JP2006342884A - Base isolation device - Google Patents

Base isolation device Download PDF

Info

Publication number
JP2006342884A
JP2006342884A JP2005169104A JP2005169104A JP2006342884A JP 2006342884 A JP2006342884 A JP 2006342884A JP 2005169104 A JP2005169104 A JP 2005169104A JP 2005169104 A JP2005169104 A JP 2005169104A JP 2006342884 A JP2006342884 A JP 2006342884A
Authority
JP
Japan
Prior art keywords
spring
base
isolation device
seismic isolation
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005169104A
Other languages
Japanese (ja)
Inventor
Yoshimasa Kimura
嘉昌 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP2005169104A priority Critical patent/JP2006342884A/en
Publication of JP2006342884A publication Critical patent/JP2006342884A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spring type base isolation device capable of solving at least one of the problems existent in the "spring type base isolation device" having a spring arranged horizontally (size of a base isolation base is large, spring set force is large, spring characteristics have peculiarities, reduction of natural frequency of the base isolation device is difficult, and installation of a damper is difficult). <P>SOLUTION: (1) This base isolation device 10 has the spring 14 and a spring shaft axis having an angle of 35 degrees or more and 90 degrees or less for the horizontal direction of the spring 14. (2) This base isolation device has a spring shaft axis having an angle of 90 degrees for the horizontal direction of the spring 14. (3) This base isolation device has a spring shaft axis having an angle of 35 degrees or more and less than 90 degrees from the horizontal direction of the spring 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、免震装置に関し、とくに戻し力がバネ力であるバネ式免震装置に関する。   The present invention relates to a seismic isolation device, and more particularly to a spring-type seismic isolation device whose return force is a spring force.

歴史的遺品、美術工芸品、精密機械、等の耐震性が必要な貴重品を地震による破壊から保護するために、種々の免震装置が開発され、使用されている。
免震装置は戻し力の発生方法により、「重力式」と「バネ式」に分けられる。図26−図29に代表的な例を示す。
Various seismic isolation devices have been developed and used in order to protect earthquake-resistant valuables such as historical relics, arts and crafts, and precision machinery from damage caused by earthquakes.
Seismic isolation devices are divided into “gravity type” and “spring type” depending on the method of generating the return force. A representative example is shown in FIGS.

それぞれについて簡単に説明する。
(イ)重力式(図26:ボール式、図27:リニアベアリング式)
免震台101を曲面皿102とボール103で支持し、左右に動くと免震台101がわずかに持ち上げられ、重力によって元の位置に戻るようにした装置。基本的には「振り子」の原理で動き、免震台101や対象物の質量とは関係なしに「固有振動数」が決まる特徴を持つ。固有振動数を充分低くとれば、それ以上の振動数の振動を遮断できるので、地震の横揺れを緩和する事ができる。
Each will be briefly described.
(B) Gravity type (Fig. 26: Ball type, Fig. 27: Linear bearing type)
A device in which the base isolation table 101 is supported by a curved plate 102 and a ball 103, and when it moves left and right, the base isolation table 101 is slightly lifted and returned to its original position by gravity. Basically, it moves on the principle of “pendulum” and has a characteristic that “natural frequency” is determined regardless of the mass of the base isolation table 101 and the object. If the natural frequency is made sufficiently low, vibrations at frequencies higher than that can be cut off, and the roll of the earthquake can be mitigated.

(ロ)積層ゴム式(図28)
左右には柔らかく、上下には固い、異方性ゴムである積層ゴム104を使い、地震の横揺れを逃げる装置。積層ゴム104は左右の揺れを吸収するベアリングの役をこなすと同時に、ゴムの弾性を復元力に利用している。また、ゴム固有のダンピング効果によって地震波の揺れを吸収して熱に変え、振動エネルギーを緩和する。105は免震台、106はベースを示す。
(ハ)バネ式(図29)
バネ式免震装置は、二つの構成要素からなる。
ボール107:ベース108と免震台109の間に複数個( 3個以上)のボール107を入れ、ベース108に対する免震台109の水平揺れを吸収するベアリングの役を果たす。ボール受け面110は平面なので、免震台109は持ち上げられず、重力の作用はない。ボール107によって免震台109の上下荷重支持を受け持つ。
バネ111:ベース108と免震台109の水平ずれを元に戻す役割を持つ。また、免震台109を質量としたバネ・マス機構を構成する。その固有振動数f は、
f={1/(2π)}(K/M)1/2
ただし、 K;バネ常数
M;質量(免震台+対象物)
で決まるが、このf を充分小さくすることで、免震効果を発揮できる。また、それ以上の振動のエネルギーを吸収するため、油圧ダンパー、粘性ダンパー等を併用することができる。
(B) Laminated rubber type (Fig. 28)
A device that uses laminated rubber 104, an anisotropic rubber, soft on the left and right and hard on the top and bottom to escape the roll of an earthquake. The laminated rubber 104 serves as a bearing that absorbs left and right shaking, and at the same time uses the elasticity of the rubber as a restoring force. In addition, the damping effect inherent in rubber absorbs the vibration of seismic waves and converts it into heat, reducing the vibration energy. Reference numeral 105 denotes a base isolation table, and 106 denotes a base.
(C) Spring type (Fig. 29)
The spring-type seismic isolation device consists of two components.
Ball 107: A plurality (three or more) of balls 107 are inserted between the base 108 and the base isolation table 109, and serve as a bearing that absorbs horizontal shaking of the base isolation table 109 with respect to the base 108. Since the ball receiving surface 110 is a flat surface, the base isolation table 109 is not lifted and there is no action of gravity. The ball 107 supports the vertical load of the base isolation table 109.
Spring 111: has a role of returning the horizontal shift between the base 108 and the base isolation table 109. In addition, a spring-mass mechanism having the seismic isolation table 109 as a mass is configured. Its natural frequency f is
f = {1 / (2π)} (K / M) 1/2
K: Spring constant
M: Mass (base-isolated table + object)
However, the seismic isolation effect can be demonstrated by making f small enough. Further, in order to absorb more vibration energy, a hydraulic damper, a viscous damper, or the like can be used in combination.

通常考えられるバネ式免震装置の例を図30−図32に示す。
免震装置は、設置する時に収まりの良い4角形が望まれるので、バネ式は図30−図32に示すように、4個のボール107と、4本の水平配置バネ111で構成するのが効率的である。
バネ111は、免震台109が作動する際、台109の動きにつれて揺動するので、図32に示したような方法で揺動範囲Aをチェックして、ボールおよびボール受け台と干渉しないように、必要な距離を取った配置にしている。
特開平09−191985号公報
Examples of spring-type seismic isolation devices that can be generally considered are shown in FIGS.
Since the seismic isolation device is desired to have a quadrangular shape that fits when installed, the spring type is composed of four balls 107 and four horizontally arranged springs 111 as shown in FIGS. Efficient.
Since the spring 111 swings as the base 109 moves when the base isolation table 109 operates, the swing range A is checked by the method shown in FIG. 32 so as not to interfere with the ball and the ball cradle. In addition, it is arranged with the necessary distance.
Japanese Unexamined Patent Publication No. 09-191985

従来のバネ式免震装置に、以下の問題点がある。
(i)免震台サイズが大きい。
(ii)バネセット力が大きい。
(iii)バネ特性に癖がある。 (方向性、直交成分の発生、等)
(iv)免震装置の固有振動数を下げる事は難しい。……免震性能に限界がある。
(v)ダンパーを設置しにくい。
それぞれの問題点についてより詳しく述べる。
The conventional spring-type seismic isolation device has the following problems.
(I) The base isolation table size is large.
(Ii) Large spring setting force.
(Iii) There is a flaw in the spring characteristics. (Direction, generation of orthogonal components, etc.)
(Iv) It is difficult to reduce the natural frequency of the seismic isolation device. ...... Seismic isolation performance is limited.
(V) It is difficult to install a damper.
I will describe each problem in more detail.

