JP2006291588A - Base-isolated structure - Google Patents

Base-isolated structure Download PDF

Info

Publication number
JP2006291588A
JP2006291588A JP2005114290A JP2005114290A JP2006291588A JP 2006291588 A JP2006291588 A JP 2006291588A JP 2005114290 A JP2005114290 A JP 2005114290A JP 2005114290 A JP2005114290 A JP 2005114290A JP 2006291588 A JP2006291588 A JP 2006291588A
Authority
JP
Japan
Prior art keywords
sliding bearing
laminated rubber
seismic isolation
isolation layer
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005114290A
Other languages
Japanese (ja)
Other versions
JP4706958B2 (en
Inventor
Tomihiro Hori
富博 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37412437&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2006291588(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005114290A priority Critical patent/JP4706958B2/en
Publication of JP2006291588A publication Critical patent/JP2006291588A/en
Application granted granted Critical
Publication of JP4706958B2 publication Critical patent/JP4706958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base-isolated structure which protects precision machinery set in a precise environmental facility and sensitive to acting acceleration, such that the function of the machinery is maintained after an earthquake and that a production line is continuously available. <P>SOLUTION: According to the base-isolated structure, a base-isolation layer having a high damping laminated rubber 1, an elastic sliding bearing 2, and a rigid sliding bearing 3 arranged therein is interposed between a superstructure 4 and a foundation 5. The high damping laminated rubber 1 is arranged on an external portion of the base-isolation layer, and the elastic sliding bearing 2 and the rigid sliding bearing 3 are arranged at the center of the same. The elastic sliding bearing 2 is a hybrid bearing formed of a laminated rubber 12 and a sliding bearing 13 arranged on the same, and its friction coefficient is about 0.1. On the other hand, the rigid sliding bearing 3 is formed of a rigid body 16 and a slide member 14 mounted on an upper end face of the same. The rigid sliding bearing 3 makes face contact with a slide plate 15 stuck to a lower surface of the superstructure 4, and its friction coefficient is about 0.01. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、免震構造に関し、特に、精密環境施設に適用される免震構造に関する。   The present invention relates to a seismic isolation structure, and more particularly to a seismic isolation structure applied to a precision environment facility.

精密環境施設に免震構造を適用する場合、地震時における免震効果に加えて平常時における微振動対策が必要となる。そのため、積層ゴムと滑り支承を併用し、平常時は免震層を高剛性とし、滑り支承の最大摩擦力を超えるような地震力に対して滑り支承が滑り出して積層ゴムによる免震効果が発揮されるようにする。例えば、特許文献1では、弾性滑り支承および積層ゴム支承の両方で建物の鉛直荷重を受け止めることにより、積層ゴム支承の数を減らしてトータルのバネ定数を小さくし、建物の免震周期を長くして建物の応答せん断力を低減する免震方法が開示されている。
特開平8−158697号公報 (第3−5頁、第1−3図)
When applying seismic isolation structures to precision environmental facilities, in addition to the seismic isolation effect at the time of an earthquake, countermeasures for microvibrations in normal times are required. For this reason, laminated rubber and sliding bearings are used in combination, and the seismic isolation layer is highly rigid during normal times, and the sliding bearings start to slide against seismic forces that exceed the maximum frictional force of the sliding bearings. To be. For example, in Patent Document 1, the vertical load of a building is received by both an elastic sliding bearing and a laminated rubber bearing, thereby reducing the number of laminated rubber bearings, reducing the total spring constant, and increasing the seismic isolation period of the building. A seismic isolation method for reducing the response shear force of a building is disclosed.
JP-A-8-155867 (Page 3-5, Fig. 1-3)

しかしながら、精密環境施設に設置される生産装置の機能維持の観点からは、生産装置に作用する最大加速度が問題となることがある。具体的には、地震力が滑り支承の最大摩擦力を超え、滑り支承が滑り出す瞬間に発生するスパイクノイズと呼ばれる衝撃加速度が問題となることがある。   However, the maximum acceleration acting on the production apparatus may be a problem from the viewpoint of maintaining the function of the production apparatus installed in the precision environment facility. Specifically, an impact acceleration called spike noise generated at the moment when the seismic force exceeds the maximum frictional force of the sliding bearing and the sliding bearing starts to slide may be a problem.

