JP2005213538A - Surface treatment method of heat transfer tube of steam generator for nuclear reactor - Google Patents

Surface treatment method of heat transfer tube of steam generator for nuclear reactor Download PDF

Info

Publication number
JP2005213538A
JP2005213538A JP2004019290A JP2004019290A JP2005213538A JP 2005213538 A JP2005213538 A JP 2005213538A JP 2004019290 A JP2004019290 A JP 2004019290A JP 2004019290 A JP2004019290 A JP 2004019290A JP 2005213538 A JP2005213538 A JP 2005213538A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
temperature water
steam generator
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004019290A
Other languages
Japanese (ja)
Inventor
Koji Fujimoto
浩二 藤本
Yutaka Yokoyama
裕 横山
Takao Tsuruta
孝雄 鶴田
Setsuo Tokunaga
節男 徳永
Hiroshi Hirano
廣 平野
Toshiyuki Mizutani
敏行 水谷
Takanori Yasuda
貴則 安田
Kazutoyo Murata
和豊 村田
Toshio Yonezawa
利夫 米澤
Shuzo Okamoto
周三 岡本
Kazuo Kasahara
和男 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004019290A priority Critical patent/JP2005213538A/en
Publication of JP2005213538A publication Critical patent/JP2005213538A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method of a heat transfer tube capable of reducing exposure dose by reducing Ni elution from the heat transfer tube as much as possible. <P>SOLUTION: The surface treatment method of the heat transfer tube made of Ni-Cr-Fe alloy of a steam generator for a nuclear reactor comprises: a step of blasting an inner surface of the heat transfer tube by using beads of very small grain size; and a step of depositing a film on the inner surface of the heat transfer tube by immersing the blasted heat transfer tube in high-temperature water or distributing high-temperature water over the inner surface of the heat transfer tube. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、原子炉用蒸気発生器の伝熱管、例えば加圧水型軽水炉(PWR)の蒸気発生器管のような高温高圧水環境で用いられる伝熱管の表面処理方法に関するものである。   The present invention relates to a surface treatment method for a heat transfer tube used in a high-temperature and high-pressure water environment such as a heat transfer tube of a steam generator for a nuclear reactor, for example, a steam generator tube of a pressurized water reactor (PWR).

原子炉用蒸気発生器(SG)に用いられている伝熱管は、Ni-Cr-Fe合金(例えば600合金、690合金、800合金など)から構成されており、その化学組成としてはNi含有率30%以上、Cr含有率10%以上残りがFeである。このような伝熱管の内側の接液部分からは、高温水中で合金中のNiの溶解が生じ、水中に溶出が生じる場合がある。この溶出したNiは、循環している高温水と共に移動し、原子炉の炉心の燃料近傍に周り、その部分で核変換が生じNiが放射性物質(Co等)に変わることになる。従って、この放射性物質が循環することで1次系高温水中での放射線量が高まることになり、定検時の作業員に対しては被曝線量が高まる恐れがあり、安全性の観点から問題点とされていた。   The heat transfer tubes used in the reactor steam generator (SG) are composed of Ni-Cr-Fe alloys (for example, 600 alloys, 690 alloys, 800 alloys, etc.), and the chemical composition is Ni content. 30% or more, Cr content of 10% or more, and the balance is Fe. From such a wetted part inside the heat transfer tube, dissolution of Ni in the alloy may occur in high temperature water, and elution may occur in water. The eluted Ni moves together with the circulating high-temperature water, and around the vicinity of the fuel in the reactor core, transmutation occurs in that portion, and Ni is converted into radioactive material (Co etc.). Therefore, circulation of this radioactive substance increases the radiation dose in the primary high-temperature water, which may increase the radiation dose for workers during regular inspections. It was said.

現状、被曝低減を図る手法としては、高温水中にZn金属を入れることで被曝低減を図る試み等がなされている(非特許文献1〜2)。しかしながら、新たな元素を添加する必要が生じるとともに、運転条件を監視・制御する必要があることから、システムの運用が複雑化する欠点があった。そこで、伝熱管からのNi溶出を極力低減させることで、被曝線量の低減を図る必要があると考えられた。   At present, as a technique for reducing exposure, attempts have been made to reduce exposure by putting Zn metal in high-temperature water (Non-Patent Documents 1 and 2). However, since it is necessary to add a new element and it is necessary to monitor and control the operating conditions, there is a drawback that the operation of the system becomes complicated. Therefore, it was considered necessary to reduce the exposure dose by reducing Ni elution from the heat transfer tube as much as possible.

C.A.Bergmann, R.E.Gold, J.Sejvar, J.D.Perock,M.Dove, R.S.Pathiania, Water Chemistry of Nuclear Reactor Systems 7,BNES(1996) p.287.C.A.Bergmann, R.E.Gold, J.Sejvar, J.D.Perock, M.Dove, R.S.Pathiania, Water Chemistry of Nuclear Reactor Systems 7, BNES (1996) p.287. R.S.Pathiana, B.Cheng, M.Dove, R.E.Gold,C.A.Bergmann, Fontevraud IV (1998) p.959.R.S.Pathiana, B.Cheng, M.Dove, R.E.Gold, C.A.Bergmann, Fontevraud IV (1998) p.959.

本発明者らは、上記問題点に鑑み、従来技術の課題を解決するため研究を進め、伝熱管からのNi溶出を極力低減させることで、被曝線量の低減を図ることができる伝熱管の表面処理方法を開発すべく、鋭意検討した。
その結果、本発明者らは、あらかじめ表面皮膜を形成させることで、Ni溶出を低減させる伝熱管の表面処理方法によって、かかる問題点が解決されることを見出した。本発明は、かかる見地より完成されたものである。
In view of the above problems, the present inventors have advanced research to solve the problems of the prior art, and by reducing Ni elution from the heat transfer tube as much as possible, the surface of the heat transfer tube that can reduce the exposure dose In order to develop a treatment method, we studied diligently.
As a result, the present inventors have found that such a problem can be solved by a surface treatment method for a heat transfer tube that reduces Ni elution by forming a surface film in advance. The present invention has been completed from such a viewpoint.

すなわち、本発明の第1の形態は、Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、実機HFT(Hot Function Test:ホットファンクションテスト)処理と呼ばれる運転開始前のPWR一次系模擬環境の高温水を流通させる運転において皮膜を形成させる工程とを含む原子炉用蒸気発生器伝熱管の表面処理方法を提供するものである。また、該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管を高温水(B、Li、H2を一定濃度溶解した水も含む)中に浸漬、又は、該伝熱管の内表面に高温水を流通させることによって、伝熱管の内表面に皮膜を形成させる工程とを含む原子炉用蒸気発生器伝熱管の表面処理方法を提供するものである。本形態では、あらかじめブラスト処理にて歪を与えておき、高温水中での浸漬、又は、運転開始前の高温水中での試運転(HFT:Hot Function Test)の時に表面皮膜の形成を加速させることにより、伝熱管からのNi溶出を低減させることができる。 That is, the first embodiment of the present invention is a surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni—Cr—Fe alloy. A reactor that includes a process of blasting using a blast furnace and a process of forming a film in the operation of circulating high-temperature water in the PWR primary system simulation environment before the start of operation, which is called actual machine HFT (Hot Function Test) processing Provided is a surface treatment method for a steam generator heat transfer tube. In addition, the inner surface of the heat transfer tube is subjected to a blasting process using beads having a small particle diameter, and the blasted heat transfer tube is included in high-temperature water (including water in which B, Li, and H 2 are dissolved at a constant concentration). A surface treatment method for a steam generator heat transfer tube for a nuclear reactor including a step of forming a film on the inner surface of the heat transfer tube by immersing in the heat transfer tube or circulating high temperature water on the inner surface of the heat transfer tube It is. In this embodiment, by distorting in advance by blasting, by accelerating the formation of the surface film at the time of immersion in high temperature water or trial operation in high temperature water (HFT: Hot Function Test) before starting operation Ni elution from the heat transfer tube can be reduced.

