JPS61192941A - Vibration avoiding device for structure - Google Patents
Vibration avoiding device for structureInfo
- Publication number
- JPS61192941A JPS61192941A JP60030291A JP3029185A JPS61192941A JP S61192941 A JPS61192941 A JP S61192941A JP 60030291 A JP60030291 A JP 60030291A JP 3029185 A JP3029185 A JP 3029185A JP S61192941 A JPS61192941 A JP S61192941A
- Authority
- JP
- Japan
- Prior art keywords
- friction
- foundation
- fixed
- seismic isolation
- earthquake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F7/00—Vibration-dampers; Shock-absorbers
- F16F7/08—Vibration-dampers; Shock-absorbers with friction surfaces rectilinearly movable along each other
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、構造物の免震装置に係り、特に地震の規模に
応じた免震作用を行なわせることができるようにした免
震装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a seismic isolation device for a structure, and more particularly to a seismic isolation device that can perform a seismic isolation function depending on the scale of an earthquake.
地震力によって大型構造物が破壊されるのを防止するた
めに、従来、各種の免震装置が考えられている。これら
免震装置は、一般に、第8図中×で示すように構造物1
の下面と地盤2上に設けられた基礎3との間に複数介挿
され、構造物1の荷重を支持しなから免震作用を発揮す
るように構成されている。そして、これら免震装置×は
、具体的には第9図あるいは第10図に示すように構成
されている。すなわち、第9図に示すものは、基礎3の
上面に支持台4を固定し、この支持台4と構造物1の下
面との間に支持体5を介在させたものとなっている。支
持体5は、防振ゴムあるいは積層ゴム等で構成された水
平方向に可燃性を有する弾性材6と、この弾性材6の上
、下端に固定された上、下端板7,8とで構成されてい
る。そして、上端板7が構造物1の下面に、また下端板
8が支持台4の上面にそれぞれ固定されている。一方、
第10図に示すものは、構造物1の下面にすべり板9を
固定し、とのすべり板9の下面に、その上面をすべり面
とした上端板7が圧接するように支持体5を配置したも
のとなっている。In order to prevent large structures from being destroyed by earthquake forces, various types of seismic isolation devices have been considered. Generally, these seismic isolation devices are installed on the structure 1 as shown by
A plurality of structures are interposed between the lower surface of the structure 1 and a foundation 3 provided on the ground 2, and are configured to support the load of the structure 1 and exhibit a seismic isolation effect. These seismic isolation devices x are specifically constructed as shown in FIG. 9 or FIG. 10. That is, in the structure shown in FIG. 9, a support stand 4 is fixed to the upper surface of the foundation 3, and a support body 5 is interposed between the support stand 4 and the lower surface of the structure 1. The support body 5 is composed of a horizontally combustible elastic material 6 made of anti-vibration rubber or laminated rubber, and upper and lower end plates 7 and 8 fixed to the upper and lower ends of the elastic material 6. has been done. The upper end plate 7 is fixed to the lower surface of the structure 1, and the lower end plate 8 is fixed to the upper surface of the support base 4. on the other hand,
In the structure shown in FIG. 10, a sliding plate 9 is fixed to the lower surface of a structure 1, and a support 5 is arranged so that an upper end plate 7 whose upper surface is a sliding surface is in pressure contact with the lower surface of the sliding plate 9. It has become.
しかして、これらの免震装置は、地震力が基礎3、支持
台4に伝わると、第9図に示すものにあっては、弾性材
6で形成された支持体5が変形しその地震エネルギを弾
性材6の変形エネルギとして蓄え、これ釦よって構造物
1に伝わろうとする地震力を減少させるようKしている
0なお、構造物1と免震装置Xとを組合せた系の固有振
動数を構造物自体の固有振動数と異ならせておき、これ
によって共振現象の発生を避けるようにしている。In these seismic isolation devices, when seismic force is transmitted to the foundation 3 and support base 4, the support body 5 made of elastic material 6 deforms in the case shown in FIG. 9, and the seismic energy is absorbed. is stored as the deformation energy of the elastic material 6, and this button is used to reduce the seismic force that is about to be transmitted to the structure 1. is set to be different from the natural frequency of the structure itself, thereby avoiding the occurrence of resonance phenomena.
したがって、免震装置Xの変形量は大きくなるが構造物
1自体の変形量は小さく抑えられ、構造物lの耐震性を
向上させることができる。Therefore, although the amount of deformation of the seismic isolation device X increases, the amount of deformation of the structure 1 itself is suppressed to a small value, and the earthquake resistance of the structure 1 can be improved.
一方、第10図に示す免震装置Xでは、小さな地震力に
対しては第9図に示した装置と全く同じ動作な行なう。On the other hand, the seismic isolation device X shown in FIG. 10 performs exactly the same operation as the device shown in FIG. 9 against small seismic forces.