本発明は、上述する問題点に鑑みてなされたもので、精密環境施設内に設置されている、作用加速度に敏感な精密機器類の地震後における機能が維持され、生産ラインの継続使用を可能とする免震構造を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems, and the functions after the earthquake of precision instruments that are installed in precision environment facilities and sensitive to action acceleration are maintained, and the production line can be used continuously. The purpose is to provide a seismic isolation structure.

上記目的を達成するため、本発明は、上部構造物と当該上部構造物下の下部構造物との間に設けられる免震層は、上部構造物を支持する積層ゴムと、上部構造物を支持する摩擦係数の異なる複数種類の滑り支承とからなることを特徴とする。
ここで、摩擦係数は、静止摩擦係数および動摩擦係数の総称として用いている。
本発明では、免震層に摩擦係数の異なる複数種類の滑り支承を用いているため、地震時には摩擦係数の小さな滑り支承から順次、滑り出すことになる。そのため、滑り出し時の水平力が分散され、上部構造物が滑り出す瞬間に発生する衝撃加速度が低減される。その結果、作用加速度に敏感な精密機器類の地震後における機能が維持され、生産ラインの継続使用が可能となる。
In order to achieve the above object, according to the present invention, the seismic isolation layer provided between the upper structure and the lower structure below the upper structure supports the laminated rubber that supports the upper structure and the upper structure. It comprises a plurality of types of sliding bearings having different friction coefficients.
Here, the friction coefficient is used as a general term for the static friction coefficient and the dynamic friction coefficient.
In the present invention, since a plurality of types of sliding bearings having different friction coefficients are used for the seismic isolation layer, the sliding starts sequentially from the sliding bearing having a small friction coefficient during an earthquake. Therefore, the horizontal force at the start of sliding is dispersed, and the impact acceleration generated at the moment when the upper structure starts to slide is reduced. As a result, the functions of precision instruments sensitive to action acceleration are maintained, and the production line can be used continuously.

また、本発明は、上部構造物と当該上部構造物下の下部構造物との間に設けられる免震層は、上部構造物を支持する剛性の異なる複数種類の積層ゴムと、上部構造物を支持する摩擦係数の異なる複数種類の滑り支承とからなることを特徴とする。
ここで、剛性は、水平剛性および鉛直剛性の総称として用いている。
本発明では、摩擦係数の異なる複数種類の滑り支承に加えて、剛性の異なる複数種類の積層ゴムを組み合わせることにより、上記作用効果に加えて、構造物の固有周期を容易に調節することが可能となる。
Further, according to the present invention, the seismic isolation layer provided between the upper structure and the lower structure below the upper structure includes a plurality of types of laminated rubber having different rigidity supporting the upper structure, and the upper structure. It comprises a plurality of types of sliding bearings having different friction coefficients to be supported.
Here, rigidity is used as a general term for horizontal rigidity and vertical rigidity.
In the present invention, in addition to the above-described effects, the natural period of the structure can be easily adjusted by combining a plurality of types of sliding rubbers having different stiffnesses in addition to a plurality of types of sliding bearings having different friction coefficients It becomes.

また、本発明では、前記免震層の外周部に前記積層ゴムを配置し、前記免震層の中央部に前記滑り支承を配置することを好適とする。
本発明では、滑り支承を免震層の中央部に配置するとともに、積層ゴムを免震層の外周部に配置することにより、積層ゴムの剛性を利用し、地震時における上部構造物の捩れ変形を抑制することができる。併せて、転倒モーメントによる滑り支承の浮き上がりを防止することができる。
Moreover, in this invention, it is suitable to arrange | position the said laminated rubber to the outer peripheral part of the said seismic isolation layer, and to arrange | position the said sliding bearing in the center part of the said seismic isolation layer.
In the present invention, the sliding bearing is arranged in the central portion of the base isolation layer, and the laminated rubber is arranged in the outer peripheral portion of the base isolation layer, thereby utilizing the rigidity of the laminated rubber and twisting deformation of the upper structure during an earthquake. Can be suppressed. At the same time, it is possible to prevent the sliding bearing from being lifted by a falling moment.

