JP2005240929A - Seismic isolator - Google Patents

Seismic isolator Download PDF

Info

Publication number
JP2005240929A
JP2005240929A JP2004052831A JP2004052831A JP2005240929A JP 2005240929 A JP2005240929 A JP 2005240929A JP 2004052831 A JP2004052831 A JP 2004052831A JP 2004052831 A JP2004052831 A JP 2004052831A JP 2005240929 A JP2005240929 A JP 2005240929A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation device
pulling force
wire
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004052831A
Other languages
Japanese (ja)
Other versions
JP4234036B2 (en
Inventor
Hideaki Harada
秀秋 原田
Jun Hirai
潤 平井
Motoetsu Ishii
元悦 石井
Yasuo Ogi
靖夫 尾木
Daisuke Katayama
大助 片山
Hisatoku Abiru
久徳 阿比留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004052831A priority Critical patent/JP4234036B2/en
Publication of JP2005240929A publication Critical patent/JP2005240929A/en
Application granted granted Critical
Publication of JP4234036B2 publication Critical patent/JP4234036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable seismic isolator which can tolerate large horizontal displacement and endure large pulling-out force, and also which is reduced in cost and the maintenance of which is easy. <P>SOLUTION: The seismic isolator 10 is arranged to connect a structure 1 and a base member 2 to each other. The seismic isolator includes a disk spring 11 which receives the pulling-out force N so as to be compressed when an earthquake occurs, and a wire 12 for transmitting the pulling-out force to the base member 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、地盤から構造物に対する地震動の入力を低減する免震装置に係り、特に、高層ビルや塔状構造物等の構造物に用いて好適な免震装置に関する。   The present invention relates to a seismic isolation device that reduces the input of seismic motion to the structure from the ground, and more particularly to a seismic isolation device suitable for use in structures such as high-rise buildings and tower-like structures.

地震時に地盤から構造物に伝達される地震動を低減する免震装置が知られている。建築構造物等の免震装置として従来より広く普及している積層ゴムは、圧縮に対しては大荷重を負担できる反面、引抜力(引張力)を負担できないため、その適用は高さが60m程度の構造物に限られていた。
しかしながら、近年においては60mを越えるような高さを有する高層の構造物が増加している。このため、最近では引張力を負担可能なレール支承と積層ゴムとを組み合わせた免震機構が開発され、たとえば100mクラスの高さを有する集合住宅等の高層建築物についても免震構造が適用されるようになっている。(たとえば、特許文献1参照)
特開平10−88849号公報
Seismic isolation devices are known that reduce the earthquake motion transmitted from the ground to the structure during an earthquake. Laminated rubber, which has been widely used as a seismic isolation device for building structures and the like, can bear a heavy load against compression but cannot bear a pulling force (tensile force), so its application is 60m in height. The structure was limited to a degree.
However, in recent years, high-rise structures having a height exceeding 60 m are increasing. For this reason, recently, a seismic isolation mechanism that combines a rail bearing capable of bearing a tensile force and laminated rubber has been developed. For example, a seismic isolation structure is also applied to high-rise buildings such as apartment buildings with a height of 100m. It has become so. (For example, see Patent Document 1)
Japanese Patent Laid-Open No. 10-88849

ところで、100mクラスの高層建築物にレール支承と積層ゴムとを組み合わせた免震装置を適用した場合、地震時には引抜力(たとえば1辺当たり概数100ton程度)に耐えることが必要になってくる。また、地震時においては、上述した引抜力と同時に、相対的な水平変位(たとえば50cm程度)に対して適応することも必要である。
しかしながら、引抜力を負担するレール支承部分は、上部レールと下部レールとを接続金物によりジョイントする構成とされ、接続金物の摺動面をベアリング等により形成して摺動(摩擦)抵抗の小さな動きを実現している機械構成部品である。このため、引抜力に対応可能な従来技術の免震装置はコストが高くなり、また、定期的なメンテナンスを必要とする欠点がある。
By the way, when a seismic isolation device combining a rail support and laminated rubber is applied to a 100 m class high-rise building, it becomes necessary to withstand a pulling force (for example, approximately several hundred tons per side) during an earthquake. Moreover, at the time of an earthquake, it is necessary to adapt to relative horizontal displacement (for example, about 50 cm) simultaneously with the above-described pulling force.
However, the rail support part that bears the pulling force is configured such that the upper rail and the lower rail are jointed by a connecting metal, and the sliding surface of the connecting metal is formed by a bearing or the like to move with a small sliding (friction) resistance. It is a machine component that realizes For this reason, the conventional seismic isolation device that can cope with the pulling force is expensive and has a drawback of requiring regular maintenance.

特に、大型建築構造物等の免震については、常に大きな荷重がベアリング部に作用しているので、ベアリング部の接点でグリース切れとなるのを防止するためには、たとえば定期的に大きなストロークで動かすというような大掛かりなメンテナンスが必要となる。
また、レール支承と積層ゴムとは鉛直剛性が異なるため、これを考慮して荷重分担を考える必要がある。しかし、積層ゴムにはクリープ現象があるため、その設計精度については信頼性の面で問題がある。
In particular, for seismic isolation of large building structures and the like, a large load is always applied to the bearing part, so in order to prevent grease from running out at the contact point of the bearing part, for example, periodically with a large stroke. Large maintenance such as moving is required.
Moreover, since the vertical rigidity differs between the rail support and the laminated rubber, it is necessary to consider the load sharing in consideration of this. However, since the laminated rubber has a creep phenomenon, its design accuracy has a problem in terms of reliability.

