JP2019019606A - Slide attenuation base - Google Patents

Slide attenuation base Download PDF

Info

Publication number
JP2019019606A
JP2019019606A JP2017140596A JP2017140596A JP2019019606A JP 2019019606 A JP2019019606 A JP 2019019606A JP 2017140596 A JP2017140596 A JP 2017140596A JP 2017140596 A JP2017140596 A JP 2017140596A JP 2019019606 A JP2019019606 A JP 2019019606A
Authority
JP
Japan
Prior art keywords
slide
upper plate
spring
building
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017140596A
Other languages
Japanese (ja)
Other versions
JP6481088B2 (en
Inventor
興基 玉田
Okimoto Tamada
興基 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017140596A priority Critical patent/JP6481088B2/en
Publication of JP2019019606A publication Critical patent/JP2019019606A/en
Application granted granted Critical
Publication of JP6481088B2 publication Critical patent/JP6481088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

To provide a spring-slide attenuation base which protects a building from huge energy in major earthquake by performing oscillation and attenuation by providing an attenuation base below the building, in which the earthquake causes various oscillations including oscillation in a horizontal direction.SOLUTION: A slide attenuation base has an attenuation base below a building and attenuates only a horizontal oscillation by sliding only an upper plate 1, and has such a structure that a large number of springs 6 are vertically aligned side by side through the upper plate 1 and a base plate 5 and performs oscillation attenuation by an expansion/contraction force of the spring 6. The slide attenuation base decomposes the oscillation into vertical oscillation and horizontal oscillation, attenuates the horizontal oscillation by providing the upper plate 1 and a horizontal slide part of a slide, but the building has a weight of several hundred tons, so a building is not established unless the building has a tough structure and slight distortion is not allowed, and accordingly the base is formed into a base plate 5 that is made of metal and has a slide having a slide structure in a horizontal oscillation direction in order to cope with a high rise building, and has a structure to not only withstand all oscillations but also have such a function of restoring the position to an original position by a hydraulic system and hydraulic power.SELECTED DRAWING: Figure 3

Description

本発明は大地震の時、大振動の振幅を出来るだけ減衰する為に、建築物―基礎の下に作る減衰台が注目されている。近頃、大地震が頻発、耐震ビルでも次々と被害が拡大している。特に高層ビルに対する減衰台の必要性が言われている。 In the present invention, in order to attenuate the amplitude of a large vibration as much as possible in the event of a large earthquake, attention is paid to a damping table formed under a building-foundation. Recently, large earthquakes have occurred frequently, and damage has been spreading one after another in earthquake-resistant buildings. In particular, there is a need for an attenuation table for high-rise buildings.

今までは、耐地震用減衰台はほとんどゴム系の耐地震台である。ゴム系は耐久性が短く、巨大建築、高層ビルには全く対応出来ない。
本発明は重い荷重可能な金属バネを用い耐久性、減衰性を増した技術である。今までの減衰台の殆どは小型の住宅にしか適応出来ない。
Until now, most earthquake-resistant attenuation tables are rubber-based earthquake-proof tables. Rubber system is short-lasting and cannot be used for huge buildings and high-rise buildings.
The present invention is a technology that uses a heavy loadable metal spring to increase durability and damping. Most of the existing attenuation tables can only be applied to small houses.

なぜなら高層ビルの重さは数百トン〜千数百トンと桁外れの重さであり、東日本震災では垂直耐―引っ張り荷重の無いため、高層ビルそのものが横転する
ことが確認された。ゴム-スライド減衰台は、下方荷重には耐える事が出来るが、上方への引っ張り荷重へは対策が取られて居なかったからである。
Because the weight of the high-rise building is an extraordinary weight of several hundred ton-hundreds of tons, and it was confirmed that the high-rise building itself would roll over because there was no vertical tensile-tensile load in the Great East Japan Earthquake. This is because the rubber-slide attenuator can withstand the downward load, but no measures have been taken against the upward tensile load.

大地震に絶対必要な条件は、水平、垂直だけで無く、下方への、数百トンの耐垂直、引っ張り能力が必要であるばかりで無く、スライド減衰台が垂直、水平の位置関係で元に戻る事である。本発明は上下垂直の位置関係は一切変わらなく、水平方向のみスライド移動する方法である。大地震時の巨大エネルギーから建物を守る方法は減衰台にて、横振動を減衰する為に上下垂直方向を無視して、水平方向の移動のみ考慮するし、必ず元の位置に復元可能な構造とする。 The conditions that are absolutely necessary for a major earthquake are not only horizontal and vertical, but also a downward resistance of several hundred tons. It is to return. The present invention is a method of sliding and moving only in the horizontal direction without changing the vertical and vertical positional relationship. The structure that protects the building from the enormous energy in the event of a large earthquake is a structure that can be restored to the original position by ignoring the vertical and vertical directions and considering only the horizontal movement in order to attenuate lateral vibration. And

1)本発明は金属バネの減衰で振動には全体で垂直、上下数百トンの耐荷重が必要である。水平、垂直振動に対して数十年の耐用年数が必要である。
2)減衰台の振動を油圧シリンダーで減衰し、必ず元の位置に復元する事。
3)振動を油圧システムの逆止弁、チャンバー、エアータンクでクッション作用を利用して減衰しながら元の位置に復元する事。
4)各々の減衰台振動を平均化して、減衰台全体を一体化して減衰する。
5)振動をバネのみで減衰する、復元するのに金属バネのみで復元する減衰台とする。(油圧動力を必要としない)
1) According to the present invention, the metal spring is damped and requires a load capacity of several hundred tons in the vertical direction. A service life of several decades is required for horizontal and vertical vibration.
2) Damping the vibration of the damping table with a hydraulic cylinder and always restore it to its original position.
3) Restoring the vibration to its original position while damping it using the cushioning action of the check valve, chamber and air tank of the hydraulic system.
4) Attenuation table vibrations are averaged, and the entire attenuation table is integrated and damped.
5) A damping table that only damps and restores vibration using only a metal spring. (Does not require hydraulic power)

