば特許文献1には、構造部材を硝酸等の水溶液中に浸漬することで、構造部材の表面を酸化し、この構造部材の表面に被膜(酸化膜)を形成させる方法が開示されている。このように形成された被膜は、耐食性が良好な被膜となり、構造部材の腐食を抑制して、構造部材(母材)の溶出を抑える効果がある。
Therefore, a surface treatment method that suppresses corrosion of the structural member has been proposed from the viewpoint of soundness of the power plant.
For example, Patent Document 1 discloses a method in which a structural member is immersed in an aqueous solution such as nitric acid to oxidize the surface of the structural member and form a film (oxide film) on the surface of the structural member. The film formed in this manner is a film having good corrosion resistance, and has an effect of suppressing the corrosion of the structural member and suppressing the elution of the structural member (base material).

また、構造部材を高温高圧条件の水蒸気中に置くことで、金属材料と水蒸気とを化学反応させて構造部材の表面に被膜(酸化膜)を形成させる方法もある。この方法で形成される被膜においても、構造部材の腐食を抑制する効果がある。   There is also a method of forming a coating (oxide film) on the surface of the structural member by placing the structural member in water vapor under high temperature and high pressure conditions to cause a chemical reaction between the metal material and the water vapor. The film formed by this method also has an effect of suppressing the corrosion of the structural member.

特開2006−292531号公報JP 2006-292531 A

しかしながら、特許文献1に記載の表面処理方法では、構造部材の表面に酸化による被膜を形成するのみであり、被膜の厚さが薄いために、耐食性が不十分とされ、構造部材の溶出を十分に抑制できない場合があった。   However, in the surface treatment method described in Patent Document 1, only a film is formed by oxidation on the surface of the structural member. Since the thickness of the film is thin, the corrosion resistance is insufficient and the structural member is sufficiently dissolved. In some cases, it could not be suppressed.

また、高温高圧条件の水蒸気中に構造部材を置く方法では、高温及び高圧の一定環境を維持することは困難であるため、環境の変化にともない不均一な被膜が形成されてしまうおそれがある。この場合、被膜の薄い箇所では耐腐食性が低くなり、金属材料の腐食を十分に抑制することができないという問題があった。   In addition, in the method of placing the structural member in the steam under the high temperature and high pressure conditions, it is difficult to maintain a constant environment of high temperature and high pressure, so that there is a possibility that a non-uniform film may be formed as the environment changes. In this case, there is a problem that the corrosion resistance is lowered at a thin coating, and the corrosion of the metal material cannot be sufficiently suppressed.

この発明は前述した事情に鑑みてなされたものであって、構造部材の表面に厚い被膜を形成して、腐食を抑制することができる構造部材の表面処理方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a surface treatment method for a structural member that can suppress corrosion by forming a thick film on the surface of the structural member.

このような課題を解決して、前記目的を達成するために、本発明の構造部材の表面処理方法は、構造部材の表面を酸化させることで、前記構造部材の表面に第一被膜を形成する第一工程と、該第一工程の後に、金属イオンを含有する水溶液を供給して、前記構造部材の前記第一被膜上に第二被膜を形成する第二工程と、を備えることを特徴としている。   In order to solve such problems and achieve the object, the surface treatment method for a structural member of the present invention forms a first coating on the surface of the structural member by oxidizing the surface of the structural member. A first step and a second step of forming a second coating on the first coating of the structural member by supplying an aqueous solution containing metal ions after the first step. Yes.

本発明の構造部材の表面処理方法によれば、構造部材の表面に第一被膜(酸化膜)を形成した後に、金属イオンを含有する水溶液を供給することで金属イオンが第一被膜上に析出する等して、緻密な構造を有する第二被膜を形成することができる。
したがって、第一被膜のみを形成する場合と比較して、構造部材の表面上に形成される被膜の厚さを十分に厚くすることができ、構造部材の腐食を抑制可能となる。すなわち、構造部材の溶出を抑制し、腐食生成物が付着することを抑制できる。
ここで、構造部材とは、例えば発電プラントなどの熱交換器に用いられる配管などの構造部材である。また、この構造部材は金属材料で構成されており、金属材料として具体的には、例えば炭素鋼、低合金鋼、ステンレス鋼(SUS)、Ni基合金、Co基合金などが挙げられる。
According to the surface treatment method for a structural member of the present invention, after forming a first film (oxide film) on the surface of the structural member, metal ions are deposited on the first film by supplying an aqueous solution containing metal ions. By doing so, a second film having a dense structure can be formed.
Therefore, compared with the case where only the first film is formed, the thickness of the film formed on the surface of the structural member can be sufficiently increased, and corrosion of the structural member can be suppressed. That is, elution of the structural member can be suppressed and adhesion of corrosion products can be suppressed.
Here, the structural member is a structural member such as a pipe used in a heat exchanger such as a power plant. The structural member is made of a metal material, and specific examples of the metal material include carbon steel, low alloy steel, stainless steel (SUS), Ni-base alloy, and Co-base alloy.