本発明では、免震層に摩擦係数の異なる複数種類の滑り支承を用いているため、滑り出し時の水平力が分散され、上部構造物が滑り出す瞬間に発生する衝撃加速度が低減される。その結果、作用加速度に敏感な精密機器類の地震後における機能が維持され、生産ラインの継続使用が可能となる。   In the present invention, since a plurality of types of sliding bearings having different friction coefficients are used for the seismic isolation layer, the horizontal force at the time of sliding is dispersed, and the impact acceleration generated at the moment when the upper structure starts to slide is reduced. As a result, the functions of precision instruments sensitive to action acceleration are maintained, and the production line can be used continuously.

以下、本発明に係る免震構造の実施形態について図面に基づいて説明する。
図1は、免震層における積層ゴム、弾性滑り支承、および剛滑り支承の配置を示した平面図であり、図2は免震層の部分立面図である。
本実施形態では、上部構造物4と基礎(下部構造物)5との間に、高減衰積層ゴム(積層ゴム)1と、弾性滑り支承(積層ゴム+滑り支承)2と、剛滑り支承(滑り支承)3とを配置した免震層を設けている。
Hereinafter, embodiments of a seismic isolation structure according to the present invention will be described with reference to the drawings.
FIG. 1 is a plan view showing the arrangement of laminated rubber, elastic sliding bearings, and rigid sliding bearings in the base isolation layer, and FIG. 2 is a partial elevation view of the base isolation layer.
In the present embodiment, a high damping laminated rubber (laminated rubber) 1, an elastic sliding bearing (laminated rubber + sliding bearing) 2, and a rigid sliding bearing (between the upper structure 4 and the foundation (lower structure) 5. Seismic isolation layer with sliding bearing 3) is provided.

高減衰積層ゴム1は、高減衰ゴム6と鋼板7を交互に積層したものであり、上下端面にそれぞれ装着されたフランジプレート17、17を介して上部構造物4と基礎5にそれぞれ連結されている。高減衰ゴム6は、天然ゴムに添加材を加えてゴムに高い減衰性を付与したものであり、高減衰積層ゴム1を用いることにより、ダンパーなどの減衰装置を免震層に設置する必要がなくなる。なお、高減衰積層ゴム1に代えて、鉛入り積層ゴムや鋼製ダンパー一体型積層ゴムなど他の減衰性を有する積層ゴムを用いてもよい。   The high-damping laminated rubber 1 is obtained by alternately laminating high-damping rubber 6 and steel plates 7, and is connected to the upper structure 4 and the foundation 5 via flange plates 17 and 17 respectively attached to upper and lower end surfaces. Yes. The high-damping rubber 6 is obtained by adding an additive to natural rubber to impart high damping to the rubber. By using the high-damping laminated rubber 1, it is necessary to install a damping device such as a damper in the seismic isolation layer. Disappear. In place of the high-damping laminated rubber 1, other laminated rubber having damping properties such as a laminated rubber containing lead or a steel damper-integrated laminated rubber may be used.

弾性滑り支承2は、積層ゴム12上に滑り支承13を備えたハイブリッド支承である。積層ゴム12は、天然ゴム9と鋼板10を交互に積層したものであり、下端面に装着されたフランジプレート18を介して基礎5に連結されている。一方、積層ゴム12の上端面には、ポリ4フッ化エチレン樹脂(以下、PTFE樹脂と呼ぶ。)からなる滑り材8が装着されており、上部構造物4の下面に貼着されたステンレス板などからなる滑り板11に面接触している。滑り材8と滑り板11との間の摩擦係数μは0.1程度である。
また、積層ゴム12は、高減衰積層ゴム1より成が低く、高減衰積層ゴム1より高い水平剛性を有している。
The elastic sliding bearing 2 is a hybrid bearing having a sliding bearing 13 on a laminated rubber 12. The laminated rubber 12 is obtained by alternately laminating natural rubber 9 and steel plates 10, and is connected to the foundation 5 via a flange plate 18 attached to the lower end surface. On the other hand, a sliding material 8 made of polytetrafluoroethylene resin (hereinafter referred to as PTFE resin) is attached to the upper end surface of the laminated rubber 12, and a stainless steel plate adhered to the lower surface of the upper structure 4. Surface contact is made with the sliding plate 11 made of, for example. The friction coefficient μ between the sliding material 8 and the sliding plate 11 is about 0.1.
The laminated rubber 12 has a lower horizontal rigidity than the high damping laminated rubber 1 and a higher horizontal rigidity than the high damping laminated rubber 1.

