JP2006283079A - Sintering operation method - Google Patents

Sintering operation method Download PDF

Info

Publication number
JP2006283079A
JP2006283079A JP2005102469A JP2005102469A JP2006283079A JP 2006283079 A JP2006283079 A JP 2006283079A JP 2005102469 A JP2005102469 A JP 2005102469A JP 2005102469 A JP2005102469 A JP 2005102469A JP 2006283079 A JP2006283079 A JP 2006283079A
Authority
JP
Japan
Prior art keywords
sintering
raw material
air permeability
material layer
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102469A
Other languages
Japanese (ja)
Other versions
JP4815841B2 (en
Inventor
Yoshinori Akiyama
義憲 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005102469A priority Critical patent/JP4815841B2/en
Publication of JP2006283079A publication Critical patent/JP2006283079A/en
Application granted granted Critical
Publication of JP4815841B2 publication Critical patent/JP4815841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintering operation method by which air permeability in a sintering raw material bed can be controlled more excellently and quantitatively than ever before. <P>SOLUTION: A sintering operation method, where air permeability controlling rods are inserted from above into the sintering raw material bed charged on the pallet of a downward suction type Dwight-Lloyd sintering machine to form ventilation grooves in the sintering raw material bed and then the surface layer is ignited to continuously manufacture sintered ore cakes, is improved. To be concrete, the insertion depth of the air permeability controlling rods is altered on the basis of the thickness of a wet zone determined in accordance with the properties of the raw materials for sintering to be charged. Moreover, it is preferable that the insertion depth of the air permeability controlling rods is further regulated on the basis of the amount of dusting in an ore discharge part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、焼結操業方法に係わり、特に、下向き吸気のドワイト・ロイド型焼結機において、焼結原料層の通気性を所謂「通気棒」の挿入深さ制御で改善し、高品質、且つ高生産性を達成する焼結操業方法に関する。   The present invention relates to a sintering operation method, and in particular, in a downward-inspired Dwight-Lloyd-type sintering machine, the air permeability of the sintering raw material layer is improved by controlling the insertion depth of a so-called `` venting bar '', high quality, The present invention also relates to a sintering operation method that achieves high productivity.

銑鉄を溶製する高炉への装入鉄源の一つに、焼結鉱と称し、層状に充填した焼結原料(配合原料ともいい、粉状の鉄鉱石、珪石、蛇紋岩、石灰石、ドロマイト等の造滓材及び炭材の混合物)を、混合した炭材の燃焼で焼き固めた所謂「人工鉄鉱石」がある。この焼結鉱は、一般にドワイト・ロイド型(以下、DL型という)焼結機を用いて製造されが、該DL型焼結機1は、図7に示すように、一定長さの循環する無限軌道2に底がグレートになった箱型のパレット3を複数取り付け、移動するパレット3上に給鉱(サージ)ホッパ4よりシュート(ドラムシュート)5を介して前記焼結原料を連続的に装入して焼結原料層6を形成し、ウインドボックス(風箱)7を介して上向き又は下向き吸気しながら該焼結原料層6の表層に点火炉8を用いて着火し、炭材を燃焼させて鉄鉱石粉、造滓材等の一部を溶融してから、冷却することでケーキ状に焼き固めるものである。このケーキは、該焼結機1の終端側(排鉱部9という)でパレット3より機外へ排出した後、破砕、冷却して高炉で所望するサイズ及び強度を有する焼結鉱とされる。なお、高炉では、直径が5mm以上のものが使用される。   One of the sources of iron charged to blast furnaces that melt pig iron is called sintered ore, which is a sintered raw material filled in layers (also called compound raw materials, powdered iron ore, silica, serpentine, limestone, dolomite There is a so-called “artificial iron ore” obtained by burning a mixture of charcoal and carbonaceous materials). This sintered ore is generally manufactured using a Dwight-Lloyd type (hereinafter referred to as DL type) sintering machine, and the DL type sintering machine 1 circulates for a certain length as shown in FIG. A plurality of box-shaped pallets 3 with a great bottom are attached to the endless track 2, and the sintered raw material is continuously fed from a feeding hopper 3 via a chute (drum chute) 5 onto a moving pallet 3. The sintered raw material layer 6 is formed by charging, and the surface layer of the sintered raw material layer 6 is ignited by using an ignition furnace 8 while taking in air upward or downward through a wind box (wind box) 7. It is burned and solidified into a cake by cooling after melting a part of iron ore powder, ironmaking material and the like. This cake is discharged from the pallet 3 to the outside of the sintering machine 1 on the terminal side (referred to as the ore removal section 9), then crushed and cooled to obtain a sintered ore having a desired size and strength in a blast furnace. . In the blast furnace, one having a diameter of 5 mm or more is used.

