JPH09196116A - Base isolator of structure - Google Patents
Base isolator of structureInfo
- Publication number
- JPH09196116A JPH09196116A JP8007386A JP738696A JPH09196116A JP H09196116 A JPH09196116 A JP H09196116A JP 8007386 A JP8007386 A JP 8007386A JP 738696 A JP738696 A JP 738696A JP H09196116 A JPH09196116 A JP H09196116A
- Authority
- JP
- Japan
- Prior art keywords
- seismic isolation
- sliding
- support
- building
- foundation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【発明の属する技術分野】本発明は、構造物の免震構造
に関し、詳しくは、弾性層と剛性板層とを交互にかつ複
数層に積層してなる免震支持体を有する免震支持構造に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a seismic isolation structure for a structure, and more particularly to a seismic isolation support structure having a seismic isolation support in which elastic layers and rigid plate layers are alternately laminated in plural layers. It is about.
【0002】[0002]
【従来の技術】建築物や機械類などに対する地震の振動
の伝播を防止する免震支持体として、ゴム等からなる弾
性層と鋼板等からなる剛性板層とを交互に多数層に積層
した免震支持体が知られている。この種の免震支持体
は、一般に免震積層ゴムと称されるもので、弾性層の水
平方向の弾性変形によって構造物への振動の伝播を防止
し、それと同時に免震支持体および構造物からなる振動
系の固有周期(以下「免震周期」という)を、地震の水
平振動の周期より長くすることによって、地震による構
造物の振動を抑制する。一般に免震周期Tfは、次式
(1)で表される。 Tf=2π(W/(g・Kf))1/2 ・・・(1) 但し、 W;構造物の重量 g;重力加速度 Kf;免震積層ゴムの水平バネ定数 ここで、Kfは、次式(2)で表される。 Kf=A・G/h ・・・(2) 但し、 A;弾性層の断面積 G;弾性層のせん断弾性係数 h;弾性層の高さ2. Description of the Related Art As a seismic isolation support for preventing the propagation of earthquake vibrations to buildings and machinery, an elastic layer made of rubber or the like and a rigid plate layer made of steel or the like are alternately laminated in multiple layers. Seismic supports are known. This type of seismic isolation support is generally called seismic isolation laminated rubber, which prevents the propagation of vibration to the structure by horizontal elastic deformation of the elastic layer, and at the same time, seismic isolation support and structure. The vibration of a structure caused by an earthquake is suppressed by making the natural period of the vibration system consisting of (hereinafter referred to as "seismic isolation period") longer than the period of horizontal vibration of the earthquake. Generally, the seismic isolation period T f is expressed by the following equation (1). T f = 2π (W / (g · K f )) 1/2 (1) where W: weight of structure g; gravitational acceleration K f ; horizontal spring constant of base-isolated laminated rubber where K f is represented by the following equation (2). K f = A · G / h (2) where A is the cross-sectional area of the elastic layer G is the shear elastic modulus of the elastic layer h is the height of the elastic layer
【0003】[0003]
【発明が解決しようとする課題】前式(1)からわかる
ように、免震周期Tfは構造物の重量Wの平方根に比例
し、水平バネ定数Kfの平方根に反比例するため、木造
住宅のように重量Wが小さい軽量構造物において免震周
期Tfを長くするには、前式(2)からわかるように、
弾性層のせん断弾性係数Gを小さくするか、弾性層の直
径を小さくするかまたは高さhを大きくして、水平バネ
定数Kfを小さくする必要がある。通常は弾性層の高さ
hを大きくせざるを得ず、免震積層ゴムが丈高い(細長
い)形状となるため、地震時に構造物に対して基礎が水
平方向に大きく変位すると、免震積層ゴムが座屈して構
造物を充分に支えきれなくなる恐れがある。この座屈を
防止するためには、弾性層の弾性力を増大させるか免震
積層ゴムを太くすればよいが、そのようにした場合は前
述のように免震周期Tfが短くなってしまい、免震特性
が低下するといった不都合が生ずる。As can be seen from the above equation (1), the seismic isolation period T f is proportional to the square root of the weight W of the structure and inversely proportional to the square root of the horizontal spring constant K f , so that the wooden house In order to lengthen the seismic isolation period T f in a lightweight structure having a small weight W as shown in the formula (2),
It is necessary to reduce the horizontal elastic constant K f by reducing the shear elastic modulus G of the elastic layer, reducing the diameter of the elastic layer, or increasing the height h. Normally, the height h of the elastic layer must be increased, and the seismic isolation laminated rubber has a strong (slender) shape. Therefore, if the foundation is largely displaced horizontally with respect to the structure during an earthquake, the seismic isolation laminated The rubber may buckle and may not support the structure sufficiently. In order to prevent this buckling, the elastic force of the elastic layer may be increased or the seismic isolation laminated rubber may be thickened. However, in such a case, the seismic isolation cycle T f becomes short as described above. However, the inconvenience that the seismic isolation characteristic deteriorates occurs.