剛滑り支承3は、下端面に装着されたフランジプレート19を介して基礎5に連結された剛体16の上端面にPTFE樹脂からなる滑り材14が装着されたものであり、上部構造物4の下面に貼着されたステンレス板などからなる滑り板15に面接触している。滑り材14と滑り板15との間の摩擦係数μは0.01程度である。   The rigid sliding bearing 3 has a sliding member 14 made of PTFE resin mounted on the upper end surface of a rigid body 16 connected to the base 5 via a flange plate 19 mounted on the lower end surface. It is in surface contact with a sliding plate 15 made of a stainless steel plate or the like attached to the lower surface. The friction coefficient μ between the sliding material 14 and the sliding plate 15 is about 0.01.

図1に示すように、高減衰積層ゴム1は免震層の外周部に配置し、弾性滑り支承2および剛滑り支承3は免震層の中央部に配置する。即ち、上部構造物4のスパン方向および桁行方向について、それぞれ高減衰積層ゴム1、弾性滑り支承2および剛滑り支承3を対称に配置し、高減衰積層ゴム1の剛性を利用して、地震時における上部構造物4の捩れ変形を抑制するものである。併せて、高減衰積層ゴム1を免震層の外周部に配置することで、転倒モーメントによる滑り支承3、13の浮き上がりを防止することができる。   As shown in FIG. 1, the high-damping laminated rubber 1 is disposed on the outer periphery of the base isolation layer, and the elastic sliding bearing 2 and the rigid sliding bearing 3 are disposed in the center of the base isolation layer. That is, the high-damping laminated rubber 1, the elastic sliding bearing 2 and the rigid sliding bearing 3 are arranged symmetrically in the span direction and the transverse direction of the superstructure 4, respectively, and the rigidity of the high-damping laminated rubber 1 is utilized to The torsional deformation of the upper structure 4 is suppressed. In addition, by placing the high-damping laminated rubber 1 on the outer periphery of the seismic isolation layer, it is possible to prevent the sliding bearings 3 and 13 from being lifted due to the overturning moment.

次に、本発明に係る免震構造の作用について説明する。
図3は、高減衰積層ゴム1と滑り支承3、13を、それぞれ用いた免震建屋の水平方向荷重−変形関係を示したものである。
平常時の振動(生産機器や設備機器の振動、交通振動)および強風に対しては、上部構造物4に作用する水平力が滑り支承3、13の最大摩擦力より小さいため、微小振動および強風時振動に対して、免震層は高い水平剛性を保持し、上部構造物4の脚部は水平方向に固定された状態となる。
一方、地震時には、先ず、摩擦係数の小さな剛滑り支承3が滑り出し、続いて弾性滑り支承2を構成する滑り支承13が滑り出す。そのため、滑り出し時の水平力が分散され、上部構造物4が滑り出す瞬間に発生するスパイクノイズと呼ばれる衝撃加速度が低減されることになる。
Next, the operation of the seismic isolation structure according to the present invention will be described.
FIG. 3 shows the horizontal load-deformation relationship of the base-isolated building using the high-damping laminated rubber 1 and the sliding bearings 3 and 13, respectively.
For normal vibrations (production equipment and equipment equipment vibrations, traffic vibrations) and strong winds, the horizontal force acting on the upper structure 4 is smaller than the maximum frictional force of the sliding bearings 3 and 13; The seismic isolation layer retains high horizontal rigidity against vibrations, and the legs of the upper structure 4 are fixed in the horizontal direction.
On the other hand, at the time of an earthquake, first, the rigid sliding bearing 3 having a small friction coefficient starts to slide, and then the sliding bearing 13 constituting the elastic sliding bearing 2 starts to slide. Therefore, the horizontal force at the start of sliding is dispersed, and the impact acceleration called spike noise generated at the moment when the upper structure 4 starts to slide is reduced.

図4は、本発明に係る免震構造の水平方向荷重−変形関係を他の免震構造と比較して示した図である。図中、Aは本発明に係る免震構造の場合、Bは高減衰積層ゴム1+剛滑り支承3の場合、Cは従来の免震構造の場合、Dは非免震の場合をそれぞれ示している。同図より、摩擦係数の異なる滑り支承3、13と水平剛性の異なる積層ゴム1、12を組み合わせることによって、対象とする荷重レベルに応じて構造物の水平剛性をコントロールできることがわかる。即ち、剛性の異なる複数種類の積層ゴムと摩擦係数の異なる複数種類の滑り支承とを組み合わせることによって、免震構造の履歴ループの形状をコントロールすることができる。   FIG. 4 is a diagram showing the horizontal load-deformation relationship of the base isolation structure according to the present invention in comparison with other base isolation structures. In the figure, A is a seismic isolation structure according to the present invention, B is a high-damping laminated rubber 1 + rigid sliding bearing 3, C is a conventional seismic isolation structure, and D is a non-seismic isolation case. Yes. From the figure, it can be seen that the horizontal rigidity of the structure can be controlled in accordance with the target load level by combining the sliding bearings 3 and 13 having different friction coefficients and the laminated rubbers 1 and 12 having different horizontal rigidity. That is, the shape of the hysteresis loop of the seismic isolation structure can be controlled by combining a plurality of types of laminated rubber having different stiffnesses and a plurality of types of sliding bearings having different friction coefficients.

本実施形態による免震構造では、免震層に摩擦係数の異なる2種類の滑り支承3、13を用いているため、滑り出し時の水平力が分散され、上部構造物4が滑り出す瞬間に発生する衝撃加速度が低減される。その結果、作用加速度に敏感な精密機器類の地震後における機能が維持され、生産ラインの継続使用が可能となる。
また、本実施形態による免震構造では、水平剛性の異なる2種類の積層ゴム1、12を組み合わせることにより、構造物の固有周期を容易に調節することが可能となる。
In the seismic isolation structure according to the present embodiment, since two types of sliding bearings 3 and 13 having different friction coefficients are used for the seismic isolation layer, the horizontal force at the time of sliding is dispersed, and the upper structure 4 is generated at the moment of sliding. Impact acceleration is reduced. As a result, the functions of precision instruments sensitive to action acceleration are maintained, and the production line can be used continuously.
Moreover, in the seismic isolation structure according to the present embodiment, it is possible to easily adjust the natural period of the structure by combining two types of laminated rubbers 1 and 12 having different horizontal rigidity.

以上、本発明に係る免震構造の実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記の実施形態では、積層ゴムと滑り支承が一体となった弾性滑り支承を使用しているが、剛性の異なる積層ゴムと摩擦係数の異なる滑り支承をそれぞれ単体で配置してもよい。また、上記の実施形態では、剛性の異なる積層ゴムおよび摩擦係数の異なる滑り支承はそれぞれ2種類としているが、3種類以上であってもよく、常時の微振動対応性能および地震時の免震性能を任意に付与することができる。要は、本発明において所期の機能が得られればよいのである。   As mentioned above, although embodiment of the seismic isolation structure based on this invention was described, this invention is not limited to said embodiment, It can change suitably in the range which does not deviate from the meaning. For example, in the above-described embodiment, an elastic sliding bearing in which a laminated rubber and a sliding bearing are integrated is used. However, a laminated rubber having a different rigidity and a sliding bearing having a different friction coefficient may be arranged individually. Further, in the above embodiment, the laminated rubber having different rigidity and the sliding bearing having different friction coefficients are two types, respectively, but three or more types may be used. Can be arbitrarily given. In short, it is only necessary to obtain the desired function in the present invention.

免震層における積層ゴム、弾性滑り支承、および剛滑り支承の配置を示した平面図である。It is the top view which showed arrangement | positioning of laminated rubber, an elastic sliding bearing, and a rigid sliding bearing in a seismic isolation layer. 免震層の部分立面図である。It is a partial elevation view of a seismic isolation layer. (a)は高減衰積層ゴムを用いた免震建屋の水平方向荷重−変形関係を示した図、(b)は滑り支承を用いた免震建屋の水平方向荷重−変形関係を示した図である。(A) is a diagram showing the horizontal load-deformation relationship of the base-isolated building using the high-damping laminated rubber, and (b) is a diagram showing the horizontal load-deformation relationship of the base-isolated building using the sliding bearing. is there. 本発明に係る免震構造の水平方向荷重−変形関係を他の免震構造と比較して示した図である。It is the figure which showed the horizontal direction load-deformation relationship of the base isolation structure which concerns on this invention compared with another base isolation structure.

符号の説明Explanation of symbols

1 高減衰積層ゴム(積層ゴム)
2 弾性滑り支承(滑り支承+積層ゴム)
3 剛滑り支承(滑り支承)
4 上部構造物
5 基礎(下部構造物)
6 高減衰ゴム
7、10 鋼板
8、14 滑り材
9 天然ゴム
11、15 滑り板
12 積層ゴム
13 滑り支承
16 剛体
17、18、19 フランジプレート
1. High damping laminated rubber (laminated rubber)
2 Elastic sliding bearing (sliding bearing + laminated rubber)
3 Rigid sliding bearing (sliding bearing)
4 Upper structure 5 Foundation (lower structure)
6 High damping rubber 7, 10 Steel plate 8, 14 Sliding material 9 Natural rubber 11, 15 Sliding plate 12 Laminated rubber 13 Sliding bearing 16 Rigid body 17, 18, 19 Flange plate

Claims (3)

上部構造物と当該上部構造物下の下部構造物との間に設けられる免震層は、上部構造物を支持する積層ゴムと、上部構造物を支持する摩擦係数の異なる複数種類の滑り支承とからなることを特徴とする免震構造。   The seismic isolation layer provided between the upper structure and the lower structure below the upper structure includes a laminated rubber that supports the upper structure, and a plurality of types of sliding bearings that support the upper structure and have different friction coefficients. Seismic isolation structure characterized by consisting of 上部構造物と当該上部構造物下の下部構造物との間に設けられる免震層は、上部構造物を支持する剛性の異なる複数種類の積層ゴムと、上部構造物を支持する摩擦係数の異なる複数種類の滑り支承とからなることを特徴とする免震構造。   The seismic isolation layer provided between the upper structure and the lower structure under the upper structure is composed of a plurality of types of laminated rubbers having different rigidity supporting the upper structure and different friction coefficients supporting the upper structure. Seismic isolation structure characterized by consisting of multiple types of sliding bearings. 前記免震層の外周部に前記積層ゴムを配置し、前記免震層の中央部に前記滑り支承を配置することを特徴とする請求項1または2に記載の免震構造。   The seismic isolation structure according to claim 1, wherein the laminated rubber is disposed on an outer peripheral portion of the seismic isolation layer, and the sliding bearing is disposed on a central portion of the seismic isolation layer.
JP2005114290A 2005-04-12 2005-04-12 Seismic isolation structure Active JP4706958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114290A JP4706958B2 (en) 2005-04-12 2005-04-12 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114290A JP4706958B2 (en) 2005-04-12 2005-04-12 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2006291588A true JP2006291588A (en) 2006-10-26
JP4706958B2 JP4706958B2 (en) 2011-06-22

Family

ID=37412437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114290A Active JP4706958B2 (en) 2005-04-12 2005-04-12 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP4706958B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068242A (en) * 2007-09-12 2009-04-02 Nippon Steel Corp Construction method for base-isolated structure
JP2009068241A (en) * 2007-09-12 2009-04-02 Nippon Steel Corp Construction method for base-isolated structure
WO2009142040A1 (en) * 2008-05-22 2009-11-26 学校法人君が淵学園 Earthquake-proof structure
WO2015098084A1 (en) * 2013-12-24 2015-07-02 三菱日立パワーシステムズ株式会社 Boiler support structure
JP2015206171A (en) * 2014-04-17 2015-11-19 株式会社竹中工務店 building structure
JP2021134824A (en) * 2020-02-25 2021-09-13 株式会社荏原製作所 Vibration control system for rotary machine and pump installation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192941A (en) * 1985-02-20 1986-08-27 Toshiba Corp Vibration avoiding device for structure
JPH08158697A (en) * 1994-12-08 1996-06-18 Taisei Corp Base isolation method and base isolation device applied to same method
JP2000160874A (en) * 1998-12-01 2000-06-13 Taisei Corp Compound seismic isolation structure
JP2001227176A (en) * 2000-02-21 2001-08-24 Kumagai Gumi Co Ltd Upper addition method of existing building

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61192941A (en) * 1985-02-20 1986-08-27 Toshiba Corp Vibration avoiding device for structure
JPH08158697A (en) * 1994-12-08 1996-06-18 Taisei Corp Base isolation method and base isolation device applied to same method
JP2000160874A (en) * 1998-12-01 2000-06-13 Taisei Corp Compound seismic isolation structure
JP2001227176A (en) * 2000-02-21 2001-08-24 Kumagai Gumi Co Ltd Upper addition method of existing building

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068242A (en) * 2007-09-12 2009-04-02 Nippon Steel Corp Construction method for base-isolated structure
JP2009068241A (en) * 2007-09-12 2009-04-02 Nippon Steel Corp Construction method for base-isolated structure
WO2009142040A1 (en) * 2008-05-22 2009-11-26 学校法人君が淵学園 Earthquake-proof structure
JP2009281125A (en) * 2008-05-22 2009-12-03 Kimigafuchi Gakuen Earthquake-proof structure
WO2015098084A1 (en) * 2013-12-24 2015-07-02 三菱日立パワーシステムズ株式会社 Boiler support structure
JP2015121045A (en) * 2013-12-24 2015-07-02 三菱日立パワーシステムズ株式会社 Boiler support structure
TWI607138B (en) * 2013-12-24 2017-12-01 三菱日立電力系統股份有限公司 Boiler support structure
JP2015206171A (en) * 2014-04-17 2015-11-19 株式会社竹中工務店 building structure
JP2021134824A (en) * 2020-02-25 2021-09-13 株式会社荏原製作所 Vibration control system for rotary machine and pump installation
JP7377737B2 (en) 2020-02-25 2023-11-10 株式会社荏原製作所 Vibration isolation systems for rotating machinery, pump equipment

Also Published As

Publication number Publication date
JP4706958B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4706958B2 (en) Seismic isolation structure
KR101967360B1 (en) Air floatation vibration control system
KR101440878B1 (en) Friction pendulum bearing with cover plate and fixing jig
JP5638762B2 (en) Building
JP2019015310A (en) Vibration damping device for structure
JP4138534B2 (en) Semi-fixing device for seismic isolation structure
JP5352270B2 (en) Seismic isolation structure and building with seismic isolation structure
JP2006342884A (en) Base isolation device
JPH08158697A (en) Base isolation method and base isolation device applied to same method
JP2005030071A (en) Rolling vibration absorption bearing with attenuation function
JPH11315886A (en) Base isolation device
JP2014009696A (en) Seismic isolation member and seismic isolation device employing the same
JP2006291670A (en) Base isolating device
JP4439694B2 (en) High-damping frame of high-rise building
JP2005257001A (en) Sliding plate of sliding base-isolating device
JP2011184950A (en) Slide foundation structure
JPH09196116A (en) Base isolator of structure
JPH11336201A (en) Bearing device
KR102417871B1 (en) The vibration reduction table
JP3849624B2 (en) Vibration damping device for use in damping type seismic isolation buildings
JP2005240929A (en) Seismic isolator
JP3732049B2 (en) Lifting prevention device for bearing
JP2002213101A (en) Seismic isolator and base-isolated building
JPS60261845A (en) Earthquake dampening and support apparatus
JP4631274B2 (en) Laminated rubber seismic isolation device mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071219

A977 Report on retrieval

Effective date: 20100729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110303

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

RVTR Cancellation of determination of trial for invalidation