また、本発明の構造部材の表面処理方法において、前記金属イオンは、3価のイオンかつイオン半径が40pm以上110pm以下とされていることが好ましい。
金属イオンの価数とイオン半径が上記のように設定されている場合は、金属イオンを第一被膜上に容易に析出させることができ、緻密な構造を有する第二被膜を形成することが可能である。したがって、構造部材の表面上に形成される被膜の厚さを十分に厚くすることができ、構造部材の腐食を抑制できる。
In the surface treatment method for a structural member of the present invention, the metal ions are preferably trivalent ions and have an ion radius of 40 pm or more and 110 pm or less.
When the valence and ion radius of the metal ions are set as described above, the metal ions can be easily deposited on the first film, and a second film having a dense structure can be formed. It is. Therefore, the thickness of the coating film formed on the surface of the structural member can be sufficiently increased, and corrosion of the structural member can be suppressed.

また、前記第二工程において、前記水溶液は、KFeO水溶液であることが好ましい。
この場合、構造部材及び被膜中にFeイオンが入り込み、析出が生じて第二被膜を確実に形成することができる。
In the second step, the aqueous solution is preferably a K 2 FeO 4 aqueous solution.
In this case, Fe ions enter the structural member and the coating, and precipitation occurs, so that the second coating can be reliably formed.

また、前記第一工程において、HMnO水溶液によって前記構造部材の表面を酸化することが好ましい。
また、前記第一工程において、HNO水溶液によって前記構造部材の表面を酸化する構成とされても良い。
このような場合、酸化力を有するHMnOやHNOによって、構造部材の表面を確実に酸化し、第一被膜を形成することができる。
In the first step, it is preferable to oxidize the surface of the structural member with an HMnO 4 aqueous solution.
In the first step, the surface of the structural member may be oxidized with an aqueous HNO 3 solution.
In such a case, the surface of the structural member can be reliably oxidized by HMnO 4 or HNO 3 having oxidizing power, and the first film can be formed.

本発明によれば、構造部材の表面に十分に厚い被膜を形成して、腐食を抑制することができる構造部材の表面処理方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface treatment method of the structural member which can form a sufficiently thick film on the surface of a structural member, and can suppress corrosion can be provided.

本発明の一実施形態に係る構造部材の表面処理方法を適用した構造部材の断面模式図である。It is a cross-sectional schematic diagram of the structural member which applied the surface treatment method of the structural member which concerns on one Embodiment of this invention. 一実施形態に係る構造部材の表面処理方法に用いる表面処理装置の概略説明図である。It is a schematic explanatory drawing of the surface treatment apparatus used for the surface treatment method of the structural member which concerns on one Embodiment. 一実施形態に係る構造部材の表面処理方法のフロー図である。It is a flowchart of the surface treatment method of the structural member which concerns on one Embodiment.

以下に、本発明の実施の形態について添付した図面を参照して説明する。
図1に、本発明の一実施形態に係る構造部材の表面処理方法を適用した構造部材10における表面側の断面模式図を示す。
本発明の一実施形態に係る構造部材の表面処理方法を適用した後においては、図1に示すように、構造部材10上に第一被膜11が形成され、さらにこの第一被膜11上に第二被膜12が形成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a schematic cross-sectional view of the surface side of a structural member 10 to which a structural member surface treatment method according to an embodiment of the present invention is applied.
After applying the structural member surface treatment method according to the embodiment of the present invention, as shown in FIG. 1, the first coating 11 is formed on the structural member 10, and the first coating 11 is further formed on the first coating 11. Two coatings 12 are formed.

構造部材10は、例えば発電プラントなどの熱交換器に用いられる配管などの構造部材である。この構造部材10は金属材料で構成されており、金属材料として具体的には、例えば炭素鋼、低合金鋼、ステンレス鋼(SUS)、Ni基合金、Co基合金などが挙げられる。   The structural member 10 is a structural member such as a pipe used in a heat exchanger such as a power plant. The structural member 10 is made of a metal material. Specific examples of the metal material include carbon steel, low alloy steel, stainless steel (SUS), Ni-base alloy, and Co-base alloy.