このように、地震時に大きな引抜力が作用する高層建築物等の大型建築構造物においては、大きなスライド水平変位を許容するとともに大きな引抜力にも耐えうる、低コストでメンテナンスも容易な信頼性の高い免震装置の開発が求められている。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、大きなスライド水平変位を許容するとともに大きな引抜力にも耐えることができ、しかも、低コストでメンテナンスも容易な信頼性の高い免震装置を提供することにある。
In this way, in large buildings such as high-rise buildings where a large pulling force acts during an earthquake, a large horizontal sliding displacement is allowed and a large pulling force can be tolerated. Development of high seismic isolation devices is required.
The present invention has been made in view of the above circumstances, and the object of the present invention is to permit a large slide horizontal displacement and to withstand a large pulling force, and at a low cost and easy to maintain. The object is to provide a highly reliable seismic isolation device.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る免震装置は、構造物と基礎部材との間を連結するように配設され、地震時に引抜力を受ける免震装置において、前記引抜力を受けて圧縮される弾性部材と、前記弾性部材に前記引抜力を伝達する連結部材と、を具備して構成したことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The seismic isolation device according to the present invention is arranged so as to connect between the structure and the foundation member, and in the seismic isolation device that receives a pulling force during an earthquake, an elastic member that is compressed by receiving the pulling force; And a connecting member for transmitting the pulling force to the elastic member.

このような免震装置によれば、引抜力を受けて圧縮される弾性部材と、該弾性部材に前記引抜力を伝達する連結部材とを具備して構成したので、地震時に引き抜き方向の力を連結部材より受けた弾性部材が圧縮されることにより、相対的な水平変位を吸収しながら弾性部材の圧縮量に応じた引抜力を負担することができる。
この場合、建築構造物側と基礎部材との間を連結する好適な連結部材としては、大きな引張剛性を持つが曲げ剛性の小さなワイヤがあり、特に、ワイヤ連結部については、ガイド部材側のワイヤ接触面を曲面とし、大きな曲率半径に沿ってワイヤを変形させることが好ましい。
According to such a seismic isolation device, the elastic member that is compressed by receiving the pulling force and the connecting member that transmits the pulling force to the elastic member are configured. By compressing the elastic member received from the connecting member, it is possible to bear a pulling force corresponding to the compression amount of the elastic member while absorbing a relative horizontal displacement.
In this case, as a suitable connecting member for connecting the building structure side and the foundation member, there is a wire having a large tensile rigidity but a small bending rigidity. It is preferable that the contact surface is a curved surface and the wire is deformed along a large radius of curvature.

上記の免震装置において、前記弾性部材は、ばね定数の異なる複数種が引き抜き方向へ直列に配列されていることが好ましく、これにより、大荷重を負担しながら変形を吸収するばね定数の高い(高剛性)弾性部材と、小さな荷重で変形するばね定数の低い(低剛性)弾性部材とを組み合わせた構成となるので、最初にばね定数の低い弾性部材が弾性変形して所定位置に達してからばね定数の高い弾性部材が弾性変形するようになり、地震時の大きなスライド水平変位を吸収しながら引抜力に対応することが可能になる。
なお地震力が小さくスライド水平変位が小さいうちは、一般に引抜力の発生はなく、大きな地震力が作用しスライド水平変位が大きくなると引抜力が発生する。すなわち、スライド水平変位が小さいうちは、低剛性の弾性部材が変形して容易にスライド可能として免震性能を保持し、スライド水平変位が大きくなって引抜力が生じると高剛性の弾性部材が変形して引抜力に対応可能になる。
In the above-described seismic isolation device, it is preferable that the elastic member has a plurality of different spring constants arranged in series in the pulling direction, and thereby has a high spring constant that absorbs deformation while bearing a heavy load ( (High rigidity) The elastic member and the low spring constant (low rigidity) elastic member that deforms with a small load are combined. Therefore, after the elastic member with the low spring constant is first elastically deformed and reaches a predetermined position. An elastic member having a high spring constant is elastically deformed, and it is possible to cope with a pulling force while absorbing a large slide horizontal displacement during an earthquake.
When the seismic force is small and the slide horizontal displacement is small, generally no pulling force is generated, and when a large seismic force acts and the slide horizontal displacement becomes large, a pulling force is generated. In other words, while the slide horizontal displacement is small, the low-rigid elastic member is deformed and can be easily slid to maintain seismic isolation performance, and when the slide horizontal displacement is large and pulling force is generated, the high-rigid elastic member is deformed. Thus, it becomes possible to handle the pulling force.