本発明の第2の形態は、Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、該伝熱管の内表面に硝フッ酸に浸漬させ皮膜を除去させる硝フッ酸処理工程と、HNO3(硝酸)水溶液を接触させて皮膜を形成する不働態化処理工程(硝酸処理工程)、を含む原子炉用蒸気発生器伝熱管の表面処理方法である。ここでは、硝フッ酸処理工程、硝酸処理工程に加えて、前記硝酸処理を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程、を含むことができる。本形態では、表面にCrを濃縮させた皮膜を形成させることにより伝熱管からのNi溶出を低減させることができる。 A second embodiment of the present invention is a surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni—Cr—Fe alloy, and a film is formed by immersing the inner surface of the heat transfer tube in nitric hydrofluoric acid. A surface treatment method for a steam generator heat transfer tube for a nuclear reactor, which includes a nitric hydrofluoric acid treatment step to be removed and a passivation treatment step (nitric acid treatment step) in which a HNO 3 (nitric acid) aqueous solution is contacted to form a film. . Here, in addition to the nitric hydrofluoric acid treatment step and the nitric acid treatment step, the heat transfer tube subjected to the nitric acid treatment is put into an actual machine HFT treatment that distributes the high temperature water of the PWR primary system simulation environment before the start of operation, or in high temperature water. A step of forming a film on the inner surface of the heat transfer tube by immersing or circulating high temperature water on the inner surface of the heat transfer tube may be included. In the present embodiment, Ni elution from the heat transfer tube can be reduced by forming a film in which Cr is concentrated on the surface.

本発明の第3の形態は、Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、該伝熱管の内表面に、硝フッ酸に浸漬させて皮膜を除去する工程と、クエン酸水溶液を接触させて表面を不働態化処理する工程(クエン酸処理工程)とを含むことができる。ここでは、硝フッ酸処理工程、クエン酸処理工程に加えて、前記クエン酸処理を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程を含むことができる。本形態では、表面にCrを濃縮させた皮膜を形成させることにより伝熱管からのNi溶出を低減させることができる。   A third aspect of the present invention is a surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni—Cr—Fe alloy, which is immersed in nitric hydrofluoric acid on the inner surface of the heat transfer tube. A step of removing the film and a step of passivating the surface by bringing the citric acid aqueous solution into contact (citric acid treatment step) can be included. Here, in addition to the nitric hydrofluoric acid treatment step and the citric acid treatment step, the heat transfer tube that has been subjected to the citric acid treatment is an actual machine HFT treatment that distributes the high-temperature water of the PWR primary system simulation environment before the start of operation, or a high temperature The method may include a step of forming a film on the inner surface of the heat transfer tube by immersing in water or circulating high temperature water on the inner surface of the heat transfer tube. In the present embodiment, Ni elution from the heat transfer tube can be reduced by forming a film in which Cr is concentrated on the surface.

本発明の第4の形態は、Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管の内表面に、HNO3(硝酸)水溶液を接触させて皮膜を形成する不働態化処理工程(硝酸処理工程)とを含む表面処理方法である。本形態では、あらかじめブラスト処理にて歪を与えておき、硝酸処理工程で選択的にNi、Feを溶解させるととともに、表面にCrを濃縮させた皮膜をブラスト処理時の歪付与から加速的に形成させることにより伝熱管からのNi溶出量を低減させることができる。 A fourth embodiment of the present invention is a surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni—Cr—Fe alloy, and beads having a small particle diameter are used on the inner surface of the heat transfer tube. And a passivation treatment step (nitric acid treatment step) for forming a film by bringing a HNO 3 (nitric acid) aqueous solution into contact with the inner surface of the blasted heat transfer tube. . In this embodiment, strain is preliminarily applied by blast treatment, and Ni and Fe are selectively dissolved in the nitric acid treatment step, and a film in which Cr is concentrated on the surface is accelerated from the application of strain during blast treatment. By forming it, the amount of Ni elution from the heat transfer tube can be reduced.

本発明の第5の形態は、Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管の内表面に、クエン酸水溶液を接触させて表面を不働態化処理する工程(クエン酸処理工程)と、該クエン酸処理した伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、該伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程とを含む表面処理方法である。   A fifth aspect of the present invention is a surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni—Cr—Fe alloy, and beads having a small particle diameter are used on the inner surface of the heat transfer tube. A blasting step, an inner surface of the blasted heat transfer tube is brought into contact with a citric acid aqueous solution to passivate the surface (citric acid treatment step), and the citric acid-treated heat transfer tube, The inner surface of the heat transfer tube by circulating the high temperature water in the actual machine HFT treatment that circulates the high temperature water of the PWR primary system simulation environment before the start of operation, or by immersing the high temperature water in the inner surface of the heat transfer tube And a step of forming a film on the surface.

本発明の第6の形態は、Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管の内表面に、硝フッ酸に浸漬させ皮膜を除去させる工程と、該硝フッ酸処理した伝熱管をHNO3(硝酸)水溶液を接触させて皮膜を形成する不働態化処理工程(硝酸処理工程)、さらに加えて、前記ブラスト処理、硝フッ酸処理および硝酸処理を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法である。 A sixth aspect of the present invention is a surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni—Cr—Fe alloy, and beads having a small particle diameter are used on the inner surface of the heat transfer tube. A blasting step, a step of removing the coating by immersing in nitric hydrofluoric acid on the inner surface of the blasted heat transfer tube, and contacting the nitric hydrofluoric acid-treated heat transfer tube with an HNO 3 (nitric acid) aqueous solution. Passivation treatment process (nitric acid treatment process) that forms a film, and in addition, heat transfer tubes that have been subjected to the blast treatment, nitric hydrofluoric acid treatment, and nitric acid treatment are treated with hot water from the PWR primary system simulation environment before the start of operation. An actual machine HFT treatment to be circulated, or a step of forming a film on the inner surface of the heat transfer tube by immersing in high temperature water or circulating high temperature water on the inner surface of the heat transfer tube. Treatment method for steam generator heat transfer tubes for nuclear reactors A.

本発明の第7の形態は、Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管の内表面に、硝フッ酸に浸漬させ皮膜を除去させる工程と、該硝フッ酸処理した伝熱管をクエン酸水溶液に接触させて皮膜を形成する不働態化処理する工程(クエン酸処理工程)、さらに加えて、前記ブラスト処理、硝フッ酸処理およびクエン酸処理を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって該伝熱管の内表面に皮膜を形成させる工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法である。   A seventh aspect of the present invention is a surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni—Cr—Fe alloy, and beads having a small particle diameter are used on the inner surface of the heat transfer tube. Blasting, immersing the niobium hydrofluoric acid to remove the coating on the inner surface of the blasted heat transfer tube, and forming the coating by contacting the nitric hydrofluoric acid-treated heat transfer tube with an aqueous citric acid solution In addition to the passivating process (citric acid treatment process), in addition to the heat treatment tube subjected to the blast treatment, nitric hydrofluoric acid treatment and citric acid treatment, hot water of the PWR primary system simulated environment before the start of operation is used. And a step of forming a film on the inner surface of the heat transfer tube by immersing in an actual HFT treatment to be circulated, or immersing in high temperature water, or circulating high temperature water on the inner surface of the heat transfer tube. Surface treatment of reactor steam generator heat transfer tubes It is a method.