第一被膜11は、構造部材10が酸化されることによって形成される酸化膜である。この酸化膜は、緻密な構造を有するとともに構造部材10と強固に密着しており、構造部材10の耐腐食性を向上させる効果がある。より具体的には、第一被膜11は、酸化Cr、酸化Fe、酸化Ni等の酸化物で構成されている。   The first coating 11 is an oxide film formed by oxidizing the structural member 10. This oxide film has a dense structure and is firmly adhered to the structural member 10, and has an effect of improving the corrosion resistance of the structural member 10. More specifically, the first coating 11 is made of an oxide such as Cr oxide, Fe oxide, or Ni oxide.

第二被膜12は、後述する溶液に含まれる金属イオンが析出する等して形成される層状の膜である。また、この第二被膜12においては、構造部材10が酸化されることによって生じる酸化膜も含まれている。第二被膜12は、第一被膜11と同様に、緻密な構造を有し第一被膜11と強固に密着しており、構造部材10の耐食性を向上させる効果がある。
なお、本発明の構造部材の表面処理方法を適用する前においては、構造部材10の表面に第一被膜11及び第二被膜12は形成されていない。
The second film 12 is a layered film formed by precipitation of metal ions contained in a solution described later. In addition, the second coating 12 includes an oxide film generated by oxidizing the structural member 10. Similar to the first coating 11, the second coating 12 has a dense structure and is in close contact with the first coating 11, and has an effect of improving the corrosion resistance of the structural member 10.
Note that the first coating 11 and the second coating 12 are not formed on the surface of the structural member 10 before applying the structural member surface treatment method of the present invention.

次に、本実施形態で用いる表面処理装置1について説明する。
表面処理装置1は、図2に示すように、表面処理の対象となる構造部材10を浸漬する装置本体2と、該装置本体2を加熱する加熱器3と、装置本体2に水溶液を供給するポンプ4とを備えている。
Next, the surface treatment apparatus 1 used in this embodiment will be described.
As shown in FIG. 2, the surface treatment apparatus 1 supplies an aqueous solution to the apparatus main body 2 in which the structural member 10 to be surface-treated is immersed, a heater 3 that heats the apparatus main body 2, and the apparatus main body 2. And a pump 4.

装置本体2は、構造部材10を配設可能とされた容器であり、内部にはポンプ4から供給された水溶液が満たされている。
加熱器3は、例えばヒータ等で構成され、ガスや電気等の動力源を利用して装置本体2の内部の水溶液を加熱するものである。
The apparatus main body 2 is a container in which the structural member 10 can be disposed, and the inside thereof is filled with the aqueous solution supplied from the pump 4.
The heater 3 is composed of, for example, a heater or the like, and heats the aqueous solution inside the apparatus main body 2 using a power source such as gas or electricity.

上述のような構成とされた表面処理装置1を用いて行われる本実施形態に係る構造部材の表面処理方法について、図3に示すフロー図を参照して説明する。   A surface treatment method for a structural member according to this embodiment performed using the surface treatment apparatus 1 having the above-described configuration will be described with reference to a flowchart shown in FIG.

まず、構造部材10の表面の汚れや付着物を除去する(表面洗浄工程S1)。そして、ポンプ4から装置本体2に、HMnO水溶液を供給する。
ここで、HMnO水溶液は、0.03〜0.06ppmの濃度であることが好ましい。また、装置本体2の内部にHMnO水溶液を循環させる構成としても良い。
First, dirt and deposits on the surface of the structural member 10 are removed (surface cleaning step S1). Then, an HMnO 4 aqueous solution is supplied from the pump 4 to the apparatus main body 2.
Here, the HMnO 4 aqueous solution preferably has a concentration of 0.03 to 0.06 ppm. Further, the HMnO 4 aqueous solution may be circulated inside the apparatus main body 2.

次に、装置本体2に満たされたHMnO水溶液中に構造部材10を浸漬し、構造部材10の表面に第一被膜11を形成する(第一被膜形成工程S2(第一工程))。この第一被膜形成工程S2においては、構造部材10の表面がHMnO水溶液によって酸化され、第一被膜11(酸化膜)が形成される。 Next, the structural member 10 is immersed in the HMnO 4 aqueous solution filled in the apparatus main body 2 to form the first coating 11 on the surface of the structural member 10 (first coating forming step S2 (first step)). In the first coating film forming step S2, the surface of the structural member 10 is oxidized by the HMnO 4 aqueous solution to form the first coating film 11 (oxide film).