上記の免震装置においては、前記基礎部材側の連結位置に対し、前記構造物側の連結位置が構造物中心位置方向へオフセットされていることが好ましく、これにより、引抜力が作用しない側への水平スライド時に、弾性体に加わる圧縮力を小さく抑えることが可能になる。   In the above seismic isolation device, it is preferable that the connecting position on the structure side is offset in the direction of the center position of the structure with respect to the connecting position on the base member side. It is possible to keep the compression force applied to the elastic body small during horizontal sliding.

上記の免震装置においては、積層ゴム支承と組み合わせることが好ましく、これにより、引張力に弱いという積層ゴムの欠点を補うことができる。   In the above seismic isolation device, it is preferable to combine with a laminated rubber bearing, and this can compensate for the disadvantage of laminated rubber that is weak against tensile force.

上記の免震装置においては、積層ゴムに代えて、背中合わせに直交させたエンドレスローラ支承と組み合わせてもよい。これにより大荷重を支持できる安価なスライド支承を適用することができる。   In the above seismic isolation device, instead of the laminated rubber, it may be combined with an endless roller support orthogonal to the back to back. Thereby, an inexpensive slide bearing capable of supporting a large load can be applied.

上述した本発明の免震装置によれば、地震時の引き抜き力を連結部材より受けた弾性部材が圧縮されることにより、水平スライド変位を吸収しながら弾性部材の圧縮量に応じた引抜力を負担し、免震層の大きなスライド水平変位を許容しながら引抜力に耐えて免震作用を発揮する。従って、引抜力を負担できない低コストの免震支承(積層ゴム支承やエンドレスローラ支承など)と組み合わせることにより、高層建築物の免震にも有効となる安価な免震装置の提供が可能となる。
また、レール支承のように大きな設置スペースを必要としないため、設計の自由度が増して採用を容易にし、さらに、弾性体のばねには引張力が作用しない簡単な構成のため、設計に対する信頼性が高いという利点を有している。
また、取り外しが可能な構成であるから、メンテナンスが容易になるという利点も有している。
According to the above-described seismic isolation device of the present invention, the elastic member receiving the pulling force during the earthquake from the connecting member is compressed, so that the pulling force corresponding to the compression amount of the elastic member is absorbed while absorbing the horizontal slide displacement. It bears the load and withstands the pulling force while allowing a large horizontal displacement of the seismic isolation layer. Therefore, by combining with low-cost seismic isolation bearings (laminated rubber bearings, endless roller bearings, etc.) that cannot bear the pulling force, it is possible to provide an inexpensive seismic isolation device that is also effective for seismic isolation of high-rise buildings. .
In addition, since a large installation space is not required unlike a rail support, the degree of freedom in design is increased and the adoption is facilitated. Further, since the elastic spring has a simple structure in which no tensile force acts, it is reliable for the design. It has the advantage of high performance.
Moreover, since it is a structure which can be removed, it also has the advantage that a maintenance becomes easy.

以下、本発明に係る免震装置の一実施形態を図面に基づいて説明する。
図1に示す免震装置10は、高層住宅等の構造物1とこれを支持する基礎部材2との間に設けた免震層に配設され、両者を連結して地震時に構造物1から引抜力Nを受けるように構成されている。この免震装置10は、引抜力の方向(上下方向上向き)に力を受けて圧縮される弾性部材として皿ばね11を採用し、さらに、皿ばね11が圧縮されることにより基礎部材2に対する構造物1の相対的な水平変位を吸収しながら圧縮量に応じた引抜力Nを基礎部材に伝達する連結部材として直径dのワイヤ12を採用している。
Hereinafter, an embodiment of a seismic isolation device according to the present invention will be described with reference to the drawings.
A seismic isolation device 10 shown in FIG. 1 is disposed in a seismic isolation layer provided between a structure 1 such as a high-rise house and a base member 2 that supports the structure 1, and connects both of them to the structure 1 during an earthquake. It is configured to receive a pulling force N. The seismic isolation device 10 employs a disc spring 11 as an elastic member that is compressed by receiving a force in the direction of the pulling force (upward in the vertical direction), and further, the disc spring 11 is compressed to form a structure for the base member 2. A wire 12 having a diameter d is employed as a connecting member that transmits a pulling force N corresponding to the amount of compression to the base member while absorbing the relative horizontal displacement of the object 1.

ワイヤ12は、その上端部側が構造物1の下端部にワイヤ連結部材13を介して固定支持されている。ワイヤ連結部材13は、構造物1の下端部内に埋め込むようにして強固に一体化した構成とされる。
ワイヤ連結部材13内には、ワイヤ12の上端部12aが周知の手法により抜け止め固定されている。また、ワイヤ12の連結部においては、ワイヤ連結部材13の下端面から下方へ向けて、ガイド部材14が突設されている。このガイド部材14には、ワイヤ12を通す貫通孔14aが設けられ、ワイヤ接触面となる貫通孔14aの内周面は、曲率半径をRに設定した曲面とされる。
The upper end portion side of the wire 12 is fixedly supported on the lower end portion of the structure 1 via a wire connecting member 13. The wire connecting member 13 is configured to be firmly integrated so as to be embedded in the lower end portion of the structure 1.
In the wire connecting member 13, the upper end portion 12 a of the wire 12 is fixed by a well-known method. Further, at the connecting portion of the wire 12, a guide member 14 protrudes downward from the lower end surface of the wire connecting member 13. The guide member 14 is provided with a through hole 14a through which the wire 12 passes, and an inner peripheral surface of the through hole 14a serving as a wire contact surface is a curved surface with a radius of curvature set to R.