以上説明したように、本発明の表面処理方法によれば、原子炉用蒸気発生器伝熱管の内面にあらかじめ表面皮膜を形成させることで、伝熱管からのNi溶出を極力低減させることができる。これによって、原子力施設内における被曝線量の低減を図ることができる。
以下、本発明を実施する最良の形態によって詳細に説明するが、本発明はこれらの実施の形態によって何ら限定されるものではない。
As described above, according to the surface treatment method of the present invention, Ni elution from the heat transfer tube can be reduced as much as possible by forming a surface film on the inner surface of the reactor steam generator heat transfer tube in advance. This can reduce the exposure dose in the nuclear facility.
Hereinafter, although the present invention will be described in detail according to the best mode for carrying out the present invention, the present invention is not limited to these embodiments.

本発明の表面処理方法の対象となるのは、Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管である。Ni-Cr-Fe合金の化学組成としては、通常、10〜40%Cr、30〜80%Ni、および残りがFeの組成であり、具体的には、例えば690合金の30%Cr、60%Ni、残りがFeの組成、あるいは、600合金の15%Cr、70%Ni、残りがFeの組成、あるいは、800合金の20%Cr、35%Ni、残りがFeの組成などが挙げられる。
Niは放射化されると58Coとなり最も放射線被曝に対する線量率の寄与の大きい元素であるが、一方で、高温水中での耐粒界応力腐食割れ性に優れるのは、Niの含有量が50%以上のNi-Cr-Fe合金である。本発明の表面処理方法で対象とするNi-Cr-Fe合金は、Niの含有量が50%以上好ましくは55%以上の優れた耐粒界応力腐食割れ性を有する合金である。
Crは合金の耐食性を維持するため必要不可欠な元素である。10%以下では伝熱管の用途で要求される耐食性を確保できず、40%を超えると一般に熱間加工性が悪くなる。
The object of the surface treatment method of the present invention is a heat transfer tube of a steam generator for a reactor made of a Ni—Cr—Fe alloy. The chemical composition of the Ni-Cr-Fe alloy is usually 10 to 40% Cr, 30 to 80% Ni, and the balance is Fe, specifically, for example, 30% Cr of the 690 alloy, 60% The composition of Ni, the remaining Fe, or the composition of 15% Cr and 70% Ni of 600 alloy, the remaining Fe, or the composition of 20% Cr, 35% Ni of 800 alloy, the remaining Fe, and the like.
Ni is 58 Co when activated and is the element with the greatest contribution of dose rate to radiation exposure. On the other hand, the Ni content is 50% because of its excellent resistance to intergranular stress corrosion cracking in high-temperature water. % Ni-Cr-Fe alloy. The Ni—Cr—Fe alloy targeted by the surface treatment method of the present invention is an alloy having excellent intergranular stress corrosion cracking resistance with a Ni content of 50% or more, preferably 55% or more.
Cr is an indispensable element for maintaining the corrosion resistance of the alloy. If it is 10% or less, the corrosion resistance required for the heat transfer tube application cannot be secured, and if it exceeds 40%, the hot workability generally deteriorates.

本発明方法の対象となる伝熱管材料(合金)は、上記のNiおよびCrの外に合金の強度確保のために他の元素を必要に応じて含有していても良い。具体的には、例えばCを0.015〜0.025%、Mnを0.5%まで、Moを0.2%まで、Nb+Taを0.1%まで含有することができる。また、不純物元素の中では、Co、B、PおよびSの含有量が制限される。
伝熱管は、上記の合金を素材として、通常の製管方法、例えば、熱間押出し法で素管を製造し、これを冷間引抜きまたは冷間圧延して製品寸法に仕上げる方法で製造することができる。次いで、固溶化熱処理や炭化物析出処理(粒界強化熱処理)のような熱処理を施しても良い。
以下、本実施の形態による原子炉用蒸気発生器伝熱管の表面処理方法について図面を参照しながら説明する。
The heat transfer tube material (alloy) that is the subject of the method of the present invention may contain other elements as needed in addition to the above-described Ni and Cr to ensure the strength of the alloy. Specifically, for example, C can be contained in an amount of 0.015 to 0.025%, Mn up to 0.5%, Mo up to 0.2%, and Nb + Ta up to 0.1%. Further, among the impurity elements, the contents of Co, B, P and S are limited.
The heat transfer tube is manufactured by using the above alloy as a raw material, and manufacturing a raw tube by a normal tube forming method, for example, a hot extrusion method, and then cold drawing or cold rolling to finish the product dimensions. Can do. Next, heat treatment such as solution heat treatment or carbide precipitation treatment (grain boundary strengthening heat treatment) may be performed.
Hereinafter, a surface treatment method for a steam generator heat transfer tube for a reactor according to the present embodiment will be described with reference to the drawings.

実施の形態(その1)
本発明の第1の形態は、伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水(B、Li,H2を一定濃度溶解した水も含む。以下同じ)中に浸漬する、又は、該伝熱管の内表面に高温水を流通させることによって、伝熱管の内表面に皮膜を形成させる工程(皮膜処理工程)とを含む原子炉用蒸気発生器伝熱管の表面処理方法である。図1に、本形態の方法を工程順に模式的に示す。
本形態では、先ず伝熱管の内表面4をブラスト処理する。ブラスト処理により伝熱管内面4のみに歪を与えることによって、表層の歪層2が生じる。さらに、この伝熱管を高温水中での浸漬することで表面皮膜3の形成する。または、管内面4に、運転開始前のPWR一次系模擬環境の高温水中での試運転(HFT: Hot Function Testでの皮膜処理)を行うことにより、表面皮膜3の形成を加速させる。本発明で高温水とは、通常150〜400℃の水である。運転開始前の高温水中での試運転により、表面皮膜の形成を上記のブラスト処理での歪に伴う拡散速度を早め、形成された皮膜に伴い伝熱管からのNi溶出量を低減させることができる。
Embodiment (Part 1)
In the first embodiment of the present invention, the inner surface of the heat transfer tube is subjected to a blasting process using beads having a small particle diameter, and the blasted heat transfer tube is subjected to high-temperature water in a PWR primary system simulated environment before the start of operation. actual HFT process of distributing, or hot water is immersed in (B, Li, and H 2 constant concentration dissolved water including. hereinafter the same), or be distributed to hot water on the inner surface of the heat transfer tube Is a surface treatment method for a steam generator heat transfer tube for a nuclear reactor, including a step of forming a film on the inner surface of the heat transfer tube (film treatment step). FIG. 1 schematically shows the method of this embodiment in the order of steps.
In this embodiment, first, the inner surface 4 of the heat transfer tube is blasted. By distorting only the heat transfer tube inner surface 4 by blasting, the surface strain layer 2 is generated. Further, the surface coating 3 is formed by immersing the heat transfer tube in high-temperature water. Alternatively, the formation of the surface film 3 is accelerated by performing a test operation in high-temperature water in the PWR primary system simulated environment before starting operation (film treatment with HFT: Hot Function Test) on the pipe inner surface 4. In the present invention, the high temperature water is usually water at 150 to 400 ° C. By trial operation in high-temperature water before the start of operation, it is possible to increase the diffusion rate associated with the strain in the blast treatment for the formation of the surface film, and to reduce the amount of Ni elution from the heat transfer tube along with the formed film.