第一被膜形成工程S2では、装置本体2に満たされたHMnO水溶液を加熱器3によって加熱し、所望の温度に設定する。このHMnO水溶液の温度は、常温〜95℃とされることが好ましく、60℃〜95℃とされることがさらに好ましい。
また、十分な厚さの第一被膜11を形成するために、浸漬時間は30分以上に設定されていることが好ましい。浸漬時間の上限は特にないが、24時間以下とされていることが実際的である。
In the first film formation step S2, the HMnO 4 aqueous solution filled in the apparatus main body 2 is heated by the heater 3 and set to a desired temperature. The temperature of the HMnO 4 aqueous solution is preferably normal temperature to 95 ° C, and more preferably 60 ° C to 95 ° C.
Moreover, in order to form the 1st film 11 of sufficient thickness, it is preferable that immersion time is set to 30 minutes or more. There is no particular upper limit for the immersion time, but it is practical that the immersion time is 24 hours or less.

次いで、装置本体2からHMnO水溶液を排出して、構造部材10を純水で洗浄する。そして、ポンプ4から装置本体2に金属イオンを含有する水溶液を供給する。
ここで、金属イオンは、3価のイオン、かつイオン半径が40pm以上110pm以下の金属イオンとされている。具体的には、例えば、Feイオン、Alイオン、Inイオン、Tlイオン、Laイオンなどが挙げられる。これらの金属イオンは、少なくとも一種類の金属イオンが水溶液中に含まれていれば良く、2種類以上の金属イオンが含まれていても良い。
また、金属イオンの好ましいイオン半径は、50pm以上90pm以下である。
Next, the HMnO 4 aqueous solution is discharged from the apparatus main body 2 and the structural member 10 is washed with pure water. Then, an aqueous solution containing metal ions is supplied from the pump 4 to the apparatus body 2.
Here, the metal ions are trivalent ions and metal ions having an ion radius of 40 pm to 110 pm. Specific examples include Fe ions, Al ions, In ions, Tl ions, La ions, and the like. As long as these metal ions contain at least one kind of metal ion in the aqueous solution, two or more kinds of metal ions may be contained.
Moreover, the preferable ion radius of a metal ion is 50 pm or more and 90 pm or less.

次に、装置本体2に満たされた金属イオンを含む水溶液中に構造部材10を浸漬し、構造部材10の表面に第二被膜12を形成する(第二被膜形成工程S3(第二工程))。この第二被膜形成工程S3においては、溶液中に含まれる金属イオンが、構造部材10及び第一被膜11に取り込まれるなどして、第一被膜11上に析出し、第二被膜12が形成される。また、この第二被膜形成工程S3においても構造部材10の酸化が生じ第二被膜12の一部として取り込まれる。   Next, the structural member 10 is immersed in an aqueous solution containing metal ions filled in the apparatus body 2 to form the second coating 12 on the surface of the structural member 10 (second coating formation step S3 (second step)). . In the second film forming step S3, metal ions contained in the solution are taken into the structural member 10 and the first film 11, and are deposited on the first film 11, so that the second film 12 is formed. The Further, also in the second film forming step S3, the structural member 10 is oxidized and taken in as a part of the second film 12.

第二被膜形成工程S3では、装置本体2に満たされた金属イオンを含有する水溶液を加熱器3によって加熱し、所望の温度に設定する。この金属イオンを含有する水溶液の温度は、常温〜95℃とされることが好ましく、60℃〜95℃とされることがさらに好ましい。
また、浸漬時間は、十分な厚さの第二被膜12を形成するために、30分以上に設定されていることが好ましい。浸漬時間の上限は特にないが、24時間以下とされていることが実際的である。
In the second film formation step S3, the aqueous solution containing metal ions filled in the apparatus main body 2 is heated by the heater 3 and set to a desired temperature. The temperature of the aqueous solution containing the metal ions is preferably from room temperature to 95 ° C, and more preferably from 60 ° C to 95 ° C.
Further, the immersion time is preferably set to 30 minutes or more in order to form the second coating 12 having a sufficient thickness. There is no particular upper limit for the immersion time, but it is practical that the immersion time is 24 hours or less.

本発明の実施形態に係る構造部材の表面処理方法によれば、構造部材10の表面に第一被膜11を形成した後に、金属イオンを含有する水溶液を供給することで金属イオンが第一被膜11上に析出する等して、緻密な構造を有する第二被膜12を形成することができる。   According to the surface treatment method for a structural member according to the embodiment of the present invention, after forming the first coating 11 on the surface of the structural member 10, the metal ion is supplied to the first coating 11 by supplying an aqueous solution containing metal ions. The second film 12 having a dense structure can be formed by being deposited on the surface.