(i)免震台サイズが大きい。
免震台のサイズは、図30−図32から分かるように、バネの長さで決まる。
バネセット長は、バネの設計長( 初期長)に最小伸びと作動長の半分を加算した物となる。
図33で、Lo=0.2 (バネ使用条件から必要になる長さ)
Ln=0.02
Lw=0.4
とすると、 Ls=Lo+Ln+Lw/2=0.2+0.02+0.4/2=0.42
このバネが辺と平行に一対配置されるので、免震台のサイズは、1辺が0.84m 以上の正方形となる。
一辺の長さが、受け皿直径の2倍(0.4m) 以上ですむ重力式免震装置に比べて、倍以上のサイズアップになる。
(I) The base isolation table size is large.
As can be seen from FIGS. 30 to 32, the size of the base is determined by the length of the spring.
The spring set length is the spring design length (initial length) plus the minimum elongation and half of the operating length.
In FIG. 33, Lo = 0.2 (the length required from the spring use condition)
Ln = 0.02
Lw = 0.4
Ls = Lo + Ln + Lw / 2 = 0.2 + 0.02 + 0.4 / 2 = 0.42
Since a pair of springs are arranged in parallel with the sides, the size of the base is a square with one side of 0.84 m or more.
The length of one side is more than double the size of the gravity type seismic isolation device, which is more than twice the diameter of the pan (0.4m).

(ii)バネセット力が大きい。
(i)の説明から分かるように、バネのセット時長さはLs=0.42mとなり、0.2mのバネを0.42m の長さにまで伸してセットすることになる。セット時のバネの伸び量がバネ最大伸び量のほぼ半分に相当し、バネ使用時に常に大きな応力がかかっていることになる。
免震装置の使用条件から、この状態が長時間維持される事になるので、バネの劣化が懸念される。
(Ii) Large spring setting force.
As can be seen from the explanation of (i), the length of the spring when set is Ls = 0.42 m, and the 0.2 m spring is extended to a length of 0.42 m and set. The extension amount of the spring at the time of setting corresponds to almost half of the maximum extension amount of the spring, and a large stress is always applied when the spring is used.
Since this state is maintained for a long time from the use conditions of the seismic isolation device, there is a concern about the deterioration of the spring.

(iii )バネ特性に癖がある。
図34は、上記の免震装置をいろいろな方向に引っ張った時のバネ強さを示す。
横軸は引っ張り方向で、角度0 度がバネ方向を示す。したがって角度90度で、隣のバネの方向となる。計算条件をLs=0.42m, Lw=0.4m, K=100N/m とし、引っ張り長、0.05,0.10,0.15, 0.20m の4水準について検討した。
図34から分かるように引っ張り量が大きいと、バネが無い方向のバネ力は小さくなる。
また、バネ方向0, 45, 90 度以外の方向では、直交成分の力が発生する。
このバネ力の癖(方向による違い、及び直交成分)によって、免震台に余分な動き(方向による振れの差、回転の発生、等)が発生する懸念がある。
図35は、免震台を、バネの取り付け方向(0 度)、および、バネの無い方向(45度)に引っ張った時のバネ特性を示す。
図35の線b( 中央)は、K=100N/mのバネを2本並列に並べたの場合のバネ強さである。(K=200N/m相当の線形バネになる)0 度方向のバネは、変位が増えると線形バネより若干強くなり、45度方向のバネは、若干弱くなる。しかし、大まかに考えれば、バネ特性は全方向で、ほぼ変位に比例する( 線形)と考えて良い。
以下のシミュレーションでは、簡単のため、全方向に線形なバネとして扱っていく。
(Iii) There is a flaw in the spring characteristics.
FIG. 34 shows the spring strength when the seismic isolation device is pulled in various directions.
The horizontal axis is the tension direction, and the angle of 0 degrees indicates the spring direction. Therefore, at an angle of 90 degrees, it becomes the direction of the adjacent spring. The calculation conditions were Ls = 0.42m, Lw = 0.4m, K = 100N / m, and four lengths of 0.05, 0.10, 0.15 and 0.20m were examined.
As can be seen from FIG. 34, when the pulling amount is large, the spring force in the direction without the spring is small.
In addition, in the direction other than the spring direction 0, 45, 90 degrees, the force of the orthogonal component is generated.
There is a concern that this spring force wrinkle (difference depending on direction and orthogonal component) may cause extra motion (difference in deflection due to direction, occurrence of rotation, etc.) in the base isolation table.
FIG. 35 shows the spring characteristics when the base isolation table is pulled in the direction in which the spring is attached (0 degree) and in the direction without the spring (45 degree).
The line b (center) in FIG. 35 is the spring strength when two springs with K = 100 N / m are arranged in parallel. The spring in the 0 degree direction becomes slightly stronger than the linear spring as the displacement increases, and the spring in the 45 degree direction becomes slightly weaker. However, roughly speaking, it can be considered that the spring characteristics are almost proportional to the displacement (linear) in all directions.
In the following simulation, for simplicity, it is treated as a linear spring in all directions.

(iv)免震装置の固有振動数を下げることは難しい。
図36は、バネ水平配置式免震装置の概念図である。固有振動数は、バネ・マスモデルなので、前記の式で容易に求められる。モデルは、両側にバネのある形なので、バネ力は2倍となり、固有振動数f は、
f={1/(2π)}(K/M)1/2
となる。

たとえば、検討例、K=100N/m, M=500kg の場合について計算してみると、f=0.1007Hzとなる。
いろいろな地震に対応するためにはf <0.06Hz( 地震波の下限周波数)とすることが望ましいが、この装置は固有振動数がそれより高いため、免震装置の条件を十分満たしていない。目標を達成するため固有振動数を半分に下げようとすると、Mを4倍に増やすか、Kを4分の1に減らす必要がある。質量アップ4倍は大きすぎるし、バネ常数を4分の1の25N/m に設定すると、セット長さ0.42m の水平配置バネに振動や自重による中だるみが発生する懸念があるので、いずれの方法も現実的では無い。つまりバネ水平配置では、固有振動数を目標まで減らすことは難しい。
(Iv) It is difficult to reduce the natural frequency of seismic isolation devices.
FIG. 36 is a conceptual diagram of a spring horizontal arrangement type seismic isolation device. Since the natural frequency is a spring-mass model, it can be easily obtained by the above formula. Since the model has a spring on both sides, the spring force is doubled and the natural frequency f is
f = {1 / (2π)} (K / M) 1/2
It becomes.

For example, when calculating for the study example, K = 100 N / m, M = 500 kg, f = 0.1007 Hz.
In order to cope with various earthquakes, it is desirable to set f <0.06Hz (the lower limit frequency of seismic waves), but this device has a higher natural frequency, so it does not satisfy the requirements for seismic isolation devices. To reduce the natural frequency by half in order to achieve the target, it is necessary to increase M by a factor of 4 or to reduce K by a factor of four. 4 times the mass increase is too large, and if the spring constant is set to a quarter of 25N / m, there is a concern that the horizontal spring with a set length of 0.42m may cause slackness due to vibration or its own weight. Is not realistic. In other words, with the spring horizontal arrangement, it is difficult to reduce the natural frequency to the target.