そして、ある一定以上の大きな地震力が伝わった場合、
つまり、構造物1とすべり板9との間に加わる力がすべ
υ板9の摩擦力(すべり板9の静摩擦係数とすべり板9
の1個当りにかかる重量との積)以上になったとき、す
べり板9と上端板7との間にすべりが生じ、このすべり
と弾性材6の変形とによって構造物1に伝わろうとする
地震力を減少させるようにしている。上記のようにすべ
9板9と上端板7との間にすべりが生じている状態では
、前述した摩擦力以上の力は構造物1に伝達されず、ま
た、構造物1に生じる加速度は、摩擦係数と重力加速度
との種以上には増大しないofた、すべり現象によって
、すべり量と摩擦力との積に相当する振動エネルギが消
費される。したがって、全体の振動の低損化に効果を発
揮することになる。なお、第10図に示す免震装置に加
わる水平方向の荷重Fと基礎−構造物間の変位量8との
関係は、たとえば、一定振幅で振動する場合を考えると
第11図に示すようになる。図中■で示す部分が地震力
が伝わった直後に支持体5が変形する状態を、■で示す
部分がすべりの生じた状態を、■で示す部分が反対方向
に支持体5が変形している状態を示している。そしてこ
の図の線で囲まれた部分の面積が振動−周期轟りに消費
するエネルギとなる。If a large seismic force above a certain level is transmitted,
In other words, the force applied between the structure 1 and the sliding plate 9 is the frictional force of the sliding plate 9 (the static friction coefficient of the sliding plate 9 and the sliding plate 9
(product of the weight per piece), a slip occurs between the sliding plate 9 and the upper end plate 7, and this slip and the deformation of the elastic material 6 cause an earthquake to be transmitted to the structure 1. I'm trying to reduce the power. In the state where sliding occurs between the sliding plate 9 and the upper end plate 7 as described above, no force greater than the above-mentioned frictional force is transmitted to the structure 1, and the acceleration generated in the structure 1 is The vibration energy corresponding to the product of the amount of slip and the frictional force is consumed by the sliding phenomenon, which does not increase beyond the coefficient of friction and the gravitational acceleration. Therefore, it is effective in reducing the overall vibration loss. The relationship between the horizontal load F applied to the seismic isolation device shown in Fig. 10 and the displacement 8 between the foundation and the structure is, for example, as shown in Fig. 11, considering the case of vibration with a constant amplitude. Become. In the figure, the part marked ■ shows the state in which the support 5 deforms immediately after the earthquake force is transmitted, the part marked ■ shows the state in which slipping occurs, and the part marked ■ shows the state in which the support 5 deforms in the opposite direction. It shows the state of being. The area surrounded by the line in this figure is the energy consumed by the vibration-period roar.
しかし彦から、上記のように構成された従来の免震装置
にあっては次のような問題があった0すなわち、第9図
に示したものにあっては、確かにある程度の免震効果が
得られる。しかし、支持体5の上端部を構造物1に固定
するとともに下端部を基礎3に固定し、弾性材6の変形
によるエネルギ吸収だけで免震効果を発揮させるように
しているので、原理上、地震エネルギの吸収に限度があ
る。このため、この装置では高々、強震程度の、いわゆ
る中規模地震までしか免震効果を発揮させることができ
ない。上記以上の大きな地震の場合には、弾性材6の変
形量が大きく々す、強度的に上記弾性材6が破壊する可
能性がある。構造物のなかには、その破壊による環境等
への影響から、どのような大地震に遭遇しても構造物そ
のものが破壊されるのが妨がなければならないものがあ
る。However, Hiko explained that the conventional seismic isolation device configured as described above has the following problems.In other words, the one shown in Figure 9 does have a certain degree of seismic isolation effect. is obtained. However, since the upper end of the support body 5 is fixed to the structure 1 and the lower end to the foundation 3, and the seismic isolation effect is achieved only by absorbing energy due to the deformation of the elastic material 6, in principle, There is a limit to the absorption of seismic energy. For this reason, this device can only exhibit a seismic isolation effect up to strong earthquakes, that is, so-called medium-sized earthquakes. In the case of an earthquake larger than the above, the amount of deformation of the elastic material 6 increases significantly, and there is a possibility that the elastic material 6 will be destroyed due to its strength. Some structures must be prevented from being destroyed no matter what kind of major earthquake they encounter, because of the impact their destruction would have on the environment.