したがって、第一被膜11のみを形成する場合と比較して、構造部材10の表面上に形成される被膜の厚さを十分に厚くすることができ、構造部材10の腐食を抑制可能となる。すなわち、構造部材10の溶出を抑制し、構造部材10の表面に腐食生成物が付着することを抑制できる。
具体的には、第一被膜11のみを形成する場合と比較して、第一被膜11と第二被膜12とを形成した場合には約2倍の厚さの被膜を構造部材10上に形成することが可能である。
Therefore, compared with the case where only the first film 11 is formed, the thickness of the film formed on the surface of the structural member 10 can be sufficiently increased, and the corrosion of the structural member 10 can be suppressed. That is, elution of the structural member 10 can be suppressed and adhesion of corrosion products to the surface of the structural member 10 can be suppressed.
Specifically, when the first coating 11 and the second coating 12 are formed as compared with the case where only the first coating 11 is formed, a coating having a thickness approximately twice as large is formed on the structural member 10. Is possible.

また、本実施形態では、構造部材の表面処理方法において、金属イオンは、3価のイオンかつイオン半径が40pm以上110pm以下とされているので、金属イオンを第一被膜11上に容易に析出させることができ、緻密な構造を有する第二被膜12を形成することが可能である。   In the present embodiment, in the surface treatment method for a structural member, the metal ions are trivalent ions and have an ion radius of 40 pm or more and 110 pm or less. Therefore, the metal ions are easily deposited on the first coating 11. The second coating 12 having a dense structure can be formed.

例えば、Crを含有する金属材料で構成された構造部材10に対して、第一被膜形成工程S2においてHMnO水溶液で構造部材10の表面を酸化すると、Crが3価のイオンとして溶出することがある。このような場合に、第二被膜形成工程S3において、上述のような金属イオンを含む水溶液中に構造部材10を浸漬すると、金属イオンがCrの溶出後の空隙に入り込み、析出が生じて緻密で厚い被膜を形成することができる。すなわち、第一被膜形成工程S2において溶出する元素のイオン半径と近い金属イオンを、第二被膜形成工程S3において供給し、第二被膜を形成しているのである。
このような理由により、上述のような金属イオンが水溶液中に含まれている。
For example, when the surface of the structural member 10 is oxidized with a HMnO 4 aqueous solution in the first film formation step S2 with respect to the structural member 10 made of a metal material containing Cr, Cr may be eluted as trivalent ions. is there. In such a case, when the structural member 10 is immersed in the aqueous solution containing the metal ions as described above in the second film forming step S3, the metal ions enter the voids after the elution of Cr, resulting in precipitation and being dense. A thick film can be formed. That is, metal ions close to the ionic radius of the element eluted in the first film formation step S2 are supplied in the second film formation step S3 to form the second film.
For these reasons, the metal ions as described above are contained in the aqueous solution.

また、表面処理装置1は、簡易な構成とされているので、設備を小型にすることができ、設備の維持管理にかかるコストを低減できる。   Moreover, since the surface treatment apparatus 1 has a simple configuration, the equipment can be reduced in size, and the cost for maintenance and management of the equipment can be reduced.

(変形例1)
次に、上記実施形態の変形例1に係る構造部材の表面処理方法について説明する。
変形例1の構造部材の表面処理方法では、第二被膜形成工程S3において、金属イオンを含有する溶液として、KFeO水溶液を用いる。その他の工程については、上記実施形態と同様である。なお、KFeO水溶液の濃度、及び温度は、上述した条件と同様に設定すれば良い。
(Modification 1)
Next, a surface treatment method for a structural member according to Modification 1 of the above embodiment will be described.
In the surface treatment method for a structural member according to Modification 1, a K 2 FeO 4 aqueous solution is used as the solution containing metal ions in the second film forming step S3. Other steps are the same as in the above embodiment. The concentration of K 2 FeO 4 aqueous solution, and the temperature may be set similar to the conditions described above.