この免震装置の計算モデルに、実際の地震波データ
神戸地震 NS波 ………激しく、短周期、短時間の地震
El centro 地震 EW波………ゆっくりで、長周期、長時間の地震
を入れて、このこの免震台の挙動をシミュレーションしてみると、次のようになる。
図37、図38は加速度を示す。線aが地震の加速度波形を、線bが免震台の加速度波形を示す。
神戸地震では加速度はほぼゼロに抑えられが、El centro 地震ではかなりの加速度が残ってしまうことが分かる。
次に振幅の計算結果を図39、図40に示した。線cは免震台と地面の相対移動量を示す。
両図を見比べてみると、神戸地震には免震機能を発揮できるが、El centro 地震では振幅を拡大し、また、台と地面の相対移動量がバネ作動幅±0.2mを越してしまって装置の機能を発揮できない事が分かる。
纏めると、バネ水平配置免震装置を今回のサイズ作ろうとすると、免震性能に限界がある。
In this seismic isolation model, the actual seismic data Kobe earthquake NS wave ……… Intense, short period, short time earthquake
El centro earthquake EW wave ......... Slow, long period and long time earthquakes are put in and the behavior of this base is simulated as follows.
37 and 38 show acceleration. Line a shows the acceleration waveform of the earthquake, and line b shows the acceleration waveform of the base isolation table.
It can be seen that the acceleration was suppressed to almost zero in the Kobe earthquake, but considerable acceleration remained in the El centro earthquake.
Next, the calculation results of the amplitude are shown in FIGS. Line c shows the relative movement amount of the base isolation table and the ground.
Comparing the two figures, the Kobe earthquake can exhibit the seismic isolation function, but the El centro earthquake expanded the amplitude, and the relative movement between the platform and the ground exceeded the spring operating width of ± 0.2 m. It turns out that the function of the device cannot be demonstrated.
In summary, there is a limit to the seismic isolation performance when trying to make the spring horizontal seismic isolation device of this size.

(v)ダンパーを設置しにくい。
免震台は、高い周波数(固有振動数を超える地震波成分)の振動を効率よく吸収するので、加速度の減衰は比較的に容易であるが、速度や振幅が拡大してしまう場合がある。このような場合は、「速度」を抑制できる「ダンパー」の設置が有効である。
ダンパーには次の3種類が考えられるが、それぞれ次のような特徴がある。
(V) It is difficult to install a damper.
Since the base isolation table efficiently absorbs vibrations having a high frequency (seismic wave component exceeding the natural frequency), the attenuation of acceleration is relatively easy, but the speed and amplitude may be increased. In such a case, it is effective to install a “damper” that can suppress the “speed”.
The following three types of dampers can be considered, and each has the following characteristics.

イ.流体ダンパ112(図41)
〔原理〕
狭い通路(スリット)113を流体が通過する際の、流れの抵抗を利用する方法。通路が狭いと層流抵抗となり、速度の逆方向に、速度の0.9 〜1.0 乗に比例する抵抗が発生する。すなわち、
D=−CV0.9-1 ×sign(V)
ただし、sign(V)は下記の定義になる符号関数である。
V>0の時、 sign(V)=1
V=0の時、 sign(V)=0
V<0の時、 sign(V)=−1
〔利点〕
速度にほぼ比例した抵抗になるので、速度抑制には最も効果的である。(高性能)
〔問題点〕
通常、バネに沿わせる形で設置されるが、構造上ストローク(s) のほぼ5倍のセット長となり、(図41参照)バネの場合の、約2倍強よりずっと長い。
故に、ストロークがs=0.2mであれば1.0mのセット長さが必要で、免震装置のサイズアップにつながる。
I. Fluid damper 112 (FIG. 41)
〔principle〕
A method of using resistance of a flow when a fluid passes through a narrow passage (slit) 113. If the passage is narrow, laminar flow resistance occurs, and resistance proportional to the 0.9 to 1.0th power is generated in the reverse direction of the speed. That is,
D = -CV 0.9-1 xsign (V)
However, sign (V) is a sign function defined as follows.
When V> 0, sign (V) = 1
When V = 0, sign (V) = 0
When V <0, sign (V) =-1
〔advantage〕
Since the resistance is almost proportional to the speed, it is most effective for speed control. (High performance)
〔problem〕
Usually, it is installed along the spring, but the set length is about 5 times the stroke (s) due to its structure (see FIG. 41), which is much longer than about twice that of the spring.
Therefore, if the stroke is s = 0.2m, a set length of 1.0m is required, which leads to an increase in the size of the seismic isolation device.

ロ.粘性ダンパー114(図42の(イ)、(ロ)、図43の(イ)、(ロ)、(ハ)、(ニ)、(ホ))
〔原理〕
2つの面に挟まれた粘性の強い流体の「引きずり力」(境界層の抵抗)を利用する方法。速度の逆方向に、速度の0.5 〜0.8 乗に比例する抵抗が発生する。
すなわち、
D=−CV0.5-0.8 ×sign(V)
〔利点〕
1つで全方向のダンピングが可能で、流体ダンパーのように必要な方向毎に設置する必要が無い。また、セット時のサイズがストロークs の約3.5 倍ですみ、流体ダンパーより短いため、免震装置への設置が容易である。( 図43の(イ)、(ロ)、(ハ)、(ニ)、(ホ))
〔問題点〕
円盤形なので、装置中央に配置しなければならず、その位置にバネ115、ボール116が配置できないため、サイズアップになる。図43の(イ)、(ロ)、(ハ)にその一例を示した。
図43はダンパー有りの場合(図43の(イ)、(ロ)、(ハ))とダンパー無しの場合(図43の(ニ)、(ホ))を同じ縮尺で示しているが、ダンパー有りの場合は、ダンパー無しに比べて免震装置の平面面積が約2.9 倍( 長さで1.7 倍)に拡大する。
B. Viscous damper 114 ((a), (b) in FIG. 42, (a), (b), (c), (d), (e) in FIG. 43)
〔principle〕
A method that uses the “drag” (boundary layer resistance) of a viscous fluid sandwiched between two surfaces. In the reverse direction of the speed, a resistance proportional to the 0.5 to 0.8th power is generated.
That is,
D = -CV 0.5-0.8 xsign (V)
〔advantage〕
It is possible to perform damping in all directions with one, and there is no need to install it in every required direction like a fluid damper. In addition, the set size is about 3.5 times the stroke s, and it is shorter than the fluid damper, making it easy to install in a seismic isolation device. ((A), (b), (c), (d), (e) in FIG. 43)
〔problem〕
Since it is a disk shape, it must be arranged at the center of the apparatus, and the spring 115 and the ball 116 cannot be arranged at that position, so that the size is increased. An example is shown in (a), (b), and (c) of FIG.
43 shows the case with a damper ((A), (B), (C) in FIG. 43) and the case without a damper ((D), (E) in FIG. 43) at the same scale. In the case of being present, the plane area of the seismic isolation device will be increased by approximately 2.9 times (1.7 times in length) compared to the case without a damper.

ハ.摩擦ダンパー117(図44:固体摩擦式、図45:転がり式)
〔原理〕
免震台118と地面119の間に摺動面を作り摩擦力によって抵抗を発生させる(図44)。又、ボール120の接触面121を変えて転がり抵抗を増やす方法もある(図45)。この方法による力は速度の方向に依存する(速度の逆方向に働く)が、速度の大きさには依存しない。しかし接触面圧(M)に比例する。
すなわち、
〔利点〕
構造が簡単で、原価が安い。設置の為のスペースの増加が無い。
〔問題点〕
減衰力が速度に比例しないので、速度反転時に急な抵抗力の変化が生じ、スティックスリップ(すべりが拘束されたりすべったりすること)が発生する。したがって、免震台118の作動が不安定になり、ダンパーとしては好ましくはない。
C. Friction damper 117 (Fig. 44: Solid friction type, Fig. 45: Rolling type)
〔principle〕
A sliding surface is formed between the base isolation table 118 and the ground 119 to generate resistance by frictional force (FIG. 44). There is also a method of increasing the rolling resistance by changing the contact surface 121 of the ball 120 (FIG. 45). The force by this method depends on the direction of speed (acts in the opposite direction of speed), but not on the magnitude of the speed. However, it is proportional to the contact surface pressure (M).
That is,
〔advantage〕
Simple structure and low cost. There is no increase in space for installation.
〔problem〕
Since the damping force is not proportional to the speed, a sudden change in resistance force occurs when the speed is reversed, and stick-slip (slip is restrained or slipped) occurs. Therefore, the operation of the base isolation table 118 becomes unstable, which is not preferable as a damper.

本発明の目的は、バネが水平に配置された「バネ式免震装置」に存在する、上記(i)〜(v)の問題の少なくとも1つを解決するバネ式の免震装置を提供することにある。   An object of the present invention is to provide a spring-type seismic isolation device that solves at least one of the above-mentioned problems (i) to (v), which exists in a “spring-type seismic isolation device” in which springs are arranged horizontally. There is.