また、ワイヤ12の下端部12bは、後述する皿ばね11のガイドシャフト15に固定支持されている。この場合、ガイドシャフト15の上部フランジ部15aに対し、ワイヤ12の下端部12bが上述した上端部12aと同様の手法によって抜け止め固定されている。なお、フランジ部15aの上面には、曲率半径Rの曲面に形成された貫通孔14aを有するガイド部材14が設けられている。
上述したワイヤ12は、通常耐荷重を考慮して複数本をバランスよく配置した構成とされるが、図2に示す実施例では、6本のワイヤ12が同一円周上に60度ピッチで配置されている。
The lower end 12b of the wire 12 is fixedly supported by a guide shaft 15 of a disc spring 11 described later. In this case, the lower end portion 12b of the wire 12 is fixed to the upper flange portion 15a of the guide shaft 15 by the same method as the upper end portion 12a described above. A guide member 14 having a through hole 14a formed in a curved surface having a curvature radius R is provided on the upper surface of the flange portion 15a.
The above-described wire 12 is usually configured with a plurality of wires arranged in a balanced manner in consideration of load resistance. In the embodiment shown in FIG. 2, six wires 12 are arranged at a 60 ° pitch on the same circumference. Has been.

一方、皿ばね11は、円柱状としたガイドシャフト15の下端部15b側から挿入されて上下方向に多数配列され、下端部15bに螺合したナット部材16と上端規制部材17との間に保持されている。ガイド部材15は基礎部材2に設けた凹部3内に収納され、その上部開口を塞ぐようにして、上端規制部材17が基礎部材2に強固に固定されている。
また、上部規制部材17の貫通孔17aを通るガイドシャフト15は、上部フランジ部15aがワイヤ12で吊下げられるように支持された状態、あるいは、上部フランジ15aが上部規制部材17の上面に載置された状態とされる。このため、常時大荷重が作用するようなことはなく、従って、取り外しが可能なことに加えてグリース切れ等の問題が発生することもないため、メンテナンスは容易である。
On the other hand, the disc spring 11 is inserted between the bottom end 15b side of the cylindrical guide shaft 15 and arranged in a large number in the vertical direction, and is held between the nut member 16 and the top regulating member 17 screwed into the bottom end 15b. Has been. The guide member 15 is housed in the recess 3 provided in the base member 2, and the upper end regulating member 17 is firmly fixed to the base member 2 so as to close the upper opening.
The guide shaft 15 passing through the through hole 17a of the upper restricting member 17 is supported in such a manner that the upper flange portion 15a is suspended by the wire 12, or the upper flange 15a is placed on the upper surface of the upper restricting member 17. It is assumed that it was done. For this reason, a large load is not always applied, and therefore, the maintenance is easy because it can be removed and the problem of running out of grease does not occur.

上述したガイド部材14及び上部フランジ15aは、円筒状とした上部外筒18内に収納されている。同様に、ガイドシャフト15、皿ばね11及びナット部材16は、円筒状とした下部外筒19内に収納されている。図示の構成例において、上部外筒18及び下部外筒19は、いずれも上端部規制部材17に支持されている。なお、下部外筒19の下端部側内周面には、ナット部材16の水平動を規制してスムーズに上下移動させるガイドリング20が設けられている。   The guide member 14 and the upper flange 15a described above are housed in a cylindrical upper outer cylinder 18. Similarly, the guide shaft 15, the disc spring 11, and the nut member 16 are accommodated in a cylindrical lower outer cylinder 19. In the illustrated configuration example, the upper outer cylinder 18 and the lower outer cylinder 19 are both supported by the upper end restricting member 17. A guide ring 20 is provided on the inner peripheral surface on the lower end side of the lower outer cylinder 19 so as to smoothly move the nut member 16 up and down by restricting horizontal movement of the nut member 16.

上述した構成の免震装置10は、地震による入力が作用すると、以下に説明するように動作して免震時に生じる引抜力を負担する。
地震により、構造物1と基礎部材2との間に生じた水平方向の相対移動Wは、皿ばね11の圧縮変形とワイヤ12が傾斜することにより許容される。この時、ワイヤ12の両端部が曲率半径Rの曲面に形成された貫通孔14aを通っているので、相対移動Wによりワイヤ12が図中に想像線で示すように傾斜する場合には、緩やかな曲線を描いて傾斜するためワイヤ12に応力集中が生じにくい構成となる。
なお、クレーン起伏のシーブ径とワイヤ径との関係に関する本願出願人の長年の経験によれば、曲面の曲率半径Rとワイヤ12の直径dとの比(R/d)が12.5程度に設定されていれば、応力集中によりワイヤ12が切断されるようなことはないという知見を得ている。
The seismic isolation device 10 having the above-described configuration operates as described below when an input due to an earthquake acts, and bears a pulling force generated during the seismic isolation.
The horizontal relative movement W generated between the structure 1 and the base member 2 due to the earthquake is permitted by compressive deformation of the disc spring 11 and the inclination of the wire 12. At this time, since both ends of the wire 12 pass through the through-hole 14a formed in the curved surface having the curvature radius R, when the wire 12 is inclined as indicated by an imaginary line in the drawing due to the relative movement W, the wire 12 gradually Since the wire 12 is inclined while being drawn, the stress concentration is less likely to occur in the wire 12.
According to the applicant's many years of experience regarding the relationship between the crane sheave diameter and the wire diameter, the ratio (R / d) of the curvature radius R of the curved surface to the diameter d of the wire 12 is about 12.5. If it is set, it has been found that the wire 12 is not cut by stress concentration.

また、地震力により構造物1が大きく水平方向にスライドし、構造物に生じる転倒モーメントが大きくなって自重による圧縮力以上の引抜力が作用すると、ガイドシャフト15が上部フランジ部15a及びナット部材16とともに大きく引き上げられ、上端規制部材17とナット16との間に配列された皿ばね11を大きく圧縮する。この結果、地震入力の引抜力は皿ばね11の圧縮変形に応じたばね力と釣合うので、水平方向の大きな相対移動Wを許容しながら大きな引抜力に対応することができる。   Further, when the structure 1 is greatly slid in the horizontal direction due to the seismic force, the overturning moment generated in the structure is increased and a pulling force more than the compressive force due to its own weight acts, the guide shaft 15 is moved to the upper flange portion 15a and the nut member 16. At the same time, the disk spring 11 is largely pulled up and the disk springs 11 arranged between the upper end regulating member 17 and the nut 16 are greatly compressed. As a result, the pull-out force of the earthquake input balances with the spring force corresponding to the compression deformation of the disc spring 11, so that a large pull-out force can be accommodated while allowing a large relative movement W in the horizontal direction.

続いて、図3に示す免震装置の第2の実施形態を説明する。なお、上述した第1の実施形態と同様の部材には同じ符号を付し、その詳細な説明は省略する。
この実施形態の免震装置10Aは、皿ばね11と直列に配列されたコイルばね21を備えている。このコイルばね21は、ばね定数を皿ばね11より小さく設定した柔らかい弾性部材(低剛性のばね)とされ、ガイドシャフト15Aに挿入して皿ばね11の下方に配設されている。すなわち、この実施形態の免震装置10Aは、ばね定数の異なる二種類の弾性部材(皿ばね11及びコイルばね21)を引き抜き方向へ直列に配列した構成とされる。
なお、図中の符号22はガイドシャフト15Aにルーズに挿入されて自由にスライドする皿ばね保持部材、23はガイドシャフト15Aと螺合等により一体化されているコイルばね保持部材である。
Next, a second embodiment of the seismic isolation device shown in FIG. 3 will be described. In addition, the same code | symbol is attached | subjected to the member similar to 1st Embodiment mentioned above, and the detailed description is abbreviate | omitted.
The seismic isolation device 10 </ b> A of this embodiment includes a coil spring 21 arranged in series with the disc spring 11. The coil spring 21 is a soft elastic member (low-rigidity spring) having a spring constant set smaller than that of the disc spring 11 and is inserted below the guide shaft 15 </ b> A and disposed below the disc spring 11. That is, the seismic isolation device 10A of this embodiment has a configuration in which two types of elastic members (between the spring 11 and the coil spring 21) having different spring constants are arranged in series in the drawing direction.
In the figure, reference numeral 22 denotes a disc spring holding member that is loosely inserted into the guide shaft 15A and freely slides, and 23 is a coil spring holding member integrated with the guide shaft 15A by screwing or the like.

上述した構成の免震装置10Aにおいては、地震により引抜力が作用すると、最初にガイドシャフト15Aとともにコイルばね保持部材23が引き上げられるので、ばね定数の小さいコイルばね21が皿ばね保持部材22とコイルばね保持部材23との間に挟まれて押圧を受ける。この押圧で圧縮されたコイルばね21が所定位置まで弾性変形すると、今度は上述した第1の実施形態と同様に、皿ばね保持部材22も一体的に引き上げられることになり、ばね定数の大きい皿ばね11が同様に圧縮される。   In the seismic isolation device 10A having the above-described configuration, when a pulling force acts due to an earthquake, the coil spring holding member 23 is first pulled up together with the guide shaft 15A, so that the coil spring 21 having a small spring constant becomes the disc spring holding member 22 and the coil. It is sandwiched between the spring holding member 23 and receives pressure. When the coil spring 21 compressed by this pressing is elastically deformed to a predetermined position, the disc spring holding member 22 is now also lifted up in the same manner as in the first embodiment described above, so that the disc with a large spring constant is obtained. The spring 11 is similarly compressed.