【0004】本発明は、前記従来の問題点に鑑みてなさ
れたものであって、軽量構造物であっても、免震特性を
損なうことなく大変形時における免震支持体の座屈を確
実に防止できる構造物の免震構造を提供することを目的
とする。The present invention has been made in view of the above-mentioned conventional problems. Even in a lightweight structure, the seismic isolation support can be reliably buckled during large deformation without impairing the seismic isolation characteristics. The purpose is to provide a seismic isolation structure for structures that can be prevented.
【0005】[0005]
【課題を解決するための手段】本発明は、前記目的を達
成するため、次のような構成を有する。すなわち、請求
項1の発明は、基礎と構造物との間に介在して該構造物
を水平方向に移動自在に支持すると共に、弾性層と剛性
板層とを交互にかつ複数層に積層してなる免震支持体を
備えた構造物の免震構造において、前記基礎と前記構造
物との間に、該構造物の底面に設けた上側滑り体と、前
記基礎に設けた下側滑り体とからなる滑り支承手段を介
在させ、前記構造物の重量を前記滑り支承手段および前
記免震支持体それぞれに分担させたことを特徴とする構
造物の免震構造である。請求項2の発明は、前記上側滑
り体と前記下側滑り体との間に上下方向に所定量の隙間
を形成し、前記下側滑り体は、地震時に前記基礎が前記
構造物に対して水平方向に変位し前記免震支持体が前記
所定量沈み込んだときに、前記上側滑り体に摺接しかつ
該上側滑り体を支持するものであることを特徴とする請
求項1記載の構造物の免震構造である。The present invention has the following configuration to achieve the above object. That is, according to the invention of claim 1, the structure is interposed between the foundation and the structure to support the structure so as to be movable in the horizontal direction, and the elastic layers and the rigid plate layers are alternately laminated in a plurality of layers. In a seismic isolation structure for a structure including a seismic isolation support, an upper slide body provided on a bottom surface of the structure and a lower slide body provided on the foundation between the foundation and the structure. A seismic isolation structure for a structure is characterized in that the weight of the structure is shared by the sliding support means and the seismic isolation support body by interposing a sliding support means consisting of According to a second aspect of the present invention, a predetermined amount of gap is formed between the upper slide body and the lower slide body in the vertical direction, and the lower slide body has the foundation with respect to the structure during an earthquake. The structure according to claim 1, wherein when the seismic isolation support body is displaced in a horizontal direction and the seismic isolation support body is depressed by the predetermined amount, the seismic isolation support body slidably contacts the upper slide body and supports the upper slide body. It is a seismic isolation structure.
【0006】通常、地震時に基礎が構造物に対して水平
方向に変位すると、構造物を支持している免震支持体に
は、その水平方向のせん断変形に伴って沈み込みが生ず
るため、基礎と構造物との距離は狭められる。Usually, when the foundation is displaced in the horizontal direction with respect to the structure during an earthquake, the seismic isolation support which supports the structure is submerged due to the horizontal shear deformation. The distance between and the structure is narrowed.