上記目的を達成する本発明はつぎの通りである。
(1) 固定台と、固定台に対して水平方向に移動可能な免震台と、固定台と免震台との間に配置したボールと、一端が固定台に他端が免震台に連結された、免震台を原点位置に戻すためのバネとを、有する免震装置であって、前記バネが水平方向に対して35度以上90度以下の角度をもつバネ軸芯を有する免震装置。
(2) 前記バネが水平方向に対して90度の角度をもつバネ軸芯を有する(1)記載の免震装置。
(3) 前記バネが水平方向から35度以上の角度90度未満の角度をもつバネ軸芯を有する(1)記載の免震装置。
(4) さらにダンパーを有する(1)記載の免震装置。
The present invention for achieving the above object is as follows.
(1) A fixed base, a base-isolated base that can move in a horizontal direction with respect to the fixed base, a ball arranged between the fixed base and the base-isolated base, one end being a fixed base and the other being a base-isolated base A seismic isolation device having a spring for returning the base isolation table to the origin position, wherein the spring has a spring axis having an angle of not less than 35 degrees and not more than 90 degrees with respect to the horizontal direction. Seismic device.
(2) The seismic isolation device according to (1), wherein the spring has a spring axis having an angle of 90 degrees with respect to a horizontal direction.
(3) The seismic isolation device according to (1), wherein the spring has a spring axis having an angle of 35 degrees or more and less than 90 degrees from the horizontal direction.
(4) The seismic isolation device according to (1), further comprising a damper.

上記(1)−(4)の何れか一の免震装置によれば、バネが水平方向に対して35度以上90度以下の角度をもつバネ軸芯を有するので、以下に詳細に説明するように、上記(i)〜(v)の問題が解決または軽減される。   According to the seismic isolation device of any one of the above (1) to (4), the spring has a spring axis having an angle of 35 degrees or more and 90 degrees or less with respect to the horizontal direction, and will be described in detail below. As described above, the problems (i) to (v) are solved or reduced.

本発明の免震装置10を、図1−図29を参照して説明する。
本発明の免震装置10は、固定台11と、固定台11に対して水平方向に移動可能な免震台12と、固定台11と免震台12との間に配置したボール13と、一端が固定台11に他端が免震台12に連結された、免震台12を原点位置に戻すためのバネ14とを、有する。バネ14は、水平方向に対して35度以上90度以下の角度をもつバネ軸芯15を有する。
バネ14は、水平方向に対して90度の角度をもつバネ軸芯15を有する、直列配置であってもよい。
あるいは、バネ14は、水平方向から35度以上の角度90度未満の角度をもつバネ軸芯15を有する、斜め配置であってもよい。
免震装置10は、さらにダンパー16を有していてもよい。
以下に、本発明の構成を、該構成をとることにより上記(i)〜(v)の問題が解決または軽減される理由(該理由は、本発明の作用・効果でもある)とともに、さらに詳細に説明する。
The seismic isolation device 10 of the present invention will be described with reference to FIGS.
The seismic isolation device 10 of the present invention includes a fixed base 11, a base isolation table 12 movable in a horizontal direction with respect to the fixed base 11, a ball 13 disposed between the fixed base 11 and the base isolation table 12, And a spring 14 for returning the base isolation table 12 to the origin position, one end of which is connected to the fixed base 11 and the other end connected to the base isolation base 12. The spring 14 has a spring axis 15 having an angle of 35 degrees or more and 90 degrees or less with respect to the horizontal direction.
The spring 14 may have a series arrangement having a spring axis 15 having an angle of 90 degrees with respect to the horizontal direction.
Alternatively, the spring 14 may be disposed obliquely with the spring axis 15 having an angle of 35 degrees or more and less than 90 degrees from the horizontal direction.
The seismic isolation device 10 may further include a damper 16.
Hereinafter, the configuration of the present invention will be described in more detail together with the reason why the above problems (i) to (v) are solved or alleviated by adopting the configuration (the reason is also the operation and effect of the present invention). Explained.

(A)バネの直立配置
免震台12のバネ14を図1、図2のように直立させて(バネ軸芯15が水平方向に対して90度の角度をもつように)配置する事により、問題点(i) 、(ii)、(iii)、(iv)、(v)が全て解消する。以下、それぞれの問題点の解消理由を述べる。

直立配置の場合、受け皿部分17とバネ14の干渉を避けるためには、皿17を低くした方(tを小)が良い。従って、その分ボール13の径Dを大きくする必要があり、図1、図2の例ではボール径Dをこれまでの検討例の倍としている。
バネ13との干渉の検討は、図3、図4に示したような作図で実施する。今回の検討例では、皿C中心とバネ中心が28mm以上離れている必要があり、図1のように、皿中心Cからφ28mm以内にバネ中心15を配置しないように配慮してある。
(A) Upright arrangement of the spring By arranging the spring 14 of the base isolation table 12 upright as shown in FIGS. 1 and 2 (so that the spring axis 15 has an angle of 90 degrees with respect to the horizontal direction). Problems (i), (ii), (iii), (iv), and (v) are all solved. The reasons for solving each problem are described below.

In the case of the upright arrangement, in order to avoid interference between the tray portion 17 and the spring 14, it is better to lower the tray 17 (t is small). Accordingly, it is necessary to increase the diameter D of the ball 13 correspondingly, and in the examples of FIGS. 1 and 2, the ball diameter D is double that of the examples studied so far.
Examination of interference with the spring 13 is carried out by drawing as shown in FIGS. In the present examination example, the center of the plate C and the spring center need to be separated from each other by 28 mm or more, and as shown in FIG. 1, consideration is given so as not to arrange the spring center 15 within φ28 mm from the plate center C.

問題点(i):サイズ大の解消
水平配置(従来)と直立配置(本発明の直立配置と斜め配置のうちの直立配置)の計画図を同一縮尺で示すと、図5の(イ)−(ニ)のようになる。いずれも地震時の作動ストローク±200mm 動いた時、部品相互の干渉が無いよう空間を空けて配置している。直立式にすることで、平面面積で35%(長さで20% )のサイズの縮小が可能で、サイズ大の問題が改良される。高さは、干渉を防ぐため若干高くなる。
Problem (i): Eliminating the size When the plan diagrams of the horizontal arrangement (conventional) and the upright arrangement (the upright arrangement of the present invention and the upright arrangement of the diagonal arrangement) are shown at the same scale, FIG. It becomes like (d). All of them are arranged with a space so that there is no mutual interference when moving in the event of an earthquake stroke of ± 200mm. By making it upright, it is possible to reduce the size by 35% in plane area (20% in length), and the problem of large size is improved. The height is slightly higher to prevent interference.

問題点(ii):バネセット力大の解消
免震台の移動方向(水平面)と平行にバネを配置する方法(図6の(ハ))では、バネセット長Lsはバネ作動範囲Lwの中央になる。したがって、セット時にはLn+Lw/2 だけ伸された状態であり、セット力はかなり大きな値になる。
本発明の直立配置バネ(図6の(イ))は、セット時にはLnしか伸びて居らず、セット荷重が非常に小さく、通常時にバネに無理がかからない。バネが作動する際は、図6の(ロ)に示すように、方向には関係なく移動量によって伸び量が決まるので、バネ線図は(図6の(イ)のようになる。
本発明の直立配置バネでは、以上の関係からセット時のバネ伸びがセットに必要な最小伸びLnで良く、セット荷重を低く抑える事ができる。
Problem (ii): Eliminating the large spring set force In the method of placing the spring parallel to the direction of movement of the base isolation table (horizontal plane) ((c) in FIG. 6), the spring set length Ls is the center of the spring operating range Lw. . Therefore, the set force is extended by Ln + Lw / 2, and the set force becomes a considerably large value.
The upright arrangement spring of the present invention ((A) in FIG. 6) extends only Ln at the time of setting, the setting load is very small, and the spring is not forced at normal times. When the spring is actuated, as shown in FIG. 6B, the amount of extension is determined by the amount of movement regardless of the direction, so the spring diagram is as shown in FIG.
In the upright arrangement spring of the present invention, the spring elongation at the time of setting may be the minimum elongation Ln required for setting from the above relationship, and the setting load can be kept low.