このような構造物についてはほとんど適用できない0
また、第10図に示した免震装置Xにあっては、地震力
がある値を越えると、すべり板9と上端板7との間にす
べりが生じるので、激震を越える、いわゆる巨大地震に
遭遇した場合でも構造物そのものの破壊を防止すること
ができる。しかし、すべりが生じる地震力の大きさを高
く設定すると、それ以下の地震力の範囲では弾性材6の
変形によるエネルギ吸収のみによって免震効果を発揮さ
せなければならず、このように設定すると、第9図に示
した装置と同様な問題が生じる。このため、すべりが生
じる地震力の大きさを比較的低く設定する必要がある。In addition, in the seismic isolation device X shown in FIG. Therefore, the structure itself can be prevented from being destroyed even if it encounters a so-called gigantic earthquake that exceeds a severe earthquake. However, if the magnitude of the seismic force that causes a slip is set high, the seismic isolation effect must be exerted only by absorbing energy through deformation of the elastic material 6 in the range of lower seismic forces, and when set in this way, A problem similar to that of the device shown in FIG. 9 arises. For this reason, it is necessary to set the magnitude of the seismic force that causes slips to be relatively low.
このように低く設定すると、強震程度の地震でもすべり
が生じることになる。すぺ)が生じた場合、上述した構
造では地震が終了したとき、必ず、すべり【よる変形が
生じ構造物1は初期位置に戻らず、基礎3と構造物1と
の間に残留変位が生じる。強震程度の中規模地震は比較
的発生頻度が高いので、このような地震に遭遇する都度
、すべり板9と基礎3との相対位置関係を元に戻す必要
があシ、大掛シな復帰作業を行なわなければならない。If it is set low like this, slips will occur even during strong earthquakes. If an earthquake occurs, in the structure described above, when the earthquake ends, deformation due to slip will occur and structure 1 will not return to its initial position, and a residual displacement will occur between foundation 3 and structure 1. . Medium-sized earthquakes of strong magnitude occur relatively frequently, so each time such an earthquake occurs, it is necessary to restore the relative positional relationship between the sliding plate 9 and the foundation 3, which requires extensive restoration work. must be carried out.
したがって、構造物を含むシステム全体の稼動率の低下
や経済的な不利を免れ得ない。Therefore, a reduction in the operating rate of the entire system including the structure and an economic disadvantage cannot be avoided.
また弾性支持体と摩擦要素を並列に設置する場合にも、
前述のように免震効果を発揮させるため圧は、すべ)が
生じる地震力の大きさを比較的低く設定しておく方が良
い。しかし、このようにすると摩擦力が小さいので、エ
ネルギー消散による振動抑制効果が小ざくなり、構造物
と基礎との相対変位が大きくなってしまう。この結果構
造物と外部との間に設置される接合物、あるいは、弾性
支持体に過大な変形力を与え、これらを破損させる可能
性がある。Also, when installing the elastic support and the friction element in parallel,
As mentioned above, in order to exhibit the seismic isolation effect, it is better to set the magnitude of the seismic force that causes pressure to be relatively low. However, since the frictional force is small in this case, the vibration suppressing effect due to energy dissipation becomes small, and the relative displacement between the structure and the foundation becomes large. As a result, an excessive deforming force is applied to the joint or the elastic support installed between the structure and the outside, and there is a possibility that these may be damaged.
本発明は、上記の問題点を解決するためになされたもの
で、その目的は常時起とシうる小規模地震では構造物を
基礎に対して固定し、中規模以上の地震に対しては確実
に作動し、構造物と基礎との相対変位を抑え、システム
全体の健全性を保つことができる構造物の免震装置を提
供することにある。The present invention was made to solve the above problems, and its purpose is to secure structures to the foundation in case of small-scale earthquakes that occur regularly, and to securely secure structures in case of medium-sized or larger earthquakes. The object of the present invention is to provide a seismic isolation device for a structure that operates to suppress relative displacement between the structure and the foundation and maintain the integrity of the entire system.
本発明によれば、構造物と基礎との間にまず水平方向に
弾性を有した第1の支持体が設けられる。According to the present invention, a first support having elasticity in the horizontal direction is first provided between the structure and the foundation.
また、構造物下面あるいは基礎上面のいずれか一方に摩
擦係数の分布が半径方向に異なるすべや摩擦板が固定さ
れる。さらに、先端にこのすべり摩擦板と対面して接す
る摩擦面を有し、その押し付け力の調整が可能な機構を
持つ支持装置を、基礎上面あるいは構造物下面に弾性支
持体と並列に固定することにより、小規模地震では構造
物を基礎に対して固定し、中規模以上の地震に対して確
実に作動して構造物と基礎との相対変位を抑え、システ
ム全体の健全性を保つことができる0〔発明の実施例〕
以下、図面を参照してこの発明の詳細な説明する。第1
図において、弾性支持体6が上部固定板7および下部固
定板8によりそれぞれ構造物1の下面および支持台4に
固定され、支持台4け基礎3に固定されている。また、
構造物1の下面にはすべ)摩擦板13が固定されており
、これは中心から半径方向に摩擦係数の大きくなってい
る3種類の摩擦面14,15.16から構成されている
。さらに、摩擦板16の外周には、ス)ツノ(−17が
設置しであるofた、先端にすべり摩擦板13と対面し
て接する摩擦面11を設け、その押し付け力を任意に設
定できる調整装置12を備えた支持装置10が基礎3の
上面に、弾性支持機構5と並列に固定されている。Further, a sliding friction plate having a friction coefficient distribution different in the radial direction is fixed to either the lower surface of the structure or the upper surface of the foundation. Further, a support device having a friction surface facing and in contact with the sliding friction plate at its tip and having a mechanism capable of adjusting the pressing force thereof is fixed to the upper surface of the foundation or the lower surface of the structure in parallel with the elastic support. This allows the structure to be fixed to the foundation in the event of a small earthquake, and operates reliably in the event of an earthquake of medium or larger magnitude, suppressing relative displacement between the structure and the foundation, and maintaining the integrity of the entire system. 0 [Embodiments of the Invention] The present invention will be described in detail below with reference to the drawings. 1st
In the figure, an elastic support 6 is fixed to the lower surface of the structure 1 and the support base 4 by an upper fixation plate 7 and a lower fixation plate 8, respectively, and is fixed to a foundation 3 with four support bases. Also,
A friction plate 13 is fixed to the lower surface of the structure 1, and is composed of three types of friction surfaces 14, 15, and 16 whose coefficients of friction increase in the radial direction from the center. Further, on the outer periphery of the friction plate 16, a friction surface 11 is provided at the tip thereof to face and contact the sliding friction plate 13, and the pressing force can be adjusted as desired. A support device 10 with a device 12 is fixed on the upper side of the foundation 3 in parallel with the elastic support mechanism 5 .
いま、すべり摩擦板13を構成する3種類の摩擦面14
.15.16の摩擦係数をそれぞれμm、μ2Iμ3と
し、その関係がμmくμ2〈μ3となっており同様に中
心から各摩擦板の外周までの距離を11゜12.13と
する0但し、13は弾性支持機構5の変位吸収限界より
小さい初期状態として、すべり摩擦面14と摩擦面11
が接しており、押し付け力P1を作用させておく。この
時、摩擦力はF1=μm×P1であり、このFlは中規
模地震の最も小さい地震により構造物1に生じる地震力
程度にPlを調整する事ができる。Now, there are three types of friction surfaces 14 that constitute the sliding friction plate 13.
.. The friction coefficients of 15.16 are μm and μ2Iμ3, respectively, and the relationship is μm × μ2<μ3. Similarly, the distance from the center to the outer circumference of each friction plate is 11°12.13. However, 13 is As an initial state smaller than the displacement absorption limit of the elastic support mechanism 5, the sliding friction surface 14 and the friction surface 11
are in contact with each other, and a pressing force P1 is applied. At this time, the frictional force is F1=μm×P1, and Pl can be adjusted to approximately the seismic force generated on the structure 1 by the smallest of medium-sized earthquakes.
このような構成にしておくと中規模以下の地震、すなわ
ち地震荷重がF1以下の場合にはすべりが生じないので
、構造物1は基礎3に固定され、地震力は直接構造物1
に伝えられる。しかし、構造物1は、中規模程度の地震
に対しては十分耐え得るので、通常の機能を停止せずに
稼動させる事ができる。With this configuration, no slipping will occur in an earthquake of moderate magnitude or less, that is, if the earthquake load is F1 or less, the structure 1 is fixed to the foundation 3, and the seismic force is directly transferred to the structure 1.
can be conveyed to. However, since the structure 1 can sufficiently withstand medium-sized earthquakes, it can be operated without stopping its normal functions.
次に中規模以上の地震に対しては、すべり摩擦板13と
摩擦面11との間にすべりが生じ、摩擦による振動エネ
ルギー吸収例より振動が抑制されかつ、免震状態となる
。すなわち構造物1と基礎3との相対変位振幅が!以下
の場合には、摩擦面11はすべり摩擦面14内をすべる
。この時、摩擦力F1および弾性支持体6により生じる
エネルギーの消散及び吸収により、構造物1の振動は抑
制される。この時、免震装置に加わる水平方向の荷重F
と変位δとの関係は、振幅一定とすると第5図のように
なり、図中で囲まれた部分の面積が一周期あたシに消散
する振動エネルギー量に相当する。Next, in the event of an earthquake of medium or larger magnitude, a slip occurs between the sliding friction plate 13 and the friction surface 11, and vibrations are suppressed compared to the vibration energy absorption example due to friction, and a seismically isolated state is achieved. In other words, the relative displacement amplitude between structure 1 and foundation 3 is! In the following cases, the friction surface 11 slides within the sliding friction surface 14. At this time, the vibration of the structure 1 is suppressed by the frictional force F1 and the dissipation and absorption of energy generated by the elastic support 6. At this time, the horizontal load F applied to the seismic isolation device
The relationship between and the displacement δ is as shown in FIG. 5 when the amplitude is constant, and the area of the enclosed portion in the figure corresponds to the amount of vibrational energy dissipated per cycle.
大規模地震に対しては、構造物1はさらに大きく揺れ、
また弾性支持機構5の変位吸収量にも限界があるため変
位振幅を抑制し、振動エネルギーを消散させる必要があ
る。この免震装置によれば相対変位が11を越えると(
但し12以下とする)第3図のように摩擦面11は、す
べり摩擦面15と接するようになる。この時、摩擦力は
F2=μ2×P1となりF 2>F 1であシ、このF
2が作用した状態ですべりが生じると、Flの場合以上
によシ大きな振動エネルギーを消散し、相対変位が過大
となることを防ぐことが可能である。この場合の免震装
置に加わる水平方向の荷重Fと変位量δとの関係は、第
6図に示すように2段階の履歴を描くことになる。In the event of a large-scale earthquake, Structure 1 will shake even more.
Furthermore, since there is a limit to the displacement absorption amount of the elastic support mechanism 5, it is necessary to suppress the displacement amplitude and dissipate the vibration energy. According to this seismic isolation device, if the relative displacement exceeds 11 (
(However, the number is 12 or less) As shown in FIG. 3, the friction surface 11 comes into contact with the sliding friction surface 15. At this time, the frictional force is F2=μ2×P1, so F2>F1, and this F
When slipping occurs under the condition of 2, it is possible to dissipate vibrational energy greater than that in the case of Fl, and prevent relative displacement from becoming excessive. In this case, the relationship between the horizontal load F applied to the seismic isolation device and the displacement amount δ shows a two-stage history as shown in FIG.
さらに、今まで経験したことのないような巨大地震が発
生した場合には、構造物1と基礎3との相対変位はl!
2を越える可能性がある。この時、摩擦力はF3=μ3
XP1となシ、前述の原理によってより大きな振動エネ
ルギーを消散し、変位を抑える働きをする。また相対変
位が!3になると、ストッパーが作用し、弾性支持機構
5の変位吸収限界を越えることはない。この場合の免震
装置に加わる水平方向の荷重Fと変位量δとの関係は第
7図に示すように3段階の履歴を描くことになる。Furthermore, in the event of a huge earthquake that has never been experienced before, the relative displacement between structure 1 and foundation 3 will be l!
There is a possibility that it exceeds 2. At this time, the frictional force is F3=μ3
XP1 works by dissipating greater vibration energy and suppressing displacement based on the above-mentioned principle. Another relative displacement! 3, the stopper acts and the displacement absorption limit of the elastic support mechanism 5 is not exceeded. In this case, the relationship between the horizontal load F applied to the seismic isolation device and the displacement amount δ shows a three-stage history as shown in FIG.
また、地震がおさまった時点では、摩擦力と弾性支持機
構5の変形による復元力のつり合いのとれた状態で安定
する可能性がある。この場合には押し付け力調整装置1
2によシ押し付け力を解除することによシ、第1図の初
期状態にもどすことが可能である。Further, when the earthquake subsides, there is a possibility that the frictional force and the restoring force due to the deformation of the elastic support mechanism 5 are balanced and stabilized. In this case, the pressing force adjustment device 1
By releasing the pressing force in step 2, it is possible to return to the initial state shown in FIG.
本発明によれば免震装置の作用を地震動の大きさによシ
段階的に切りかえる事ができるため、特に常時あるいは
発生確率的に大きい地震に対しては構造物と基礎との相
対変位が生ずる事なく、又発生確率の小さい中、大規模
地震に対してはその程度に応じ、振動抑制効果を増しな
がら構造物自体の耐震性を向上させ、構造物の安全性を
高める事ができる。According to the present invention, the action of the seismic isolation device can be changed in stages depending on the magnitude of seismic motion, so relative displacement between the structure and the foundation will occur, especially in the case of earthquakes that are constant or have a large probability of occurring. While the probability of occurrence is small, the seismic resistance of the structure itself can be improved and the safety of the structure can be improved while increasing the vibration suppression effect in response to a large-scale earthquake.
本発明は上記実施例に限定させることなく、すべり摩擦
板の構成として任意の種類の摩擦板を組み合わせること
により同様の効果が得られる。The present invention is not limited to the above embodiments, but similar effects can be obtained by combining arbitrary types of friction plates as the structure of the sliding friction plate.
第1図は、本発明の一実施例を示す免震装置の断面図、
第2図乃至第4図は、第1図に示す本発明の免震装置の
作動状態を示す断面図、第5図乃1g7図は、第2図乃
至第4図に示す各状態の荷重−たわみ線図、第8図乃至
第10図は、従来の免震装置の断面図、第11図は、第
1O図に示す免震装置の荷重−たわみ線図である。
1・・・構造物、2・・・地盤、3・・・基礎、4・・
・支持台、5・・・弾性支持機構、6・・・弾性体、7
・・・上部固定板、8・・・下部固定板、9・・・すべ
り板、10・・・支持装置、11・・・摩擦面、12・
・・押し付け力調整装置、13・・・すべり摩擦板、1
4・・・摩擦面1.15・・・摩擦面2.16・・・摩
擦面3、t7・・・ストッパー。
代理人弁理士 則 近 憲 佑 (ほか1名)第10図
第11図
第7図
第8図
第9図FIG. 1 is a sectional view of a seismic isolation device showing one embodiment of the present invention;
2 to 4 are sectional views showing the operating states of the seismic isolation device of the present invention shown in FIG. 1, and FIGS. 5 to 1g7 show the load-- FIGS. 8 to 10 are sectional views of a conventional seismic isolation device, and FIG. 11 is a load-deflection diagram of the seismic isolation device shown in FIG. 1O. 1... Structure, 2... Ground, 3... Foundation, 4...
- Support stand, 5... Elastic support mechanism, 6... Elastic body, 7
... Upper fixing plate, 8... Lower fixing plate, 9... Sliding plate, 10... Support device, 11... Friction surface, 12.
...Pushing force adjustment device, 13...Sliding friction plate, 1
4...Friction surface 1.15...Friction surface 2.16...Friction surface 3, t7...Stopper. Representative Patent Attorney Kensuke Chika (and 1 other person) Figure 10 Figure 11 Figure 7 Figure 8 Figure 9
Claims (1)
び支持装置を介挿して構成される構造物の免震装置にお
いて、構造物下面あるいは基礎上面に、摩擦係数の分布
が半径方向に異なるすべり摩擦板を固定し、先端にこの
すべり摩擦板と対面して接する摩擦面を持ち、その押し
付け力の調整が可能である支持装置を、弾性支持体と並
列に基礎上面あるいは構造物下面に固定したことを特徴
とする構造物の免震装置。In a seismic isolation device for a structure that consists of a sliding friction plate, an elastic support, and a support device inserted between the structure and the foundation, the distribution of the friction coefficient is radial on the bottom surface of the structure or the top surface of the foundation. Different sliding friction plates are fixed, and a support device that has a friction surface facing and in contact with the sliding friction plate at the tip and whose pressing force can be adjusted is placed on the top surface of the foundation or the bottom surface of the structure in parallel with the elastic support. A seismic isolation device for a structure that is fixed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60030291A JPH0643856B2 (en) | 1985-02-20 | 1985-02-20 | Seismic isolation device for structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60030291A JPH0643856B2 (en) | 1985-02-20 | 1985-02-20 | Seismic isolation device for structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61192941A true JPS61192941A (en) | 1986-08-27 |
JPH0643856B2 JPH0643856B2 (en) | 1994-06-08 |
Family
ID=12299623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60030291A Expired - Lifetime JPH0643856B2 (en) | 1985-02-20 | 1985-02-20 | Seismic isolation device for structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0643856B2 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01174737A (en) * | 1987-12-26 | 1989-07-11 | Nkk Corp | Earthquakeproof device utilizing coulomb friction |
JPH0681514A (en) * | 1992-06-22 | 1994-03-22 | Univ Kansas State | Rigid decoupling assembly |
US5366210A (en) * | 1992-03-25 | 1994-11-22 | Firma Carl Freudenberg | Spring system with elastomeric and temperature responsive springs in parallel |
JPH08158697A (en) * | 1994-12-08 | 1996-06-18 | Taisei Corp | Base isolation method and base isolation device applied to same method |
JPH11125310A (en) * | 1997-10-23 | 1999-05-11 | Showa Electric Wire & Cable Co Ltd | Base isolation device |
JPH11159188A (en) * | 1997-11-27 | 1999-06-15 | Fujita Corp | Rolling guide and base-isolation rolling bearing making use thereof |
JPH11336201A (en) * | 1998-05-25 | 1999-12-07 | Nippon Pillar Packing Co Ltd | Bearing device |
JP2000193027A (en) * | 1998-12-24 | 2000-07-14 | Toyo Tire & Rubber Co Ltd | Base isolation device for light weight structure |
JP2000193022A (en) * | 1998-12-24 | 2000-07-14 | Toyo Tire & Rubber Co Ltd | Base isolation device, for light weight structure |
JP2000291732A (en) * | 1999-04-05 | 2000-10-20 | Taisei Corp | Compound base isolation unit and base isolation structure |
JP2000291733A (en) * | 1999-04-05 | 2000-10-20 | Taisei Corp | Compound base isolation unit and base isolation structure |
JP2001108013A (en) * | 1999-10-08 | 2001-04-20 | Toyo Tire & Rubber Co Ltd | Sliding base isolation device |
JP2002364704A (en) * | 2001-06-08 | 2002-12-18 | Safety Techno:Kk | Sliding bearing type base isolation device |
JP2003097086A (en) * | 2001-09-19 | 2003-04-03 | Sekisui Chem Co Ltd | Base isolation building and construction method therefor |
JP2003269008A (en) * | 2002-03-19 | 2003-09-25 | Asahi Kasei Corp | Slide plate of base isolation device |
JP2004263430A (en) * | 2003-02-28 | 2004-09-24 | Oiles Ind Co Ltd | Semi-fixing device of base isolation structure |
JP2005257001A (en) * | 2004-03-12 | 2005-09-22 | Toyo Tire & Rubber Co Ltd | Sliding plate of sliding base-isolating device |
JP2006291588A (en) * | 2005-04-12 | 2006-10-26 | Shimizu Corp | Base-isolated structure |
JP2008128463A (en) * | 2006-11-24 | 2008-06-05 | Daiwa House Ind Co Ltd | Composite damper |
JP2009519387A (en) * | 2005-12-16 | 2009-05-14 | マウアー ゾーネ エンジニアリング ゲーエムベーハー ウント コー カーゲー | Sliding alignment support |
JP2009127827A (en) * | 2007-11-27 | 2009-06-11 | Daiwa House Industry Co Ltd | Viscoelastic damper using friction damper |
JP2011047514A (en) * | 2009-07-30 | 2011-03-10 | Meiji Univ | Damping device and damping method |
JP2011080507A (en) * | 2009-10-05 | 2011-04-21 | Toyo Tire & Rubber Co Ltd | Railway vehicle air spring |
JP2016196910A (en) * | 2015-04-03 | 2016-11-24 | 株式会社大林組 | Seismic isolation device |
JP2016205413A (en) * | 2015-04-15 | 2016-12-08 | 株式会社大林組 | Seismic isolation structure |
JP2018084100A (en) * | 2016-11-25 | 2018-05-31 | 大成建設株式会社 | Base-isolated building |
JP2018136000A (en) * | 2017-02-23 | 2018-08-30 | 昭和電線ケーブルシステム株式会社 | Seismic isolator |
JP2020153498A (en) * | 2019-03-22 | 2020-09-24 | 株式会社フジタ | Sliding bearing |
-
1985
- 1985-02-20 JP JP60030291A patent/JPH0643856B2/en not_active Expired - Lifetime
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01174737A (en) * | 1987-12-26 | 1989-07-11 | Nkk Corp | Earthquakeproof device utilizing coulomb friction |
JPH0762409B2 (en) * | 1987-12-26 | 1995-07-05 | 日本鋼管株式会社 | Seismic isolation device using Coulomb friction |
US5366210A (en) * | 1992-03-25 | 1994-11-22 | Firma Carl Freudenberg | Spring system with elastomeric and temperature responsive springs in parallel |
JPH0681514A (en) * | 1992-06-22 | 1994-03-22 | Univ Kansas State | Rigid decoupling assembly |
JPH08158697A (en) * | 1994-12-08 | 1996-06-18 | Taisei Corp | Base isolation method and base isolation device applied to same method |
JPH11125310A (en) * | 1997-10-23 | 1999-05-11 | Showa Electric Wire & Cable Co Ltd | Base isolation device |
JPH11159188A (en) * | 1997-11-27 | 1999-06-15 | Fujita Corp | Rolling guide and base-isolation rolling bearing making use thereof |
JPH11336201A (en) * | 1998-05-25 | 1999-12-07 | Nippon Pillar Packing Co Ltd | Bearing device |
JP2000193027A (en) * | 1998-12-24 | 2000-07-14 | Toyo Tire & Rubber Co Ltd | Base isolation device for light weight structure |
JP2000193022A (en) * | 1998-12-24 | 2000-07-14 | Toyo Tire & Rubber Co Ltd | Base isolation device, for light weight structure |
JP2000291732A (en) * | 1999-04-05 | 2000-10-20 | Taisei Corp | Compound base isolation unit and base isolation structure |
JP2000291733A (en) * | 1999-04-05 | 2000-10-20 | Taisei Corp | Compound base isolation unit and base isolation structure |
JP2001108013A (en) * | 1999-10-08 | 2001-04-20 | Toyo Tire & Rubber Co Ltd | Sliding base isolation device |
JP2002364704A (en) * | 2001-06-08 | 2002-12-18 | Safety Techno:Kk | Sliding bearing type base isolation device |
JP2003097086A (en) * | 2001-09-19 | 2003-04-03 | Sekisui Chem Co Ltd | Base isolation building and construction method therefor |
JP2003269008A (en) * | 2002-03-19 | 2003-09-25 | Asahi Kasei Corp | Slide plate of base isolation device |
JP2004263430A (en) * | 2003-02-28 | 2004-09-24 | Oiles Ind Co Ltd | Semi-fixing device of base isolation structure |
JP2005257001A (en) * | 2004-03-12 | 2005-09-22 | Toyo Tire & Rubber Co Ltd | Sliding plate of sliding base-isolating device |
JP2006291588A (en) * | 2005-04-12 | 2006-10-26 | Shimizu Corp | Base-isolated structure |
US8371075B2 (en) | 2005-12-16 | 2013-02-12 | Maurer Sohne Engineering Gmbh & Co. Kg | Sliding pendulum bearing |
JP2009519387A (en) * | 2005-12-16 | 2009-05-14 | マウアー ゾーネ エンジニアリング ゲーエムベーハー ウント コー カーゲー | Sliding alignment support |
KR101202567B1 (en) | 2005-12-16 | 2012-11-19 | 마우러 쇤 엔지니어링 게엠베하 운트 코. 카게 | Friction pendulum bearing |
JP2008128463A (en) * | 2006-11-24 | 2008-06-05 | Daiwa House Ind Co Ltd | Composite damper |
JP2009127827A (en) * | 2007-11-27 | 2009-06-11 | Daiwa House Industry Co Ltd | Viscoelastic damper using friction damper |
JP2011047514A (en) * | 2009-07-30 | 2011-03-10 | Meiji Univ | Damping device and damping method |
JP2011080507A (en) * | 2009-10-05 | 2011-04-21 | Toyo Tire & Rubber Co Ltd | Railway vehicle air spring |
JP2016196910A (en) * | 2015-04-03 | 2016-11-24 | 株式会社大林組 | Seismic isolation device |
JP2016205413A (en) * | 2015-04-15 | 2016-12-08 | 株式会社大林組 | Seismic isolation structure |
JP2018084100A (en) * | 2016-11-25 | 2018-05-31 | 大成建設株式会社 | Base-isolated building |
JP2018136000A (en) * | 2017-02-23 | 2018-08-30 | 昭和電線ケーブルシステム株式会社 | Seismic isolator |
JP2020153498A (en) * | 2019-03-22 | 2020-09-24 | 株式会社フジタ | Sliding bearing |
Also Published As
Publication number | Publication date |
---|---|
JPH0643856B2 (en) | 1994-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61192941A (en) | Vibration avoiding device for structure | |
US4599834A (en) | Seismic isolator | |
US5242147A (en) | Machine base isolator | |
JPS6149028A (en) | Earthquake absorber for structure | |
US4371141A (en) | Vibration isolation system with adjustable constant force, all-directional, attenuating seismic restraint | |
JP2006291588A (en) | Base-isolated structure | |
JPS61130640A (en) | Seismic relief device for structure | |
KR102061150B1 (en) | Vibration reduction device with minimum height structure | |
JP2001241502A (en) | Sliding brace for isolating seismic vibrations | |
JPS62141330A (en) | Earthquake-force reducing device | |
JPH03209033A (en) | Damping device | |
JPH0434247A (en) | Base isolation element | |
JP2000002783A (en) | Three-dimensional base isolation structure for building | |
JP2002048192A (en) | Vibration damper article and installation method of vibration damper article | |
JPS61109879A (en) | Earthquake-proof apparatus | |
JP3804406B2 (en) | Belleville spring unit with damping force adjustment function | |
JPH0752903Y2 (en) | Fail-safe device for seismic isolation structure | |
KR19980058105A (en) | High damping base isolation system combining structure's laminated rubber bearing and seismic energy dissipation pot bearing | |
JPH10110777A (en) | Base isolating device for bridge | |
JPH01247633A (en) | Damping mechanism for vibrationproof device | |
JP2013024257A (en) | Vibration attenuation device | |
JPH06100033B2 (en) | Seismic isolation device for structures | |
JPS61189342A (en) | Damper | |
JPH0726441B2 (en) | Support for seismic isolation structures | |
JPH11303932A (en) | Base isolation device for lightweight structure |