【0007】本発明によれば、免震支持体が、構造物側
の前記上側滑り体と基礎側の前記下側滑り支持体との間
の隙間分(前記所定量)沈み込んだときには、上側滑り
体と下側滑り体とが互いに接触・摺動し、それと同時に
前記構造物の重量による垂直荷重の一部を下側滑り体が
分担して受けるようになる。これにより、上側滑り体と
下側滑り体とが接触した後は、基礎が水平方向にさらに
変位しても、免震支持体の所定量以上の沈み込みは生じ
なくなる。よって、この所定量を、免震支持体の水平方
向の許容変形量に応じて設定することにより、大変形時
における免震支持体の座屈を確実に防止することができ
る。なお、ここでいう「許容変形量」とは、免震支持体
のみで構造物を安定的に支持し得るときの免震支持体の
水平変位量を意味する。According to the present invention, when the seismic isolation support is depressed by the gap (the predetermined amount) between the upper slide on the structure side and the lower slide support on the foundation side, The sliding body and the lower sliding body contact and slide with each other, and at the same time, the lower sliding body bears a part of the vertical load due to the weight of the structure. Accordingly, after the upper slide body and the lower slide body are in contact with each other, even if the foundation is further displaced in the horizontal direction, the seismic isolation support does not sink more than a predetermined amount. Therefore, by setting this predetermined amount according to the horizontal allowable deformation amount of the seismic isolation support, it is possible to reliably prevent buckling of the seismic isolation support during large deformation. The “allowable deformation amount” here means the horizontal displacement amount of the seismic isolation support when the structure can be stably supported only by the seismic isolation support.
【0008】また、相対的に変位している上側滑り体と
下側滑り体とが接触することから、両者の摺接面間にお
ける摩擦係数は動摩擦係数となり、両者は良好な滑り特
性で互いに摺動する。よって、免震構造全体での水平剛
性の上昇は少なく、免震特性が影響されることもない。Further, since the relatively sliding upper and lower sliding bodies come into contact with each other, the coefficient of friction between the sliding contact surfaces of the two becomes a dynamic coefficient of friction, and the two slide with good sliding characteristics. Move. Therefore, the increase in the horizontal rigidity of the entire seismic isolation structure is small, and the seismic isolation characteristics are not affected.
【0009】したがって、軽量構造物であっても、免震
特性を損なうことなく大変形時における免震支持体の座
屈を確実に防止することができる。Therefore, even with a lightweight structure, it is possible to reliably prevent the seismic isolation support from buckling during large deformation without impairing the seismic isolation characteristics.
【0010】[0010]
【発明の実施の形態】以下、図面を参照して本発明の実
施形態を説明する。図1は本実施形態に係る免震構造の
平面図、図2は本実施形態に係る免震構造の側面図、図
3は本実施形態に係る免震構造の側面図であって、免震
積層ゴムがせん断変形した状態を示す図である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. 1 is a plan view of the seismic isolation structure according to the present embodiment, FIG. 2 is a side view of the seismic isolation structure according to the present embodiment, and FIG. 3 is a side view of the seismic isolation structure according to the present embodiment. It is a figure which shows the state which the laminated rubber carried out shear deformation.
【0011】本実施形態の免震構造は、図1および図2
に示すように、基礎2と建築物(構造物の一例)4との
間に介在して建築物4を水平方向に移動自在に支持する
免震積層ゴム(免震支持体に相当)6を備えた免震構造
であって、基礎2と建築物4との間にさらに滑り支承手
段7を設け、建築物4の重量を滑り支承手段7および免
震積層ゴム6それぞれに分担させるものである。そし
て、滑り支承手段7は、建築物4の底面4aに設けた滑
り鋼板(上側滑り体の一例)8と、滑り鋼板8との間に
上下方向に所定量Aの隙間を有するように基礎2に設け
た滑り支持体(下側滑り体の一例)10とを備える。以
下、各部材の構成を詳細に説明する。The seismic isolation structure of this embodiment is shown in FIGS.