1)全減衰台は全ての振動に対して、上下垂直、左右水平振動の2種類に分解し、上下縦荷重は横荷重の何倍も架かり、それに耐える構造にしなければならない。鉄板厚板構造とする必要がある。横揺れに耐久する為、上板1と滑り台4の間で、左右水平,任意方向にスライド可能とし、上板下部に段を4方向に配置し振動外れ止めとする。滑り台4は10トン以上の耐荷重があるとし。減衰台は、横揺れ幅0.1〜0.5m以下とし上板1、滑り台4などの十分な幅を持ち、スライド部にはゴミが入ら無い様にメンテナンス用グリス給油装置43を設け耐用年数の長いものとする。総合指令油圧システム部44、原動機29b自家発電機29aなどは常に自己保全が出来る様にする。
2)下部構造は正方形の台板5とし地盤とアンカーボルトを取れる形とする。
減衰台に油圧シリンダーを内蔵するが、その他の自家発電機、総合指令油圧システム部44か地下に装備する。上板、台板の上下間隔はスライド台幅の1/2以内とし、更にバネ6を垂直方向に引っ張り作用とする。
建物の地下にエンジン発電、油圧ポンプの動力を装備して、建物を元の位置に復元可能な馬力を装備する。
3)建築物を元の位置に復元するのに、巨大な力が必要であり。
これらのシステムは地震を解析し、揺れの方向によりスライド移動距離、方向を決めて対応し減衰していく。コンピユ―タ17が考慮の後に始動し減衰、復元するとする指示を油圧シリンダー11、油圧システムをエンジン動力により可動するシステムとする。更に油圧チャンバー、空気タンクを使用し
クッション作用、油圧逆止弁の半開きで減衰作用を利用する。
4)地震振動は必ず同じ方向、振動幅では無い、これをコンピユーターで計算油圧シリンダーの振幅を平均化し、数十台の油圧シリンダー11電磁操作弁14、を指示する事で建物全体を同じ振動方向、同じ周期で減衰することを可能とする。情報の伝達システムは
(1)
地震計 →発電機 →油圧ポンプ →電磁弁集中操作器

地震計 → コンピユ―タ→ 電磁弁集中操作器→ 各油圧シリンダー

(2)
シリンダー伸縮計 → コンピユ―タ →各油圧シリンダー
の2通りである
各電磁弁集中操作器18が減衰台Assy25に1個ずつ設置されており
同じ方向に振動する様にシステム化されている、これにより全体の建物が
同じ方向、距離だけ振動する。
5)第3実施例の小型減衰台は、油圧、動力システムは存在しないので、減衰台、バネのみで地震に対応する。油圧シリンダーの換わりに復元バネ30が4個あり、バネ力で元の位置に復元する。第4実施例はバネ6のみで減衰し、
傾斜配置されたバネの振幅のみの振動減衰であり16個あるバネ力で元の位置に復元する。
1) The total damping table must be broken down into two types of vertical vibration and horizontal horizontal vibration with respect to all vibrations. The vertical and vertical loads must be designed to withstand many times the lateral loads. An iron plate thick plate structure is required. In order to endure rolling, it can slide horizontally and horizontally between the upper plate 1 and the slide 4, and a step is arranged in four directions on the lower portion of the upper plate to prevent vibration. The slide 4 has a load capacity of 10 tons or more. The damping table has a roll width of 0.1 to 0.5m or less, and has sufficient width such as the upper plate 1 and slide 4, and a grease lubrication device 43 for maintenance is installed to prevent dust from entering the slide part. It will be long. The general command hydraulic system 44, the prime mover 29b, the private generator 29a, etc. are always capable of self-maintenance.
2) The substructure is a square base plate 5 that can take the ground and anchor bolts.
The damping cylinder has a built-in hydraulic cylinder, but it is equipped with other private power generators, general command hydraulic system 44 or underground. The vertical distance between the upper plate and the base plate should be within 1/2 of the slide base width, and the spring 6 should be pulled in the vertical direction.
Equipped with engine power and hydraulic pump power in the basement of the building, equipped with horsepower that can restore the building to its original position.
3) A huge force is required to restore the building to its original position.
These systems analyze earthquakes, determine the distance and direction of slide movement according to the direction of shaking, and respond and attenuate. The instruction that the computer 17 starts, damps and restores after taking into consideration is the hydraulic cylinder 11, and the hydraulic system is a system that can be driven by engine power. In addition, a hydraulic chamber and air tank are used for cushioning, and a hydraulic check valve is half-opened to use a damping action.
4) Seismic vibrations are not always in the same direction and width, and this is calculated by a computer. The amplitude of the hydraulic cylinder is averaged, and several dozen hydraulic cylinders 11 electromagnetically operated valves 14 are instructed to indicate the same vibration direction throughout the building. It is possible to attenuate with the same period. Information transmission system is (1)
Seismometer → Generator → Hydraulic pump → Solenoid valve centralized actuator

Seismometer → Computer → Solenoid valve central controller → Each hydraulic cylinder

(2)
Cylinder extensometer → Computer → Each hydraulic cylinder: Each solenoid valve centralized controller 18 is installed on the damping table Assy25 one by one, and is systematized to vibrate in the same direction. The entire building vibrates in the same direction and distance.
5) Since the hydraulic damping and power system does not exist in the small damping table of the third embodiment, it responds to an earthquake with only the damping table and the spring. There are four restoring springs 30 instead of hydraulic cylinders, and they are restored to their original positions by the spring force. The fourth embodiment is damped only by the spring 6,
The vibration is attenuated only by the amplitude of the inclined spring, and the original position is restored by 16 spring forces.

現在ゴム製の単純減衰台が販売されているが、ゴムの柔軟性に頼って上下振動を除いて左右、水平振動が大きい場合に、上下の高さの変化が存在する為に、高層ビルが傾く事になる。これは大きい建築物、ビルの場合は致命傷となる。更に長期間の耐久性が保証されない。その他の減衰台でも上下の高さの変化が存在する為に実用化出来ない物も多い。
Currently, simple damping tables made of rubber are on sale, but depending on the flexibility of the rubber, if the horizontal and horizontal vibrations are large except for vertical vibration, there is a change in the vertical height, It will tilt. This is a fatal wound for large buildings and buildings. Furthermore, long-term durability is not guaranteed. There are many things that cannot be put to practical use because there is a change in height above and below other attenuation tables.

実施例1)本発明の良い処は縦方向揺れを無視し、水平の振動を減衰出来るばかりで無く、垂直の高さ振動差が存在し無い為に、高層ビルが傾く事は無い。一定の高さが保たれるばかりで無く、垂直振動、上方向への数十トンの引っ張りにも耐える事ができる。建物の柱下部に減衰台を設定し上板1にボルト31で固着し、更に台板5も地盤にアンカーボルトで固着されている。全減衰台が油圧システムで結合され、同じ振動数で減衰する事が期待されている。 Embodiment 1) The good point of the present invention is that not only the vertical vibration can be ignored and the horizontal vibration can be damped, but there is no vertical height vibration difference, so the high-rise building does not tilt. Not only can a certain height be maintained, but it can also withstand vertical vibration and pulling upwards by several tens of tons. A damping table is set at the lower part of the pillar of the building, and is fixed to the upper plate 1 with bolts 31, and the base plate 5 is also fixed to the ground with anchor bolts. It is expected that all damping tables are connected by a hydraulic system and attenuated at the same frequency.

[構造](図1〜12)4方形(円柱形でも可)の上を上板1、下側を台板5として、その間鉄の滑り台摩擦部39のスライド接続部上を摺動する構造とし。その内部にバネ6a,バネ6b,バネ6c,バネ6d・・が上板、台板を垂直の引きつけ力により固定させる。結果水平の振動のみに収めた構造とした。(図11、12)上板バネ受け1a,1b,1c,1d台板バネ受7a,7b,7c,7dの間でバネ6の引きつけ状態とする。 [Structure] (Figs. 1-12) The upper plate 1 is the upper side of the four squares (which may be cylindrical) and the base plate 5 is on the lower side, while sliding on the slide connection part of the iron slide friction part 39. . Inside, the spring 6a, spring 6b, spring 6c, spring 6d,... Fix the upper plate and the base plate by a vertical attracting force. The result was a structure that contained only horizontal vibration. (FIGS. 11 and 12) The upper plate spring receivers 1a, 1b, 1c, 1d are brought into a state in which the spring 6 is attracted between the base plate spring receivers 7a, 7b, 7c, 7d.

バネ6の引き代は常に長さL(定常)より少し長く(l)伸長する事で引きつけ状態(L1)とし、17本のバネ6の合計引きつけ力を計算する。
(図12)は最も伸長して(L2)の状態に伸びた図である。バネ6a、1個の引き付ける力が1トンとすれば 減衰台全体で1X17本=17トン
の引き付け力となる。建物全体で(図19を見て)17X20個=340トン
となる。
The pulling allowance of the spring 6 is always slightly longer (l) than the length L (steady), and is set to the attracting state (L1), and the total attracting force of the 17 springs 6 is calculated.
(FIG. 12) is a diagram in which the most extended state is shown in (L2). If the pulling force of the spring 6a and one spring is 1 ton, the entire attenuation table is 1 × 17 = 17 ton. In the whole building (see Fig. 19) 17X20 = 340 tons
It becomes.

地震が来た時にL2迄伸長するが、これは制限棒45,46の最長-長さ迄であり、上板1の内側の段が当たる迄である。(図11,12)地震の時は上板1が大きくズレ動くが、上板の段の処で止まるが、地震の振幅はそれ以上の揺れをもたらすが。その反動で反対方向に大きくズレ動く、地震の終わり迄、この上板1a,1b,1c,1dと台板バネ受7a,7b,7c,7dの間バネ6の引きつけ力で元に復元するが、常に引きつけ状態である。 When an earthquake occurs, it extends to L2, which is up to the longest-length of the limit bars 45, 46 until the inner step of the upper plate 1 hits. (Figs. 11 and 12) In the event of an earthquake, the upper plate 1 moves greatly, but stops at the step of the upper plate, but the amplitude of the earthquake causes more shaking. Due to the reaction, it moves greatly in the opposite direction. Until the end of the earthquake, the upper plate 1a, 1b, 1c, 1d and the base plate spring receiver 7a, 7b, 7c, 7d are restored to the original by the attractive force of the spring 6. Always attracted.

上下水平振動に耐える事で建築物が崩壊せずに存在する。垂直方向の振動を放棄し、水平振動のみに集約すると上下荷重が数百トンの荷重が集中するが、滑り台4a,4bの上部を上板1がスライドし減衰台が完成する。(図3、5)当然上板1の下部、滑り台4の上部、滑り台摩擦部39はスライド出来る様な材質にして、グリースを塗布、供給出来る様な構造として置く The building exists without collapsing by withstanding horizontal vibrations. When the vibration in the vertical direction is abandoned and concentrated only in the horizontal vibration, a load of several hundred tons is concentrated, but the upper plate 1 slides on the upper parts of the slides 4a and 4b to complete the damping table. (Figs. 3 and 5) Naturally, the lower part of the upper plate 1, the upper part of the slide 4 and the slide friction part 39 are made of a slidable material so that grease can be applied and supplied.

(実可動の説明)今までの減衰台は全ての振動を減衰しようとして、大型の建築物に対応できなかった。それで水平、垂直と分離する事でどの建築物にも可能とする。更に建物の元位置への復元を、自然復元から油圧動力によって強制復元にする。ここで元の位置に戻るのは意外と難しい、何せ数百トンの荷重が架かるばかりで無く、バネ6a、6b,6c,6dが荷重を押し戻すには足りない。 (Explanation of actual movement) The conventional damping table has been unable to cope with large buildings trying to attenuate all vibrations. Therefore, any building can be made by separating it from horizontal and vertical. Furthermore, the restoration to the original position of the building is forced from natural restoration to hydraulic restoration. Here, it is unexpectedly difficult to return to the original position, not only a load of several hundred tons is applied, but also the springs 6a, 6b, 6c, 6d are not enough to push the load back.

地震による水平移動距離を、すぐに元の位置への復元が難しい。
地震計 → コンピユ―タ→ 電磁弁集中操作器→ 各油圧シリンダー
これらの情報が以上の様に伝わり、地震の方向、大きさを分析し各シリンダーに指示が送られて少ししか逆らは無いで減衰効果を期待する。
地震振動計14、コンピユ―17のみバッテリー19で待機電力が作様し。地震が起きると、4本の油圧シリンダー11には原動機、発電機19a,19bが始動、油圧ポンプ16がすぐに可動する構造とする。
It is difficult to immediately restore the horizontal movement distance due to the earthquake to the original position.
Seismometer → Computer → Solenoid valve centralized controller → Each hydraulic cylinder This information is transmitted as described above, the direction and magnitude of the earthquake is analyzed, instructions are sent to each cylinder, and there is little reversal Expect a damping effect.
Only the seismic vibration meter 14 and computer 17 have standby power generated by the battery 19. When an earthquake occurs, the four hydraulic cylinders 11 are configured such that the prime movers and generators 19a and 19b are started, and the hydraulic pump 16 is immediately movable.

後に全油圧システム、油圧シリンダ―11a,11b,11c,11dが、可動し始める状態となるが、地震振動に対抗するより、建物全体の振動の調和、一体性を優先する。
これは建物を壊さ無い為であり、バネの復元、自然減衰が基本である。
Later, the entire hydraulic system and the hydraulic cylinders 11a, 11b, 11c, and 11d start to move, but priority is given to the harmony and unity of the vibration of the entire building rather than to counter seismic vibration.
This is because the building is not destroyed, and the basic principle is spring restoration and natural damping.

コンピユ―タ17は油圧シリンダーの位置情報センサー12、地震振動計14aから振幅情報を収集し、直ちに4本の油圧シリンダ11a,11b,11c,11dには油圧情報指令を送信し、その応答次第で電磁弁集中操作器18が減衰作用をする。
The computer 17 collects amplitude information from the hydraulic cylinder position information sensor 12 and the seismic vibration meter 14a, and immediately sends hydraulic information commands to the four hydraulic cylinders 11a, 11b, 11c, and 11d. The solenoid valve central operation device 18 has a damping action.

油圧シリンダー11a,11b,11c,11dには電磁弁集中操作器18の油圧逆止弁を半開放する事や、チャンバー16aの緩衝力でバネと同じ減衰作用を働かせる。
油圧逆止弁を半開放する事はとても大切で機器の損傷を無くし、緩衝力で減衰作用を働かせ、全システムの調和を持たせる。
The hydraulic cylinders 11a, 11b, 11c, and 11d are subjected to the same damping action as the springs by half-opening the hydraulic check valve of the electromagnetic valve centralized controller 18 or by the buffering force of the chamber 16a.
It is very important to open the hydraulic check valve halfway, so that the equipment is not damaged, the damping action is applied by the buffering force, and the whole system is harmonized.

長周期、直下型地震などの地震を解析し、元の位置に何度でも復元する必要がある。更にバネ6、は数十トンの復元力が存在するが、それで十分とはいえ無い、それを補う為に油圧シリンダー11a,11b,11c,11dは存在する。 It is necessary to analyze earthquakes such as long-period earthquakes and direct earthquakes and restore them to their original positions as many times as necessary. Furthermore, although the spring 6 has a restoring force of several tens of tons, it cannot be said that it is sufficient. To compensate for this, the hydraulic cylinders 11a, 11b, 11c, and 11d exist.

(図20を見て)各減衰台30には油圧チャンバー16a,16b,16c・・が油圧シリンダー11a,11b,11c,11dの背圧配管の中に組み込まれている、これは各々がクッションの役目を果たす為である。油圧チャンバー16a,16b,16c・・はスプリングの様な復元作用を、油圧の高低差、負圧、高圧で油圧シリンダーを水平にスライド移動する。油圧の電磁弁集中操作器18を調整する事で数百トンの力の出し入れができる。 (See FIG. 20) Each damping table 30 has hydraulic chambers 16a, 16b, 16c,... Built into the back pressure pipes of the hydraulic cylinders 11a, 11b, 11c, 11d. This is to fulfill the role. The hydraulic chambers 16a, 16b, 16c... Perform a spring-like restoring action by sliding the hydraulic cylinder horizontally with a difference in hydraulic pressure, negative pressure, and high pressure. By adjusting the hydraulic solenoid valve centralized actuator 18, several hundred tons of power can be put in and out.

ここで総合指令システム部44を建物地下に置き地震が発生するや、地震震度計14が感知すると、一斉に原動機19a,発電機19bが始動。
上板位置センサー13a,13b,13c、・・地震センサー14の情報がコンピユーター17に入るが、どうしてもコンピユーターには初期始動時間が足りないので、予め単純作動減衰システムを覚えさせておき作用する。
Here, when the general command system unit 44 is placed in the basement of the building and an earthquake occurs, when the seismic intensity meter 14 senses, the prime mover 19a and the generator 19b are started all at once.
The information of the upper plate position sensors 13a, 13b, 13c,..., And the earthquake sensor 14 enter the computer 17, but the computer has an insufficient initial start-up time.

その後は全シリンダーの伸び代を計算し、滑り台2、位置センサー(滑り台)13の位置情報から出来るだけ、小さい振動で連続減衰する様にする。
コンピユーター17に上板1の単純な、元の位置への復元可能な様にするが、多分復元力が足り無く、中途半端なまま次の振動に対応する事になるが、チャンバー16の貯圧機能で水平スライド減衰台としての作用を期待している。
After that, the extension allowance of all cylinders is calculated, and it is made to continuously attenuate with as little vibration as possible from the position information of the slide 2 and the position sensor (slide) 13.
The computer 17 allows the upper plate 1 to be simply restored to its original position, but probably lacks the restoring force and will respond to the next vibration halfway, but the accumulated pressure of the chamber 16 The function is expected to act as a horizontal slide attenuator.

大切な事は大地震のエネルギーに、逆らはず、減衰する事である。大地震のエネルギーは巨大で逆らへ無い、本発明には長周期振動には十分対応可能と考えるが、ソフトの部分は省略する。ここで大地震の場合、振動幅がスライド幅を超えても、外れ無い様にバネ6の換わりに(図9〜12)上板1、台板5を結ぶ(図11)制限棒−メス45の内部に制限棒−オス46が装入されている。 The important thing is to counteract the energy of a large earthquake and to attenuate it. The energy of a large earthquake is enormous and cannot be reversed. It is considered that the present invention can sufficiently cope with long-period vibration, but the software portion is omitted. Here, in the case of a large earthquake, even if the vibration width exceeds the slide width, the upper plate 1 and the base plate 5 are connected instead of the spring 6 (FIGS. 9 to 12) so as not to come off (FIG. 11). A restriction rod-male 46 is inserted in the inside of the.

制限棒45,46で伸びる長さの制限があり、上板1が外れて建物の倒壊を防ぐ為にある。制限棒-オス45,メス46を一ケ所、設けてあるが何本でも可能である。
制限棒-オス45メス46の上部は上板1に制限棒取付部47a,台板5に制限棒取付部47bで引き合う構造となる。バネ6a,6b,6cの換わりに図9に在る、バネ−制限棒-オス,メス45,46を何本か置き換える。
There is a limit on the length that can be extended by the limit bars 45 and 46, so that the top plate 1 can be removed to prevent the building from collapsing. There are one restriction rod-male 45 and female 46, but any number is possible.
The upper part of the restriction rod-male 45 female 46 has a structure in which the upper plate 1 is attracted by the restriction rod attachment portion 47a and the base plate 5 is attracted by the restriction rod attachment portion 47b. Instead of the springs 6a, 6b, 6c, some of the spring-restricting rod-male and female 45, 46 shown in FIG. 9 are replaced.

地震の振動幅がスライド幅を超える事は、よくある。超えてもそれ以下の振幅で減衰する方向で意義がある。地震の揺れ方向は予測不能であり、初期振動のもたつきは仕方がないが、何分か経過すると対応可能である。
崩壊の原因は殆ど初期振動の衝撃力である。
It is common for the vibration width of an earthquake to exceed the slide width. Even if it exceeds, it is significant in the direction of attenuation with less amplitude. The direction of shaking of the earthquake is unpredictable and the initial vibrations can't be beaten, but it can be handled after a few minutes.
The cause of the collapse is almost the impact force of the initial vibration.

(図19,20)このシステムの良い処は全減衰台が地震の揺れ方向に、決めた距離だけ動く事である、これにより建物全体の崩壊を防ぐし、ショックが和らぐ複雑な地震振動を解析しながら、垂直方向の振動以外は何とか減衰可能である。建物の最大崩壊振動をどの様にやりすごすかが大切である。 (Figs. 19 and 20) The best part of this system is that the entire damping table moves in the direction of the earthquake by a fixed distance. This prevents the entire building from collapsing and analyzes complex seismic vibrations that ease the shock. However, it can somehow be damped except for vibration in the vertical direction. It is important how to deal with the maximum collapse vibration of the building.

第2実施例(図13〜15)は油圧シリンダー11の設置場所を台板5の4辺の中央に上板中央50、上板継部51を設置したものである。
油圧シリンダーを四方に向かって配置するのは、どっちの方向でも対処出来る様にする為である。地震の振動幅がスライド幅を超えても、減衰台が壊れなければ崩壊し無いし、何分か耐える力が在れば対応可能である。
In the second embodiment (FIGS. 13 to 15), the upper plate center 50 and the upper plate joint 51 are installed at the center of the four sides of the base plate 5 at the place where the hydraulic cylinder 11 is installed.
The reason why the hydraulic cylinders are arranged in all directions is to be able to cope with either direction. Even if the vibration width of the earthquake exceeds the slide width, it will not collapse if the attenuation table is not broken, and it can be handled if there is enough strength to withstand for some minutes.

上板中央50の下部に4本の油圧シリンダー11の先端シリンダー自在継部52が存在しピン9が嵌装され自由に動き復元作用を行う。
油圧シリンダー11、の4本の場所を変えるのは、バネ6が沢山設置できる様にする為であるが、いずれも油圧力で、元の位置に復元する為と減衰、緩衝の為である。更に斜め下向きに伸長する構造とするが、これはいつも上板1が外れ
無い様な形となる。
At the lower part of the center 50 of the upper plate, there are four endless cylinder joints 52 of the hydraulic cylinders 11 and the pins 9 are fitted to freely move and restore the movement.
The four locations of the hydraulic cylinder 11 are changed so that a large number of springs 6 can be installed, both of which are restored to their original positions by oil pressure, and for damping and buffering. Further, the structure extends obliquely downward, but this is always such that the upper plate 1 does not come off.

本発明の第1,2実施例(図1〜15、20〜21)総合指令油圧システム部44は地下に備えて置く、その方が被害は少ない。ここに備えたエンジン19bは大馬力で強制終了するので無く、小馬力で地震が終了した後に、静かに復元する様なシステムを可能な物とする。 In the first and second embodiments of the present invention (FIGS. 1 to 15, 20 to 21), the general command hydraulic system 44 is provided in the basement, and the damage is less. The engine 19b provided here does not forcibly end with large horsepower, but makes it possible to have a system that quietly restores after the earthquake ends with small horsepower.

どんなシステムでも地震を抑える力は無く、以下に減衰するかである、常に
建物崩壊につながる地震の最大衝撃に耐える為に上板1をスライドして減衰作用を持つ事と、停電を常に考慮し自家発電で全システムを考慮する。
There is no power to suppress earthquakes in any system, and it will be attenuated to the following. Always slide down the top plate 1 to withstand the maximum impact of earthquakes leading to building collapse, and always consider power outages. Consider the entire system with in-house power generation.

第3実施例(図16、17)は減衰台を小さくし、木造住宅に使用する為に、油圧シリンダー11a,11b,c,dの換わりに復元バネ30 a,30b,30c,30dを配置したものである。油圧システムを動かすのは動力が必要なため大きくなるが、金属バネ(コイルタイプ)を使用する事で元の位置へ復元する。油圧シリンダー11が無い為に、1個の幅が20〜30センチ四方、厚みが5〜10センチ程度の大きさでも可能である。 In the third embodiment (FIGS. 16 and 17), the damping spring is made small, and restoring springs 30a, 30b, 30c, and 30d are arranged in place of the hydraulic cylinders 11a, 11b, c, and d for use in a wooden house. Is. Moving the hydraulic system is large because it requires power, but it can be restored to its original position by using a metal spring (coil type). Since there is no hydraulic cylinder 11, it is possible to have a width of about 20 to 30 cm square and a thickness of about 5 to 10 cm.

この大きさだと、一機に安価に出来る。一般的な小住宅に最適であり、20〜30センチ四方程度の大きさで十分減衰台として実現可能である。この場合復元バネ30 の力をかなり大きく設定して置く、そうしないと元の位置に戻りえない。スライド減衰台の振動方向を同一体にする必要があるが、このタイプでは移動方向がバラバラとなるが、仕方がない。これらの場合地震振幅は20センチ以下となる。 With this size, you can make it cheaper. It is most suitable for a general small house and can be realized as a sufficient attenuation table with a size of about 20 to 30 cm square. In this case, the restoring spring 30 is set with a considerably large force, otherwise it cannot return to the original position. Although it is necessary to make the vibration direction of the slide attenuator stand the same, the moving direction varies in this type, but it cannot be helped. In these cases, the earthquake amplitude is 20 cm or less.

第4実施例(図18、19)は木造住宅に使用する為に、小型にしてバネ6a,6b,6c,6d・・を斜めに配置したものである。復元バネが無いため小さいが、斜め配置の為、バネ(コイルタイプ)16本の復元作用がある。 In the fourth embodiment (FIGS. 18 and 19), the springs 6a, 6b, 6c, 6d,... Although there is no restoring spring, it is small, but because of the diagonal arrangement, there is a restoring action of 16 springs (coil type).

上板バネ受け1a,1b・台板バネ受7a,7b・・の間で16本のバネ6の引きつけ状態とする。バネ6の引き代は常に長さL(定常)より少し長く引きつけ状態(L1)とし、16本の合計引きつけ力で減衰-復元作用を行う。 The 16 springs 6 are attracted between the upper leaf spring receivers 1a and 1b and the base plate spring receivers 7a and 7b. The spring 6 is always pulled slightly longer than the length L (steady) (L1), and the damping-restoring action is performed with 16 total pulling forces.

日本古来の小型住宅に地震対策として丁度良い。小型の住宅に7〜9個備えつける事で地震対策となる。第1,2実施例がかなりの価格になるが、第3、4実施例は50分の1以下の価格となる。これは住宅を強固にするよりはるかに安価、安全な建物となる。 It is just good as an earthquake countermeasure for small Japanese houses. By installing 7 to 9 in a small house, it will be an earthquake countermeasure. The first and second embodiments are considerably priced, but the third and fourth embodiments are less than 1/50. This makes it a much cheaper and safer building than solidifying the house.

本発明の減衰台概略図Schematic diagram of attenuation table of the present invention 減衰台の上板1を除いた上面図Top view without the top plate 1 of the attenuation table 図2の側面図Side view of FIG. 上板1を除いた上面図(地震時Top view without top plate 1 (at the time of earthquake 図4の側面図Side view of FIG. 上板1、台板5、滑り台4分解図Top plate 1, base plate 5, slide 4 exploded view シリンダー取付部上面図Cylinder mounting top view 図7の側面図Side view of FIG. 制限棒オス、メスの構造Restriction bar male, female structure 制限棒の外観図Appearance drawing of limit bar 図3のバネ6設置長さL1Spring 6 installation length L1 in FIG. 地震時の最大伸長(L2Maximum elongation during an earthquake (L2 第2実施例の概略図Schematic diagram of the second embodiment 第2実施例上面図Second embodiment top view 図14のA矢視図A view of arrow A in FIG. 第3実施例上面図Third embodiment top view 第3実施例側面図Side view of the third embodiment 第4実施例上面図Fourth embodiment top view 第4実施例中央断面図Center sectional view of the fourth embodiment 減衰台地震移動説明図Attenuation table earthquake movement explanatory diagram 全体図の地震移動図Earthquake movement map 図21を拡大した配置図An enlarged layout of FIG.

1・・・・・・上板 1a,1b,1c.1d・・・上板バネ受
2a,2b・・・・上板引手 3a,3b・・・・・引手継部
4a,4b・・・・・・滑り台 5・・・・・・台板
6a,6b,6c,6d・・・・バネ 7 a,b,c,d・・・台板バネ受
8a,8b,8c,8d・・・シリンダ自在継部 9 a,9b・・・・シリンダーピン
10a,10b,10c,d・・シリンダー首部 11a,b,c.d・・・油圧シリンダー
12 a,b,c.d・・・シリンダー伸縮計 13 a,b,c.d・・・上板位置センサ
14・・・・・・地震振度計 15・・・・・・地震センサ(ビル側
16・・・・・・油圧ポンプ 16a・・・・・・チャンバー(空気圧
17・・・・・コンピユーター 18a,18b,18c・・・電磁弁集中操作器
19・・・・・バッテリー(定電圧) 19a・・・・・・・発電機
1 ・ ・ ・ ・ ・ ・ Upper plate 1a, 1b, 1c.1d ・ ・ ・ Upper leaf spring holder
2a, 2b ... Upper plate handle 3a, 3b ...
4a, 4b ... Slide 5 ... Plate
6a, 6b, 6c, 6d ... Spring 7 a, b, c, d ... Base plate spring holder
8a, 8b, 8c, 8d ・ ・ ・ Cylinder universal joint 9 a, 9b ・ ・ ・ ・ Cylinder pin
10a, 10b, 10c, d ・ ・ Cylinder neck 11a, b, cd ・ ・ ・ Hydraulic cylinder
12 a, b, cd ... Cylinder extensometer 13 a, b, cd ... Upper plate position sensor
14 ・ ・ ・ ・ ・ ・ Earthquake meter 15 ・ ・ ・ ・ ・ ・ Earthquake sensor (building side
16 ・ ・ ・ ・ ・ ・ Hydraulic pump 16a ・ ・ ・ ・ ・ ・ Chamber (pneumatic
17 ... Computer 18a, 18b, 18c ... Solenoid valve centralized controller
19 ... Battery (constant voltage) 19a ... Generator

19b・・・・・原動機 20・・・・・・減衰台Assy
21・・・・・柱(セメント) 22・・・・・・空気ボンベ
23・・・・・地盤 24・・・・・地震振幅方向
26・・・・・軽油タンク 27・・・・・電気配線
28・・・・・電磁弁 29a・・・・復元バネ固定軸(上板側
29b・・・復元バネ固定軸(基礎側 30・・・・・復元バネ
31・・・・固定ボルト 32・・・・L(バネ定常長さ)
33・・・・L1(バネ設置長さ) 34・・・・L2(バネ最長長さ)
35・・・・L3(バネ最短長さ) 36a,b・・・・電気配線
37・・・・シリンダー固定部 38・・・・シリンダー回転部
39・・・・滑り台摩擦部 40・・・・
41・・・減衰台中心(地震の移動前 42・・・・減衰台中心(地震移動後
43・・・・グリス給油装置 44・・・・総合指令油圧システム部
45・・・・・制限棒-オス 46・・・・制限棒-メス
47a,47b・・・制限棒取付部 50・・・・・上板中央
51・・・・・・・上板継部 52・・・・シリンダー自在継部
53 a,53b,53c・・・・・・・バネ 54・・・・・・上板段
19b: prime mover 20: attenuator stand Assy
21: Pillar (cement) 22 ... Air cylinder
23: Ground 24: Earthquake amplitude direction
26 ・ ・ ・ ・ ・ Light oil tank 27 ・ ・ ・ ・ ・ Electric wiring
28 ... Solenoid valve 29a ... Restoring spring fixed shaft (upper plate side)
29b ・ ・ ・ Restoration spring fixed shaft (foundation side 30 ... Restoration spring
31 ... Fixing bolt 32 ... L (Spring steady length)
33 ... L1 (spring installation length) 34 ... L2 (longest spring length)
35 ... L3 (shortest spring length) 36a, b ... Electric wiring
37 ... Cylinder fixing part 38 ... Cylinder rotating part
39 ... Slide friction part 40 ...
41 ・ ・ ・ Attenuation center (before earthquake movement 42 ・ ・ ・ ・ Attenuation center (after earthquake movement)
43 ・ ・ ・ ・ Grease lubrication device 44 ・ ・ ・ ・ Comprehensive command hydraulic system
45 ... Restriction bar-male 46 ... Restriction bar-female
47a, 47b ... Limiting rod mounting part 50 ... Upper plate center
51 ・ ・ ・ ・ ・ ・ ・ Upper plate joint 52 ・ ・ ・ ・ Cylinder free joint
53 a, 53b, 53c ... Spring 54 ... Upper plate

1)地面に固着した台板5と、この台板5の対向する上面に一体形成された上面に
滑り台摩擦部39を有する一対の滑り台4a,4bと前記台板5にスライド移動出
来る様に支持される建物の下部に固着された上板1と、この上板の対向する
下面に前記一対の滑り台4a,4bと隙間を有する様に一体形成された一対の引
手継部3a,3bと、一端部が前記上板1の一対の引手継部3a,3bにそれぞれ
水平方向に回動可能取付けられ、他端部が前記台板5の一対の滑り台4a,4bに
水平方向に回動可能取付けられ、二対の油圧シリンダ―11a,11b、11c,11dと前
記台板5の上面と前記上板1の下面との間に取付けられた減衰用の複数個のバ
ネ6とから成る事を特微とするスライド減衰台
全減衰台は全ての振動に対して、上下垂直、左右水平振動の2種類に分解し、上下縦荷重は横荷重の何倍も架かり、それに耐える構造にしなければならない。鉄板厚板構造とする必要がある。横揺れに耐久する為、上板1と滑り台4の間で、左右水平,任意方向にスライド可能とし、上板下部に段を4方向に配置し振動外れ止めとする。滑り台4は10トン以上の耐荷重があるとし。減衰台は、横揺れ幅0.1〜0.5m以下とし上板1、滑り台4などの十分な幅を持ち、スライド部にはゴミが入ら無い様にメンテナンス用グリス給油装置43を設け耐用年数の長いものとする。総合指令油圧システム部44、原動機29b自家発電機29aなどは常に自己保全が出来る様にする。
2)下部構造は正方形の台板5とし地盤とアンカーボルトを取れる形とする。
減衰台に油圧シリンダーを内蔵するが、その他の自家発電機、総合指令油圧システム部44か地下に装備する。上板、台板の上下間隔はスライド台幅の1/2以内とし、更にバネ6を垂直方向に引っ張り作用とする。
建物の地下にエンジン発電、油圧ポンプの動力を装備して、建物を元の位置に復元可能な馬力を装備する。
3)建築物を元の位置に復元するのに、巨大な力が必要であり。
これらのシステムは地震を解析し、揺れの方向によりスライド移動距離、方向を決めて対応し減衰していく。コンピユ―タ17が考慮の後に始動し減衰、復元するとする指示を油圧シリンダー11、油圧システムをエンジン動力により可動するシステムとする。更に油圧チャンバー、空気タンクを使用し
クッション作用、油圧逆止弁の半開きで減衰作用を利用する。
4)地震振動は必ず同じ方向、振動幅では無い、これをコンピユーターで計算油圧シリンダーの振幅を平均化し、数十台の油圧シリンダー11電磁操作弁14、を指示する事で建物全体を同じ振動方向、同じ周期で減衰することを可能とする。情報の伝達システムは
(1)
地震計 →発電機 →油圧ポンプ →電磁弁集中操作器

地震計 → コンピユ―タ→ 電磁弁集中操作器→ 各油圧シリンダー

(2)
シリンダー伸縮計 → コンピユ―タ →各油圧シリンダー
の2通りである
各電磁弁集中操作器18が減衰台Assy25に1個ずつ設置されており
同じ方向に振動する様にシステム化されている、これにより全体の建物が
同じ方向、距離だけ振動する。
5)第3実施例の小型減衰台は、油圧、動力システムは存在しないので、減衰台、バネのみで地震に対応する。油圧シリンダーの換わりに復元バネ30が4個あり、バネ力で元の位置に復元する。第4実施例はバネ6のみで減衰し、 傾斜配置されたバネの振幅のみの振動減衰であり16個あるバネ力で元の位置に復元する。
1) On the base plate 5 fixed to the ground and the upper surface formed integrally with the upper surface of the base plate 5 facing each other.
A pair of slides 4a and 4b having a slide friction part 39 and the base plate 5 slide out.
The upper plate 1 fixed to the lower part of the building supported to come and the upper plate face each other
A pair of pulls formed integrally with the pair of slides 4a, 4b on the lower surface so as to have a gap.
The joint portions 3a and 3b and one end portion of the pair of handle joint portions 3a and 3b of the upper plate 1, respectively.
It is mounted so as to be rotatable in the horizontal direction, and the other end is attached to the pair of slides 4a and 4b of the base plate 5.
Mounted horizontally pivotable, two pairs of hydraulic cylinders-11a, 11b, 11c, 11d and front
A plurality of damping bars mounted between the upper surface of the base plate 5 and the lower surface of the upper plate 1
The slide attenuator, which is characterized by the fact that it consists of N6, is disassembled into two types of vertical and horizontal vibrations for all vibrations, and the vertical and vertical loads are several times the lateral load. It must be constructed to withstand it. An iron plate thick plate structure is required. In order to endure rolling, it can slide horizontally and horizontally between the upper plate 1 and the slide 4, and a step is arranged in four directions on the lower portion of the upper plate to prevent vibration. The slide 4 has a load capacity of 10 tons or more. The damping table has a roll width of 0.1 to 0.5m or less, and has sufficient width such as the upper plate 1 and slide 4, and a grease lubrication device 43 for maintenance is installed to prevent dust from entering the slide part. It will be long. The general command hydraulic system 44, the prime mover 29b, the private generator 29a, etc. are always capable of self-maintenance.
2) The substructure is a square base plate 5 that can take the ground and anchor bolts.
The damping cylinder has a built-in hydraulic cylinder, but it is equipped with other private power generators, general command hydraulic system 44 or underground. The vertical distance between the upper plate and the base plate should be within 1/2 of the slide base width, and the spring 6 should be pulled in the vertical direction.
Equipped with engine power and hydraulic pump power in the basement of the building, equipped with horsepower that can restore the building to its original position.
3) A huge force is required to restore the building to its original position.
These systems analyze earthquakes, determine the distance and direction of slide movement according to the direction of shaking, and respond and attenuate. The instruction that the computer 17 starts, damps and restores after taking into consideration is the hydraulic cylinder 11, and the hydraulic system is a system that can be driven by engine power. In addition, a hydraulic chamber and air tank are used for cushioning, and a hydraulic check valve is half-opened to use a damping action.
4) Seismic vibrations are not always in the same direction and width, and this is calculated by a computer. The amplitude of the hydraulic cylinder is averaged, and several dozen hydraulic cylinders 11 electromagnetically operated valves 14 are instructed to indicate the same vibration direction throughout the building. It is possible to attenuate with the same period. Information transmission system is (1)
Seismometer → Generator → Hydraulic pump → Solenoid valve centralized actuator

Seismometer → Computer → Solenoid valve central controller → Each hydraulic cylinder

(2)
Cylinder extensometer → Computer → Each hydraulic cylinder: Each solenoid valve centralized controller 18 is installed on the damping table Assy25 one by one, and is systematized to vibrate in the same direction. The entire building vibrates in the same direction and distance.
5) Since the hydraulic damping and power system does not exist in the small damping table of the third embodiment, it responds to an earthquake with only the damping table and the spring. There are four restoring springs 30 instead of hydraulic cylinders, and they are restored to their original positions by the spring force. In the fourth embodiment, the vibration is attenuated only by the spring 6, and the vibration is attenuated only by the amplitude of the inclined spring, and the original position is restored by 16 spring forces.

Claims (5)

地震振動の減衰台において、建物底部に設けた上板1及びそれに固着した上板バネ受1a,1b,1c,1d・・と地面に接する台板5、台板バネ受7a,7b,7c,7d・・の間にバネ6a,6b,6c,6d・・を定常長さLより長く、少なくとも一個以上連結し、上板1が台板5に設けた滑り台4a,4bの上を自在に水平方向スライド可能な構造とするバネ-スライド減衰台 In the seismic vibration damping table, the upper plate 1 provided at the bottom of the building and the upper plate spring receivers 1a, 1b, 1c, 1d, which are fixed to the upper plate 1, the base plate 5 in contact with the ground, the plate spring receivers 7a, 7b, 7c, 7d... Between the springs 6a, 6b, 6c, 6d .. longer than the steady length L and connected to at least one spring, and the upper plate 1 is freely horizontal above the slides 4a, 4b provided on the base plate 5. Spring-slide damping table with slidable structure 上記記載、滑り台4aのシリンダー固定部37、回転部38に設けた油圧シリンダー11a、他端はシリンダー自在取付具8a、首部10a、に嵌装するシリンダーピン9aを介し接続する上板引手2a、上板1が任意水平方向にスライドし、油圧シリンダー11aの油圧力によって復元可能な構造を持つ特許請求項第1項記載のバネ-スライド減衰台伸縮自在に As described above, the cylinder fixing part 37 of the slide 4a, the hydraulic cylinder 11a provided in the rotating part 38, the other end of the upper plate puller 2a connected via the cylinder pin 9a fitted to the cylinder free mounting tool 8a and the neck part 10a, the upper The spring-slide damping table according to claim 1, wherein the plate 1 slides in an arbitrary horizontal direction and can be restored by the hydraulic pressure of the hydraulic cylinder 11a. 上記記載、建物下部の油圧ポンプ16から滑り台4aの油圧シリンダー11a,11b,11c,11dに油圧を圧送又は逆送し、油圧チャンバー16a空気ボンベ22の蓄え圧力により上板1の地震振動がクッション減衰可能な構造を持つ特許請求項第1項記載のバネ-スライド減衰台 As described above, hydraulic pressure is pumped or reversed from the hydraulic pump 16 at the bottom of the building to the hydraulic cylinders 11a, 11b, 11c, 11d of the slide 4a, and the seismic vibration of the upper plate 1 is cushioned by the stored pressure of the air cylinder 22 in the hydraulic chamber 16a. The spring-slide dampening base according to claim 1 having a possible structure 上記記載の建築物底部の上板1 a,1b,1c.1d上板引手2に上板位置センサー13 a,13b,13c.13d・・、地盤に地震震度計14を備え、それら全ての情報をコンピユ―ター17に送信し分析した後、油圧ポンプ16、油圧チャンバー16a、空気ボンベ22、電磁弁集中操作器18aを使い、油圧シリンダー11a,11b,11c,11dを操作するシステムにおいて、上板1a,1b,1c・・郡を少なくとも1箇以上多数が同一方向、同一距離を移動減衰可能な特許請求項第1項記載のバネ-スライド減衰台 The upper plate 1 a, 1b, 1c.1d upper plate handle 2 of the building bottom described above has an upper plate position sensor 13 a, 13b, 13c.13d, and a seismic intensity meter 14 on the ground, all of which information In the system that operates the hydraulic cylinders 11a, 11b, 11c, and 11d using the hydraulic pump 16, the hydraulic chamber 16a, the air cylinder 22, and the solenoid valve centralized controller 18a, The spring-slide damping table according to claim 1, wherein at least one or more of 1a, 1b, 1c,. 地震の減衰台において、建物下部に固着した上板1、復元バネ固定軸29a と地面に固着した台板5、滑り台4、復元バネ固定軸29bを設け、その間に復元バネ30a,30b,30c,30dを伸縮自在に挟み、上板1が滑り台4a,4bの上をスライド移動減衰して元の位置に復元する事が可能なバネ-スライド減衰台





In the earthquake attenuation table, the upper plate 1 fixed to the lower part of the building, the restoring spring fixing shaft 29a and the base plate 5, fixed to the ground 5, the slide 4, the restoring spring fixing shaft 29b are provided, and the restoring springs 30a, 30b, 30c, A spring-slide attenuating table that can be retracted between 30d and the upper plate 1 can slide and damp on the slides 4a and 4b to restore the original position.





JP2017140596A 2017-07-20 2017-07-20 Slide attenuator Active JP6481088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140596A JP6481088B2 (en) 2017-07-20 2017-07-20 Slide attenuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140596A JP6481088B2 (en) 2017-07-20 2017-07-20 Slide attenuator

Publications (2)

Publication Number Publication Date
JP2019019606A true JP2019019606A (en) 2019-02-07
JP6481088B2 JP6481088B2 (en) 2019-03-13

Family

ID=65353827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140596A Active JP6481088B2 (en) 2017-07-20 2017-07-20 Slide attenuator

Country Status (1)

Country Link
JP (1) JP6481088B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110847405A (en) * 2019-11-26 2020-02-28 西安建筑科技大学 Tension-compression type rubber friction metal damper
CN111827503A (en) * 2020-06-29 2020-10-27 上海大学 Three-dimensional shock isolation (vibration) system for building
CN113356387A (en) * 2021-06-22 2021-09-07 福建省昊立建设工程有限公司 Building anti-seismic system with shock absorption support
WO2022121405A1 (en) * 2020-12-07 2022-06-16 苏州迈创信息技术有限公司 Dynamic damping apparatus of electromechanical device
CN116753270A (en) * 2023-08-23 2023-09-15 山西同天翔有色金属有限公司 Damping rack of aluminum plate cold rolling unit and damping method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682449U (en) * 1993-05-06 1994-11-25 株式会社昭電 Displacement absorber for seismic isolation device
JP2006342884A (en) * 2005-06-09 2006-12-21 Topy Ind Ltd Base isolation device
JP2007010088A (en) * 2005-07-01 2007-01-18 Fujitsu Ltd Vibration absorbing device
JP2010180910A (en) * 2009-02-03 2010-08-19 Isuzu Motors Ltd Vibration isolation supporting device
JP2015087014A (en) * 2013-09-25 2015-05-07 アキレス株式会社 Seismic isolator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682449U (en) * 1993-05-06 1994-11-25 株式会社昭電 Displacement absorber for seismic isolation device
JP2006342884A (en) * 2005-06-09 2006-12-21 Topy Ind Ltd Base isolation device
JP2007010088A (en) * 2005-07-01 2007-01-18 Fujitsu Ltd Vibration absorbing device
JP2010180910A (en) * 2009-02-03 2010-08-19 Isuzu Motors Ltd Vibration isolation supporting device
JP2015087014A (en) * 2013-09-25 2015-05-07 アキレス株式会社 Seismic isolator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110847405A (en) * 2019-11-26 2020-02-28 西安建筑科技大学 Tension-compression type rubber friction metal damper
CN111827503A (en) * 2020-06-29 2020-10-27 上海大学 Three-dimensional shock isolation (vibration) system for building
WO2022121405A1 (en) * 2020-12-07 2022-06-16 苏州迈创信息技术有限公司 Dynamic damping apparatus of electromechanical device
CN113356387A (en) * 2021-06-22 2021-09-07 福建省昊立建设工程有限公司 Building anti-seismic system with shock absorption support
CN113356387B (en) * 2021-06-22 2022-04-15 福建省昊立建设工程有限公司 Building anti-seismic system with shock absorption support
CN116753270A (en) * 2023-08-23 2023-09-15 山西同天翔有色金属有限公司 Damping rack of aluminum plate cold rolling unit and damping method thereof
CN116753270B (en) * 2023-08-23 2023-12-22 山西同天翔有色金属有限公司 Damping rack of aluminum plate cold rolling unit and damping method thereof

Also Published As

Publication number Publication date
JP6481088B2 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
JP6481088B2 (en) Slide attenuator
JP6312010B1 (en) Slide attenuator
KR101836164B1 (en) Three-Dimensional Seismic Isolator equipped with Reduction Performance of Vertical Vibration
CN203741993U (en) Friction pendulum type seismic isolation support provided with anti-drawing devices
JP6013167B2 (en) Rail sliding type seismic isolation device
KR101508148B1 (en) Three Dimensional Seismic Isolation System Equipped with Isolation Properties Using Electric Control Panel
KR102105205B1 (en) Switch board
US20210317676A1 (en) Impulse tuned mass damper for tall, slim structures
KR102185641B1 (en) The earthquake resistance switchboard with elastic resilience to torsion
JP2011099541A (en) Quake-absorbing mechanism
JP6463137B2 (en) Seismic reduction device
KR102142206B1 (en) Seismic retrofit of existing structue using spring damper and multipoint prestressed cable
KR102079007B1 (en) Earthquake-proof system for data center using integrated ceiling-floor-rack structure
Nikam et al. Seismic energy dissipation of a building using friction damper
KR20200094029A (en) Earthquake-proof device
JP3779000B2 (en) Seismic isolation device
JPH10176432A (en) Three-dimensional vibration isolation device
JP5024623B2 (en) Seismic isolation mechanism
JP5721333B2 (en) Sliding foundation structure
KR102116398B1 (en) Earthquake-proof apparatus for lightweight steel frame structure
CN114093603A (en) Shock insulation support and power supply system
Pasala Seismic response control of structures using novel adaptive passive and semi-active variable stiffness and negative stiffness devices
CN208363764U (en) Building exempts from shake construction
JP2017043988A (en) Vibration control building
JP6889506B1 (en) Vibration control suspension building

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

R150 Certificate of patent or registration of utility model

Ref document number: 6481088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250