このような構成とすれば、ばね定数の異なる弾性体を直列に配列したので、2段階の圧縮変形をするようになり、従って、コイルばね21の弾性変形によっても水平方向のスライド変位を吸収することができるようになる。このため、地震力が小さくスライド変位が少ないうちは、コイルばね21が変形して容易にスライド可能にして免震性能を保持し、スライド変位が大きくなって引抜力が生じると皿ばねが変形して引抜力に対応可能となり、免震性能を損なうことなく効果的に引抜力を基礎部材に伝達することができる。   With such a configuration, the elastic bodies having different spring constants are arranged in series, so that the two-stage compression deformation occurs, and accordingly, the horizontal slide displacement is absorbed even by the elastic deformation of the coil spring 21. Will be able to. For this reason, when the seismic force is small and the slide displacement is small, the coil spring 21 is deformed and can be easily slid to maintain seismic isolation performance. When the slide displacement becomes large and pulling force is generated, the disc spring is deformed. Thus, it becomes possible to cope with the pulling force, and the pulling force can be effectively transmitted to the base member without impairing the seismic isolation performance.

続いて、本発明による免震装置の第3の実施形態を図4に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態の免震装置10Bは、構造物1及び基礎部材2と連結するガイドシャフト15Bの両端部にユニバーサルジョイント30を介在させて水平方向のスライド変位を吸収するように構成した点が異なっている。なお、図示の例では、ばね定数の異なる皿ばね11及びコイルばね21を直列に配列した構成としてあるが、図1に示したように、皿ばね11のみを設けた構成としてもよい。
Then, 3rd Embodiment of the seismic isolation apparatus by this invention is described based on FIG. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
The seismic isolation device 10B of this embodiment is different in that the universal shaft 30 is interposed at both ends of the guide shaft 15B connected to the structure 1 and the base member 2 to absorb horizontal slide displacement. Yes. In the illustrated example, the disc springs 11 and the coil springs 21 having different spring constants are arranged in series. However, as shown in FIG. 1, only the disc springs 11 may be provided.

このようなユニバーサルジョイント30を採用することにより、水平方向のスライド変位が作用すると、ばねが圧縮変形しユニバーサルジョイント30を支点にしてガイドシャフト15Bが傾斜するので、上述したワイヤ12と同様に水平スライド変位吸収しながら引抜力を負担することができる。
なお、このような構成では、ユニバーサルジョイント30及びガイドシャフト15Bが引抜力を基礎部材に伝達する連結部材となる。
By adopting such a universal joint 30, when a horizontal slide displacement acts, the spring is compressed and deformed, and the guide shaft 15B is inclined with the universal joint 30 as a fulcrum. The drawing force can be borne while absorbing the displacement.
In such a configuration, the universal joint 30 and the guide shaft 15B serve as a connecting member that transmits the pulling force to the base member.

また、上述した各実施形態では、構造物1及び基礎部材2と連結するガイドシャフト15が地震のない通常の状態で鉛直線上に位置していたが、たとえば図5に示すように、基礎部材2側の連結位置Sに対し、構造物1側の連結位置S1が構造物中心位置方向(紙面の左方向)へ長さaだけオフセットした構成としてもよい。
このような構成とすれば、引抜力が作用しない側への水平スライド時に、皿ばね等の弾性部材に生じる圧縮力を小さく抑え、水平スライドを容易にして免震性能の低下を抑制できる。
Moreover, in each embodiment mentioned above, although the guide shaft 15 connected with the structure 1 and the foundation member 2 was located on the vertical line in the normal state without an earthquake, for example, as shown in FIG. The connection position S1 on the structure 1 side may be offset from the connection position S on the side by the length a in the structure center position direction (left direction on the paper surface).
With such a configuration, it is possible to suppress a compressive force generated in an elastic member such as a disc spring at the time of horizontal sliding to the side where the pulling force does not act, thereby facilitating horizontal sliding and suppressing a decrease in seismic isolation performance.

また、図6に示すように、上述したオフセットに加えて、基礎部材1側の連結位置Sと構造物2側の連結位置S1とを連結するガイドシャフト15´に中間ヒンジ部Hを設けてもよい。
このような構成としても、上記と同様、引抜力が作用しない側への水平スライドを容易にして免震性能低下を抑制できる。
Further, as shown in FIG. 6, in addition to the offset described above, an intermediate hinge portion H may be provided on the guide shaft 15 ′ that connects the connecting position S on the base member 1 side and the connecting position S1 on the structure 2 side. Good.
Even in such a configuration, as described above, it is possible to facilitate the horizontal slide to the side where the pulling force does not act, and to suppress the seismic isolation performance deterioration.

また、上述した各実施形態の免震装置は、引抜力に対応できない積層ゴム支承と組み合わせて使用することが好ましい。
図7は、第1の実施形態に示した免震装置10と、積層ゴム支承40とを組み合わせた構成例を示しており、積層ゴム支承40は、構造物を支持し、地震時には構造物を水平スライドさせて固有周期を長周期化し、ゆっくりした揺れに変えて地震力を低減する。しかし、構造物に生じる転倒モーメントで引抜力が掛かると、これを負担できない。本免震装置10はこの引抜力に対応するものであり、引張力に弱いという積層ゴム支承40の欠点を補った免震装置を安価に提供することができる。
Moreover, it is preferable to use the seismic isolation apparatus of each embodiment mentioned above in combination with the laminated rubber bearing which cannot respond to drawing force.
FIG. 7 shows a configuration example in which the seismic isolation device 10 shown in the first embodiment and the laminated rubber bearing 40 are combined. The laminated rubber bearing 40 supports the structure and supports the structure during an earthquake. Slide horizontally to make the natural period longer, and change to slow shaking to reduce seismic force. However, if a pulling force is applied by the overturning moment generated in the structure, this cannot be borne. The seismic isolation device 10 corresponds to this pull-out force, and can provide an inexpensive seismic isolation device that compensates for the disadvantage of the laminated rubber bearing 40, which is weak against tensile force.

また、本発明の免震装置は、上述した積層ゴム支承40に代えて、背中合わせに直交させたエンドレスローラ支承と組み合わせてもよい。
図8は、エンドレスローラ支承の構成例を示す斜視図である。このエンドレスローラ支承50は、ローラ51が露出する面を下向きにして同方向(X軸方向)へ移動可能に並べられた4台の下向きエンドレスローラ52と、ローラ51が露出する面を上向きにして同方向(Y軸方向)へ移動可能に並べられた4台の上向きエンドレスローラ53とにより構成されている。
Further, the seismic isolation device of the present invention may be combined with an endless roller bearing orthogonal to the back to back instead of the laminated rubber bearing 40 described above.
FIG. 8 is a perspective view showing a configuration example of the endless roller support. The endless roller support 50 has four downward endless rollers 52 arranged so as to be movable in the same direction (X-axis direction) with the surface from which the roller 51 is exposed downward, and the surface from which the roller 51 is exposed upward. It comprises four upward endless rollers 53 arranged so as to be movable in the same direction (Y-axis direction).

このような構成のエンドレスローラ支承50は、上述した免震装置10とともに構造物1と基礎部材2との間に配設されることにより、地震による水平方向の成分をエンドレスローラ支承50がX軸及びY軸方向に移動することで吸収する。また、構造物の自重はエンドレスローラ支承50で支持し、地震時に構造物に生じる転倒モーメントによる引抜力は、免震装置10が負担して対応することが可能となる。
このように、上述した本発明の免震装置は、積層ゴム支承40やエンドレスローラ支承50と組み合わせた構成を採用することにより、高価で定期的なメンテナンスを必要とするレール支承が不要となる。
なお、積層ゴム支承やエンドレスローラ支承以外にも、摩擦支承や滑り支承など引抜力を負担できない支承と組み合わせる構成としてもよい。
The endless roller bearing 50 having such a configuration is disposed between the structure 1 and the base member 2 together with the above-described seismic isolation device 10, so that the endless roller bearing 50 can convert the horizontal component due to the earthquake to the X axis. And it absorbs by moving in the Y-axis direction. Further, the weight of the structure is supported by the endless roller support 50, and the pull-out force due to the overturning moment generated in the structure during an earthquake can be handled by the seismic isolation device 10.
Thus, the seismic isolation device of the present invention described above eliminates the need for a rail bearing that is expensive and requires regular maintenance by adopting a configuration in combination with the laminated rubber bearing 40 and the endless roller bearing 50.
In addition to the laminated rubber bearing and the endless roller bearing, a structure such as a friction bearing or a sliding bearing that can not bear the pulling force may be combined.

また、上述した本発明の免震装置を設置する場合、特にレール支承のように水平方向の大きなスペースを必要としないため、構造物1を設計する自由度が増すという利点を有している。
また、上述した本発明の免震装置は、弾性体に引張力が作用しない構成のため、信頼性の高い装置になるという利点もある。
Moreover, when installing the seismic isolation apparatus of this invention mentioned above, since the space of a horizontal direction is not especially required like a rail support, it has the advantage that the freedom degree which designs the structure 1 increases.
Moreover, since the above-described seismic isolation device of the present invention has a configuration in which a tensile force does not act on the elastic body, there is an advantage that it becomes a highly reliable device.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。   In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明に係る免震装置の第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the seismic isolation apparatus which concerns on this invention. 図1及び図3のA−A断面図である。It is AA sectional drawing of FIG.1 and FIG.3. 本発明に係る免震装置の第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the seismic isolation apparatus which concerns on this invention. 本発明に係る免震装置の第3の実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the seismic isolation apparatus which concerns on this invention. 本発明に係る免震装置の第1変形例を示す図である。It is a figure which shows the 1st modification of the seismic isolation apparatus which concerns on this invention. 本発明に係る免震装置の第2変形例を示す図である。It is a figure which shows the 2nd modification of the seismic isolation apparatus which concerns on this invention. 本発明の免震装置を積層ゴム支承と組み合わせて使用した状態を示す図である。It is a figure which shows the state which used the seismic isolation apparatus of this invention in combination with the laminated rubber bearing. エンドレスローラ支承の構成例を示す斜視図である。It is a perspective view which shows the structural example of an endless roller support.