As shown in FIG. 2, a seismic isolation laminated rubber (corresponding to a seismic isolation support) 6 which is interposed between the foundation 2 and the building (an example of a structure) 4 and movably supports the building 4 in the horizontal direction is provided. In the seismic isolation structure provided, a sliding bearing means 7 is further provided between the foundation 2 and the building 4, and the weight of the building 4 is shared by the sliding bearing means 7 and the seismic isolated laminated rubber 6. . Then, the sliding support means 7 is provided with a sliding plate 8 (an example of an upper sliding body) 8 provided on the bottom surface 4a of the building 4 and the sliding plate 8 so that a vertical gap of a predetermined amount A is provided between the foundation 2 and the sliding plate 8. The sliding support body (an example of a lower sliding body) 10 provided in the. Hereinafter, the configuration of each member will be described in detail.
【0012】免震積層ゴム6は、ゴム等からなる弾性層
6aと鋼板等からなる剛性板層6bとを交互にかつ複数
層に積層して構成したものであって、建築物4の底面4
aにおける四隅それぞれに配置されている。したがっ
て、建築物4の重量が約20tonである場合、個々の
免震積層ゴム6には、約5tonの分担荷重が加わる。
免震積層ゴム6の最上層の弾性層6aおよび最下層の弾
性層6aそれぞれは、上側フランジ6cおよび下側フラ
ンジ6dを介して建築物4の底面4aおよび基礎2に固
定される。弾性層6aは、その形状が円盤形状である場
合には柔軟性に優れた高減衰ゴムからなるものが好まし
く、その形状がリング形状である場合には天然ゴムから
なる外殻部に高減衰ゴムを充填したものが望ましい。The seismic isolation laminated rubber 6 is constructed by alternately laminating an elastic layer 6a made of rubber or the like and a rigid plate layer 6b made of a steel plate or the like into a plurality of layers.
It is arranged at each of the four corners of a. Therefore, when the weight of the building 4 is about 20 tons, a shared load of about 5 tons is applied to each seismic isolation laminated rubber 6.
The uppermost elastic layer 6a and the lowermost elastic layer 6a of the seismic isolation laminated rubber 6 are fixed to the bottom surface 4a of the building 4 and the foundation 2 via the upper flange 6c and the lower flange 6d, respectively. The elastic layer 6a is preferably made of a highly damping rubber having excellent flexibility when the shape thereof is a disc shape, and when the shape is a ring shape, the highly damping rubber is formed on the outer shell part made of natural rubber. Those filled with are desirable.
【0013】滑り鋼板8は、平面視で略円形状を呈する
ものであって、二硫化モリブデン系潤滑剤を含浸させた
ものが望ましい。滑り鋼板8は、建築物4の底面4aに
おける中心部に固着されており、その材質は、腐食を考
慮すれば、耐食性に優れたSUS440C等の高硬度の
ステンレスが好ましい。The sliding steel plate 8 has a substantially circular shape in plan view and is preferably impregnated with a molybdenum disulfide lubricant. The sliding steel plate 8 is fixed to the central portion of the bottom surface 4a of the building 4, and its material is preferably high hardness stainless steel such as SUS440C having excellent corrosion resistance in consideration of corrosion.
【0014】滑り支持体10は、地震時に基礎2が建築
物4に対して水平方向に変位し免震積層ゴム6が所定量
A沈み込んだときに、滑り鋼板8に摺接しかつ滑り鋼板
8を支持するものである。すなわち、滑り支持体10
は、滑り鋼板8に比して小さい外径寸法を持つ略円柱形
状のものであると共に滑り鋼板8と同一中心軸上に位置
するように基礎2に立設される。滑り支持体10の上端
部には、例えばテフロン系の材料からなる円盤状の低摩
擦材10aが固着される。The sliding support 10 is in sliding contact with the sliding steel plate 8 and the sliding steel plate 8 when the foundation 2 is displaced in the horizontal direction with respect to the building 4 during the earthquake and the seismic isolation laminated rubber 6 is depressed by a predetermined amount A. Is to support. That is, the sliding support 10
Is a substantially columnar shape having an outer diameter smaller than that of the sliding steel plate 8, and is erected on the foundation 2 so as to be positioned on the same central axis as the sliding steel plate 8. A disc-shaped low friction material 10a made of, for example, a Teflon-based material is fixed to the upper end of the slide support 10.