この場合、Feイオンを第一被膜11上に容易に析出させることができ、緻密な構造を有する第二被膜12を確実に形成することが可能である。例えば、第一被膜形成工程S2においてCrが溶出し、第二被膜形工程S3においてCr溶出後の空隙にFeイオン等の金属イオンが入り込み析出が生じる等して厚い被膜を形成できる。上記した実施形態のように、3価のFeイオンを溶液中に溶解するのは困難であるが、溶液中に6価のFeイオン(過鉄酸イオン)を溶解させ、自然に3価のFeイオンに分解したところで被膜への取り込みが行われるため、溶液内で連続的に3価のFeイオンを供給することが可能である。   In this case, Fe ions can be easily deposited on the first coating 11, and the second coating 12 having a dense structure can be reliably formed. For example, it is possible to form a thick film by elution of Cr in the first film forming step S2 and metal ions such as Fe ions entering the voids after the elution of Cr in the second film forming step S3. Although it is difficult to dissolve trivalent Fe ions in a solution as in the above-described embodiment, hexavalent Fe ions (perferate ions) are dissolved in the solution, and trivalent Fe ions are naturally dissolved. Since incorporation into the film is performed when the ions are decomposed, it is possible to continuously supply trivalent Fe ions in the solution.

(変形例2)
次に、上記実施形態の変形例2について説明する。
変形例2では、第一被膜形成工程S1(第一工程)において、HMnOの代わりに硝酸(HNO)水溶液を用いる。そして、第二被膜形成工程S3(第二工程)において、金属イオンを含有する溶液として、KFeO水溶液を用いる。
なお、硝酸(HNO)水溶液の濃度は、5mM程度とすることが好ましい。硝酸水溶液の温度は、常温〜95℃とされることが好ましく、60℃〜95℃とされることがさらに好ましい。また、浸漬時間は、十分な厚さの第一被膜11を形成するために、30分以上に設定されていることが好ましい。また、KFeO水溶液の濃度、及び温度は、上述した条件と同様に設定すれば良い。
(Modification 2)
Next, Modification 2 of the above embodiment will be described.
In Modification Example 2, in the first coating formation process S1 (first step), nitric acid (HNO 3) in place of HMnO 4 using an aqueous solution. Then, in the second film formation step S3 (second step), as a solution containing metal ions, using K 2 FeO 4 solution.
The concentration of nitric acid (HNO 3) aqueous solution is preferably about 5 mM. The temperature of the nitric acid aqueous solution is preferably normal temperature to 95 ° C, and more preferably 60 ° C to 95 ° C. Further, the immersion time is preferably set to 30 minutes or more in order to form the first coating 11 having a sufficient thickness. The concentration of K 2 FeO 4 aqueous solution, and the temperature may be set similar to the conditions described above.

この場合においても、硝酸(HNO)によって構造部材10の表面を確実に酸化することができ、変形例1で説明した構造部材の表面処理方法と同様の効果を奏する。
さらに、変形例2の構造部材の表面処理方法では、第一被膜形成工程S1(第一工程)において用いられる溶液中にマンガンが含まれていないので、構造部材10の表面に形成される被膜中にマンガンが含まれることを防止できる。酸化マンガンの被膜が形成された場合、この酸化マンガンは非晶質であり、緻密な膜が形成されにくいことがある。したがって、変形例2の表面処理方法を用いることで、より緻密な被膜を形成することができる。
Also in this case, the surface of the structural member 10 can be reliably oxidized by nitric acid (HNO 3 ), and the same effect as the structural member surface treatment method described in the first modification can be achieved.
Furthermore, in the surface treatment method for a structural member of Modification 2, since the manganese used is not contained in the solution used in the first film formation step S1 (first step), the film formed on the surface of the structural member 10 Can contain manganese. When a manganese oxide film is formed, the manganese oxide is amorphous and a dense film may be difficult to form. Therefore, a denser film can be formed by using the surface treatment method of Modification 2.

以上、本発明の一実施形態である構造部材の表面処理方法について説明したが、本発明はこれに限定されることはなく、この発明の技術的思想を逸脱しない範囲で適宜変更することが可能である。   As mentioned above, although the surface treatment method of the structural member which is one embodiment of this invention was demonstrated, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of this invention. It is.

なお、第一被膜形成工程(第一工程)では、上記実施形態で説明した水溶液の他に、他の過酸化物の水溶液などを用いることも可能である。
また、第二被膜形成工程(第二工程)では、上記実施形態で説明した水溶液の他に、例えば 鉄などのイオンを含む溶液などを用いることも可能である。
In the first film formation step (first step), other peroxide aqueous solutions may be used in addition to the aqueous solution described in the above embodiment.
In addition, in the second film forming step (second step), in addition to the aqueous solution described in the above embodiment, for example, a solution containing ions such as iron can be used.

また、上記実施形態において、硝酸や水酸化ナトリウムを水溶液中に適宜加えて、pHを調節し、反応速度を調節しても良い。
また、上記実施の形態では、構造部材の表面処理方法が表面洗浄工程を備える場合について説明したが、表面洗浄工程は省略されても良い。
Moreover, in the said embodiment, nitric acid and sodium hydroxide may be added suitably in aqueous solution, pH may be adjusted and reaction rate may be adjusted.
Moreover, although the said embodiment demonstrated the case where the surface treatment method of a structural member provided with a surface cleaning process, the surface cleaning process may be abbreviate | omitted.

10 構造部材
11 第一被膜
12 第二被膜
10 Structural member 11 First coating 12 Second coating

Claims (5)

構造部材の表面を酸化させることで、前記構造部材の表面に第一被膜を形成する第一工程と、
該第一工程の後に、金属イオンを含有する水溶液を供給して、前記構造部材の前記第一被膜上に第二被膜を形成する第二工程と、を備えることを特徴とする構造部材の表面処理方法。
A first step of forming a first coating on the surface of the structural member by oxidizing the surface of the structural member;
After the first step, a surface of the structural member comprising: a second step of supplying an aqueous solution containing metal ions to form a second coating on the first coating of the structural member Processing method.
前記金属イオンは、3価のイオンかつイオン半径が40pm以上110pm以下とされていることを特徴とする請求項1に記載の構造部材の表面処理方法。   The surface treatment method for a structural member according to claim 1, wherein the metal ions are trivalent ions and have an ion radius of 40 pm or more and 110 pm or less. 前記第二工程において、前記水溶液は、KFeO水溶液であることを特徴とする請求項1または請求項2に記載の構造部材の表面処理方法。 3. The surface treatment method for a structural member according to claim 1, wherein in the second step, the aqueous solution is a K 2 FeO 4 aqueous solution. 前記第一工程において、HMnO水溶液によって前記構造部材の表面を酸化することを特徴とする請求項1から請求項3のいずれか一項に記載の構造部材の表面処理方法。 The surface treatment method for a structural member according to any one of claims 1 to 3, wherein, in the first step, the surface of the structural member is oxidized with an HMnO 4 aqueous solution. 前記第一工程において、HNO水溶液によって前記構造部材の表面を酸化することを特徴とする請求項1から請求項3のいずれか一項に記載の構造部材の表面処理方法。 The surface treatment method for a structural member according to any one of claims 1 to 3 , wherein in the first step, the surface of the structural member is oxidized with an HNO 3 aqueous solution.
JP2012262260A 2012-11-30 2012-11-30 Surface treatment method for structural members Active JP6106416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012262260A JP6106416B2 (en) 2012-11-30 2012-11-30 Surface treatment method for structural members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012262260A JP6106416B2 (en) 2012-11-30 2012-11-30 Surface treatment method for structural members

Publications (2)

Publication Number Publication Date
JP2014109034A true JP2014109034A (en) 2014-06-12
JP6106416B2 JP6106416B2 (en) 2017-03-29

Family

ID=51029849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012262260A Active JP6106416B2 (en) 2012-11-30 2012-11-30 Surface treatment method for structural members

Country Status (1)

Country Link
JP (1) JP6106416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070507B2 (en) 2019-06-13 2022-05-18 トヨタ自動車株式会社 Battery pack

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164998A (en) * 1983-03-09 1984-09-18 ロンドン・ヌ−クリア−・リミテツド Method of processing oxidation film in pipe circuit
JPS6137974A (en) * 1984-07-31 1986-02-22 Nippon Yakin Kogyo Co Ltd Coloring treatment of stainless steel to provide superior corrosion resistance
JPS6283479A (en) * 1985-10-08 1987-04-16 Nippon Steel Corp Manufacture of steel sheet having colored pattern
JPS62207880A (en) * 1986-03-08 1987-09-12 Nippon Steel Corp Production of color patterned steel sheet
JPH10237672A (en) * 1997-02-28 1998-09-08 Nippon Steel Corp Diamond-coated steel material and its production
JP2002093426A (en) * 2000-09-12 2002-03-29 Toshiba Battery Co Ltd Battery
JP2005213538A (en) * 2004-01-28 2005-08-11 Mitsubishi Heavy Ind Ltd Surface treatment method of heat transfer tube of steam generator for nuclear reactor
JP2006038483A (en) * 2004-07-22 2006-02-09 Hitachi Ltd Method of restraining radionuclide from being deposited onto nuclear power plant constitutive member, and film forming device
JP2006292531A (en) * 2005-04-11 2006-10-26 Mitsubishi Heavy Ind Ltd Method for surface treatment of heat transfer tube of steam generator
JP2007024644A (en) * 2005-07-14 2007-02-01 Hitachi Ltd Adhesion control method of radionuclide on component member of nuclear power plant and film forming method
JP2009203519A (en) * 2008-02-27 2009-09-10 Nippon Parkerizing Co Ltd Metallic material, and method for producing the same
JP2011149764A (en) * 2010-01-20 2011-08-04 Hitachi-Ge Nuclear Energy Ltd Method for reducing dose of nuclear power plant component member
JP2013164269A (en) * 2012-02-09 2013-08-22 Hitachi-Ge Nuclear Energy Ltd Radiation amount reducing method for nuclear power plant constitution member and nuclear power plant

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59164998A (en) * 1983-03-09 1984-09-18 ロンドン・ヌ−クリア−・リミテツド Method of processing oxidation film in pipe circuit
JPS6137974A (en) * 1984-07-31 1986-02-22 Nippon Yakin Kogyo Co Ltd Coloring treatment of stainless steel to provide superior corrosion resistance
JPS6283479A (en) * 1985-10-08 1987-04-16 Nippon Steel Corp Manufacture of steel sheet having colored pattern
JPS62207880A (en) * 1986-03-08 1987-09-12 Nippon Steel Corp Production of color patterned steel sheet
JPH10237672A (en) * 1997-02-28 1998-09-08 Nippon Steel Corp Diamond-coated steel material and its production
JP2002093426A (en) * 2000-09-12 2002-03-29 Toshiba Battery Co Ltd Battery
JP2005213538A (en) * 2004-01-28 2005-08-11 Mitsubishi Heavy Ind Ltd Surface treatment method of heat transfer tube of steam generator for nuclear reactor
JP2006038483A (en) * 2004-07-22 2006-02-09 Hitachi Ltd Method of restraining radionuclide from being deposited onto nuclear power plant constitutive member, and film forming device
JP2006292531A (en) * 2005-04-11 2006-10-26 Mitsubishi Heavy Ind Ltd Method for surface treatment of heat transfer tube of steam generator
JP2007024644A (en) * 2005-07-14 2007-02-01 Hitachi Ltd Adhesion control method of radionuclide on component member of nuclear power plant and film forming method
JP2009203519A (en) * 2008-02-27 2009-09-10 Nippon Parkerizing Co Ltd Metallic material, and method for producing the same
JP2011149764A (en) * 2010-01-20 2011-08-04 Hitachi-Ge Nuclear Energy Ltd Method for reducing dose of nuclear power plant component member
JP2013164269A (en) * 2012-02-09 2013-08-22 Hitachi-Ge Nuclear Energy Ltd Radiation amount reducing method for nuclear power plant constitution member and nuclear power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7070507B2 (en) 2019-06-13 2022-05-18 トヨタ自動車株式会社 Battery pack

Also Published As

Publication number Publication date
JP6106416B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP5637867B2 (en) Plant operating method and system
MX370759B (en) Method for decontaminating metal surfaces of a nuclear facility.
JP2012026967A (en) Method for suppressing corrosion in plant, and plant
JP6106416B2 (en) Surface treatment method for structural members
US9771482B2 (en) Corrosion-resistant structure for high-temperature water system and corrosion-preventing method thereof
JP2008051530A (en) Elution suppression method for nickel and cobalt from structure material
JP5398124B2 (en) Corrosion-inhibiting film generation method and nuclear power plant
EP2180483B1 (en) Method of inhibiting adhesion of radioactive substance
JP2009216289A (en) Plant protecting method
JP5317650B2 (en) Method and apparatus for forming ferrite film on the surface of plant component
JP5976335B2 (en) Surface treatment method for structures
JPH0453399B2 (en)
JP6591416B2 (en) Process for reducing radioactive contamination on the surface of parts used in nuclear reactors
JP2012097336A (en) Scale removing method of chromium-containing steel material
US20160312364A1 (en) Anti-corrosion treatment of a metal substrate and resulting substrate
JP2013164269A (en) Radiation amount reducing method for nuclear power plant constitution member and nuclear power plant
JP2016003940A5 (en)
JP6591225B2 (en) Decontamination method
JP2016164494A (en) Surface processing method
JP4959196B2 (en) Nuclear power plant replacement member and nuclear power plant member handling method
US20120028038A1 (en) Corrosion-resistant member and method of manufacturing the same
US10204712B2 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
JP5467137B2 (en) Method and apparatus for forming ferrite film on the surface of plant component
JPH0553400B2 (en)
Cao Study On Surface Treatment Measures of Chemical Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6106416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150