JP2002195327A - Laminated rubber pivotally supporting body - Google Patents
Laminated rubber pivotally supporting bodyInfo
- Publication number
- JP2002195327A JP2002195327A JP2000394279A JP2000394279A JP2002195327A JP 2002195327 A JP2002195327 A JP 2002195327A JP 2000394279 A JP2000394279 A JP 2000394279A JP 2000394279 A JP2000394279 A JP 2000394279A JP 2002195327 A JP2002195327 A JP 2002195327A
- Authority
- JP
- Japan
- Prior art keywords
- laminated rubber
- laminated
- rubber bearing
- supporting body
- flange members
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
- Springs (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ゴム層と補強板と
を交互に積層して一体化するとともに上下端面に取付け
用のフランジ部材を固着して成る積層ゴム支承体に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated rubber bearing body in which rubber layers and reinforcing plates are alternately laminated and integrated, and mounting flange members are fixed to upper and lower end surfaces.
【0002】[0002]
【従来の技術】各種の構造物を免震又は除振可能に支持
する支承体として、積層ゴム支承体が使用されている。
基礎上に構築される建物や据付け台上に設置される精密
機器等においては、地震や通行車両等による外部からの
振動の伝達を極力低減したり、伝達された振動を早期に
減衰することが要求される。また、構築物を地震から保
護したり、さらには、原子力設備、コンピューター、半
導体製造装置あるいは電子顕微鏡など、高い安全性や精
密さを要求される構造体を振動から保護するに際して
は、広い周波数にわたって、振動の大きい地震を遮断す
る他、微振動までを遮断することも要請される。2. Description of the Related Art A laminated rubber bearing is used as a bearing for supporting various structures in a seismic isolation or vibration isolation manner.
In buildings built on foundations and precision equipment installed on installation stands, it is necessary to minimize the transmission of external vibrations caused by earthquakes and passing vehicles, and to attenuate the transmitted vibrations as early as possible. Required. In addition, when protecting structures from earthquakes and further protecting structures requiring high safety and precision, such as nuclear facilities, computers, semiconductor manufacturing equipment, and electron microscopes, from vibrations, In addition to blocking large earthquakes, it is also required to block small vibrations.
【0003】このような要請に応じつつ各種の構造物を
免震又は除振可能に弾性支持するために、積層ゴム支承
体が使用されている。この免震支持用の積層ゴム支承体
は、ゴム層と補強板とを交互に積層して一体化した積層
ゴム部を有している。前記補強板としては、例えば金属
や硬質プラスチック板などが使用される。このような積
層ゴム支承体は、通常、交互に積層したゴム材料と補強
板、さらには上下端面に接合された取付け用(固定用)
のフランジ部材をモールド内に組み込んで加硫成形する
ことにより一体化する方法で製造される。前記積層ゴム
支承体は、縦方向には高いばね定数を有し、横方向には
低いばね定数を有しており、縦横ばね定数比が800以
上という大きな値となることがある。[0003] In order to respond to such demands and to elastically support various structures so as to be seismically isolated or anti-vibration, laminated rubber bearings are used. This laminated rubber bearing for seismic isolation support has a laminated rubber portion in which a rubber layer and a reinforcing plate are alternately laminated and integrated. As the reinforcing plate, for example, a metal or hard plastic plate is used. Such a laminated rubber bearing body is usually composed of a rubber material and a reinforcing plate alternately laminated, and further, an attachment (fixing) bonded to upper and lower end surfaces.
It is manufactured by a method of integrating by integrating the flange member into a mold and performing vulcanization molding. The laminated rubber bearing body has a high spring constant in the vertical direction and a low spring constant in the horizontal direction, and the vertical / horizontal spring constant ratio may be as large as 800 or more.
【0004】前述のような積層ゴム支承体においては、
ゴム層及び補強板を積層するだけの中実構造では、減衰
特性がゴム層のみの内部粘性減衰であるため、ゴム種や
使用条件によっては振動減衰能が過小になることがあ
る。そこで、振動減衰能を向上させるために、ゴム層及
び補強板を上下方向に貫通する孔(空洞)を形成し、そ
の内部に生ゴム、タール、金属鉛(柱状の鉛プラグ)な
どの粘弾性材の充填材を封入することにより、支承体の
自由表面積の増大を防いで変形を拘束し、縦ばね定数の
過度の低下を防止しながら、振動減衰能を増大させた積
層ゴム支承体が例えば特開昭63−293340号公
報、特開2000−110878号公報などで提案され
ている。In the above-mentioned laminated rubber bearing,
In a solid structure in which only the rubber layer and the reinforcing plate are laminated, the damping characteristic is the internal viscosity damping of only the rubber layer, so that the vibration damping ability may be too small depending on the type of rubber and the use conditions. Therefore, in order to improve the vibration damping ability, a hole (cavity) is formed through the rubber layer and the reinforcing plate in the vertical direction, and a viscoelastic material such as raw rubber, tar, metallic lead (column-shaped lead plug) is formed inside. By encapsulating a filler material, a laminated rubber bearing body having an increased vibration damping capacity while preventing an increase in the free surface area of the bearing body and restraining deformation and preventing an excessive decrease in longitudinal spring constant is known, for example. It has been proposed in Japanese Unexamined Patent Publication No. 63-293340, Japanese Patent Laid-Open No. 2000-110878, and the like.
【0005】[0005]
【発明が解決しようとする課題】前述のような積層ゴム
部から成る積層ゴム支承体にあっては、その構造上、引
き抜き力(上下方向への引っ張り荷重)には弱く、引張
応力1〜2N/mm2 もしくは引張ひずみ1〜2%でゴ
ム層の内部に空隙(ボイド)が生じ、それ以降、剛性が
急激に低下してしまうという性質がある。したがって、
上記の空隙が生じるような応力、ひずみ(以下、引張線
型限界応力と呼ぶ)以上の領域での使用は避けるべきで
ある。The laminated rubber bearing composed of the laminated rubber portion described above is weak in pulling force (tensile load in the vertical direction) due to its structure, and has a tensile stress of 1 to 2N. / Mm 2 or a tensile strain of 1 to 2%, voids are generated inside the rubber layer, and thereafter, the rigidity is sharply reduced. Therefore,
It should be avoided to use in a region above the stress and strain (hereinafter referred to as a tensile linear limit stress) at which the above-mentioned voids are generated.
【0006】一方、建物や各種構造物の免震支持構造を
施工する場合には、基礎と建物(構造物)との間の床面
上に複数の積層ゴム支承体を所定間隔ごとに平面配置す
ることが行われており、通常ではこれらの積層ゴム支承
体の全てに垂直荷重(建物や構造物の重量)が作用して
いるが、地震等で大きな水平方向加振力が作用するとき
には、建物や構造物の床面の一部の領域では横揺れや傾
斜に起因して浮き上がり方向に変位する領域が生じ、そ
の領域に配置されている積層ゴム支承体には重力とは逆
の引き抜き力が作用することがある。このことは、従来
の積層ゴム支承体が超高層建物などの塔状比の高い建物
の免震に適していないことを意味している。そこで、引
き抜き力が作用する場合でも十分な信頼性をもって使用
できるような積層ゴム支承体を実現することが要請され
ていた。On the other hand, when constructing a seismic isolation support structure for a building or various structures, a plurality of laminated rubber bearings are arranged at predetermined intervals on a floor between a foundation and a building (structure). Normally, a vertical load (weight of a building or a structure) acts on all of these laminated rubber bearing bodies. However, when a large horizontal exciting force acts due to an earthquake or the like, In some areas of the floor surface of buildings and structures, there is an area that is displaced in the lifting direction due to rolling and tilting, and the laminated rubber bearing placed in that area has a pulling force opposite to gravity May act. This means that the conventional laminated rubber bearing is not suitable for seismic isolation of a building with a high tower ratio, such as a high-rise building. Therefore, it has been demanded to realize a laminated rubber bearing that can be used with sufficient reliability even when a pull-out force acts.
【0007】本発明はこのような技術的課題に鑑みてな
されたものであり、本発明の目的は、建物や各種構造物
の免震支持に使用されている積層ゴム支承体に引き抜き
力が作用した場合でも、該積層ゴム支承体の内部に空隙
が生じて剛性が急に低下するなどの不都合を解消するこ
とができ、十分な耐久性及び信頼性をもって使用するこ
とができる積層ゴム支承体を提供することである。The present invention has been made in view of such technical problems, and an object of the present invention is to apply a pulling force to a laminated rubber bearing used for seismic isolation support of buildings and various structures. Even in this case, it is possible to eliminate the inconveniences such as the occurrence of voids inside the laminated rubber bearing and a sudden decrease in rigidity, and to provide a laminated rubber bearing that can be used with sufficient durability and reliability. To provide.
【0008】[0008]
【課題を解決するための手段】本発明(請求項1)は、
上記目的を達成するため、ゴム層と補強板とを交互に積
層して一体化して成る積層ゴム部を有する積層ゴム支承
体において、上下の構造部材にボルト等で固定して使用
するために前記積層ゴム部の上端面及び下端面に固着さ
れたフランジ部材を備え、少なくとも一方の前記フラン
ジ部材の、前記積層ゴム部の外周と前記構造部材への固
定部との間の部位に、該フランジ部材の曲げ剛性を低下
させるための薄肉部又は開口部を形成することを特徴と
する。Means for Solving the Problems The present invention (claim 1) provides:
In order to achieve the above object, in a laminated rubber bearing body having a laminated rubber portion formed by alternately laminating and integrating a rubber layer and a reinforcing plate, in order to use by fixing to upper and lower structural members with bolts or the like, A flange member fixed to an upper end surface and a lower end surface of the laminated rubber portion, wherein at least one of the flange members is provided at a portion between an outer periphery of the laminated rubber portion and a fixing portion to the structural member. Characterized in that a thin portion or an opening for reducing the bending rigidity is formed.
【0009】請求項2〜6の発明は、上記請求項1の構
成に加えて、前記薄肉部は、前記積層ゴム部の外周全域
にわたって形成されている構成、前記開口部は、前記積
層ゴム部の外周全域にわたって所定間隔ごとに形成され
た複数の貫通孔から成る構成、前記積層ゴム部と前記各
フランジ部材とはゴム層の加硫成形もしくはゴム層との
接着によって一体化されている構成、前記薄肉部は、前
記フランジ部材の上面及び下面の両方に設けられた環状
溝によって形成される構成、あるいは、前記薄肉部は、
前記フランジ部材の上面又は下面の片側面に設けられた
環状溝によって形成される構成とすることにより、効率
よく上記目的を達成するものである。According to a second aspect of the present invention, in addition to the configuration of the first aspect, the thin portion is formed over the entire outer periphery of the laminated rubber portion, and the opening is formed of the laminated rubber portion. A configuration composed of a plurality of through holes formed at predetermined intervals over the entire outer periphery of the configuration, a configuration in which the laminated rubber portion and each of the flange members are integrated by vulcanization molding of a rubber layer or adhesion with a rubber layer, The thin portion is formed by annular grooves provided on both the upper surface and the lower surface of the flange member, or the thin portion is
The above object is achieved efficiently by adopting a structure formed by an annular groove provided on one side surface of the upper surface or the lower surface of the flange member.
【0010】[0010]
【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を具体的に説明する。図1は本発明を適用した
積層ゴム支承体の第1実施例を示す模式的縦断面図であ
り、図2は図1中の線2−2に沿って見た断面平面図で
ある。図1及び図2において、積層ゴム支承体10はゴ
ム層11と補強板12とを交互に積層するとともに、上
下端面にフランジ部材13、14を接合し、これらを加
硫成形等で一体化した構造を有する。つまり、積層ゴム
支承体10は、交互に積層されて一体化された前記ゴム
層11及び前記補強板12から成る積層ゴム部15の上
下端面に前記上部フランジ部材13及び下部フランジ部
材14をそれぞれ一体的に接合固着(加硫成形や接着に
よる固着)して構成されており、下部フランジ部材14
を基礎部材等の下側の構造部材17にボルト18等で固
定するとともに上部フランジ部材13を建物や試験装置
等の免震対象物としての上側の構造部材16にボルト1
8等で固定することにより、該上側の構造部材16を免
震支持するものである。Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view showing a first embodiment of a laminated rubber bearing body to which the present invention is applied, and FIG. 2 is a sectional plan view taken along line 2-2 in FIG. In FIGS. 1 and 2, the laminated rubber bearing body 10 has a rubber layer 11 and a reinforcing plate 12 alternately laminated, and flange members 13 and 14 are joined to upper and lower end surfaces, respectively, and these are integrated by vulcanization molding or the like. Having a structure. In other words, the laminated rubber bearing body 10 has the upper flange member 13 and the lower flange member 14 integrated with the upper and lower end surfaces of the laminated rubber portion 15 composed of the rubber layer 11 and the reinforcing plate 12 which are alternately laminated and integrated. The lower flange member 14 is fixedly bonded (fixed by vulcanization molding or bonding).
Is fixed to a lower structural member 17 such as a foundation member with bolts 18 and the like, and the upper flange member 13 is bolted to an upper structural member 16 as a seismic isolation target such as a building or a test device.
By fixing at 8 or the like, the upper structural member 16 is seismically isolated and supported.
【0011】図1及び図2に示す積層ゴム支承体10に
おいては、上下のフランジ部材13、14のそれぞれ
の、積層ゴム部15の外周と上下の構造部材16、17
への固定部(ボルト18による締結部)との間の部位
に、該フランジ部材13、14それぞれの曲げ剛性を低
下させるための薄肉部19、20が形成されている。図
示の例では、上部フランジ部材13の薄肉部19及び下
部フランジ部材14の薄肉部20とも、積層ゴム部15
の外周全域にわたって各フランジ部材13、14の上面
及び下面の両方に設けられた環状溝によって形成されて
いる。In the laminated rubber bearing 10 shown in FIGS. 1 and 2, the outer periphery of the laminated rubber portion 15 and the upper and lower structural members 16, 17 of the upper and lower flange members 13, 14 are respectively provided.
Thin portions 19 and 20 for reducing the bending stiffness of the flange members 13 and 14 are formed in portions between the fixing members (fastened portions by bolts 18). In the illustrated example, both the thin portion 19 of the upper flange member 13 and the thin portion 20 of the lower flange member 14
Is formed by annular grooves provided on both the upper surface and the lower surface of each of the flange members 13 and 14 over the entire outer periphery of the flange member 13.
【0012】図3〜図6は、図1及び図2に示す積層ゴ
ム支承体10の使用状況を例示する図であり、図3及び
図4は、積層ゴム支承体10を単独で使用し、1個づつ
建築物や装置、機器などの構造部材(上側の構造部材)
16を基礎や床などの下側の構造部材(基台等)17上
に弾性支持(免震支持)する状態を示す模式的側面図及
び模式的平面図である。また、図5及び図6は、安定板
80で複数(図示の例では4個)の積層ゴム支承体10
の上下端面を連結したものを複数段(例えば5〜20
段)にわたって組付けた多段免震ユニット100を使用
し、建築物や装置、機器などの構造部材16を、該多段
免震ユニット100を介して、基礎や床などの下側の構
造部材(基台等)17上に弾性支持(免震支持)する状
態を示す模式的側面図及び模式的平面図である。FIGS. 3 to 6 are diagrams illustrating the use of the laminated rubber bearing 10 shown in FIGS. 1 and 2. FIGS. 3 and 4 show the laminated rubber bearing 10 used alone. Structural members such as buildings, devices and equipment (upper structural members)
It is a schematic side view and a schematic plan view showing a state in which the base member 16 is elastically supported (seismically isolated) on a lower structural member (base or the like) 17 such as a foundation or a floor. FIGS. 5 and 6 show a plurality of (four in the illustrated example) laminated rubber bearing bodies 10 with a stabilizer 80.
Are connected in a plurality of stages (for example, 5 to 20).
Using the multi-stage seismic isolation unit 100 assembled over the steps, a structural member 16 such as a building, an apparatus, or a device is connected via the multi-stage seismic isolation unit 100 to a lower structural member (base) such as a foundation or a floor. It is a schematic side view and a schematic plan view showing a state of being elastically supported (seismically isolated support) on a base 17 or the like).
【0013】図7は図3及び図4の状態で地震等が発生
し、上側の構造部材60が傾斜し、該構造部材が浮き上
がる領域に配された積層ゴム支承体(図7中の左側の積
層ゴム支承体)10に引き抜き力(引っ張り力)が作用
する状態を示す模式的側面図である。また、図8は図5
及び図6の状態で地震等が発生し、上側の構造部材60
が傾斜し、該構造部材が浮き上がる領域に配された積層
ゴム支承体(図8中の左側領域に配された積層ゴム支承
体)10に引き抜き力(引っ張り力)が作用する状態を
示す模式的側面図である。すなわち、図7及び図8に示
すように、地震等により建物等の構造部材16が傾斜す
るなどして部分的な浮き上がり状態が生じると、この浮
き上がり領域に配置された積層ゴム支承体10(図7中
の図示左側の支承体、図8中の図示左側の支承体)に引
張力(通常の圧縮力とは逆方向の力)が作用する異常な
荷重状態となる。FIG. 7 shows a laminated rubber bearing (shown on the left side in FIG. 7) in an area where the upper structural member 60 is inclined and the structural member rises due to an earthquake or the like in the state of FIGS. FIG. 3 is a schematic side view showing a state in which a pull-out force (tensile force) acts on a laminated rubber bearing body (10). FIG. 8 shows FIG.
6, an earthquake or the like occurs in the state of FIG.
Is a schematic diagram showing a state in which a pull-out force (pulling force) acts on a laminated rubber bearing body 10 (laminated rubber bearing body arranged on the left side area in FIG. 8) arranged in a region where the structural member is lifted up. It is a side view. That is, as shown in FIGS. 7 and 8, when a structural member 16 such as a building is inclined due to an earthquake or the like and a partial floating state occurs, the laminated rubber bearing body 10 (FIG. An abnormal load state occurs in which a tensile force (a force in a direction opposite to the normal compressive force) acts on the left support in FIG. 7 and the left support in FIG.
【0014】図1及び図2に示す積層ゴム支承体10に
よれば、上下の構造部材16、17に固定するために積
層ゴム部15の端面に接合固着された各フランジ部材1
3、14の当該積層ゴム部15の外周と当該構造部材1
6、17への固定部(ボルト18による締結部)との間
の部位(張り出し部)に、当該フランジ部材の曲げ剛性
を低下させるための薄肉部19、20を設けたので、上
下の構造部材16、17に固定された積層ゴム支承体1
0の全体の引張剛性を低下させることで、引張線型限界
応力をほとんど変化させずに引張線型限界ひずみを大き
く取り得る構造にすることができ、それによって、積層
ゴム部15の引張方向への変位追従性能を増大させ、当
該積層ゴム部15の内部(ゴム層11)に空隙(ボイ
ド)が生じることを防止して該空隙に起因する剛性低下
を無くすことができる。つまり、積層ゴム支承体10に
引き抜き方向の荷重が作用する場合でも、該引き抜き方
向へ容易に変位して追従することで、当該積層ゴム支承
体10のゴム層11に悪影響(前記空隙の発生等)を及
ぼすことなく、当該積層ゴム支承体10が固定された領
域における建物などの構造部材16の浮き上がりが可能
になる。According to the laminated rubber bearing body 10 shown in FIGS. 1 and 2, each flange member 1 fixed to the end face of the laminated rubber portion 15 is fixed to the upper and lower structural members 16 and 17.
3 and 14, the outer periphery of the laminated rubber portion 15 and the structural member 1
Since thin portions 19 and 20 for reducing the bending rigidity of the flange member are provided in portions (projections) between portions fixed to portions 6 and 17 (fastened portions by bolts 18), upper and lower structural members are provided. Laminated rubber bearing 1 fixed to 16 and 17
By lowering the overall tensile stiffness of 0, it is possible to obtain a structure in which the tensile linear limit strain can be largely increased without substantially changing the tensile linear limit stress, whereby the displacement of the laminated rubber portion 15 in the tensile direction can be achieved. The follow-up performance can be increased, and voids (voids) can be prevented from being generated inside the laminated rubber portion 15 (rubber layer 11), and a decrease in rigidity due to the voids can be eliminated. In other words, even when a load in the pull-out direction acts on the laminated rubber support 10, the rubber layer 11 of the laminated rubber support 10 is adversely affected by easily displacing and following the pull-out direction (for example, the generation of the voids). ), The structural member 16 such as a building can be lifted in a region where the laminated rubber bearing body 10 is fixed.
【0015】図9は、従来の積層ゴム支承体の引張方向
のばね特性(a)と、本発明の実施例に係る積層ゴム支
承体の引張方向のばね特性(b)とを比較して示すグラ
フであり、横軸は引張ひずみを示し、縦軸は引張応力を
示している。すなわち、図9のグラフは、フランジ部材
の張り出し部が十分に高い曲げ剛性を有する従来の積層
ゴム支承体と、前述した本発明の実施例のように上下の
構造部材16、17に固定されるフランジ部材13、1
4の張り出し部の曲げ剛性が低くなる構造にすること
で、上下の構造部材16、17に固定された積層ゴム支
承体10の全体の引張剛性を低下させた積層ゴム支承体
について、上下方向の引き抜き力(引張力)が作用した
ときのばね特性を比較して示すものである。FIG. 9 shows a comparison between the spring characteristic (a) in the tensile direction of the conventional laminated rubber bearing and the spring characteristic (b) in the tensile direction of the laminated rubber bearing according to the embodiment of the present invention. In the graph, the horizontal axis represents tensile strain, and the vertical axis represents tensile stress. That is, the graph of FIG. 9 shows that the overhanging portion of the flange member has a sufficiently high flexural rigidity and is fixed to the conventional laminated rubber support and the upper and lower structural members 16 and 17 as in the above-described embodiment of the present invention. Flange member 13, 1
By adopting a structure in which the bending stiffness of the overhang portion of 4 is reduced, the laminated rubber bearing body in which the overall tensile stiffness of the laminated rubber bearing body 10 fixed to the upper and lower structural members 16 and 17 is reduced, the It is a comparison showing spring characteristics when a pulling force (tensile force) is applied.
【0016】図9の(a)及び(b)のグラフから明ら
かなごとく、前述の本発明の実施例に係る積層ゴム支承
体(b)によれば、従来の積層ゴム支承体(a)に比
べ、引張線型限界応力を変化させないで引張線型限界ひ
ずみを大幅に増大させることができる。従って、本発明
の積層ゴム支承体10によれば、地震等で上側の構造部
材16が傾斜するなどして積層ゴム支承体10に引き抜
き力が作用する場合でも、引き抜き方向へ容易に変位し
て追従することで、積層ゴム部15のゴム層11に悪影
響(前記空隙の発生等)を及ぼすことなく、当該積層ゴ
ム支承体10が固定された領域における建物などの構造
部材16の浮き上がりを許容することが可能になる。As is apparent from the graphs of FIGS. 9A and 9B, according to the laminated rubber bearing (b) according to the embodiment of the present invention, the conventional laminated rubber bearing (a) is different from the conventional laminated rubber bearing (a). In comparison, the tensile strain limit can be greatly increased without changing the tensile limit stress. Therefore, according to the laminated rubber bearing body 10 of the present invention, even when the upper structural member 16 is inclined due to an earthquake or the like and a pulling force acts on the laminated rubber bearing body 10, the laminated rubber bearing body 10 is easily displaced in the pulling direction. By following, the floating of the structural member 16 such as a building in the area where the laminated rubber bearing body 10 is fixed is allowed without adversely affecting the rubber layer 11 of the laminated rubber portion 15 (such as the generation of the void). It becomes possible.
【0017】このように、以上説明した実施例によれ
ば、フランジ部材13、14の厚さを薄くした部分(薄
肉部)19、20では曲げ剛性が低下するため、建物1
6の浮き上がりによって積層ゴム支承体10に引き抜き
力が作用した場合の当該フランジ部材13、14の変形
が容易になり、積層ゴム部15に作用する引張力の過大
化を防止することができる。そのため、建物や各種構造
物の免震支持に使用されている積層ゴム支承体に引き抜
き力が作用した場合でも、該積層ゴム支承体の内部に空
隙が生じて剛性が急に低下するなどの不都合を解消する
ことができ、十分な耐久性及び信頼性をもって使用する
ことができる積層ゴム支承体が提供される。As described above, according to the embodiment described above, the bending rigidity is reduced at the portions (thin portions) 19 and 20 where the thickness of the flange members 13 and 14 is reduced.
When the pull-out force acts on the laminated rubber bearing body 10 due to the lifting of the flange 6, the deformation of the flange members 13 and 14 becomes easy, and it is possible to prevent the tensile force acting on the laminated rubber portion 15 from becoming excessive. Therefore, even when a pull-out force acts on the laminated rubber bearing used for seismic isolation support of buildings and various structures, voids are generated inside the laminated rubber bearing and the rigidity is suddenly reduced. And a laminated rubber bearing that can be used with sufficient durability and reliability is provided.
【0018】図10は本発明を適用した積層ゴム支承体
の第2実施例を示す模式的縦断面図である。図1及び図
2の積層ゴム支承体(第1実施例)では、上下のフラン
ジ部材13、14の張り出し部の上面及び下面の両方に
環状溝を設けて薄肉部19、20を形成したが、図10
の第2実施例では上下のフランジ部材13、14の片側
面(図示の例では外側となる面)だけに環状溝を設ける
ことで薄肉部19、20が形成されている。この第2実
施例は、この点のみで前述の第1実施例と相違してお
り、その他の部分では実質上同じ構成をしており、その
詳細な説明は省略する。つまり、本発明の実施に際して
は、前記薄肉部19、20は、フランジ部材13、14
の張り出し部の曲げ剛性を低下させて図9のグラフを参
照して説明したような特性が得られる構造寸法のもので
あればよく、各フランジ部材について、その上面及び下
面のいずれに環状溝を設けるか、あるいは両面に設ける
かは、適選定することができる。また、前記薄肉部自体
も、場合によっては、上下のフランジ部材13、14の
いずれか一方に設けるだけでもよい。FIG. 10 is a schematic longitudinal sectional view showing a second embodiment of the laminated rubber bearing to which the present invention is applied. In the laminated rubber bearing body of FIG. 1 and FIG. 2 (first embodiment), the thin portions 19 and 20 are formed by providing annular grooves on both the upper surface and the lower surface of the projecting portions of the upper and lower flange members 13 and 14. FIG.
In the second embodiment, the thin portions 19 and 20 are formed by providing annular grooves only on one side surface (the outer surface in the illustrated example) of the upper and lower flange members 13 and 14. The second embodiment differs from the above-described first embodiment only in this point, and has substantially the same configuration in other parts, and a detailed description thereof will be omitted. That is, when the present invention is carried out, the thin portions 19 and 20 are provided with the flange members 13 and 14.
Any structure may be used so long as the bending stiffness of the overhanging portion is reduced and the characteristics described with reference to the graph of FIG. 9 are obtained. For each flange member, an annular groove is formed on either the upper surface or the lower surface. Whether to provide them or to provide them on both sides can be appropriately selected. In addition, the thin portion itself may be provided only on one of the upper and lower flange members 13 and 14 in some cases.
【0019】図11は本発明を適用した積層ゴム支承体
10の第3実施例を示す縦断面図であり、図12は図1
1中の線12−12から見た平面断面図である。この第
3実施例は、前記フランジ部材13、14の張り出し部
の曲げ剛性を低下させる手段として、前述の薄肉部1
9、20に代えて、開口部21、22を形成したもので
ある。この開口部21、22は、図示の例では、フラン
ジ部材13、14の全周つまり積層ゴム部15の外周全
域にわたって、所定間隔ごとに形成された複数の貫通孔
によって構成されている。この第3実施例は、薄肉部に
代えて開口部を設ける点で前述の第1実施例及び第2実
施例と相違するが、その他の部分では実質的に同じ構成
をしており、それらの詳細説明は省略する。FIG. 11 is a longitudinal sectional view showing a third embodiment of the laminated rubber bearing body 10 to which the present invention is applied, and FIG.
FIG. 12 is a plan sectional view taken along line 12-12 in FIG. In the third embodiment, as means for reducing the bending rigidity of the projecting portions of the flange members 13 and 14, the thin portion 1 is used.
Openings 21 and 22 are formed in place of 9 and 20. In the illustrated example, the openings 21 and 22 are formed by a plurality of through holes formed at predetermined intervals over the entire periphery of the flange members 13 and 14, that is, over the entire outer periphery of the laminated rubber portion 15. The third embodiment differs from the first and second embodiments in that an opening is provided in place of the thin portion, but the other portions have substantially the same configuration. Detailed description is omitted.
【0020】この第3実施例に関しても、その実施に際
しては、前記開口部21、22は、フランジ部材13、
14の張り出し部の曲げ剛性を低下させて図9のグラフ
を参照して説明したような特性が得られる構造寸法のも
のであればよく、種々の形状及び配置を採り得るもので
ある。また、この開口部自体も、場合によっては、上下
のフランジ部材13、14のいずれか一方に設けるだけ
でもよい。そして、図10〜図12で説明しような各種
実施例(第2実施例及び第3実施例、それらの各種変更
例)によっても、図1〜図10で説明した第1実施例の
場合と同様の作用効果が得られる。Also in the third embodiment, when the embodiment is carried out, the openings 21 and 22 are formed by the flange members 13 and
The projecting portion 14 may have a structural size that reduces the bending stiffness of the overhang portion and obtains the characteristics as described with reference to the graph of FIG. 9, and may take various shapes and arrangements. In addition, the opening itself may be provided only in one of the upper and lower flange members 13 and 14 in some cases. The various embodiments (second and third embodiments, various modifications thereof) described with reference to FIGS. 10 to 12 are also similar to those of the first embodiment described with reference to FIGS. The operation and effect of the invention can be obtained.
【0021】図13は、本発明が適用される積層ゴム支
承体10自身の変更例を示す縦断面図である。図13の
積層ゴム支承体は、積層ゴム部15の上下端面にはフラ
ンジ部材13、14が一体に固着されている点では図1
及び図2に示すものと共通しているが、振動減衰能を増
大させる内部に鉛などが充填封入されている点で異なっ
ている。すなわち、図13の積層ゴム支承体10も、ゴ
ム層11と補強板12とを交互に積層して一体化した積
層ゴム部15を有し、該積層ゴム部15の上下の端面に
フランジ部材(取付けフランジ)13、14を一体化し
て構成されているが、図13の積層ゴム支承体10にお
いては、その中心部に形成される空洞部に鉛や生ゴムや
軟質プラスチックなどの塑性材や粘弾性材などの内部損
失材料(減衰材)23を充填封入することにより、振動
減衰能を増大させるように構成されている。FIG. 13 is a longitudinal sectional view showing a modified example of the laminated rubber bearing body 10 to which the present invention is applied. The laminated rubber bearing of FIG. 13 differs from that of FIG. 1 in that flange members 13 and 14 are integrally fixed to upper and lower end surfaces of a laminated rubber portion 15.
2 is different from that shown in FIG. 2 in that lead or the like is filled and sealed inside to increase the vibration damping ability. That is, the laminated rubber bearing body 10 of FIG. 13 also has the laminated rubber portion 15 in which the rubber layers 11 and the reinforcing plates 12 are alternately laminated and integrated, and the upper and lower end faces of the laminated rubber portion 15 have flange members ( Although the mounting flanges 13 and 14 are integrally formed, the laminated rubber bearing body 10 shown in FIG. 13 has a hollow portion formed in the center thereof formed of a plastic material such as lead, raw rubber or soft plastic, or a viscoelastic material. The vibration damping capacity is increased by filling and sealing an internal loss material (damping material) 23 such as a material.
【0022】そして、図13の積層ゴム支承体10にお
いても、図1及び図2の場合と同様に、上下のフランジ
部材13、14の張り出し部に薄肉部19、20が形成
され、該フランジ部材13、14の曲げ剛性の減少化が
図られている。すなわち、積層ゴム支承体としても図1
3に例示するように種々の構造を持ち種々の機能を有す
るものが開発され、実用化されているが、本発明は、積
層ゴム部を有する支承体(積層ゴム支承体)であれば、
これら種々の構造のものに対しても同様に適用すること
ができ、同様の作用効果が得られるものである。Also in the laminated rubber bearing body 10 shown in FIG. 13, thin portions 19 and 20 are formed at the overhanging portions of the upper and lower flange members 13 and 14, as in the case of FIGS. 13 and 14 are reduced in bending stiffness. That is, as a laminated rubber bearing, FIG.
As shown in FIG. 3, those having various structures and various functions have been developed and put into practical use. However, the present invention provides a bearing having a laminated rubber portion (laminated rubber bearing).
The present invention can be similarly applied to these various structures, and the same operation and effect can be obtained.
【0023】[0023]
【発明の効果】以上の説明から明らかなごとく、本発明
(請求項1)によれば、ゴム層と補強板とを交互に積層
して一体化して成る積層ゴム部を有する積層ゴム支承体
において、上下の構造部材にボルト等で固定して使用す
るために前記積層ゴム部の上端面及び下端面に固着され
たフランジ部材を備え、少なくとも一方の前記フランジ
部材の、前記積層ゴム部の外周と前記構造部材への固定
部との間の部位に、該フランジ部材の曲げ剛性を低下さ
せるための薄肉部又は開口部を形成する構成としたの
で、建物や各種構造物の免震支持に使用されている積層
ゴム支承体に引き抜き力が作用した場合でも、該積層ゴ
ム支承体の内部に空隙が生じて剛性が急に低下するなど
の不都合を解消することができ、十分な耐久性及び信頼
性をもって使用することができる積層ゴム支承体が提供
される。As is apparent from the above description, according to the present invention (claim 1), there is provided a laminated rubber support having a laminated rubber portion in which a rubber layer and a reinforcing plate are alternately laminated and integrated. A flange member fixed to an upper end surface and a lower end surface of the laminated rubber portion for use by being fixed to upper and lower structural members with bolts or the like, and at least one of the flange members, the outer periphery of the laminated rubber portion; Since a thin portion or an opening for reducing the bending rigidity of the flange member is formed at a portion between the fixing portion to the structural member, it is used for seismic isolation support of buildings and various structures. Even when a pull-out force is applied to the laminated rubber bearing body, it is possible to eliminate the inconveniences such as the occurrence of voids inside the laminated rubber bearing body and sudden decrease in rigidity, and sufficient durability and reliability. Use with DOO laminated rubber bearing body is provided which can be.
【0024】請求項2〜6の発明によれば、上記請求項
1の構成に加えて、前記薄肉部は、前記積層ゴム部の外
周全域にわたって形成されている構成、前記開口部は、
前記積層ゴム部の外周全域にわたって所定間隔ごとに形
成された複数の貫通孔から成る構成、前記積層ゴム部と
前記各フランジ部材とはゴム層の加硫成形もしくはゴム
層との接着によって一体化されている構成、前記薄肉部
は、前記フランジ部材の上面及び下面の両方に設けられ
た環状溝によって形成される構成、あるいは、前記薄肉
部は、前記フランジ部材の上面又は下面の片側面に設け
られた環状溝によって形成される構成としたので、効率
よく上記効果を達成できる積層ゴム支承体が提供され
る。According to the second to sixth aspects of the present invention, in addition to the configuration of the first aspect, the thin portion is formed over the entire outer periphery of the laminated rubber portion, and the opening is
A configuration comprising a plurality of through holes formed at predetermined intervals over the entire outer periphery of the laminated rubber portion, wherein the laminated rubber portion and each of the flange members are integrated by vulcanization molding of a rubber layer or adhesion with a rubber layer. Configuration, wherein the thin portion is formed by annular grooves provided on both the upper surface and the lower surface of the flange member, or the thin portion is provided on one side surface of the upper surface or the lower surface of the flange member. Since the configuration is formed by the annular groove, a laminated rubber bearing body capable of efficiently achieving the above-described effects is provided.
【図1】本発明を適用した積層ゴム支承体の第1実施例
を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a first embodiment of a laminated rubber bearing body to which the present invention is applied.
【図2】図1中の線2−2から見た平面断面図である。FIG. 2 is a plan sectional view taken along line 2-2 in FIG.
【図3】図1及び図2に示す積層ゴム支承体を使用して
構造部材を免震支持する状態を示す模式的側面図であ
る。FIG. 3 is a schematic side view showing a state in which a structural member is seismically isolated and supported using the laminated rubber bearing shown in FIGS. 1 and 2.
【図4】図3中の線4−4から見た平面断面図である。FIG. 4 is a plan sectional view taken along line 4-4 in FIG. 3;
【図5】安定板で複数の積層ゴム支承体を組付けて構成
した多段免震ユニットを使用し構造部材を免震支持する
状態を示す模式的側面図である。FIG. 5 is a schematic side view showing a state in which a structural member is seismically isolated and supported using a multi-stage seismic isolation unit configured by assembling a plurality of laminated rubber bearing bodies with a stabilizer.
【図6】図5中の線6−6から見た平面断面図である。FIG. 6 is a plan sectional view taken along line 6-6 in FIG. 5;
【図7】図3に示す免震支持構造で支持された構造部材
が地震等で傾斜することにより積層ゴム支承体に引張力
が作用する状態を示す模式的側面図である。7 is a schematic side view showing a state in which a tensile force acts on a laminated rubber bearing body when a structural member supported by the seismic isolation support structure shown in FIG. 3 is inclined by an earthquake or the like.
【図8】図5に示す免震支持構造で支持された構造部材
が地震等で傾斜することにより積層ゴム支承体に引張力
が作用する状態を示す模式的側面図である。8 is a schematic side view showing a state in which a tensile force acts on a laminated rubber support when a structural member supported by the seismic isolation support structure shown in FIG. 5 is inclined by an earthquake or the like.
【図9】従来の積層ゴム支承体の引張方向のばね特性
(a)と本発明の実施例に係る積層ゴム支承体の引張方
向のばね特性(b)とを比較して示すグラフである。FIG. 9 is a graph showing a comparison between a spring characteristic (a) in a tensile direction of a conventional laminated rubber bearing and a spring characteristic (b) in a tensile direction of a laminated rubber bearing according to an embodiment of the present invention.
【図10】本発明を適用した積層ゴム支承体の第2実施
例を示す模式的縦断面図である。FIG. 10 is a schematic longitudinal sectional view showing a second embodiment of the laminated rubber bearing body to which the present invention is applied.
【図11】本発明を適用した積層ゴム支承体の第3実施
例を示す縦断面図である。FIG. 11 is a longitudinal sectional view showing a third embodiment of the laminated rubber bearing body to which the present invention is applied.
【図12】図11中の線12−12から見た平面断面図
である。FIG. 12 is a plan sectional view taken along line 12-12 in FIG. 11;
【図13】本発明が適用された積層ゴム支承体の変更例
を示す縦断面図である。FIG. 13 is a longitudinal sectional view showing a modified example of the laminated rubber bearing to which the present invention is applied.
10 積層ゴム支承体 11 ゴム層 12 補強板 13 フランジ部材 14 フランジ部材 15 積層ゴム部 16 構造部材(上側) 17 構造部材(下側) 19 薄肉部 20 薄肉部 21 開口部 22 開口部 80 安定板 100 多段免震ユニット DESCRIPTION OF SYMBOLS 10 Laminated rubber bearing body 11 Rubber layer 12 Reinforcement plate 13 Flange member 14 Flange member 15 Laminated rubber part 16 Structural member (upper side) 17 Structural member (lower side) 19 Thin part 20 Thin part 21 Opening 22 Opening 80 Stabilizer 100 Multi-stage seismic isolation unit
Claims (6)
体化して成る積層ゴム部を有する積層ゴム支承体におい
て、 上下の構造部材にボルト等で固定して使用するために前
記積層ゴム部の上端面及び下端面に固着されたフランジ
部材を備え、 少なくとも一方の前記フランジ部材の、前記積層ゴム部
の外周と前記構造部材への固定部との間の部位に、該フ
ランジ部材の曲げ剛性を低下させるための薄肉部又は開
口部を形成することを特徴とする積層ゴム支承体。1. A laminated rubber bearing having a laminated rubber portion formed by alternately laminating and integrating a rubber layer and a reinforcing plate, wherein the laminated rubber is used by being fixed to upper and lower structural members with bolts or the like. A flange member fixed to an upper end surface and a lower end surface of the portion, wherein at least one of the flange members is bent at a portion between an outer periphery of the laminated rubber portion and a fixing portion to the structural member. A laminated rubber bearing, wherein a thin portion or an opening for reducing rigidity is formed.
全域にわたって形成されていることを特徴とする請求項
1に記載の積層ゴム支承体。2. The laminated rubber bearing according to claim 1, wherein the thin portion is formed over the entire outer periphery of the laminated rubber portion.
全域にわたって所定間隔ごとに形成された複数の貫通孔
から成ることを特徴とする請求項1に記載の積層ゴム支
承体。3. The laminated rubber bearing according to claim 1, wherein the opening comprises a plurality of through holes formed at predetermined intervals over the entire outer periphery of the laminated rubber portion.
とはゴム層の加硫成形もしくはゴム層との接着によって
一体化されていることを特徴とする請求項1〜3のいず
れかに記載の積層ゴム支承体。4. The method according to claim 1, wherein the laminated rubber portion and each of the flange members are integrated by vulcanization molding of a rubber layer or adhesion to the rubber layer. Laminated rubber bearing.
面及び下面の両方に設けられた環状溝によって形成され
ることを特徴とする請求項1、3又は4に記載の積層ゴ
ム支承体。5. The laminated rubber bearing according to claim 1, wherein the thin portion is formed by annular grooves provided on both an upper surface and a lower surface of the flange member.
面又は下面の片側面に設けられた環状溝によって形成さ
れることを特徴とする請求項1、3又は4に記載の積層
ゴム支承体。6. The laminated rubber bearing according to claim 1, wherein the thin portion is formed by an annular groove provided on one side of an upper surface or a lower surface of the flange member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000394279A JP2002195327A (en) | 2000-12-26 | 2000-12-26 | Laminated rubber pivotally supporting body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000394279A JP2002195327A (en) | 2000-12-26 | 2000-12-26 | Laminated rubber pivotally supporting body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002195327A true JP2002195327A (en) | 2002-07-10 |
Family
ID=18859929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000394279A Pending JP2002195327A (en) | 2000-12-26 | 2000-12-26 | Laminated rubber pivotally supporting body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002195327A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005163281A (en) * | 2003-11-28 | 2005-06-23 | Oiles Ind Co Ltd | Attaching structure of laminated rubber base-isolated support device |
JP2005171609A (en) * | 2003-12-10 | 2005-06-30 | Oiles Ind Co Ltd | Mounting structure of multi-layer rubber base isolation bearing device |
JP2007315559A (en) * | 2006-05-29 | 2007-12-06 | Shimizu Corp | Base isolation device for precision instrument and installation structure for precision instrument |
JP2011141036A (en) * | 2011-02-18 | 2011-07-21 | Fujita Corp | Seismic isolator |
JP5009431B1 (en) * | 2011-09-13 | 2012-08-22 | 株式会社ダイナミックデザイン | Construction method of horizontal restoring spring device for seismic isolation structure |
CN104975664A (en) * | 2014-04-09 | 2015-10-14 | 株式会社普利司通 | Shock isolation device |
CN107268823A (en) * | 2017-07-21 | 2017-10-20 | 广州大学 | A kind of attachment means of Wedge device and shock isolating pedestal |
TWI623674B (en) * | 2014-11-25 | 2018-05-11 | Mitsubishi Hitachi Power Sys | Support structure |
-
2000
- 2000-12-26 JP JP2000394279A patent/JP2002195327A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005163281A (en) * | 2003-11-28 | 2005-06-23 | Oiles Ind Co Ltd | Attaching structure of laminated rubber base-isolated support device |
JP4631274B2 (en) * | 2003-11-28 | 2011-02-16 | オイレス工業株式会社 | Laminated rubber seismic isolation device mounting structure |
JP2005171609A (en) * | 2003-12-10 | 2005-06-30 | Oiles Ind Co Ltd | Mounting structure of multi-layer rubber base isolation bearing device |
JP4631275B2 (en) * | 2003-12-10 | 2011-02-16 | オイレス工業株式会社 | Laminated rubber seismic isolation device mounting structure |
JP2007315559A (en) * | 2006-05-29 | 2007-12-06 | Shimizu Corp | Base isolation device for precision instrument and installation structure for precision instrument |
JP2011141036A (en) * | 2011-02-18 | 2011-07-21 | Fujita Corp | Seismic isolator |
JP5009431B1 (en) * | 2011-09-13 | 2012-08-22 | 株式会社ダイナミックデザイン | Construction method of horizontal restoring spring device for seismic isolation structure |
CN104975664A (en) * | 2014-04-09 | 2015-10-14 | 株式会社普利司通 | Shock isolation device |
JP2015200390A (en) * | 2014-04-09 | 2015-11-12 | 株式会社ブリヂストン | Seismic isolation device |
CN104975664B (en) * | 2014-04-09 | 2019-10-15 | 株式会社普利司通 | Earthquake isolating equipment |
TWI623674B (en) * | 2014-11-25 | 2018-05-11 | Mitsubishi Hitachi Power Sys | Support structure |
CN107268823A (en) * | 2017-07-21 | 2017-10-20 | 广州大学 | A kind of attachment means of Wedge device and shock isolating pedestal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5339580A (en) | Laminated rubber building support and vibration damping device | |
US10619700B2 (en) | Seismic isolation apparatus | |
JP2016176576A (en) | Displacement suppression seismic isolator and seismic isolation system | |
JP2018084100A (en) | Base-isolated building | |
JP2002195327A (en) | Laminated rubber pivotally supporting body | |
TWI672447B (en) | Base isolation supporting device | |
US5161338A (en) | Laminated rubber support assembly | |
JP2000199541A (en) | Vibration suspension device | |
KR100775417B1 (en) | Conical vibration isolation mount with high efficiency and high damping coefficient | |
JP2006514181A (en) | A bearing structure to reduce the transmission of shock and / or vibration forces, especially in buildings exposed to earthquake loads | |
JPH0337435A (en) | Vibration escaping support | |
JPH0249834A (en) | Anti-seismic bearing | |
JP2001012545A (en) | Laminated rubber bearing body | |
KR200413295Y1 (en) | Multi-Layer Spring Rubber Pad Vibration Isolation Mount | |
JP4292127B2 (en) | Bridge bearing device | |
US20080029681A1 (en) | Base Isolation Structure | |
JPS63293340A (en) | Laminated rubber bearing | |
JP4631275B2 (en) | Laminated rubber seismic isolation device mounting structure | |
JP2001140978A (en) | Laminated rubber support body | |
JPH09196116A (en) | Base isolator of structure | |
JP2002155992A (en) | Laminated rubber load device | |
JP3671317B2 (en) | Seismic isolation mechanism | |
JP2825893B2 (en) | Laminated rubber bearing | |
JP5096877B2 (en) | Seismic isolation building | |
JP2001027283A (en) | Laminated rubber support body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071204 |
|
A977 | Report on retrieval |
Effective date: 20091016 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20091020 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100309 |