【0015】前記所定量Aは、滑り鋼板8の下面と低摩
擦材10aの上面との離間距離であって約1cmに設定
されている。この所定量Aは、免震積層ゴム6の水平方
向の許容変形量に応じて設定され、ここでいう「許容変
形量」とは、免震積層ゴム6のみで建築物4を安定的に
支持し得るときの免震積層ゴム6の水平変位量を意味す
る。The predetermined amount A is the distance between the lower surface of the sliding steel plate 8 and the upper surface of the low friction material 10a and is set to about 1 cm. This predetermined amount A is set according to the horizontal allowable deformation amount of the seismic isolation laminated rubber 6, and the “allowable deformation amount” here means that the building 4 is stably supported only by the seismic isolation laminated rubber 6. It means the horizontal displacement of the base-isolated laminated rubber 6 when possible.
【0016】次に、上記のように構成された本実施形態
の作用を説明する。地震の振動により、基礎2が振動エ
ネルギを受けて水平方向(図3では紙面に対して右側)
に変位すると、建築物4を支持している免震積層ゴム6
の弾性層6aは、水平方向にせん断変形すると共にこの
せん断変形により沈み込む。そして、この免震積層ゴム
6の沈み込みに従って、建築物4の底面4aが下降して
基礎2に接近し、免震積層ゴム6が前記所定量A沈み込
んだときには、滑り支持体10の低摩擦材10aの上面
と建築物4の滑り鋼板8の下面とが互いに接触・摺動す
る。Next, the operation of this embodiment configured as described above will be described. Due to the vibration of the earthquake, the foundation 2 receives the vibration energy and moves horizontally (on the right side of the paper in Fig. 3).
Seismically isolated laminated rubber 6 supporting the building 4 when displaced to
The elastic layer 6a undergoes shear deformation in the horizontal direction and sinks due to this shear deformation. Then, when the seismic isolation laminated rubber 6 sinks, the bottom surface 4a of the building 4 descends and approaches the foundation 2, and when the seismic isolated laminated rubber 6 sinks by the predetermined amount A, the sliding support 10 is lowered. The upper surface of the friction material 10a and the lower surface of the sliding steel plate 8 of the building 4 contact and slide with each other.
【0017】このように滑り鋼板8が滑り支持体10に
支持されると共に両者が互いに摺動するため、低摩擦材
10aの上面と滑り鋼板8の下面とが接触した後は基礎
2が水平方向にさらに変位しても、免震積層ゴム6には
前記所定量A以上の沈み込みが生じず、基礎2が水平方
向に変位するに従って滑り支持体10に作用する垂直荷
重が増大して行く。そのため、免震積層ゴム6は、水平
方向に変位可能でかつ座屈が未然に防止された状態で、
所望の免震機能を果たす。なお、前述のように免震積層
ゴム6の弾性層6aが水平方向にせん断変形することに
よって、地震による振動周期との共振が避けられると同
時に、高減衰ゴムの併用により建築物4の振動が減衰さ
れる。Since the sliding steel plate 8 is thus supported by the sliding support 10 and both slide on each other, after the upper surface of the low friction material 10a and the lower surface of the sliding steel plate 8 contact each other, the foundation 2 is moved horizontally. Even if it is further displaced, the seismic isolation laminated rubber 6 does not sink more than the predetermined amount A, and the vertical load acting on the sliding support 10 increases as the foundation 2 is displaced in the horizontal direction. Therefore, the seismic isolated laminated rubber 6 can be displaced in the horizontal direction and buckling is prevented in advance.
Perform the desired seismic isolation function. As described above, the elastic layer 6a of the base-isolated laminated rubber 6 is sheared and deformed in the horizontal direction, so that resonance with the vibration cycle due to an earthquake can be avoided, and at the same time, the vibration of the building 4 can be reduced by using the high damping rubber together. Attenuated.