ところで、かかるDL型焼結機1では、幅2000〜5000mmの前記パレット3上へ500〜700mm程度の層高で焼結原料を連続装入して充填層を形成させるが、その際、該焼結原料層の良好な通気性を確保するため、形成させる焼結原料層6の下層部の空隙率が上層部より可及的に大きくなるように、下層部に粗粒の焼結原料を、上層部に細粒の焼結原料を偏析して充填する配慮がなされる。また、焼結原料は、パレット3に装入する前に、一定量(焼結原料の配合(種類)によって異なるが、6〜12質量%程度の)の水分が添加され、ミキサー等による造粒で所望の粒度分布を形成している。   By the way, in this DL type sintering machine 1, a sintered raw material is continuously charged onto the pallet 3 having a width of 2000 to 5000 mm at a layer height of about 500 to 700 mm to form a packed layer. In order to ensure good air permeability of the binder material layer, a coarse sintered raw material is formed in the lower layer portion so that the porosity of the lower layer portion of the sintered material layer 6 to be formed is as large as possible from the upper layer portion. Consideration is given to segregating and filling fine-grained sintering raw materials in the upper layer portion. Further, before the sintered raw material is charged into the pallet 3, a certain amount of water (about 6 to 12% by mass, depending on the blending (kind) of the sintered raw material) is added and granulated by a mixer or the like. The desired particle size distribution is formed.

しかしながら、下向き吸気のDL型焼結機1では焼結反応が下向きに進行するため、焼結原料に添加した前記水分が蒸発すると、その蒸気は焼結原料層6内を上方から下方へ移動し、最終的に下層部で凝縮し、所謂「湿潤帯」を形成する。ここで、参考のため、焼結反応が進行中の層内状況を模式的に図5に示す。つまり、上方から下方へ向け、冷却した「焼結鉱帯」10、炭材粉の燃焼、鉱石粉等の溶融(所謂「焼結反応」)が起きている「燃焼帯(赤熱帯)」11、水分の蒸発した「乾燥帯」12、蒸気が凝縮した前記「湿潤帯」13及び装入当初の状態を維持した「焼結原料帯」14が形成されている。   However, since the sintering reaction proceeds downward in the DL-type sintering machine 1 with the downward suction, when the moisture added to the sintering raw material evaporates, the vapor moves in the sintering raw material layer 6 from the upper side to the lower side. Finally, it condenses in the lower layer, forming a so-called “wet zone”. Here, for reference, the in-layer situation in which the sintering reaction is in progress is schematically shown in FIG. That is, from the upper side to the lower side, the cooled “sintered ore zone” 10, “burning zone (red tropics)” 11 in which combustion of carbonaceous powder, melting of ore powder or the like (so-called “sintering reaction”) occurs. The “dry zone” 12 where the water has evaporated, the “wet zone” 13 where the steam has condensed, and the “sintered raw material zone” 14 which maintains the initial state of charging are formed.

一般に、焼結鉱の製造では、焼結原料層6の通気性と焼結鉱の生産性との間に一定の関係(通気性の良好なほど生産性が大きい)があるが、この通気性は、焼結原料を事前に造粒する際に添加する前記水分量に左右される。したがって、上記「湿潤帯」13は、焼結原料層6の通気性に大きな影響を与え、該「湿潤帯」13が厚くなるほど焼結原料層6の通気抵抗が大きくなる方向(つまり、通気性を不良にする方向)に働く。また、下層部は、上層部に比べて冷却が遅く、保熱効果が大きいので、前記「赤熱帯」11が肥大化して全体の通気性を阻害する。したがって、焼結鉱の生産性向上には、下層部における通気性が大きく影響する。   In general, in the production of sintered ore, there is a certain relationship between the air permeability of the sintered raw material layer 6 and the productivity of the sintered ore (the better the air permeability, the higher the productivity). Depends on the amount of water added when the sintered raw material is granulated in advance. Therefore, the “wet zone” 13 has a great influence on the air permeability of the sintered raw material layer 6, and the air resistance of the sintered raw material layer 6 increases as the “wet zone” 13 becomes thicker (that is, the air permeability). Work in the direction of making it defective). In addition, the lower layer portion is slower to cool than the upper layer portion and has a large heat retention effect, so that the “red tropics” 11 are enlarged and hinder the overall air permeability. Therefore, the air permeability in the lower layer part greatly affects the productivity improvement of the sintered ore.

そこで、従来よりDL型焼結機での通気性の向上対策が種々考えられ、例えば、パレット底面のグレート上に充填した焼結原料層内の下層部に、一端を固定した棒状体をパレット進行方向にグレート面と平行に挿入して空洞を形成し、該下層部の通気性を向上させることが行われている(特許文献1参照)。通常、該棒状体(以下、通気制御棒という)は、縦断面視でみて、焼結原料層の幅方向に一定距離だけ離隔して複数段あるいは千鳥配列で設けられる。また、前記通気制御棒15をグレート面と平行ではなく、図4に示すように、焼結原料層6面にほぼ垂直(ある程度傾むけても良い)になるように挿入し、点火前の焼結原料層6に所定の深さを有する凹状溝(以下、通気溝16という)を複数列形成して、下層部の通気性を向上させる技術も開示されている(特許文献2参照)。   Therefore, various measures for improving the air permeability in the DL type sintering machine have been conceived conventionally. For example, a rod-shaped body with one end fixed to the lower layer portion in the sintering raw material layer filled on the grate on the bottom surface of the pallet is advanced to the pallet. In order to improve the air permeability of the lower layer part, a cavity is formed by inserting the direction parallel to the great surface (see Patent Document 1). Usually, the rod-like body (hereinafter referred to as a ventilation control rod) is provided in a plurality of stages or in a staggered arrangement with a certain distance in the width direction of the sintered raw material layer when viewed in a longitudinal section. Further, as shown in FIG. 4, the ventilation control rod 15 is inserted so as to be substantially perpendicular to the surface of the sintering raw material layer 6 (may be inclined to some extent) as shown in FIG. A technique for improving the air permeability of the lower layer part by forming a plurality of rows of concave grooves (hereinafter referred to as ventilation grooves 16) having a predetermined depth in the binding material layer 6 is also disclosed (see Patent Document 2).

ところが、特許文献1記載の技術によれば、焼結原料層の下層部に通気改良のための空洞がパレットのグレート面に対して水平に形成されるが、下向き通気の焼結方法では、この空洞を多数設けないと、通気性の改善にあまり有効でないという問題があった。また、特許文献2記載の技術では、図4に示したように、焼結原料層6の幅方向で複数本の通気溝16が形成されるが、その通気溝16のある部分とない部分では通気性が大きくことなるので、焼結原料層6の全体でみると通気の乱れが生じ、焼結の良好な部分と不良部分とが島状に混在する所謂「ムラ焼け」を起こしながら焼結操業を行うことになる。その結果、強度が脆弱な焼結鉱が大量に生産され、焼結歩留りを低下させるという問題がある。さらに、通気溝16は、給鉱部において焼結原料表面がまだ傾斜している段階で形成されるので、その後の該表面を平坦にする作業で焼結原料の堆積乱れが起きて通気溝16の一部が閉塞し、前記「ムラ焼け」がますます助長する。   However, according to the technique described in Patent Document 1, a cavity for improving ventilation is formed horizontally in the lower layer portion of the sintering raw material layer with respect to the great surface of the pallet. If many cavities are not provided, there is a problem that it is not very effective in improving air permeability. Further, in the technique described in Patent Document 2, as shown in FIG. 4, a plurality of ventilation grooves 16 are formed in the width direction of the sintering raw material layer 6. Since the air permeability becomes large, the air permeation is disturbed when the entire sintering raw material layer 6 is seen, and sintering is performed while causing so-called “uneven burn” in which a good portion and a bad portion of the sintering are mixed in an island shape. Will be in operation. As a result, there is a problem in that sintered ore having a weak strength is produced in large quantities and the sintering yield is lowered. Further, since the ventilation groove 16 is formed at the stage where the surface of the sintering raw material is still inclined in the feed section, the deposition of the sintering raw material is disturbed during the subsequent flattening operation, and the ventilation groove 16 is formed. A part of the blockage is blocked, and the “uneven burn” is further promoted.

加えて、これらの通気制御棒15の使用は、従来、焼結操業における作業者の過去の経験に基づいて行われ、作業者の判断で適当に挿入本数とか挿入深さが決められていた。つまり、上記「ムラ焼け」状況の観察とか生産状況に基づき、「ムラ焼け」を抑制したり、生産性が高まるように、作業者が挿入本数及び/又は挿入深さを試行錯誤して決めて操業していた。また、特許文献2のように、生産性向上のため、焼結原料の変化に対して焼結原料層厚みの2/3以内で作業者が適当と考える操作を行っていた。   In addition, the use of these ventilation control rods 15 has been conventionally performed based on the past experience of the operator in the sintering operation, and the number of insertions and the insertion depth have been appropriately determined by the operator's judgment. In other words, based on the observation of the “unevenness burn” situation and the production status, the operator decides the number of insertions and / or the insertion depth by trial and error so as to suppress the “unevenness burn” and increase the productivity. It was in operation. Further, as in Patent Document 2, in order to improve productivity, an operation that the operator considers appropriate is performed within 2/3 of the sintering raw material layer thickness with respect to the change of the sintering raw material.

このように、下向きDL型焼結機1には、かない以前より垂直タイプの通気制御棒15が設置されていたが、それを利用した通気性の制御方法は、原料性状、通気性等の操業因子間に存在する一定の関係に基づいたものでなく、極めてあいまいで、もっと定量的な利用方法の出現が熱望されていた。特に、鉄源としての良質な鉄鉱石粉が枯渇してきた最近では、高結晶水を内包する鉄鉱石粉の利用が高まり、焼結原料層6の水分や通気性の管理が従来より格段と難しくなる傾向にあるので、この要求は一層高まっている。
特開平2−263935号公報 特開平5−295456号公報
In this way, the downward DL type sintering machine 1 has been provided with the vertical type air flow control rod 15 from before, but the air flow control method using it is the operation of raw material properties, air flow properties, etc. Rather than being based on a certain relationship between factors, the advent of a more ambiguous and more quantitative use was eagerly desired. In particular, in recent years when high-quality iron ore powder as an iron source has been depleted, the use of iron ore powder containing highly crystallized water has increased, and the management of moisture and air permeability of the sintered raw material layer 6 has become much more difficult than before. This demand is even higher.
JP-A-2-263935 JP-A-5-295456

本発明は、かかる事情に鑑み、焼結原料層の通気性を従来より定量的で、且つ良好に制御可能な焼結操業方法を提供することを目的としている。   In view of such circumstances, an object of the present invention is to provide a sintering operation method in which the air permeability of a sintering raw material layer is quantitative and better controllable than before.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention.

すなわち、本発明は、下向き吸気するドワイト・ロイド型焼結機のパレット上に装入された焼結原料層中に、上方より挿入した通気制御棒で該焼結原料層に通気溝を形成してから表層に着火し、焼結鉱ケーキを連続的に製造する焼結操業方法において、前記通気制御棒の挿入深さを、装入する焼結原料の性状に応じて定まる湿潤帯の厚みに基づき変更することを特徴とする焼結操業方法である。この場合、前記通気制御棒の挿入深さを、さらに排鉱部での発塵量の大小に基づき調整するのが良い。また、前記焼結原料の主鉄鉱石が高結晶水含有鉱石であることが好ましい。   That is, in the present invention, a ventilation groove is formed in the sintering raw material layer with a ventilation control rod inserted from above in the sintering raw material layer charged on the pallet of the Dwight-Lloyd sintering machine that sucks downward. In the sintering operation method in which the surface layer is ignited and the sintered ore cake is continuously produced, the insertion depth of the ventilation control rod is set to the thickness of the wet zone determined according to the properties of the sintered raw material to be charged. It is a sintering operation method characterized by changing based on. In this case, it is preferable that the insertion depth of the ventilation control rod is further adjusted based on the amount of dust generated at the discharge portion. Moreover, it is preferable that the main iron ore of the sintering raw material is a high crystal water-containing ore.

本発明によれば、焼結原料層の通気性を従来より定量的で、且つ良好に制御可能になる。その結果、通気制御棒を使用しても「ムラ焼け」が抑制され、生産性を低下させることなく、焼結鉱の品質(粒度分布、強度等)が一定になる。特に、本発明は、高結晶水を含有する鉄鉱石粉を主体とした焼結原料の焼結操業に対して有効である。   According to the present invention, the air permeability of the sintered raw material layer can be quantitatively and better controlled than before. As a result, even if the ventilation control rod is used, “uneven burn” is suppressed, and the quality (particle size distribution, strength, etc.) of the sintered ore becomes constant without reducing productivity. In particular, the present invention is effective for a sintering operation of a sintering raw material mainly composed of iron ore powder containing high crystal water.

以下、発明をなすに至った経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background of the invention.

一般に、焼結原料の粒子同士の焼結は、前記したように、次のようなフローで進行する(図5及び図6参照)。焼結原料が移動するパレット3の上に装入され、その充填層が所定の層厚で形成された後、点火によって表層部に混合した炭材(コークス屑)が燃焼、1200〜1500℃程度に昇温すると同時に、焼結原料の一部が溶融し、粒子同士が互いに融着を開始する。この部分が「燃焼帯」とか「赤熱帯」と呼ばれるが、冷却すると所謂「ケーキ状の焼結体」になる。そして、ウインドボックス7が負圧なので、空気が表層部から下向きに流れる。この空気は、上記燃焼帯を通過することで加熱され、該燃焼帯直下の焼結原料を加熱する。その加熱された焼結原料は、水分を蒸発で失い、蒸発した水分は、さらに下層の焼結原料層6内に移行して凝縮する。したがって、「燃焼帯」11の直下に「乾燥帯」12、その下には「湿潤帯」13が存在することになる。なお、これらの各帯を通過するガス(空気が上方の種々の反応でCO,CO2、H2O等の混合ガスになっている)の温度は、「乾燥帯」12で100℃以上、「湿潤帯」13で60〜70℃である。「乾燥帯」12に存在する焼結原料は、引き続き加熱されるので、炭材の着火温度に到達後、前記「燃焼帯」11となる。このようなフローで、焼結原料層6の最下端がこの「燃焼帯」11になれば、その上方には、該「燃焼帯」11及び冷却した「ケーキ状の焼結体」が重なった状態になるので、それを焼結機1の排鉱部9より機外へ排出する。 In general, the sintering of the sintering raw material particles proceeds in the following flow as described above (see FIGS. 5 and 6). After the sintered raw material is loaded on the moving pallet 3 and the packed layer is formed with a predetermined layer thickness, the carbonaceous material (coke scrap) mixed in the surface layer portion by ignition burns, and is about 1200 to 1500 ° C. At the same time as the temperature rises, a part of the sintering raw material melts and the particles start to fuse with each other. This portion is called “combustion zone” or “red tropical”, but when cooled, it becomes a so-called “cake-like sintered body”. And since the wind box 7 is a negative pressure, air flows downward from a surface layer part. This air is heated by passing through the combustion zone, and heats the sintering raw material immediately below the combustion zone. The heated sintering raw material loses moisture by evaporation, and the evaporated moisture further moves into the lower sintering raw material layer 6 and condenses. Therefore, there is a “dry zone” 12 immediately below the “combustion zone” 11 and a “wet zone” 13 below it. The temperature of the gas passing through each of these zones (air is a mixed gas such as CO, CO 2 , H 2 O, etc. in various reactions above) is 100 ° C. or higher in the “dry zone” 12, The “wet zone” 13 is 60 to 70 ° C. Since the sintering raw material existing in the “dry zone” 12 is continuously heated, it becomes the “combustion zone” 11 after reaching the ignition temperature of the carbonaceous material. In such a flow, when the lowermost end of the sintering raw material layer 6 becomes the “combustion zone” 11, the “combustion zone” 11 and the cooled “cake-like sintered body” overlapped thereabove. Since it will be in a state, it will be discharged | emitted from the excavation part 9 of the sintering machine 1 out of the machine.

そこで、発明者は、特許文献2記載の通気制御棒15を備えた下向き吸気のDL型焼結機1で焼結鉱を製造する上で、焼結原料層の通気性が製品である焼結鉱の生産性及び品質を左右するに着眼し、従来より定量的で優れた通気性の制御技術を開発することにした。そして、前記したように、全体の通気性に対して焼結原料層6の下層部、とりわけ「湿潤帯」13が重要な役割を果たすことから、該「湿潤帯」の厚みと前記通気性制御棒15の挿入深さとの間に一定の関係が存在しないかどうかを、試験鍋及び実機を用いて検討した。その結果、焼結原料の異なる配合(種類)ごとにその関係を予め求めておけば、従来より優れた通気性の制御が可能であることを見出し、それを要件に本発明を完成させたのである。   Therefore, the inventor manufactures sintered ore with the downward-suction DL-type sintering machine 1 equipped with the ventilation control rod 15 described in Patent Document 2, and the sintered raw material layer is a product whose air permeability is a product. Focusing on the productivity and quality of the ore, we decided to develop a quantitative and superior breathability control technology. As described above, the lower layer portion of the sintering raw material layer 6, particularly the “wet zone” 13, plays an important role with respect to the overall air permeability. Therefore, the thickness of the “wet zone” and the air permeability control It was examined using a test pan and an actual machine whether or not there was a certain relationship between the insertion depth of the rod 15. As a result, we found that if the relationship was determined in advance for each different composition (type) of the sintering raw material, it was possible to control the air permeability superior to the conventional one, and the present invention was completed based on that requirement. is there.

まず、本発明では、配合異なった種々の焼結原料の「湿潤帯厚み」を、試験鍋あるいは実機を用いて予め決定する。具体的には、焼結原料層の縦(高さ)方向に温度計を一定距離だけ離隔して多段に配設し、実際に試験焼結を行って、焼結時間と温度が60〜70℃に入る領域(焼結原料層内のある距離)との関係を求め、その60〜70℃に入る領域(焼結原料層内のある距離)の最大値を「湿潤帯厚み」と定義した。「湿潤帯」13は焼結時間によっても時々刻々と変化するので、通気性に最も影響の大きい最大値を採用することにしたのである。なお、このようにして決定した「湿潤帯厚み」及び対応する配合原料の種類は、後の利用のため、コンピュータ等にファイル化して記憶させておくのが便利である。   First, in the present invention, “wet band thickness” of various sintered raw materials having different compositions is determined in advance using a test pan or an actual machine. Specifically, thermometers are arranged in multiple stages at a certain distance in the longitudinal (height) direction of the sintering raw material layer, and the test sintering is actually performed, and the sintering time and temperature are 60 to 70. The relationship with the region entering the ℃ (a certain distance in the sintering raw material layer) was obtained, and the maximum value of the region entering the 60 to 70 ℃ (the certain distance in the sintering raw material layer) was defined as “wet zone thickness”. . Since the “wet zone” 13 changes every moment depending on the sintering time, the maximum value that has the greatest influence on the air permeability is adopted. The “wet band thickness” determined in this way and the type of the corresponding blended raw material are conveniently stored in a file on a computer or the like for later use.

次に、この「湿潤帯厚み」が厚いほど焼結原料層の通気抵抗が大きくなるので、該「湿潤帯厚み」と通気抵抗を低下させる前記通気制御棒の焼結原料層への挿入深さとの関係は、ほぼ直線関係になると予想される。そして、実機で、焼結鉱として許容できる強度で、最も生産性(焼結鉱の生産率:トン(t)/時間(hr)・面積(m2)で評価)の大きい操業ができた時の通気制御棒の挿入深さを求め、「湿潤帯厚み」との関係を整理したところ、図1に示すような「湿潤帯厚み」と「通気制御棒の挿入深さ」との関係が成立することを確認した。つまり、この関係を利用すれば、下向き吸気するドワイト・ロイド型焼結機のパレット上に装入された焼結原料層中に、上方より挿入した通気制御棒で該焼結原料層に通気溝を形成してから表層に着火し、焼結鉱ケーキを連続的に製造する焼結操業方法において、前記通気制御棒の挿入深さを、装入する焼結原料の性状に応じて定まる「湿潤帯厚み」に基づき設定するようにすれば、生産性を損なわずに、所望品質の焼結鉱が製造できるのである。そこで、このような操業方法を本発明としたのである。なお、図1において直線が複数本になるのは、同一の配合原料でも、焼結原料層の層厚や幅方向での通気制御棒の間隔によって通気性が異なるからである。 Next, the thicker the “wet zone thickness”, the greater the airflow resistance of the sintered material layer. Therefore, the “wet zone thickness” and the insertion depth of the air flow control rod into the sintered material layer, which reduces the airflow resistance, This relationship is expected to be almost linear. And, when the operation with the maximum strength (evaluated by the production rate of sinter: tons (t) / hour (hr) / area (m 2 )) with the strength acceptable as a sinter is possible with the actual machine Fig. 1 shows the relationship between the "wet band thickness" and the "insertion depth of the ventilation control rod". Confirmed to do. In other words, if this relationship is utilized, a ventilation groove is formed in the sintering raw material layer by a ventilation control rod inserted from above into the sintering raw material layer charged on the pallet of the Dwight-Lloyd type sintering machine that sucks downward. In the sintering operation method in which the surface layer is ignited and the sintered ore cake is continuously produced, the insertion depth of the ventilation control rod is determined according to the properties of the sintered raw material to be charged. If it is set based on the “band thickness”, a sintered ore having a desired quality can be manufactured without impairing productivity. Therefore, such an operation method is the present invention. The reason why there are a plurality of straight lines in FIG. 1 is that the air permeability varies depending on the thickness of the sintering raw material layer and the interval of the air flow control rods in the width direction even with the same raw material.

引き続いて、焼結原料は、たとえ同一配合(種類)であってもまったく均一のものはありえず、時間の経過で装入する焼結原料の性状は変動する。したがって、上記した本発明に係る操業方法に従って操業していても、場合によっては設定した通気制御棒の挿入深さが適切でないことも起こり、「ムラ焼け」が発生する可能性がある。そこで、発明者は、このような外乱による「ムラ焼け」発生に対する微調整を本発明に加えることにした。すなわち、焼結機のケーキ状焼結体の排出部(排後部)からの発塵量を測定し、その発塵量が少なくなるように、先に前記本発明の実施で設定した通気制御棒の位置を上方に微調整するようにするのである。これにより、焼結原料の同一配合内での「ムラ焼け」が抑制できるようになる。ここで、発塵量の大小は、大気中のダスト量を検出するセンサを設けて常時測定しても良いし、集塵機で回収したダスト量の経時変化で判断しても良い。   Subsequently, even if the sintering raw material has the same composition (kind), it cannot be uniform at all, and the properties of the sintering raw material to be charged vary with time. Therefore, even if the operation method according to the present invention described above is used, the set insertion depth of the air flow control rod may not be appropriate in some cases, and “uneven burn” may occur. Therefore, the inventor decided to add fine adjustment to the present invention for the occurrence of “unevenness burn” due to such disturbance. That is, the amount of dust generated from the discharge part (exhaust rear part) of the cake-like sintered body of the sintering machine is measured, and the ventilation control rod previously set in the implementation of the present invention so as to reduce the amount of dust generation Is finely adjusted upward. Thereby, “unevenness burning” within the same composition of the sintering raw material can be suppressed. Here, the magnitude of the dust generation amount may be constantly measured by providing a sensor for detecting the dust amount in the atmosphere, or may be determined by a change with time of the dust amount collected by the dust collector.

以上述べた本発明では、焼結原料の種類を特に限定するものではない。ただし、本発明は、高結晶水を内包する鉄鉱石を多量に配合した焼結原料に対して特に有効である。それらの焼結原料は通気性の制御が難しいが、本発明の適用で適切な通気性の制御ができるようになるからである。   In the present invention described above, the kind of the sintering raw material is not particularly limited. However, the present invention is particularly effective for a sintered raw material containing a large amount of iron ore containing high crystal water. Although it is difficult to control the breathability of these sintered raw materials, it is possible to appropriately control the breathability by applying the present invention.

また、本発明の実施では、通気制御棒は、焼結原料をパレットに装入するシュートの位置より下流側で、装入された焼結原料層の表層を掻き均して平坦にする所謂「カットオフ・プレート」の上流側に配置する。そして、該通気制御棒の焼結原料層への挿入深さは機械的な昇降装置で行われる。したがって、本発明を実施するには、焼結する配合原料を決めたら、前記したコンピュータに記憶させた異なる配合原料ごとのデータより「湿潤帯厚み」を決定し、図1に示した関係を用いて通気制御棒の挿入深さのを決定し、前記昇降装置を稼動させてその値に設定して操業することが基本になる。なお、この設定は、人手で行っても、自動化して行っても良い。   Further, in the practice of the present invention, the ventilation control rod scrapes and flattens the surface layer of the charged sintered raw material layer on the downstream side of the chute position where the sintered raw material is charged into the pallet. Place upstream of the “cut-off plate”. The insertion depth of the air flow control rod into the sintering material layer is performed by a mechanical lifting device. Therefore, in order to carry out the present invention, once the blending raw material to be sintered is determined, the “wet band thickness” is determined from the data for each different blending raw material stored in the computer, and the relationship shown in FIG. 1 is used. Basically, the insertion depth of the ventilation control rod is determined, and the lifting device is operated and set to that value. This setting may be performed manually or automatically.

幅4500mmのパレット、間隔700mmで6本の昇降自在な通気制御棒を備えた下向き通気のDL型焼結機で焼結操業を行った。使用した焼結原料(配合原料)は、粉状のヘマタイト系鉄鉱石、返鉱、各種SiO2含有原料、石灰石、ドロマイト、粉コークスを混合した配合原料Aを基準に、外掛けで高結晶水を含有するマラマンバ鉱石を種々変更して配合したものである。つまり、基本配合原料に加えて、外掛けでマラマンバ鉱石を0,10,20,30,40質量%と異ならせた5種類の焼結原料を準備した。
(比較例)
まず、通気制御棒を焼結原料層に作業者の判断で挿入する従来通りの操業を行った。つまり、600mmの焼結原料層に対して、通気制御棒の先端が焼結原料層の表面より300mmの深さに到達するように挿入し、焼結原料層に6本の凹状通気溝を形成させてから点火を行った。
The sintering operation was carried out with a DL-type sintering machine with a downward-venting aeration equipped with a pallet with a width of 4500 mm and six air-controlling rods capable of moving up and down at an interval of 700 mm. The sintered raw material (mixed raw material) used was a highly crystallized water on the basis of the mixed raw material A, which is a mixture of powdered hematite-type iron ore, return mineral, various SiO 2 -containing raw materials, limestone, dolomite, and powdered coke Various maramba ores containing selenium. In other words, in addition to the basic blending raw materials, five kinds of sintered raw materials were prepared in which Maramamba ore was made to differ from 0, 10, 20, 30, 40% by mass.
(Comparative example)
First, a conventional operation was performed in which the ventilation control rod was inserted into the sintering material layer at the operator's discretion. In other words, with respect to the 600 mm sintering raw material layer, the tip of the ventilation control rod is inserted so as to reach a depth of 300 mm from the surface of the sintering raw material layer, and six concave ventilation grooves are formed in the sintering raw material layer. I ignited after letting.

焼結結果は、マラマンバ鉱石の配合が0質量%の配合原料の場合を除き、常時「ムラ焼け」が発生し、許容範囲のドラム強度を有する焼結鉱とするには、焼結歩留りの低下があった。そのため、生産率は、図2に示すように、マラマンバ鉱石の配合量が多くなるにつれ、かなり低下した。
(本発明例)
まず、5種類の配合が異なる配合原料に対応する「湿潤帯厚み」を、予め記憶させてあるコンピュータより出力させた。そして、前記図1に示した関係より、それぞれの「湿潤帯の厚み」に対応する通気制御棒の挿入深さを読みとり、設定値を定めた。この各設定値で操業した結果の生産率は、図3の通りである。なお、マラマンバ鉱石:40質量%を配合した焼結原料の場合には、発塵量検出センサで測定した発塵量が増加する傾向が見られたので、通気制御棒の値を減少させ、発塵量を低下させる微調整を行った。
As a result of sintering, except for the case where the blending material of Mara Mamba ore is 0% by mass, “uneven burn” always occurs, and in order to obtain a sintered ore having an acceptable drum strength, the sintering yield decreases. was there. Therefore, as shown in FIG. 2, the production rate decreased considerably as the blending amount of maramamba ore increased.
(Example of the present invention)
First, the “wet band thickness” corresponding to the blended raw materials having five different blends was output from a computer stored in advance. Then, from the relationship shown in FIG. 1, the insertion depth of the ventilation control rod corresponding to each “wet band thickness” was read to determine the set value. The production rate as a result of operation with each set value is as shown in FIG. In the case of a sintered raw material containing 40% by mass of Mara Mamba ore, there was a tendency to increase the dust generation amount measured by the dust generation detection sensor. A fine adjustment was made to reduce the amount of dust.

本発明の適用で、通気制御の難しい高結晶水含有鉱石であっても、高生産率を確保できることが明らかである。つまり、本発明によれば、焼結原料層の通気性を従来より定量的で、且つ良好に制御可能になる。その結果、通気制御棒を使用しても「ムラ焼け」が抑制され、生産性を低下させることなく、焼結鉱の品質(粒度分布、強度等)が一定になる。特に、本発明は、高結晶水を含有する鉄鉱石粉を主体とした焼結原料の焼結操業に対して有効である。   By applying the present invention, it is clear that a high production rate can be ensured even for highly crystallized water-containing ores for which ventilation control is difficult. That is, according to the present invention, the air permeability of the sintered raw material layer can be quantitatively controlled better than before. As a result, even if the ventilation control rod is used, “uneven burn” is suppressed, and the quality (particle size distribution, strength, etc.) of the sintered ore becomes constant without reducing productivity. In particular, the present invention is effective for a sintering operation of a sintering raw material mainly composed of iron ore powder containing high crystal water.

本発明の基礎をなす焼結原料の「湿潤帯厚み」と「通気制御棒の焼結原料層への挿入深さ」との関係を示す図である。It is a figure which shows the relationship between the "wet zone thickness" of the sintering raw material which forms the foundation of this invention, and "the insertion depth to the sintering raw material layer of a ventilation control rod." 従来の焼結操業で得た各配合原料を焼結した際の生産率を示す図である。It is a figure which shows the production rate at the time of sintering each compounding raw material obtained by the conventional sintering operation. 本発明を適用した焼結操業で得た各配合原料を焼結した際の生産率を示す図である。It is a figure which shows the production rate at the time of sintering each mixing | blending raw material obtained by the sintering operation to which this invention is applied. DL型焼結機に配設した垂直方式の通気制御棒を説明する斜視図である。It is a perspective view explaining the perpendicular | vertical ventilation control rod arrange | positioned in DL type | mold sintering machine. 焼結原料層が焼結中に起こす現象を縦断面で模式的に示す図である。It is a figure which shows typically the phenomenon which a sintering raw material layer raise | generates during sintering with a longitudinal cross-section. 焼結原料層が焼結中に起こす現象を横断面で模式的に示す図である。It is a figure which shows typically the phenomenon which a sintering raw material layer raise | generates during sintering in a cross section. 一般的なDL型焼結機の構造を説明する横断面図である。It is a cross-sectional view explaining the structure of a general DL type sintering machine.

符号の説明Explanation of symbols

1 DL型焼結機
2 無限軌道
3 パレット
4 給鉱ホッパ
5 シュート
6 焼結原料層
7 ウインドボックス
8 点火炉
9 排鉱部
10 焼結鉱帯
11 燃焼帯(赤熱帯)
12 乾燥帯
13 湿潤帯
14 焼結原料帯
15 通気制御棒
16 通気溝
DESCRIPTION OF SYMBOLS 1 DL type sintering machine 2 Endless track 3 Pallet 4 Feeding hopper 5 Chute 6 Sintering raw material layer 7 Wind box 8 Ignition furnace 9 Exhaust section 10 Sintered ore zone 11 Combustion zone (red tropics)
12 Drying zone 13 Wet zone 14 Sintering raw material zone 15 Ventilation control rod 16 Ventilation groove

Claims (3)

下向き吸気するドワイト・ロイド型焼結機のパレット上に装入された焼結原料層中に、上方より挿入した通気制御棒で該焼結原料層に通気溝を形成してから表層に着火し、焼結鉱ケーキを連続的に製造する焼結操業方法において、
前記通気制御棒の挿入深さを、装入する焼結原料の性状に応じて定まる湿潤帯の厚みに基づき変更することを特徴とする焼結操業方法。
In the sintering raw material layer charged on the pallet of the Dwight-Lloyd sintering machine that sucks in downward, a ventilation groove is formed in the sintering raw material layer with a ventilation control rod inserted from above, and then the surface layer is ignited. In the sintering operation method for continuously producing a sintered ore cake,
A sintering operation method characterized in that the insertion depth of the ventilation control rod is changed based on the thickness of a wet strip determined according to the properties of the sintering raw material to be charged.
前記通気制御棒の挿入深さを、さらに排鉱部での発塵量の大小に基づき調整することを特徴とする請求項1記載の焼結操業方法。   The sintering operation method according to claim 1, wherein the insertion depth of the ventilation control rod is further adjusted based on the amount of dust generation in the exhaust portion. 前記焼結原料の主鉄鉱石が高結晶水含有鉱石であることを特徴とする請求項1又は2記載の焼結操業方法。   The sintering operation method according to claim 1 or 2, wherein the main iron ore of the sintering raw material is an ore containing high crystal water.
JP2005102469A 2005-03-31 2005-03-31 Sintering method Active JP4815841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102469A JP4815841B2 (en) 2005-03-31 2005-03-31 Sintering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102469A JP4815841B2 (en) 2005-03-31 2005-03-31 Sintering method

Publications (2)

Publication Number Publication Date
JP2006283079A true JP2006283079A (en) 2006-10-19
JP4815841B2 JP4815841B2 (en) 2011-11-16

Family

ID=37405291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102469A Active JP4815841B2 (en) 2005-03-31 2005-03-31 Sintering method

Country Status (1)

Country Link
JP (1) JP4815841B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295456A (en) * 1992-04-22 1993-11-09 Kawasaki Steel Corp Method for controlling gas permeability in sintered material layer and device therefor
JPH09184022A (en) * 1995-10-30 1997-07-15 Kawasaki Steel Corp Production of sintered ore and apparatus therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295456A (en) * 1992-04-22 1993-11-09 Kawasaki Steel Corp Method for controlling gas permeability in sintered material layer and device therefor
JPH09184022A (en) * 1995-10-30 1997-07-15 Kawasaki Steel Corp Production of sintered ore and apparatus therefor

Also Published As

Publication number Publication date
JP4815841B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5298634B2 (en) Quality control method for sintered ore
JP6959590B2 (en) Sintered ore manufacturing method
JP5561443B2 (en) Method for producing sintered ore
JP4815841B2 (en) Sintering method
JP4830728B2 (en) Method for producing sintered ore
JP2002121621A (en) Method for producing sintered ore and dl type sintering machine
JP2012219363A (en) Method for production of sintered ore
JP6155602B2 (en) Method for producing sintered ore
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP3858491B2 (en) Method and apparatus for improving ventilation of sintered raw material layer
EP2862949B1 (en) Method for manufacturing sintered ore
JP5831694B2 (en) Sintering machine
KR19990013132A (en) Sintered Ore Manufacturing Method
JP6102535B2 (en) Method for producing sintered ore
JP4639436B2 (en) Pallet for sintering machine
JP2020117767A (en) Method for manufacturing sinter
JP2024000617A (en) Method for manufacturing sintered ore and apparatus for manufacturing sintered ore
JPH07258755A (en) Production of sintered ore
JP5434340B2 (en) Method for producing sintered ore
JPH09279262A (en) Production of sintered ore
JPH0860259A (en) Production of sintered ore
JPH0931553A (en) Production of sintered ore
JP2004339560A (en) Method and equipment for charging raw material into sintering machine
JP2004244677A (en) Method of producing sintered ore
JPH1072627A (en) Production of sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4815841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250