上記ブラスト処理条件としては、粒径100〜500μmのガラスビーズ、ジルコニアビーズ、ステンレス鋼ビーズ、共材となるNi基合金のビーズ等のブラスト球1を用いて、圧力3〜5kg/cm、施工速度100〜500mm/minの条件で管内面のみに施工する。より具体的には、180〜250μmのガラスビーズ1を用いて4kg/cm、施工速度200mm/minの条件で施工することが好適である。
高温水中での皮膜処理工程の条件としては、実機運転開始前の試運転(HFT)条件を模擬し、例えばPWR一次系模擬環境水中(285℃、B(ホウ素):2,300 ppm、Li(リチウム):3 ppm、DH2(溶存水素):25cc/kg)で2日(約50時間)の浸漬を行い、表面に皮膜を形成させる。
As the blasting conditions, the pressure is 3 to 5 kg / cm 2 using a blast ball 1 such as glass beads having a particle diameter of 100 to 500 μm, zirconia beads, stainless steel beads, and Ni-based alloy beads as a co-material. Work only on the inner surface of the pipe at a speed of 100 to 500 mm / min. More specifically, it is preferable that the construction is performed using the glass beads 1 of 180 to 250 μm under the conditions of 4 kg / cm 2 and construction speed of 200 mm / min.
As conditions for the film treatment process in high-temperature water, the trial run (HFT) conditions before the start of actual machine operation are simulated, for example, PWR primary system simulated environment water (285 ° C, B (boron): 2,300 ppm, Li (lithium): 3 ppm, DH 2 (dissolved hydrogen): 25 cc / kg) for 2 days (about 50 hours) to form a film on the surface.

実施の形態(その2)
本発明の第2の形態は、伝熱管の内表面を、硝フッ酸に浸漬させ皮膜を除去させる硝フッ酸処理工程と、HNO3(硝酸)水溶液を接触させて皮膜を形成する不働態化処理工程(硝酸処理工程)、を含む表面処理方法である。ここでは、硝フッ酸処理工程、硝酸処理工程に加えて、前記硝酸処理を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程、を含むことができる。図2に、本形態の方法を工程順に模式的に示す。
Embodiment (2)
In the second embodiment of the present invention, the inner surface of the heat transfer tube is immersed in nitric hydrofluoric acid to remove the film, and the hydrofluoric acid treatment step is brought into contact with an aqueous HNO 3 (nitric acid) solution to form a film. A surface treatment method including a treatment step (nitric acid treatment step). Here, in addition to the nitric hydrofluoric acid treatment step and the nitric acid treatment step, the heat transfer tube subjected to the nitric acid treatment is put into an actual machine HFT treatment that distributes the high temperature water of the PWR primary system simulation environment before the start of operation, or in high temperature water. A step of forming a film on the inner surface of the heat transfer tube by immersing or circulating high temperature water on the inner surface of the heat transfer tube may be included. FIG. 2 schematically shows the method of this embodiment in the order of steps.

本形態では、伝熱管の内表面4を硝フッ酸処理し、皮膜を溶解させた後、硝酸処理して、Crリッチな皮膜6を形成させる。さらに、必要により高温水中での浸漬、あるいは、運転開始前のPWR一次系模擬環境の高温水中での試運転(HFT皮膜処理)により、表面皮膜の形成を追加させることもできる。硝酸処理工程で伝熱管内表面の金属について、表面にCrを濃縮させた皮膜を形成させることにより伝熱管からのNi溶出量を低減させる。
上記硝フッ酸処理工程としては、1〜5%HF、3〜30%HNO3水溶液を用いて、室温〜100℃にて1〜60分間の処理が好適に挙げられる。
また、上記硝酸処理工程としては、5〜50%HNO3水溶液を用いて、室温〜100℃にて30〜120分間の処理条件が挙げられる。より具体的には、10%HNO3水溶液、50℃、60分間の処理、あるいは、30%HNO3水溶液、50℃、60分間の処理が好適に挙げられる。
In this embodiment, the inner surface 4 of the heat transfer tube is treated with nitric hydrofluoric acid to dissolve the coating, and then treated with nitric acid to form a Cr-rich coating 6. Furthermore, if necessary, surface film formation can be added by immersion in high-temperature water, or trial operation in high-temperature water (HFT film treatment) in a PWR primary system simulation environment before the start of operation. In the nitric acid treatment process, the amount of Ni elution from the heat transfer tube is reduced by forming a film on the surface of the heat transfer tube with Cr concentrated.
As the nitric hydrofluoric acid treatment step, 1 to 5% HF, with 3 to 30% HNO 3 aqueous solution, treatment of 1 to 60 minutes at room temperature to 100 ° C. are preferably exemplified.
Further, as the nitric acid treatment step, with 5 to 50% HNO 3 aqueous solution, it includes treatment conditions 30 to 120 minutes at room temperature to 100 ° C.. More specifically, 10% HNO 3 aqueous solution, treatment at 50 ° C. for 60 minutes, or 30% HNO 3 aqueous solution, treatment at 50 ° C. for 60 minutes is preferable.

実施の形態(その3)
本発明の第3の形態は、伝熱管の内表面を、硝フッ酸に浸漬させ皮膜を除去させる硝フッ酸工程と、クエン酸(あるいはクエン酸アンモン、以下同じ)水溶液を接触させて表面を不働態化処理する工程(クエン酸処理工程)とを含む表面処理方法である。ここでは、前記クエン酸処理した伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程を含むことができる。図3に、本形態の方法を工程順に模式的に示す。
Embodiment (Part 3)
In the third embodiment of the present invention, the inner surface of the heat transfer tube is immersed in nitric hydrofluoric acid to remove the film, and the nitric hydrofluoric acid step is brought into contact with an aqueous solution of citric acid (or ammonium citrate, the same applies hereinafter). A surface treatment method including a passivating step (citric acid treatment step). Here, the citric acid-treated heat transfer tube is subjected to an actual HFT treatment in which high-temperature water in a PWR primary system simulation environment before operation is circulated, or immersed in high-temperature water, or high-temperature water on the inner surface of the heat-transfer tube Can be included to form a film on the inner surface of the heat transfer tube. FIG. 3 schematically shows the method of this embodiment in the order of steps.

本形態では、先ず伝熱管の内表面4を硝フッ酸に接触させて表面皮膜を溶解させた後、クエン酸等に接触させて、Crリッチな層8を形成する。次いで、高温水中での浸漬、あるいは、運転開始前のPWR一次系模擬環境の高温水中での試運転(HFT皮膜処理)により、表面皮膜3の形成を追加させる。
クエン酸処理工程では、表面にCrを濃縮させた状態にする。さらに、上記実施の形態(その1)と同様に、例えば運転開始前のPWR一次系模擬環境下の高温水中での試運転(HFT皮膜処理)を行って表面皮膜を形成させることにより、伝熱管からのNi溶出量を低減させる。
In this embodiment, the inner surface 4 of the heat transfer tube is first brought into contact with nitric hydrofluoric acid to dissolve the surface film, and then brought into contact with citric acid or the like to form the Cr-rich layer 8. Next, the formation of the surface film 3 is added by immersion in high-temperature water or trial operation (HFT film treatment) in high-temperature water in a PWR primary system simulation environment before the start of operation.
In the citric acid treatment step, Cr is concentrated on the surface. Further, as in the first embodiment (part 1), for example, by performing a trial operation (HFT film treatment) in high-temperature water in a PWR primary system simulated environment before starting operation, a surface film is formed from the heat transfer tube. Reduce the amount of Ni dissolved in

上記硝フッ酸処理工程としては、1〜5%HF、3〜30%HNO3水溶液を用いて、室温〜100℃にて1〜60分間の処理が好適に挙げられる。
また、上記クエン処理工程としては、通常5〜20%クエン酸水溶液、室温〜100℃、30〜150分間の処理条件が挙げられる。より具体的には、15%クエン酸水溶液、65℃、120分間の処理条件が好適である。
また、クエン酸アンモンを用いる場合、5〜20%クエン酸2水素アンモニウム水溶液、50〜100℃、30〜150分間の処理条件が挙げられる。より具体的には、10%クエン酸2水素アンモニウム水溶液、95℃、120分間の処理条件が好適である。
As the nitric hydrofluoric acid treatment step, 1 to 5% HF, with 3 to 30% HNO 3 aqueous solution, treatment of 1 to 60 minutes at room temperature to 100 ° C. are preferably exemplified.
In addition, as the above-mentioned citrate treatment step, treatment conditions of usually 5 to 20% citric acid aqueous solution, room temperature to 100 ° C., and 30 to 150 minutes can be mentioned. More specifically, a treatment condition of 15% aqueous citric acid solution at 65 ° C. for 120 minutes is preferable.
Moreover, when using an ammonium citrate, the processing conditions of 5-20% ammonium dihydrogen citrate aqueous solution, 50-100 degreeC, 30-150 minutes are mentioned. More specifically, a treatment condition of 10% ammonium dihydrogen citrate aqueous solution at 95 ° C. for 120 minutes is preferable.

実施の形態(その4)
本発明の第4の形態は、伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管の内表面に、HNO3水溶液を接触させて皮膜を形成する、硝酸処理工程と、を含む表面処理方法である。図4に、本形態の方法を工程順に模式的に示す。
Embodiment (part 4)
In the fourth embodiment of the present invention, the inner surface of the heat transfer tube is subjected to a blasting process using beads having a small particle diameter, and the HNO 3 aqueous solution is brought into contact with the inner surface of the blasted heat transfer tube. Forming a nitric acid treatment step. FIG. 4 schematically shows the method of this embodiment in the order of steps.

本形態では、先ず伝熱管の内表面4をブラスト処理して、表層の歪層2を形成する。次いで、このブラスト処理した表面上に、硝酸処理を追加して緻密なCrリッチな皮膜6を形成させる。さらに、必要により高温水中での浸漬、あるいは、運転開始前のPWR一次系模擬環境の高温水中での試運転(HFT皮膜処理)により、表面皮膜の形成を追加させることもできる。このような工程により、あらかじめブラスト処理にて歪を与えておき、硝酸処理で表面にCrを濃縮させた皮膜をブラスト処理時の歪付与から加速的に形成させることによって、伝熱管からのNi溶出量を低減させる。
ブラスト処理工程および硝酸処理工程の条件は、上記実施の形態(その1)および(その2)と同様である。
In this embodiment, the inner surface 4 of the heat transfer tube is first blasted to form the surface strain layer 2. Next, nitric acid treatment is added on the blasted surface to form a dense Cr-rich film 6. Furthermore, if necessary, surface film formation can be added by immersion in high-temperature water, or trial operation in high-temperature water (HFT film treatment) in a PWR primary system simulation environment before the start of operation. By such a process, strain is preliminarily applied by blast treatment, and Ni is eluted from the heat transfer tube by forming a film in which Cr is concentrated on the surface by nitric acid treatment at an accelerated rate from the application of strain during blast treatment. Reduce the amount.
The conditions of the blast treatment step and the nitric acid treatment step are the same as in the above-described embodiment (No. 1) and (No. 2).

実施の形態(その5)
本発明の第5の形態は、伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管の内表面に、クエン酸水溶液を接触させて表面をクエン酸処理する工程と、該クエン酸処理した伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、該伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程とを含む表面処理方法である。図5に、本形態の方法を工程順に模式的に示す。
Embodiment (Part 5)
According to a fifth aspect of the present invention, the inner surface of the heat transfer tube is subjected to a blasting process using beads having a small particle diameter, and the inner surface of the blasted heat transfer tube is contacted with an aqueous citric acid solution so that the surface is brought into contact. The citric acid treatment step and the citric acid-treated heat transfer tube are used in the actual HFT treatment for circulating the high-temperature water in the PWR primary system simulation environment before the start of operation, or immersed in the high-temperature water, or the inside of the heat transfer tube And a step of forming a film on the inner surface of the heat transfer tube by circulating high-temperature water on the surface. FIG. 5 schematically shows the method of this embodiment in the order of steps.

本形態では、先ず伝熱管の内表面4をブラスト処理して、表層の歪層2を形成する。次いで、このブラスト処理した表面上に、クエン酸等の処理をしてCrリッチな層8を形成する。さらに、高温水中での浸漬、あるいは、運転開始前のPWR一次系模擬環境の高温水中での試運転(HFT皮膜処理)により、表面皮膜6を形成する。
本形態の処理方法では、伝熱管内表面をあらかじめブラスト処理にて表面のみに歪を与え、表面にCrを濃縮させた状態にする。さらに、実施の形態(その1)と同様に運転開始前のPWR一次系模擬境下の高温水での運転(HFT皮膜処理)により、表面皮膜を形成させることによって、伝熱管からのNi溶出量を低減させる。
ブラスト処理工程およびクエン処理工程の条件は、上記実施の形態(その1)および(その4)と同様である。
In this embodiment, the inner surface 4 of the heat transfer tube is first blasted to form the surface strain layer 2. Next, a Cr-rich layer 8 is formed on the blasted surface by treatment with citric acid or the like. Furthermore, the surface film 6 is formed by immersion in high-temperature water or a trial operation (HFT film treatment) in high-temperature water in a PWR primary system simulation environment before the start of operation.
In the treatment method of the present embodiment, the inner surface of the heat transfer tube is preliminarily distorted only in the surface by blasting, and Cr is concentrated on the surface. Furthermore, the amount of Ni elution from the heat transfer tube is formed by forming a surface film by operating with high-temperature water (HFT film treatment) under the simulated PWR primary system before the start of operation as in the case of the first embodiment (Part 1). Reduce.
The conditions of the blasting process and the quenching process are the same as in the first embodiment (part 1) and (part 4).

実施の形態(その6)
本形態の処理方法では、先ず伝熱管の内表面4をブラスト処理して、表層の歪層2を形成する。次いで、このブラスト処理した表面上に、硝フッ酸による表面皮膜溶解処理をしてブラストによる表面粗さを低減する。該ブラスト、硝フッ酸処理した伝熱管表面を硝酸処理による不働態化処理にすることでCrリッチな層8を形成する。さらに、高温水中での浸漬、あるいは、運転開始前のPWR一次系模擬環境の高温水中での試運転(HFT皮膜処理)により、表面皮膜6を形成する。
本形態の処理方法では、伝熱管内表面をあらかじめブラスト処理にて表面のみに歪を与え、表面にCrを濃縮させた状態にする。さらに、実施の形態(その1)と同様に運転開始前のPWR一次系模擬境下の高温水での運転(HFT皮膜処理)により、表面皮膜を形成させることによって、伝熱管からのNi溶出量を低減させる。
ブラスト処理工程および硝フッ酸処理工程、硝酸処理工程の条件は、上記実施の形態(その1)および(その2)と同様である。図6に、本形態の方法を工程順に模式的に示す。
Embodiment (No. 6)
In the processing method of this embodiment, first, the inner surface 4 of the heat transfer tube is blasted to form the surface strained layer 2. Next, a surface film dissolution treatment with nitric hydrofluoric acid is performed on the blasted surface to reduce the surface roughness due to blasting. The Cr-rich layer 8 is formed by subjecting the surface of the heat transfer tube treated with blasting and nitric hydrofluoric acid to passivation by nitric acid treatment. Furthermore, the surface film 6 is formed by immersion in high-temperature water or a trial operation (HFT film treatment) in high-temperature water in a PWR primary system simulation environment before the start of operation.
In the treatment method of the present embodiment, the inner surface of the heat transfer tube is preliminarily distorted only in the surface by blasting, and Cr is concentrated on the surface. Furthermore, the amount of Ni elution from the heat transfer tube is formed by forming a surface film by operating with high-temperature water (HFT film treatment) under the simulated PWR primary system before the start of operation as in the case of the first embodiment (Part 1). Reduce.
The conditions of the blast treatment process, the nitric hydrofluoric acid treatment process, and the nitric acid treatment process are the same as in the first embodiment (part 1) and (part 2). FIG. 6 schematically shows the method of this embodiment in the order of steps.

実施の形態(その7)
本形態の処理方法では、先ず伝熱管の内表面4をブラスト処理して、表層の歪層2を形成する。次いで、このブラスト処理した表面上に、硝フッ酸による表面皮膜溶解処理をしてブラストによる表面粗さを低減する。該ブラスト、硝フッ酸処理した伝熱管表面をクエン酸等処理による不働態化処理にすることでCrリッチな層8を形成する。さらに、高温水中での浸漬、あるいは、運転開始前のPWR一次系模擬環境の高温水中での試運転(HFT皮膜処理)により、表面皮膜6を形成する。
本形態の処理方法では、伝熱管内表面をあらかじめブラスト処理にて表面のみに歪を与え、表面にCrを濃縮させた状態にする。さらに、実施の形態(その1)と同様に運転開始前のPWR一次系模擬境下の高温水での運転(HFT皮膜処理)により、表面皮膜を形成させることによって、伝熱管からのNi溶出量を低減させる。
ブラスト処理工程および硝フッ酸処理工程、クエン酸等処理工程の条件は、上記実施の形態(その1)および(その3)と同様である。図6に、本形態の方法を工程順に模式的に示す。
以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例によって何ら制限されるものでない。
Embodiment (Part 7)
In the processing method of this embodiment, first, the inner surface 4 of the heat transfer tube is blasted to form the surface strained layer 2. Next, a surface film dissolution treatment with nitric hydrofluoric acid is performed on the blasted surface to reduce the surface roughness due to blasting. The Cr-rich layer 8 is formed by subjecting the surface of the heat transfer tube treated with blasting and nitric hydrofluoric acid to passivation by treatment with citric acid or the like. Furthermore, the surface film 6 is formed by immersion in high-temperature water or a trial operation (HFT film treatment) in high-temperature water in a PWR primary system simulation environment before the start of operation.
In the treatment method of the present embodiment, the inner surface of the heat transfer tube is preliminarily distorted only in the surface by blasting, and Cr is concentrated on the surface. Furthermore, the amount of Ni elution from the heat transfer tube is formed by forming a surface film by operating with high-temperature water (HFT film treatment) under the simulated PWR primary system before the start of operation as in the case of the first embodiment (Part 1). Reduce.
The conditions of the blast treatment step, the nitric hydrofluoric acid treatment step, and the citric acid treatment step are the same as those in the first embodiment (part 1) and (part 3). FIG. 6 schematically shows the method of this embodiment in the order of steps.
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not restrict | limited at all by these Examples.

例A〜N
図7に示すバッチ式オートクレーブ装置により、上記実施の形態(その1)〜(その7)に該当する各表面処理を行った合金処理材について、Ni溶出試験を行った。合金としては、TT690合金を用いた。
〔試験手法〕
1) SG伝熱管供試体14の内面に、上記の各実施の形態(その1)〜(その7)の表面処理を行った(試験材A〜N)。皮膜形成のために、表面処理後には、一度高温水中で約50時間程度浸漬させ、表面に皮膜を形成させた状態のものを用いた。
2) SG伝熱管14の片端部を、溶接またはスウェージロック等を用いて栓13を行った。
3) 一方から、PWR一次系模擬環境水15(液組成:B:1,200 ppm、Li:2 ppm、H2:25cc/kg)を一定量注入した。
4) もう一方を溶接またはスウェージロック等を用いて栓13を閉じ、閉塞状態した。
5) オートクレーブ10に、両端を閉じたSG伝熱管14を浸漬させる。
6) オートクレーブ10を高温高圧環境にする。
7) 約300時間後および1,000時間後におけるSG伝熱管内のPWR一次系模擬環境水(B:1,200 ppm、Li:2 ppm、H2:25cc/kg、温度:320℃)をサンプリングし、水に溶出したNi, Cr, Fe量を測定した。
8) 主として、試験前と約300時間試験後および1,000時間試験後の水中のNi量の変化量を求めることで、各処理を行った試験片についてそれぞれNi溶出量および溶出速度を求めた。結果を表1に示す。
Examples A to N
With the batch type autoclave apparatus shown in FIG. 7, the Ni elution test was performed on the alloy-treated materials subjected to the respective surface treatments corresponding to the above embodiments (No. 1) to (No. 7). As the alloy, TT690 alloy was used.
[Test method]
1) The surface treatment of each of the above embodiments (No. 1) to (No. 7) was performed on the inner surface of the SG heat transfer tube specimen 14 (test materials A to N). In order to form a film, after the surface treatment, the film was once immersed in high temperature water for about 50 hours to form a film on the surface.
2) One end of the SG heat transfer tube 14 was plugged 13 using welding or a swage lock.
3) A fixed amount of PWR primary simulated environmental water 15 (liquid composition: B: 1,200 ppm, Li: 2 ppm, H 2 : 25 cc / kg) was injected from one side.
4) The other end was closed by closing the stopper 13 using welding or a swage lock.
5) The SG heat transfer tube 14 closed at both ends is immersed in the autoclave 10.
6) Put the autoclave 10 in a high temperature and high pressure environment.
7) Sample PWR primary environmental water (B: 1,200 ppm, Li: 2 ppm, H 2 : 25cc / kg, temperature: 320 ° C) in the SG heat transfer tube after about 300 hours and 1,000 hours The amount of Ni, Cr and Fe eluted in the sample was measured.
8) The Ni elution amount and elution rate were determined for each of the treated specimens mainly by determining the amount of change in the amount of Ni in the water before the test and after the test for about 300 hours and after the 1,000 hour test. The results are shown in Table 1.

Figure 2005213538
Figure 2005213538

上記結果より、表1中のAの皮膜処理していないもの(リファレンス)に比較して、皮膜処理したBからNのすべてにおいてNi溶出量の低減が1/3程度図れるということが証明された。
以上、本発明の実施の形態について説明したが、本発明は、本発明の技術的思想に基づいて種々の変形及び変更が可能である。
From the above results, it was proved that the Ni elution amount can be reduced by about 1/3 in all of B to N treated with the film, compared to the non-coated film A (reference) in Table 1. .
While the embodiments of the present invention have been described above, the present invention can be variously modified and changed based on the technical idea of the present invention.

本発明の表面処理方法によれば、伝熱管からのNi溶出を極力低減させることで、作業員の被曝線量の低減を図ることが可能である。よって、原子炉用蒸気発生器の伝熱管に適用することで、原子力発電システムの安全性向上に大きく貢献することが期待でき、産業上の意義は極めて大きい。   According to the surface treatment method of the present invention, it is possible to reduce the exposure dose of workers by reducing Ni elution from the heat transfer tube as much as possible. Therefore, by applying it to the heat transfer tube of the steam generator for nuclear reactors, it can be expected to greatly contribute to the improvement of the safety of the nuclear power generation system, and the industrial significance is extremely great.

本発明の実施の形態(その1)による方法を工程順に模式的に示した図である。It is the figure which showed typically the method by embodiment (the 1) of this invention in process order. 本発明の実施の形態(その2)による方法を工程順に模式的に示した図である。It is the figure which showed typically the method by embodiment (the 2) of this invention in process order. 本発明の実施の形態(その3)による方法を工程順に模式的に示した図である。It is the figure which showed typically the method by embodiment (the 3) of this invention in order of a process. 本発明の実施の形態(その4)による方法を工程順に模式的に示した図である。It is the figure which showed typically the method by embodiment (the 4) of this invention in order of a process. 本発明の実施の形態(その5)による方法を工程順に模式的に示した図である。It is the figure which showed typically the method by embodiment (the 5) of this invention in process order. 本発明の実施の形態(その6、7)による方法を工程順に模式的に示した図である。It is the figure which showed typically the method by embodiment (the 6 and 7) of this invention in order of a process. 実施例においてバッチ式オートクレーブ装置を用いて、Ni溶出試験を行った際の概略を模式的に示した図である。It is the figure which showed typically the outline at the time of performing Ni elution test using a batch-type autoclave apparatus in an Example.

符号の説明Explanation of symbols

1 ブラスト球
2 表層の歪層
3 皮膜
4 管内面
5 管外面
6 Crリッチな皮膜
8 Crリッチな層
10 オートクレーブ
11 窒素
12 純水
13 栓(キャップ)
14 伝熱管供試体
15 模擬RCS
16 混合ガス
DESCRIPTION OF SYMBOLS 1 Blast ball | bowl 2 Surface distortion layer 3 Film | membrane 4 Pipe inner surface 5 Pipe outer surface 6 Cr rich film 8 Cr rich layer 10 Autoclave 11 Nitrogen 12 Pure water 13 Plug (cap)
14 Heat transfer tube specimen 15 Simulated RCS
16 Mixed gas

Claims (14)

Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、
該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理で皮膜を形成させる工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法。
A surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni-Cr-Fe alloy,
Including a step of blasting the inner surface of the heat transfer tube using beads having a small particle diameter, and a step of forming a film by an actual HFT treatment in which high-temperature water in a PWR primary system simulation environment is circulated before starting operation. A surface treatment method for a steam generator heat transfer tube for a nuclear reactor.
Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、
該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、
該ブラスト処理した伝熱管を高温水中に浸漬、又は、該伝熱管の内表面に高温水を流通させることによって、伝熱管の内表面に皮膜を形成させる工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法。
A surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni-Cr-Fe alloy,
A step of blasting the inner surface of the heat transfer tube with beads having a small particle diameter;
And a step of forming a film on the inner surface of the heat transfer tube by immersing the blasted heat transfer tube in high temperature water or circulating high temperature water on the inner surface of the heat transfer tube. Surface treatment method for steam generator heat transfer tubes.
Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、
該伝熱管の内表面に、硝フッ酸に浸漬させ皮膜を除去させる硝フッ酸処理工程と、該硝フッ酸処理した伝熱管をHNO3水溶液を接触させて皮膜を形成する不働態化処理工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法。
A surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni-Cr-Fe alloy,
A nitric hydrofluoric acid treatment step for removing the coating by immersing it in nitric hydrofluoric acid on the inner surface of the heat transfer tube, and a passivation treatment step for forming a coating by bringing the heat transfer tube treated with nitric hydrofluoric acid into contact with an aqueous HNO 3 solution A surface treatment method for a steam generator heat transfer tube for a nuclear reactor.
さらに加えて、前記不働態化処理を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程、を含むことを特徴とする請求項3記載の原子炉用蒸気発生器伝熱管の表面処理方法。   In addition, the heat transfer tube that has been subjected to the passivating process is immersed in high-temperature HFT treatment that circulates high-temperature water in the PWR primary system simulation environment before the start of operation, or in the heat transfer tube. The method for surface treatment of a steam generator heat transfer tube for a nuclear reactor according to claim 3, further comprising the step of forming a film on the inner surface of the heat transfer tube by circulating high temperature water over the surface. Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、
該伝熱管の内表面に、硝フッ酸に浸漬させ皮膜を除去させる硝フッ酸処理工程と、該硝フッ酸処理した伝熱管をクエン酸若しくはクエン酸アンモンの水溶液を接触させて表面を不働態化処理する工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法。
A surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni-Cr-Fe alloy,
A nitric hydrofluoric acid treatment step in which the inner surface of the heat transfer tube is immersed in nitric hydrofluoric acid to remove the film, and the nitric hydrofluoric acid-treated heat transfer tube is brought into contact with an aqueous solution of citric acid or ammonium citrate to passivate the surface. A surface treatment method for a steam generator heat transfer tube for a nuclear reactor.
さらに加えて、前記不働態化処理する工程を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程、を含むことを特徴とする請求項5記載の原子炉用蒸気発生器伝熱管の表面処理方法。   In addition, the heat transfer tube that has been subjected to the passivating process is an actual HFT process that circulates high-temperature water in the PWR primary system simulated environment before the start of operation, or is immersed in high-temperature water, or the heat transfer tube The method for surface treatment of a steam generator heat transfer tube for a nuclear reactor according to claim 5, further comprising the step of forming a film on the inner surface of the heat transfer tube by circulating high temperature water on the inner surface of the heat transfer tube. Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、
該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、
該ブラスト処理した伝熱管の内表面に、HNO3水溶液を接触させて皮膜を形成する不働態化処理工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法。
A surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni-Cr-Fe alloy,
A step of blasting the inner surface of the heat transfer tube with beads having a small particle diameter;
A surface treatment method for a steam generator heat transfer tube for a nuclear reactor, comprising a passivation treatment step of bringing a HNO 3 aqueous solution into contact with an inner surface of the blasted heat transfer tube to form a film.
さらに加えて、前記ブラスト処理および不働態化処理工程を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程、を含むことを特徴とする請求項7記載の原子炉用蒸気発生器伝熱管の表面処理方法。   In addition, the heat transfer tubes that have undergone the blasting and passivation treatment steps are immersed in high-temperature water, or an actual HFT treatment that distributes high-temperature water in a PWR primary system simulation environment before the start of operation, or The surface treatment of a steam generator heat transfer tube for a nuclear reactor according to claim 7, comprising a step of forming a film on the inner surface of the heat transfer tube by circulating high temperature water on the inner surface of the heat transfer tube. Method. Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、
該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、
該ブラスト処理した伝熱管の内表面に、クエン酸若しくはクエン酸アンモンの水溶液を接触させて表面を不働態化処理する工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法。
A surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni-Cr-Fe alloy,
A step of blasting the inner surface of the heat transfer tube with beads having a small particle diameter;
A surface treatment of a steam generator heat exchanger tube for a reactor, comprising the step of bringing the inner surface of the blasted heat transfer tube into contact with an aqueous solution of citric acid or ammonium citrate to passivate the surface Method.
さらに加えて、前記ブラスト処理および不働態化処理する工程を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、該伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程とを含むことを特徴とする請求項9記載の原子炉用蒸気発生器伝熱管の表面処理方法。   In addition, the heat transfer tube that has been subjected to the blasting and passivating steps, an actual machine HFT treatment that circulates the high-temperature water of the PWR primary system simulation environment before the start of operation, or is immersed in high-temperature water, or 10. The surface of the steam generator heat transfer tube for a reactor according to claim 9, further comprising a step of forming a film on the inner surface of the heat transfer tube by circulating high temperature water on the inner surface of the heat transfer tube. Processing method. Ni-Cr-Fe基合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、
該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管の内表面に、硝フッ酸に浸漬させ皮膜を除去させる硝フッ酸処理工程と、該硝フッ酸処理した伝熱管をHNO3水溶液に接触させて皮膜を形成する不働態化処理工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法。
A surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni-Cr-Fe base alloy,
A step of blasting the inner surface of the heat transfer tube with beads having a fine particle diameter, and a step of nitrating hydrofluoric acid treatment for removing the coating by immersing in nitric hydrofluoric acid on the inner surface of the blasted heat transfer tube, And a passivation treatment step of forming a film by bringing the heat transfer tube treated with nitric hydrofluoric acid into contact with an aqueous HNO 3 solution.
さらに加えて、前記ブラスト処理、硝フッ酸処理および不働態化処理工程を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、前記伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程、を含むことを特徴とする請求項11記載の原子炉用蒸気発生器伝熱管の表面処理方法。   In addition, heat transfer tubes that have undergone the blasting, nitric hydrofluoric acid treatment, and passivating treatment steps are immersed in high-temperature HFT treatment or high-temperature water that circulates high-temperature water in the PWR primary system simulation environment before the start of operation. The steam generator for a reactor according to claim 11, further comprising: forming a film on the inner surface of the heat transfer tube by circulating high temperature water on the inner surface of the heat transfer tube. Surface treatment method for heat transfer tubes. Ni-Cr-Fe合金からなる原子炉用蒸気発生器の伝熱管への表面処理方法であって、
該伝熱管の内表面に、微小粒径のビーズを用いてブラスト処理する工程と、該ブラスト処理した伝熱管の内表面に、硝フッ酸に浸漬させ皮膜を除去させる硝フッ酸処理工程と、該硝フッ酸処理した伝熱管をクエン酸若しくはクエン酸アンモンの水溶液を接触させて表面を不働態化処理する工程とを含むことを特徴とする原子炉用蒸気発生器伝熱管の表面処理方法。
A surface treatment method for a heat transfer tube of a steam generator for a reactor made of a Ni-Cr-Fe alloy,
A step of blasting the inner surface of the heat transfer tube with beads having a fine particle diameter, and a step of nitrating hydrofluoric acid treatment for removing the coating by immersing in nitric hydrofluoric acid on the inner surface of the blasted heat transfer tube, A method of treating the surface of a steam generator heat transfer tube for a reactor, comprising the step of bringing the nitric hydrofluoric acid-treated heat transfer tube into contact with an aqueous solution of citric acid or ammonium citrate to passivate the surface.
さらに加えて、前記ブラスト処理、硝フッ酸処理および不働態化処理する工程を行った伝熱管を、運転開始前のPWR一次系模擬環境の高温水を流通させる実機HFT処理、若しくは、高温水中に浸漬する、又は、該伝熱管の内表面に高温水を流通させることによって、該伝熱管の内表面に皮膜を形成させる工程とを含むことを特徴とする請求項13記載の原子炉用蒸気発生器伝熱管の表面処理方法。   In addition, the heat transfer tubes that have undergone the blasting, nitric hydrofluoric acid, and passivating processes are put into an actual HFT process that distributes high-temperature water in the PWR primary system simulation environment before the start of operation, or in high-temperature water. The steam generation for a nuclear reactor according to claim 13, further comprising a step of forming a film on the inner surface of the heat transfer tube by immersing or circulating high temperature water on the inner surface of the heat transfer tube. Surface treatment method for heat exchanger tubes.
JP2004019290A 2004-01-28 2004-01-28 Surface treatment method of heat transfer tube of steam generator for nuclear reactor Withdrawn JP2005213538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004019290A JP2005213538A (en) 2004-01-28 2004-01-28 Surface treatment method of heat transfer tube of steam generator for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004019290A JP2005213538A (en) 2004-01-28 2004-01-28 Surface treatment method of heat transfer tube of steam generator for nuclear reactor