【0018】さらに本実施形態においては、滑り支持体
10と滑り鋼板8とが相対的に変位しながら接触するこ
とから、両者が接触し始める面圧ゼロの時点から既に両
者の摺接面における摩擦係数は動摩擦係数となるため、
低摩擦材10aの上面と滑り鋼板8の下面とが良好な滑
り特性で互いに摺動する。しかも二硫化モリブデン系潤
滑剤が含浸された滑り鋼板8と、テフロン系の材料で調
達された低摩擦材10aとが摺接するようにすれば、両
者間における摩擦係数が非常に小さくなり、免震構造全
体に係る水平剛性の上昇は少ない。よって、免震特性が
影響されることもない。Further, in the present embodiment, since the sliding support 10 and the sliding steel plate 8 are brought into contact with each other while being relatively displaced, the friction between the sliding contact surfaces of both of them has already been reached from the time when the contact pressure at which they start to contact each other is zero. Since the coefficient is the dynamic friction coefficient,
The upper surface of the low friction material 10a and the lower surface of the sliding steel plate 8 slide on each other with good sliding characteristics. Moreover, if the sliding steel plate 8 impregnated with the molybdenum disulfide-based lubricant and the low-friction material 10a procured from the Teflon-based material are brought into sliding contact with each other, the friction coefficient between the two becomes very small, and seismic isolation is achieved. The increase in horizontal rigidity of the entire structure is small. Therefore, the seismic isolation characteristics are not affected.
【0019】本実施形態は、本発明の好適な実施の態様
であり、本発明の技術的範囲は、この実施形態に限定さ
れない。例えば、本実施形態は構造物が木造建築物のよ
うな軽量建築物である場合の一例であるが、本発明は、
このような建築物の免震構造に限定されるものではな
く、材質、重量、工法等にとらわれず他の構造物にも広
く適用可能である。また、本実施形態では滑り支持体1
0を基礎2側に設け、滑り鋼板8を建築物4側に設けた
が、滑り支持体10を建築物4側に設け、滑り鋼板8を
基礎2側に設けてもよい。なお、滑り支持体10を基礎
2側に設けた場合(図2参照)は、滑り支持体10を大
径の滑り鋼板8が覆うようになるため、滑り支持体10
の上面(低摩擦材10aの摺接面)に埃等の異物が付着
しにくくなるという有利な効果が得られ、一方、滑り支
持体10を建築物4側に設けた場合は、滑り鋼板8と滑
り支持体10とが摺動する時に大径の滑り鋼板8が滑り
支持体10を受けるので、建築物4側の支持されるう箇
所が常時底面4aにおける中心部(重心位置)となり、
よって建築物4を安定的に支持することができるという
効果が得られる。This embodiment is a preferred embodiment of the present invention, and the technical scope of the present invention is not limited to this embodiment. For example, the present embodiment is an example of a case where the structure is a lightweight building such as a wooden building, but the present invention is
The present invention is not limited to such a seismic isolation structure of a building, and can be widely applied to other structures regardless of material, weight, construction method and the like. Further, in this embodiment, the sliding support 1
Although 0 is provided on the foundation 2 side and the sliding steel plate 8 is provided on the building 4 side, the sliding support 10 may be provided on the building 4 side and the sliding steel plate 8 may be provided on the foundation 2 side. When the slide support 10 is provided on the side of the foundation 2 (see FIG. 2), the slide support 10 is covered with the large-diameter slide steel plate 8, and thus the slide support 10 is provided.
It is possible to obtain the advantageous effect that foreign matter such as dust is less likely to adhere to the upper surface (the sliding contact surface of the low-friction material 10a) of the sliding support plate 10 on the building 4 side. Since the large-diameter sliding steel plate 8 receives the sliding support body 10 when the sliding support body 10 and the sliding support body 10 slide, the supporting portion on the side of the building 4 is always the central portion (center of gravity position) on the bottom surface 4a,
Therefore, the effect that the building 4 can be stably supported is obtained.