問題点(iii) :バネ特性の癖の解消
直立配置バネ14は、図7に示すように、上端を水平面方向に引っ張る時、どの方向に引っ張っても同じ張力が得られる。すなわち、引っ張り方向による癖が無い。また、引っ張り方向に直角の成分力が出ることも無い。
したがって、バネの数を増やしていくと、単純に加算したバネ力が得られる。バネ力は
Fs=K{(Ls2 +z2 1/2 −Ls}
F =Fs×z/(Ls2 +z2 1/2
である。
Problem (iii): Elimination of wrinkles of spring characteristics As shown in FIG. 7, when the upper end spring 14 is pulled in the horizontal plane direction, the same tension can be obtained regardless of which direction it is pulled. That is, there is no wrinkle due to the pulling direction. Further, there is no component force perpendicular to the pulling direction.
Therefore, as the number of springs is increased, a spring force simply added can be obtained. The spring force is Fs = K {(Ls 2 + z 2 ) 1/2 −Ls}
F = Fs × z / (Ls 2 + z 2 ) 1/2
It is.

問題点(iv):固有振動数を下げにくいことの解消
直立配置バネ14のバネ特性は図8のように非線形になる。このように、引っ張り初期には弱く、引っ張って行けば行くほど強くなるバネを使うと、免震台の固有振動数を下げる事ができる。
図8は、Lo=0.1m
Ln=0.02m
Ls=Lo+Ln=0.12m
K=100N/m
の時のバネ特性を示す。
このような非線形バネの効果を試算してみる。
直列配置バネは、すべての方向に同等に作用するので、水平配置バネの半分の本数ですむ。したがって、直立バネ2本が水平配置の4本に相当する。
両方のバネの特性を同じ図に表すと図9のようになる。それぞれのバネを使った場合の共振点を計算すると、
水平配置;f=1.007Hz
直立配置;f=0.064Hz
となり、直立配置の場合の方がかなり低くなる。
なお、直立配置の共振点はシミュレーションモデルを自由振動させて計算する。(図10)
直立配置バネ免震装置にElcentroEW地震波が作用した場合の免震台の挙動を図11に示した。水平配置の場合(図43、図44)よりかなり改善されており、その効果が確認できる。しかし、これでもまだ充分なレベルには達しておらず、バネ常数を下げるなど、さらなる改善が必要である。
以上に示したように、直立バネではバネ特性が非線形となるので、免震装置の固有振動数の低下をはかり、免震性能を向上させることができる。
Problem (iv): Elimination of difficulty in lowering the natural frequency The spring characteristics of the upright spring 14 are nonlinear as shown in FIG. In this way, the natural frequency of the base can be lowered by using a spring that is weak at the initial stage of pulling and becomes stronger as it is pulled.
Figure 8 shows Lo = 0.1m
Ln = 0.02m
Ls = Lo + Ln = 0.12m
K = 100N / m
The spring characteristic at the time of is shown.
Let us estimate the effect of such a nonlinear spring.
Series-arranged springs work equally in all directions, so half the number of horizontal-arranged springs is sufficient. Therefore, two upright springs correspond to four horizontally arranged.
The characteristics of both springs are shown in the same diagram as shown in FIG. When calculating the resonance point when using each spring,
Horizontal arrangement; f = 1.007Hz
Upright arrangement; f = 0.064Hz
Thus, the case of the upright arrangement is considerably lower.
Note that the resonance point of the upright arrangement is calculated by freely vibrating the simulation model. (Fig. 10)
FIG. 11 shows the behavior of the base isolation table when the ElcentroEW seismic wave acts on the upright spring isolation device. This is a significant improvement over the horizontal arrangement (FIGS. 43 and 44), and the effect can be confirmed. However, this has not yet reached a sufficient level, and further improvements such as lowering the spring constant are necessary.
As described above, since the spring characteristics are non-linear with an upright spring, the natural frequency of the seismic isolation device can be reduced and the seismic isolation performance can be improved.

問題点(v):ダンパー配置が難しいことの改良
直立配置バネでは、バネが半分の数(2本)ですむので、図12の(イ)−(ホ)のように配置が若干改良される(面積で15%減)。しかし、ダンパー16自体が大きいため、問題は解消ではなく軽減程度にとどまる。
Problem (v): Improving the difficulty of damper placement With an upright placement spring, the number of springs can be halved (two), so the placement is slightly improved as shown in Figs. (15% reduction in area). However, because the damper 16 itself is large, the problem is not solved but only reduced.

(B)バネの斜め配置
バネ斜め配置とは、中立時のバネ14を、直立ではなく若干傾けてセットする場合を言う。その場合、バネ14は、水平方向から35度以上の角度90度未満の角度をもつバネ軸芯15を有する。図13の(イ)、(ロ)、(ハ)は直立配置、(ニ)、(ホ、(ヘ)は斜め配置を示す。
斜め配置により、バネ14と受け皿17の距離が短縮し、装置サイズを更に縮小できる(図13)。
コンター(外形)の違いを考慮し、水平配置ではできない2本バネにして、両者のサイズを極力縮めた実施例を図14の(イ)、(ロ)、(ハ)、(ニ)に示した。図14の(イ)、(ロ)が直立配置、(ハ)、(ニ)が斜め配置の場合を示している。
結果は、直立78×90が、斜め72×86となり、面積で12% の減少が果たせる。コンター自体の面積比は27% 減なので、若干効率は悪くなる。
しかし、斜め配置には若干の副作用があるので、以下に説明する。
(B) Diagonal arrangement of spring The diagonal arrangement of the spring refers to a case where the neutral spring 14 is set slightly inclined rather than upright. In that case, the spring 14 has a spring axis 15 having an angle of 35 degrees or more and less than 90 degrees from the horizontal direction. In FIG. 13, (A), (B), and (C) indicate an upright arrangement, and (D) and (E, (F) indicate an oblique arrangement.
The diagonal arrangement shortens the distance between the spring 14 and the tray 17 and further reduces the size of the apparatus (FIG. 13).
14 (a), (b), (c), and (d) of FIG. 14 show an example in which the size of both springs is reduced as much as possible by taking into account the difference in contour (outer shape) and using two springs that cannot be arranged horizontally. It was. 14A and 14B show the case where the upright arrangement is provided, and (C) and (D) are the oblique arrangement.
As a result, the upright 78 × 90 becomes diagonal 72 × 86, and the area can be reduced by 12%. Since the area ratio of the contour itself is reduced by 27%, the efficiency is slightly worse.
However, the oblique arrangement has some side effects and will be described below.

副作用1:バネ特性の癖
斜め配置バネのバネ特性は、以下の手法で計算できる。
セット時長さLsのバネを高さH 、オフセット sで配置した図15のようなバネについて考える。
このモデルで、バネの上端Q を、角度θの方向に引っ張った場合の引っ張り方向のバネ力Ftを算出する。
幾何学的関係から、
H=(Ls2 −s2 1/2
図16から、
xs=x ×sin θ
xc=x ×cos θ
L’={(s+xc)2 +xs2 1/2
図17から、
L=(H2 +L’2 1/2
バネ方向反力F は、
F=K×(L−L0 ) その水平方向成分は、
F’=F×L’/L
反力方向のずれ角ψは、
φ=arccos(xs/L’)
ξ=arccos(xs/x)
ψ=abs(φ−ξ)
引っ張り方向の反力Ftは、
Ft=F’×cosψ
実際にはこのバネを図18のように対向して2個配置するので2個のバネ力を合算する必要がある。
Side effect 1: Spring characteristics 癖 The spring characteristics of an obliquely arranged spring can be calculated by the following method.
Consider a spring as shown in FIG. 15 in which a spring having a length Ls when set is arranged at a height H and an offset s.
With this model, the spring force Ft in the pulling direction when the upper end Q of the spring is pulled in the direction of the angle θ is calculated.
From geometric relationships,
H = (Ls 2 −s 2 ) 1/2
From FIG.
xs = x × sin θ
xc = x × cos θ
L ′ = {(s + xc) 2 + xs 2 } 1/2
From FIG.
L = (H 2 + L ′ 2 ) 1/2
Spring direction reaction force F is
F = K × (L−L 0 ) The horizontal component is
F ′ = F × L ′ / L
The shift angle ψ in the reaction force direction is
φ = arccos (xs / L ′)
ξ = arccos (xs / x)
ψ = abs (φ−ξ)
The reaction force Ft in the pull direction is
Ft = F ′ × cosψ
Actually, two springs are arranged facing each other as shown in FIG. 18, so that it is necessary to add the two spring forces.

対向側のバネ諸元を図19のようにとる。
幾何学的関係から、
H=(Ls2 −s2 1/2
図21から、
xs=x ×sin θ
xc=x ×cos θ
L’={(−s+xc)2 +xs2 1/2
図20から、
L=(H2 +L’2 1/2
バネ方向反力F は、
F=K×(L−L0 ) その水平方向成分は、
F’=F×L’/L
反力方向のずれ角ψは、
φ=arccos(xs/L’)
ξ=arccos(xs/x)
ψ=abs(φ−ξ)
引っ張り方向反力Ftは、
Ft=F’×cosψ
と、前の場合と同様の考え方で計算できる。

こちらのバネ力をFt' とすると、総合バネ力Fta は、
Fta=Ft+Ft'
で、計算できる。
The spring specifications on the opposite side are as shown in FIG.
From geometric relationships,
H = (Ls 2 −s 2 ) 1/2
From FIG.
xs = x × sin θ
xc = x × cos θ
L ′ = {(− s + xc) 2 + xs 2 } 1/2
From FIG.
L = (H 2 + L ′ 2 ) 1/2
Spring direction reaction force F is
F = K × (L−L 0 ) The horizontal component is
F ′ = F × L ′ / L
The shift angle ψ in the reaction force direction is
φ = arccos (xs / L ′)
ξ = arccos (xs / x)
ψ = abs (φ−ξ)
Pull direction reaction force Ft is
Ft = F ′ × cosψ
And the same idea as in the previous case.

If this spring force is Ft ', the total spring force Fta is
Fta = Ft + Ft '
And it can be calculated.

ここで、次のような条件で、実際のバネ力を計算してみる。
寸法諸元; s=0.1m , Lo=0.1m , Ls=0.12m , K=100N/m 、
引っ張り長; x=0.01, 0.02, 0.03, 0.04,………,0.20 m
引っ張り角度; θ=0, 10, 20, 30, ………,180度
Here, the actual spring force is calculated under the following conditions.
Dimensional specifications: s = 0.1m, Lo = 0.1m, Ls = 0.12m, K = 100N / m,
Pull length; x = 0.01, 0.02, 0.03, 0.04, ………, 0.20 m
Pull angle: θ = 0, 10, 20, 30, ………, 180 degrees

図22に、引っ張り方向(θ)に対するバネ力変化の状況を示した。
このバネは、引っ張り方向(θ)と、ストローク(x )によってバネの強さが異なる癖を持っており、免震性能に方向性が出る懸念がある。
FIG. 22 shows the change in spring force with respect to the pulling direction (θ).
This spring has a hook with different spring strengths depending on the pulling direction (θ) and the stroke (x), and there is a concern that the direction of the seismic isolation performance may be improved.

図23は、引っ張りストロークに対するバネ力で、バネ特性そのものを示す。90度方向に引いた時のバネ特性が、直立バネ( 線a)とほぼ同じになり、他の方向にはそれより弱めのバネとなる。いずれも下に凸な特性で免震装置には向いている。   FIG. 23 shows the spring characteristics themselves with the spring force with respect to the pulling stroke. The spring characteristics when pulled in the 90 degree direction are almost the same as the upright spring (line a), and the spring is weaker in the other directions. Both are suitable for seismic isolation devices because of their downward convex characteristics.

図25は、図24において斜め配置のオフセット量をs=0.1mからs=0.03m に変えた場合の結果である。
図25に示すように、バネ特性は、引っ張り方向の如何にかかわらず直立の場合と殆ど同じになり、「バネ特性の癖」の懸念は無くなる。斜め配置の場合、バネセット角を抑制する事が大切である。
なお、 s=0.1 :バネセット角=34度
s=0.03:バネセット角=76度
FIG. 25 shows the result when the offset amount of the oblique arrangement in FIG. 24 is changed from s = 0.1 m to s = 0.03 m.
As shown in FIG. 25, the spring characteristics are almost the same as those in the case of standing up regardless of the pulling direction, and there is no concern about “spring characteristic wrinkles”. In the case of an oblique arrangement, it is important to suppress the spring set angle.
S = 0.1: Spring set angle = 34 degrees
s = 0.03: Spring set angle = 76 degrees

副作用2:バネセット力
斜めに配置することで、セット時のバネの伸びは大きくなる。(図25中の右表)
従ってバネセット力が大きいという問題が出るが、水平配置の場合より遙かに小さくてすむ。
Side effect 2: By arranging the spring setting force diagonally, the spring stretches during setting. (Right table in FIG. 25)
Therefore, there is a problem that the spring setting force is large, but it is much smaller than that in the horizontal arrangement.

副作用総括:
若干の副作用(上記の副作用1、副作用2)はあるが、全体寸法の抑制、干渉の防止、等の必要性があれば、斜め配置は実施すべきである。但し、バネセット角(バネ軸芯の、水平方向に対する角度)を35度以上とすることが望ましい。
Side effects summary:
Although there are some side effects (the above-mentioned side effect 1 and side effect 2), if there is a need for suppression of the overall dimensions, prevention of interference, etc., oblique arrangement should be carried out. However, it is desirable that the spring set angle (angle of the spring axis with respect to the horizontal direction) be 35 degrees or more.

本発明の免震装置の、バネが直立バネの場合の、平面図である。It is a top view in case the spring is an upright spring of the seismic isolation device of the present invention. 本発明の免震装置の断面図(図1のA−A断面図)である。It is sectional drawing (AA sectional drawing of FIG. 1) of the seismic isolation apparatus of this invention. 図2の免震装置の皿とバネとの干渉の検討で用いられた、免震台移動前の、断面図である。It is sectional drawing before the base isolation table movement used for examination of interference with the plate and spring of the base isolation apparatus of FIG. 図2の免震装置の皿とバネとの干渉の検討で用いられた、免震台移動後の、断面図である。It is sectional drawing after the base isolation table movement used for examination of interference with the plate and spring of the base isolation device of FIG. 本発明の直立バネの免震装置が従来の水平バネの免震装置に比べてサイズが小さくなることを示す図で、(イ)が本発明のバネ直立配置の場合の平面図、(ロ)が(イ)の装置のA−A断面図、(ハ)が従来のバネ水平配置の場合の平面図、(ニ)が(ハ)の装置のA−A断面図、である。It is a figure which shows that the size of the seismic isolation device of an upright spring of the present invention is smaller than that of a conventional horizontal spring seismic isolation device, and (A) is a plan view in the case of the spring upright arrangement of the present invention, (B) FIG. 4 is a cross-sectional view taken along line AA of the apparatus (a), (c) is a plan view when a conventional spring is horizontally disposed, and (d) is a cross-sectional view taken along line AA of the apparatus (c). 本発明の直立バネの免震装置が従来の水平バネの免震装置に比べてバネセット力が小さくなることを示す図で、(イ)が本発明のバネ直立配置の場合の荷重/バネ長さのグラフ、(ロ)が本発明のバネ直立配置の場合の免震装置のバネ部の断面図、(ハ)が従来のバネ水平配置の場合の荷重/バネ長さのグラフである。FIG. 6 is a diagram showing that the spring setting force of the vertical spring seismic isolation device of the present invention is smaller than that of a conventional horizontal spring seismic isolation device, wherein (a) is the load / spring length in the case of the spring upright arrangement of the present invention. (B) is a cross-sectional view of the spring portion of the seismic isolation device in the case of the spring upright arrangement of the present invention, and (c) is a graph of load / spring length in the case of a conventional spring horizontal arrangement. 本発明の直立バネの免震装置が従来の水平バネの免震装置に比べてバネ特性の癖が解消されることを示すバネとその近傍の断面図である。FIG. 5 is a cross-sectional view of a spring and its vicinity showing that the upright spring seismic isolation device of the present invention eliminates the problem of spring characteristics as compared with a conventional horizontal spring seismic isolation device. 本発明の直立バネの免震装置のバネ特性図(荷重/変位のグラフ)である。It is a spring characteristic figure (load / displacement graph) of the seismic isolation device of an upright spring of the present invention. 本発明の直立バネと従来の水平バネのバネ特性図(荷重/変位のグラフ)の比較である。It is a comparison of the spring characteristic figure (load / displacement graph) of the upright spring of this invention and the conventional horizontal spring. 本発明の直立バネの免震装置の共振点を求めるための自由振動の波形図である。It is a wave form diagram of the free vibration for calculating | requiring the resonance point of the seismic isolation apparatus of the upright spring of this invention. 本発明の直立バネの免震装置にEl centro 地震が作用した場合の免震台の挙動を示す図(変位/時間のグラフ)である。It is a figure (displacement / time graph) which shows the behavior of a base isolation table when an El centro earthquake acts on the base spring isolation device of the present invention. ダンパー配置が難しいことが解消されることを示す図で、(イ)が本発明の、直立バネ+粘性ダンパーの場合の免震装置の平面図、(ロ)が(イ)のB−B断面図、(ハ)が従来の、水平バネ+粘性ダンパーの場合の免震装置の平面図、(ニ)が(ハ)のC−C断面図、(ホ)が(ハ)のB−B断面図、である。It is a figure which shows that a damper arrangement | positioning is difficult, (b) is a top view of the seismic isolation apparatus in the case of an erecting spring + viscous damper of this invention, (b) is BB cross section of (b) Fig., (C) is a plan view of a conventional seismic isolation device in the case of a horizontal spring and a viscous damper, (d) is a cross-sectional view taken along the line CC of (c), (e) is a cross-sectional view taken along the line BB of (c) Figure. 本発明の斜め配置バネの免震装置の直立バネの免震装置との比較を示す断面図で、(イ)はバネ直立で左最大変位の場合の断面図、(ロ)はバネ直立で中立の場合の断面図、(ハ)はバネ直立で右最大変位の場合の断面図、(ニ)はバネ斜め配置で左最大変位の場合の断面図、(ホ)はバネ斜め配置で中立の場合の断面図、(ヘ)はバネ斜め配置で右最大変位の場合の断面図、である。FIG. 2 is a cross-sectional view showing a comparison of the seismic isolation device of the diagonally arranged spring according to the present invention with a seismic isolation device of an upright spring, in which (a) is a cross-sectional view when the spring is upright and has a maximum left displacement; (C) is a cross-sectional view when the spring is upright and has a maximum right displacement, (D) is a cross-sectional view when the spring is diagonally arranged and has a maximum left displacement, and (E) is a neutral position when the spring is diagonally arranged (F) is a cross-sectional view in the case of the right maximum displacement in the spring diagonal arrangement. 本発明の斜め配置バネの免震装置と直立バネの免震装置との外形(コンター)の比較を示す図で、(イ)はバネ直立の場合の平面図、(ロ)はバネ直立の場合の断面図、(ハ)はバネ斜め配置の場合の平面図、(ニ)はバネ斜め配置の場合の断面図、である。It is a figure which shows the comparison of the external shape (contour) of the seismic isolation device of the diagonal arrangement | positioning spring of this invention, and the seismic isolation device of an upright spring, (A) is a top view in the case of a spring upright, (B) is the case of a spring upright (C) is a plan view in the case of an oblique spring arrangement, and (d) is a cross-sectional view in the case of an oblique spring arrangement. 本発明の斜め配置バネのバネ特性を求める演算で用いた諸元図である。It is the item map used by the calculation which calculates | requires the spring characteristic of the diagonally arranged spring of this invention. 図15の斜め配置バネの斜視図である。It is a perspective view of the diagonally arranged spring of FIG. 図15の斜め配置バネの平面図である。It is a top view of the diagonally arranged spring of FIG. 図15の2個対向配置した場合の本発明の免震装置の断面図である。It is sectional drawing of the seismic isolation apparatus of this invention at the time of two opposing arrangement | positioning of FIG. 図18における対向側バネのバネ特性を求める演算で用いた諸元図である。FIG. 19 is a specification diagram used in a calculation for obtaining the spring characteristic of the opposed spring in FIG. 18. 図19の対向バネの斜視図である。It is a perspective view of the opposing spring of FIG. 図19の対向バネの平面図である。It is a top view of the opposing spring of FIG. 斜め配置バネにおける、引っ張り方向(横軸、θ)に対するバネ力変化(縦軸)を示すグラフである。It is a graph which shows the spring force change (vertical axis) with respect to the tension | pulling direction (horizontal axis, (theta)) in a diagonally arranged spring. 斜め配置バネにおける、引っ張りストローク(横軸)に対するバネ力の変化(縦軸)を示すグラフである。It is a graph which shows the change (vertical axis | shaft) of the spring force with respect to the tension | pulling stroke (horizontal axis) in a diagonally arranged spring. 斜め配置バネにおける、オフセット量とバネセット角を示す断面図である。It is sectional drawing which shows the amount of offsets and a spring set angle in a diagonally arranged spring. 斜め配置バネにおける、オフセット量をs=0.1mからs=0.03mに変えた場合の結果を示すグラフであり、引っ張り方向のいかんにかかわらず直立バネとほとんど同じになることを示すグラフである。It is a graph which shows the result at the time of changing the amount of offsets from s = 0.1m to s = 0.03m in the diagonally arranged spring, and is a graph showing that it is almost the same as the upright spring regardless of the pulling direction. is there. 従来の重力式でボール式の免震装置の断面図である。It is sectional drawing of the conventional gravity type ball-type seismic isolation device. 従来の重力式でリニアベアリング2段重ね式の免震装置の断面図である。It is sectional drawing of the conventional gravity type | mold linear bearing 2 step | paragraph type seismic isolation apparatus. 従来のバネ式で積層ゴム式の免震装置の断面図である。It is sectional drawing of the conventional spring type and laminated rubber type seismic isolation apparatus. 従来の水平バネ式の免震装置の断面図である。It is sectional drawing of the conventional horizontal spring type seismic isolation apparatus. 従来の水平バネ式の免震装置の平面図である。It is a top view of the conventional horizontal spring type seismic isolation apparatus. 図30の水平バネ式の免震装置のA−A断面図である。It is AA sectional drawing of the horizontal spring type seismic isolation apparatus of FIG. 図30の水平バネ式の免震装置の干渉チェック図である。It is an interference check figure of the horizontal spring type seismic isolation device of FIG. 図30の水平バネ式の免震装置のセット荷重/バネ長さのグラフである。It is a graph of the set load / spring length of the horizontal spring type seismic isolation device of FIG. 従来の水平バネ式の免震装置のバネ特性に癖があることを示すグラフである(横軸が引っ張り方向、角度θがバネ方向)。It is a graph which shows that the spring characteristic of the conventional horizontal spring type seismic isolation device has a flaw (the horizontal axis is a pulling direction, and the angle θ is the spring direction). 免震台を、バネの取付け方向(0度)、およびバネのない方向(45度)に引っ張った時のバネ特性を示す、荷重/変位図である。It is a load / displacement figure which shows the spring characteristic when the base isolation table is pulled in the spring attachment direction (0 degree) and the direction without the spring (45 degrees). バネ水平配置式免震装置の振動モデル概念図である。It is a vibration model conceptual diagram of a spring horizontal arrangement type seismic isolation device. 図36の振動モデルに神戸地震のNS(南北)波を不補した時の免震台の挙動図(加速度波形図)である。FIG. 37 is a behavior diagram (acceleration waveform diagram) of a base isolation table when the vibration model of FIG. 36 is not supplemented with NS (north-south) waves of the Kobe earthquake. 図36の振動モデルにEl centro 地震のEW(東西)波を不補した時の免震台の挙動図(加速度波形図)である。FIG. 37 is a behavior diagram (acceleration waveform diagram) of the base isolation table when the EW (east-west) wave of the El centro earthquake is not supplemented to the vibration model of FIG. 36. 図36の振動モデルに神戸地震のNS(南北)波を不補した時の免震台の挙動図(振幅波形図)である。FIG. 37 is a behavior diagram (amplitude waveform diagram) of the base isolation table when the vibration model of FIG. 36 is not supplemented with the NS (north-south) wave of the Kobe earthquake. 図36の振動モデルにEl centro 地震のEW(東西)波を不補した時の免震台の挙動図(振幅波形図)である。FIG. 37 is a behavior diagram (amplitude waveform diagram) of the base isolation table when the EW (east-west) wave of the El centro earthquake is not supplemented in the vibration model of FIG. 36. 流体ダンパーの断面図である。It is sectional drawing of a fluid damper. (イ)は粘性ダンパーの断面図であり、(ロ)は(イ)の粘性ダンパーの半平面図である。(A) is a sectional view of the viscous damper, and (b) is a half-plan view of the viscous damper of (a). (イ)は粘性ダンパー付きの従来の水平バネ式免震装置の平面図であり、(ロ)は(イ)のC−C断面図であり、(ハ)は(イ)のB−B断面図であり、(ニ)は粘性ダンパー無しの従来の水平バネ式免震装置の平面図であり、(ホ)は(ニ)のA−A断面図である。(A) is a plan view of a conventional horizontal spring type seismic isolation device with a viscous damper, (B) is a cross-sectional view taken along the line CC of (A), and (C) is a cross-sectional view taken along the line B-B of (A). It is a figure, (d) is a top view of the conventional horizontal spring type seismic isolation device without a viscous damper, (e) is AA sectional drawing of (d). 摩擦ダンパーの断面図である。It is sectional drawing of a friction damper. 転がり式摩擦ダンパーの断面図である。It is sectional drawing of a rolling friction damper.

符号の説明Explanation of symbols

10 免震装置
11 固定台
12 免震台
13 ボール
14 バネ
15 バネ軸芯
16 ダンパー
17 受け皿
DESCRIPTION OF SYMBOLS 10 Base isolation device 11 Fixing base 12 Base isolation base 13 Ball 14 Spring 15 Spring axis 16 Damper 17 Receptacle

Claims (4)

固定台と、固定台に対して水平方向に移動可能な免震台と、固定台と免震台との間に配置したボールと、一端が固定台に他端が免震台に連結された、免震台を原点位置に戻すためのバネとを、有する免震装置であって、前記バネが水平方向に対して35度以上90度以下の角度をもつバネ軸芯を有する免震装置。   A fixed base, a base-isolated base movable in a horizontal direction with respect to the fixed base, a ball arranged between the fixed base and the base-isolated base, one end connected to the base and the other connected to the base-isolated base A seismic isolation device having a spring for returning the base isolation table to the origin position, wherein the spring has a spring axis having an angle of not less than 35 degrees and not more than 90 degrees with respect to the horizontal direction. 前記バネが水平方向に対して90度の角度をもつバネ軸芯を有する請求項1記載の免震装置。   The seismic isolation device according to claim 1, wherein the spring has a spring axis having an angle of 90 degrees with respect to a horizontal direction. 前記バネが水平方向から35度以上の角度90度未満の角度をもつバネ軸芯を有する請求項1記載の免震装置。   The seismic isolation device according to claim 1, wherein the spring has a spring axis having an angle of 35 degrees or more and less than 90 degrees from the horizontal direction. さらにダンパーを有する請求項1記載の免震装置。   The seismic isolation device according to claim 1, further comprising a damper.
JP2005169104A 2005-06-09 2005-06-09 Base isolation device Pending JP2006342884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005169104A JP2006342884A (en) 2005-06-09 2005-06-09 Base isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005169104A JP2006342884A (en) 2005-06-09 2005-06-09 Base isolation device

Publications (1)

Publication Number Publication Date
JP2006342884A true JP2006342884A (en) 2006-12-21

Family

ID=37639993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005169104A Pending JP2006342884A (en) 2005-06-09 2005-06-09 Base isolation device

Country Status (1)

Country Link
JP (1) JP2006342884A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707787B2 (en) * 2002-02-27 2010-05-04 Ishikawajima-Harima Heavy Industries Co., Ltd. Damping device and method for setting natural frequency of damping body in the damping device
CN101850292A (en) * 2010-04-17 2010-10-06 李钱江 Novel unhung disk concentrator
JP2012067840A (en) * 2010-09-22 2012-04-05 Junichiro Omata Horizontal seismic-isolated table device
JP2019019606A (en) * 2017-07-20 2019-02-07 興基 玉田 Slide attenuation base
US11873875B2 (en) * 2019-12-26 2024-01-16 Ara Jonathan Mehran Seismic base isolation device for protection of equipment using roller ball transfer bearings and a reversion system comprised of tension springs or viscous dampers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7707787B2 (en) * 2002-02-27 2010-05-04 Ishikawajima-Harima Heavy Industries Co., Ltd. Damping device and method for setting natural frequency of damping body in the damping device
CN101850292A (en) * 2010-04-17 2010-10-06 李钱江 Novel unhung disk concentrator
JP2012067840A (en) * 2010-09-22 2012-04-05 Junichiro Omata Horizontal seismic-isolated table device
JP2019019606A (en) * 2017-07-20 2019-02-07 興基 玉田 Slide attenuation base
US11873875B2 (en) * 2019-12-26 2024-01-16 Ara Jonathan Mehran Seismic base isolation device for protection of equipment using roller ball transfer bearings and a reversion system comprised of tension springs or viscous dampers

Similar Documents

Publication Publication Date Title
JP5075961B2 (en) Horizontal seismic isolation table device
Chatterjee et al. Vibration mitigation of structures subjected to random wave forces by liquid column dampers
JP2006342884A (en) Base isolation device
JP6482373B2 (en) Seismic isolation structure
JP2016033396A (en) Vibration isolation vibration damping apparatus
JP2009068659A (en) Base isolation device and damping device
Murnal et al. Aseismic design of structure–equipment systems using variable frequency pendulum isolator
Lu et al. Theory and experiment of an inertia-type vertical isolation system for seismic protection of equipment
JP4706958B2 (en) Seismic isolation structure
JP3854999B2 (en) Seismic isolation device
JP2004069067A (en) Base-isolating device
JP2020002529A (en) Polyhedral slide support device for structure
JP2017203297A (en) Base-isolation construction and method of designing base-isolation construction
US20080029681A1 (en) Base Isolation Structure
JP2015075228A (en) Vibration damping stopper structure, clearance management spacer, and vibration control trestle
Ju et al. Experimental evaluation of a tuned liquid damper system
JP2020190286A (en) Seismic isolator
JP6860380B2 (en) A cooling device for a slip seismic isolation device and a seismic isolation structure equipped with the cooling device.
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP5855916B2 (en) Seismic reduction device
Sarkar et al. A frequency domain study on deck isolation effectiveness in control of wave-induced vibration of offshore jacket platform
JPH0941713A (en) Response control device
Bagheri et al. Seismic response of base isolated liquid storage tanks under near fault ground motions
Tabeshpour et al. Surge motion passive control of TLP with double horizontal tuned mass dampers
JP3022681B2 (en) Vibration isolation device