符号の説明Explanation of symbols

1 構造物
2 基礎部材
3 凹部
10,10A,10B 免震装置
11 皿ばね(弾性部材)
12 ワイヤ(連結部材)
13 ワイヤ連結部材
14 ガイド部材
15,15A,15′,15B ガイドシャフト
16 ナット部材
17 上端規制部材
21 コイルばね
30 ユニバーサルジョイント
40 積層ゴム支承
50 エンドレスローラ支承
DESCRIPTION OF SYMBOLS 1 Structure 2 Base member 3 Recess 10, 10, A, 10B Seismic isolation device 11 Disc spring (elastic member)
12 wire (connection member)
13 Wire connecting member 14 Guide member 15, 15A, 15 ', 15B Guide shaft 16 Nut member 17 Upper end regulating member 21 Coil spring 30 Universal joint 40 Laminated rubber bearing 50 Endless roller bearing

Claims (5)

構造物と基礎部材との間を連結するように配設され、地震時に引抜力を受ける免震装置において、
前記引抜力を受けて圧縮される弾性部材と、
前記弾性部材に前記引抜力を伝達する連結部材と、
を具備して構成したことを特徴とする免震装置。
In the seismic isolation device that is arranged so as to connect the structure and the foundation member and receives the pulling force in the event of an earthquake,
An elastic member that is compressed by receiving the pulling force;
A connecting member for transmitting the pulling force to the elastic member;
A seismic isolation device characterized by comprising:
前記弾性部材は、ばね定数の異なる複数種が引き抜き方向へ直列に配列されていることを特徴とする請求項1に記載の免震装置。   The seismic isolation device according to claim 1, wherein the elastic member includes a plurality of types having different spring constants arranged in series in the drawing direction. 前記基礎部材側の連結位置に対し、前記構造物側の連結位置が構造物中心位置方向へオフセットされていることを特徴とする請求項1または2に記載の免震装置。   The seismic isolation device according to claim 1 or 2, wherein the connection position on the structure side is offset in the direction of the center position of the structure with respect to the connection position on the foundation member side. 積層ゴム支承と組み合わせたことを特徴とする請求項1から3のいずれかに記載の免震装置。   4. The seismic isolation device according to claim 1, wherein the seismic isolation device is combined with a laminated rubber bearing. 背中合わせに直交させたエンドレスローラ支承体と組み合わせたことを特徴とする請求項1から3のいずれかに記載の免震装置。   The seismic isolation device according to any one of claims 1 to 3, wherein the seismic isolation device is combined with an endless roller support body orthogonal to the back to back.
JP2004052831A 2004-02-27 2004-02-27 Seismic isolation device Expired - Lifetime JP4234036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052831A JP4234036B2 (en) 2004-02-27 2004-02-27 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052831A JP4234036B2 (en) 2004-02-27 2004-02-27 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2005240929A true JP2005240929A (en) 2005-09-08
JP4234036B2 JP4234036B2 (en) 2009-03-04

Family

ID=35022873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052831A Expired - Lifetime JP4234036B2 (en) 2004-02-27 2004-02-27 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP4234036B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098978A (en) * 2008-10-22 2010-05-06 Miyamae:Kk Drag mechanism for fishing reel
JP2011220010A (en) * 2010-04-12 2011-11-04 Aseismic Devices Co Ltd Foundation structure
CN109629752A (en) * 2019-01-25 2019-04-16 北京工业大学 The cross foot joint of recoverable function after a kind of shake of additional Γ shape anti-side shear wall
CN109736512A (en) * 2019-01-25 2019-05-10 北京工业大学 The cross foot joint of recoverable function after a kind of shake of additional bending resistant steel plate group

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107642102B (en) * 2017-09-30 2019-11-05 贵州大兴电力设备制造有限公司 A kind of damping electric pole

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098978A (en) * 2008-10-22 2010-05-06 Miyamae:Kk Drag mechanism for fishing reel
JP2011220010A (en) * 2010-04-12 2011-11-04 Aseismic Devices Co Ltd Foundation structure
CN109629752A (en) * 2019-01-25 2019-04-16 北京工业大学 The cross foot joint of recoverable function after a kind of shake of additional Γ shape anti-side shear wall
CN109736512A (en) * 2019-01-25 2019-05-10 北京工业大学 The cross foot joint of recoverable function after a kind of shake of additional bending resistant steel plate group

Also Published As

Publication number Publication date
JP4234036B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP3761241B2 (en) Seismic isolation device
JP5181269B2 (en) Vertical seismic isolation mechanism
CA2672314A1 (en) Seismic controller for friction bearing isolated structures
JP5638762B2 (en) Building
JP4234036B2 (en) Seismic isolation device
JP2006291588A (en) Base-isolated structure
JP3736285B2 (en) Isolation device
JP2007321853A (en) Base isolating device and base isolated structure
JP4074575B2 (en) Tuned mass damper
JP3825898B2 (en) Seismic isolation device
JP4848599B2 (en) Seismic isolation structure fixing device
JP2011127384A (en) Base isolation device
JP2000266116A (en) Swinging bearing type base isolation device
JP4439694B2 (en) High-damping frame of high-rise building
JP2013113383A (en) Base isolation device
JPH04154B2 (en)
JP4404319B1 (en) Bearing device
JP3671317B2 (en) Seismic isolation mechanism
JP2010189997A (en) Base-isolated structure and building having the same
JP2006200184A (en) Base isolation device and base isolation structure
JP2005068874A (en) Rolling bearing with stopper and seismic response reducing system of building
JPH11336201A (en) Bearing device
JP7350964B1 (en) Seismic isolation device
JP2002276194A (en) Seismic isolator
JP2011184950A (en) Slide foundation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4234036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350