【0020】さらに、滑り支承手段7を底面4aの四隅
に配置すると共に免震積層ゴム6を底面4aの中心部に
配置し、かつ滑り支承手段7を常時接触状態となるよう
配置してもよい。この場合、滑り開始時に滑り支承手段
7における摩擦は静摩擦となるが、建築物4の重量が滑
り支承手段7および免震積層ゴム6それぞれに分担され
るため、滑り支承手段7は良好に摺接する。Further, the sliding bearing means 7 may be arranged at the four corners of the bottom surface 4a, the seismic isolation laminated rubber 6 may be arranged at the center of the bottom surface 4a, and the sliding bearing means 7 may be arranged so as to always be in contact with each other. . In this case, the friction in the sliding bearing means 7 becomes static friction at the start of sliding, but since the weight of the building 4 is shared by the sliding bearing means 7 and the seismic isolation laminated rubber 6, the sliding bearing means 7 makes good sliding contact. .
【0021】[0021]
【発明の効果】以上の説明の通り、本発明によれば、免
震支持体の前記所定量以上の沈み込みを未然に防止する
ことにより、大変形時における免震支持体の座屈を確実
に防止することができる。また、前記上側滑り体と前記
下側滑り体との摺接面間における摩擦係数が動摩擦係数
であるため、免震構造全体に係る水平剛性の上昇は少な
く、免震特性が影響されることもない。As described above, according to the present invention, it is possible to prevent the seismic isolation support from buckling during large deformation by preventing the seismic isolation support from sinking more than the predetermined amount. Can be prevented. In addition, since the friction coefficient between the sliding contact surfaces of the upper slide body and the lower slide body is the dynamic friction coefficient, the increase in horizontal rigidity of the entire seismic isolation structure is small and the seismic isolation characteristics may be affected. Absent.
【図1】本実施形態に係る免震構造の平面図である。FIG. 1 is a plan view of a seismic isolation structure according to the present embodiment.
【図2】本実施形態に係る免震構造の側面図である。FIG. 2 is a side view of the seismic isolation structure according to the present embodiment.
【図3】本実施形態に係る免震構造の側面図であって、
免震積層ゴムがせん断変形した状態を示す図である。FIG. 3 is a side view of the seismic isolation structure according to the embodiment,
It is a figure which shows the state which the base isolation laminated rubber shear-deformed.
2 基礎 4 建築物(構造物の一例) 4a 底面 6 免震積層ゴム(免震支持体に相当) 6a 弾性層 6b 剛性板層 7 滑り支承手段 8 滑り鋼板 10 滑り支持体 10a 低摩擦材 A 所定量 2 foundation 4 building (an example of structure) 4a bottom surface 6 seismic isolation laminated rubber (equivalent to seismic isolation support) 6a elastic layer 6b rigid plate layer 7 sliding bearing means 8 sliding steel plate 10 sliding support 10a low friction material A location Quantitative
Claims (2)
を水平方向に移動自在に支持すると共に、弾性層と剛性
板層とを交互にかつ複数層に積層してなる免震支持体を
備えた構造物の免震構造において、 前記基礎と前記構造物との間に、該構造物の底面に設け
た上側滑り体と、前記基礎に設けた下側滑り体とからな
る滑り支承手段を介在させ、前記構造物の重量を前記滑
り支承手段および前記免震支持体それぞれに分担させた
ことを特徴とする構造物の免震構造。1. A seismic isolation device which is interposed between a foundation and a structure to support the structure so as to be movable in the horizontal direction, and in which elastic layers and rigid plate layers are alternately laminated in a plurality of layers. In a seismic isolation structure for a structure including a support, a slip formed between an upper slide body provided on a bottom surface of the structure and a lower slide body provided on the base between the foundation and the structure. A seismic isolation structure for a structure, characterized in that the supporting means is interposed so that the weight of the structure is shared by the sliding supporting means and the seismic isolation support.