Publications (1)

Publication Number Publication Date
JP2005213538A true JP2005213538A (en) 2005-08-11

Family

ID=34903542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004019290A Withdrawn JP2005213538A (en) 2004-01-28 2004-01-28 Surface treatment method of heat transfer tube of steam generator for nuclear reactor

Country Status (1)

Country Link
JP (1) JP2005213538A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214725A (en) * 2007-03-07 2008-09-18 Nippon Control Kogyo Co Ltd Surface treatment method for stainless steel, and fluid apparatus such as electromagnetic pump
JP2014109034A (en) * 2012-11-30 2014-06-12 Mitsubishi Heavy Ind Ltd Surface treatment method of structural member
CN107464587A (en) * 2017-07-13 2017-12-12 东方电气(广州)重型机器有限公司 Nuclear steam generator local heat treatmet prevents the system and method for heat-transfer pipe indenture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214725A (en) * 2007-03-07 2008-09-18 Nippon Control Kogyo Co Ltd Surface treatment method for stainless steel, and fluid apparatus such as electromagnetic pump
JP2014109034A (en) * 2012-11-30 2014-06-12 Mitsubishi Heavy Ind Ltd Surface treatment method of structural member
CN107464587A (en) * 2017-07-13 2017-12-12 东方电气(广州)重型机器有限公司 Nuclear steam generator local heat treatmet prevents the system and method for heat-transfer pipe indenture

Similar Documents

Publication Publication Date Title
US4820473A (en) Method of reducing radioactivity in nuclear plant
TWI360820B (en) A method of manufacturing a fuel cladding tube for
Féron et al. Behavior of stainless steels in pressurized water reactor primary circuits
JP2002121630A (en) Ni BASED ALLOY PRODUCT AND ITS PRODUCTION METHOD
JP2003239060A (en) HEAT TREATMENT METHOD FOR Ni-BASE ALLOY TUBE
CN112195369A (en) Corrosion-resistant high-strength neutron shielding alloy material and preparation method thereof
Inoue et al. Research and development of oxide dispersion strengthened ferritic steels for sodium cooled fast breeder reactor fuels
CN108160743A (en) A kind of fuel Stainless Steel Cladding manufacturing process
JP2005213538A (en) Surface treatment method of heat transfer tube of steam generator for nuclear reactor
CN111850403A (en) Stainless steel cladding tube for lead alloy liquid metal cooling fast reactor and manufacturing method
CN108165717A (en) A kind of preparation process of nuclear fuel element FeCrAl tubing
Ignat’ev et al. Investigation of the corrosion resistance of nickel-based alloys in fluoride melts
US20180277274A1 (en) Method for decontaminating nickel-based alloy
EP3093369B1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
CN114262821B (en) Pure phosphoric acid corrosion resistant nickel-based corrosion-resistant alloy material and preparation method thereof
CN112657931B (en) Method for cleaning lead-bismuth alloy on spent fuel
RU2559598C2 (en) Reconditioning of articles from low-carbon perlite steel after operation
JP2508170B2 (en) Surface treatment method for reactor piping
Nagano et al. Clarification of stress corrosion cracking mechanism on nickel base Alloys in Steam Generators for their Long Lifetime Assurance
Cragnolino A review of pitting corrosion in high temperature aqueous solutions
JPH02247358A (en) Fe-base alloy for nuclear reactor member and its manufacture
Yu et al. Effects of Thermal Ageing on Microstructure and Hardness of Ni Cladding on Austenitic Stainless Steel by GTAW
US5695666A (en) Method of welding neutron irradiated metallic material
JPH095485A (en) Nuclear fuel cladding tube and manufacture thereof
CN117309739A (en) Method for defining original interface of material after lead bismuth corrosion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403