に上下方向に所定量の隙間を形成し、前記下側滑り体
は、地震時に前記基礎が前記構造物に対して水平方向に
変位し前記免震支持体が前記所定量沈み込んだときに、
前記上側滑り体に摺接しかつ該上側滑り体を支持するも
のであることを特徴とする請求項1記載の構造物の免震
構造。2. A vertical gap is formed between the upper slide body and the lower slide body in a vertical direction, and the base of the lower slide body is horizontal to the structure when an earthquake occurs. When the seismic isolation support is depressed by the predetermined amount,
The seismic isolation structure for a structure according to claim 1, wherein the seismic isolation structure is in sliding contact with the upper slide body and supports the upper slide body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8007386A JPH09196116A (en) | 1996-01-19 | 1996-01-19 | Base isolator of structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8007386A JPH09196116A (en) | 1996-01-19 | 1996-01-19 | Base isolator of structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09196116A true JPH09196116A (en) | 1997-07-29 |
Family
ID=11664499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8007386A Pending JPH09196116A (en) | 1996-01-19 | 1996-01-19 | Base isolator of structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09196116A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09242378A (en) * | 1996-03-05 | 1997-09-16 | Nitta Ind Corp | Vibration isolating device for light load |
JPH11293953A (en) * | 1998-04-07 | 1999-10-26 | Bridgestone Corp | Vibration isolation ground for residence |
JP2005314918A (en) * | 2004-04-28 | 2005-11-10 | Mitsubishi Heavy Ind Ltd | Vibration isolation/seismic control structure under viaduct structure |
JP2012066920A (en) * | 2010-09-24 | 2012-04-05 | Mitsui Eng & Shipbuild Co Ltd | Quay crane |
JP2016084845A (en) * | 2014-10-24 | 2016-05-19 | 株式会社東芝 | Base isolation device and base isolation method |
CN106760022A (en) * | 2017-02-21 | 2017-05-31 | 安徽工业大学 | Prestressing force laminated rubber steel plate rod axial seismic isolation device |
-
1996
- 1996-01-19 JP JP8007386A patent/JPH09196116A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09242378A (en) * | 1996-03-05 | 1997-09-16 | Nitta Ind Corp | Vibration isolating device for light load |
JPH11293953A (en) * | 1998-04-07 | 1999-10-26 | Bridgestone Corp | Vibration isolation ground for residence |
JP2005314918A (en) * | 2004-04-28 | 2005-11-10 | Mitsubishi Heavy Ind Ltd | Vibration isolation/seismic control structure under viaduct structure |
JP2012066920A (en) * | 2010-09-24 | 2012-04-05 | Mitsui Eng & Shipbuild Co Ltd | Quay crane |
JP2016084845A (en) * | 2014-10-24 | 2016-05-19 | 株式会社東芝 | Base isolation device and base isolation method |
CN106760022A (en) * | 2017-02-21 | 2017-05-31 | 安徽工业大学 | Prestressing force laminated rubber steel plate rod axial seismic isolation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010007859A (en) | Isolation platform | |
TW201943937A (en) | Sliding seismic isolator and damping device, seismic isolation system, and method of supporting structure for seismic isolation and re-centering | |
JPH09196116A (en) | Base isolator of structure | |
JP4706958B2 (en) | Seismic isolation structure | |
JP2000304089A (en) | Falling preventive device for building and slip-out preventive device for laminate rubber isolator | |
JPH09242818A (en) | Base isolation structure for structure | |
JP2002195327A (en) | Laminated rubber pivotally supporting body | |
JP2000064657A (en) | Three-dimensional base isolation device and structure | |
JP2005030071A (en) | Rolling vibration absorption bearing with attenuation function | |
JPH11336201A (en) | Bearing device | |
JPH1018434A (en) | Base-isolated construction of structure | |
JP3197746B2 (en) | Anti-vibration device | |
JP2003254384A (en) | Hybrid type base isolation device | |
JP2002364706A (en) | Base isolation device | |
JPH1144125A (en) | Base isolation device | |
JP3282801B2 (en) | Seismic isolation bearing | |
JPH0520808Y2 (en) | ||
JP2575204Y2 (en) | Seismic isolation elastic rubber bearing for structures | |
JP2024073037A (en) | Seismic isolation structure | |
JP2001220826A (en) | Sliding bearing for base isolation | |
JP2000291732A (en) | Compound base isolation unit and base isolation structure | |
JP3734248B2 (en) | Seismic isolation system | |
JPH11159186A (en) | Base-isolation device | |
JP2003147991A (en) | Sliding bearing | |
JPS60261845A (en) | Earthquake dampening and support apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |