JP2004339560A - Method and equipment for charging raw material into sintering machine - Google Patents

Method and equipment for charging raw material into sintering machine Download PDF

Info

Publication number
JP2004339560A
JP2004339560A JP2003136506A JP2003136506A JP2004339560A JP 2004339560 A JP2004339560 A JP 2004339560A JP 2003136506 A JP2003136506 A JP 2003136506A JP 2003136506 A JP2003136506 A JP 2003136506A JP 2004339560 A JP2004339560 A JP 2004339560A
Authority
JP
Japan
Prior art keywords
pallet
raw material
width direction
sintering
ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003136506A
Other languages
Japanese (ja)
Other versions
JP4124020B2 (en
Inventor
Taketo Imagawa
健人 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003136506A priority Critical patent/JP4124020B2/en
Publication of JP2004339560A publication Critical patent/JP2004339560A/en
Application granted granted Critical
Publication of JP4124020B2 publication Critical patent/JP4124020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and equipment for charging raw materials by which the air permeability of a bed of raw materials for sintering at both ends in the width direction of a pallet can be suppressed and the quality and yield of sintered ore can be improved. <P>SOLUTION: In the method and equipment for charging raw materials, when the raw materials are charged into a sintering machine by charging the raw materials 7 from an ore-feed hopper 2 onto a pallet via a feed rate adjusting device, a feeder and an ore-feed device having a particle-size segregation function, the raw materials 7 are charged, in the central part in the width direction of the pallet, via the ore-feed device having a particle-size segregation function and the raw materials 7 are charged, in the vicinity of both ends in the width-direction of the pallet, by being allowed to fall directly onto the pallet without being passed through the ore-feed device having a particle-size segregation function. In the above charging method and equipment, the ore-feed device having a particle-size segregation function consists of a flow plate 10 and an ore-feed chute 5 or of the ore-feed chute. It is preferable that the range of the vicinities of both ends in the width direction of the pallet is made to ≤10% of the overall width of the pallet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、焼結鉱の製造において、焼結原料をパレット内に装入するに際し、パレットの幅方向端部近傍の原料については、前記端部以外の部分と異なる装入方法で装入することにより、焼結鉱の品質および歩留りの向上を可能とする原料装入方法および原料装入装置に関する。
【0002】
【従来の技術】
ドワイト−ロイド(以下、「DL」と記す)型焼結機による焼結鉱製造プロセスでは、焼結機のパレット上に装入された焼結原料層に対し、点火炉にて原料表面層中のコークスなどに着火して原料層の下方から空気を吸引し、原料層中を上方から下方に向かって通過する空気により原料層の上方から下方に向かって順次燃焼反応を起こさせ、その燃焼熱により焼結反応を進行させる。したがって、原料層の高さ方向の熱的分布は、上層部では熱量不足となり、下層部では熱量過多となる。
【0003】
これは、上層部では、原料中のコークスの燃焼完了後には上層より吸引される低温の空気により急冷されるのに対し、下層部では、上層部の焼成の進行により徐々に昇温し充分に予熱された後にコークスなどが燃焼し、さらに燃焼完了後も上層部の残熱により徐々に冷却されることによるものである。したがって、原料層の下層部ほど高温となり原料の融着などにより通気抵抗が増加するため、上層部には細粒原料を、下層部には粗粒原料を偏析させた原料充填層をパレット上に形成させる装入方法および装置が各種提案されている。
【0004】
そのための方法として、焼結原料ホッパーの下部に設けたロールフィーダーから切り出された焼結原料を、給鉱シュートなどの粒度偏析機能を有する原料装入装置を介して焼結機パレット上に転動落下させ、原料の斜面分級効果を利用して焼結原料を粒度別に偏析させる方法が一般的である。この方法により、パレット上の焼結原料層内における通気性のバラツキが低減し、層内温度および焼結反応のバラツキも小さくなる。
【0005】
しかし、焼結反応のバラツキは、パレット上の焼結原料層の高さ方向だけでなく、パレット幅方向にも発生する。これは、パレット側板近傍においては、壁面効果により焼結原料が粗に充填されやすく、したがって、パレット側板近傍では、焼結原料が比較的密に充填されるパレットの幅方向中央部に比較して、通気性が極度に高くなり、これにともなって、側板とパレット上の原料充填層との空隙を空気が優先的に流れ、焼結反応の進行状況にも幅方向の偏差が発生するからである。
【0006】
このような状態では、パレット側板近傍の焼結原料については、歩留りを維持するために必要な焼成時の高温保持時間が短くなることから歩留りが低下し、また、幅方向中央部の焼結原料については、側板近傍に対して風量不足になり焼成が遅れるため、幅方向における焼結品質のバラツキ拡大などの問題が発生する。
【0007】
前記したパレット幅方向の焼結反応のバラツキを抑制する方法として、パレットに原料を装入する際に分割ゲートにより幅方向の原料供給量を制御する方法が知られている。
【0008】
例えば、特許文献1には、装入ホッパーから焼結配合原料を切り出して焼結パレットに装入する原料装入方法において、装入ホッパーの切り出しゲートを少なくともパレットの幅方向で3以上に分割するとともに、分割された各ゲートにおける配合原料供給量を調整可能とし、充填原料の充填密度をロールフィーダー下方の焼結パレット上で、分割された各ゲートと対応させて密度計により検出し、予め設定したパレット幅方向の充填密度分布となるように、分割された各ゲートの配合原料供給量を調整する方法が開示されている。しかし、この方法では、幅方向の通気性を制御して焼結反応の全体的なバラツキを抑制することはできても、原料供給量の制御のみでパレット側板近傍の通気性過多領域の対策に充分なまでに原料の充填密度を増加させることは困難であった。
【0009】
特許文献2には、焼結原料と床敷鉱との通気性の差を利用した制御方法が開示されている。すなわち、給鉱部に設けた床敷鉱切り出しゲートの開度調整を行って床敷鉱層厚を調整することにより、実質的に通気性の悪い焼結原料の充填層厚を制御し、燃焼前線がパレット内のグレートバーに到達する位置付近のウインドボックス内の幅方向の排ガス温度が最適温度分布となるように制御する方法である。しかし、ここで開示された方法は、通気性を改善するために床敷鉱層厚を増加させると、原料層厚が実質的に減少するため、焼結鉱成品歩留りの悪化を招き、大幅な調整をともなう充分な制御ができなかった。
【0010】
また、特許文献3には、焼結機の原料装入シュートと点火炉との間の原料層の上部に、パレット幅方向の中央部に配設した回転自在な第1のローラと、両側部に設けた回転自在な第2の口一ラとをパレットの進行方向に位置をずらして独立して上下方向に移動可能に設け、両側部の第2のローラの圧密深さを中央部の第1のローラの圧密深さよりも深く原料層を圧密して焼結する焼結方法が開示されている。この方法は、パレット両側部では壁効果により中央部よりも吸引風量過多となって冷間強度が低下するという問題の解決を狙ったものである。しかし、ここで開示された方法では、パレット上の原料層厚さに幅方向の差が生じるため、点火炉においてパレット幅方向でバーナーと原料層上面との間隔に差異が発生し、着火が幅方向で不均一となって焼結鉱成品歩留りが悪化するという問題がある。
【0011】
さらに、特許文献4には、焼結パレットの中央部に向けて落下する焼結原料の分散度およびまたは分級度を大きくし、前記パレットの両端部に対してはこれらを小さくした状態で焼結原料を落下させることにより、パレット幅方向に関する焼結反応のバラツキを抑制する方法が開示されている。しかし、この方法は、分級度の制御方法であって、原料密度の制御も含めた総合的な装入制御方法としては充分なものではない。
【特許文献1】
特開昭63−45327号公報(特許請求の範囲)
【特許文献2】
特開平9−49031号公報(特許請求の範囲および段落〔0008〕)
【特許文献3】
特開平5−39531号公報(特許請求の範囲および段落〔0007〕〜〔0010〕)
【特許文献4】
特開昭63−250424号公報(特許請求の範囲および2頁右上欄)
【0012】
【発明が解決しようとする課題】
本発明の課題は、焼結機のパレット幅方向端部近傍の焼結原料の装入方法を、前記端部近傍以外のパレット中央部の装入方法と異なる方法で装入することにより、端部近傍における通気性過多の状態を抑制し、パレット幅方向の焼結反応のバラツキを抑制して、焼結鉱の品質および歩留りを向上させる焼結原料の装入方法、および装入装置を提供することにある。
【0013】
【課題を解決するための手段】
本発明者は、上述の課題を解決するために、焼結機パレットの幅方向の端部近傍における通気性過多の状態を抑制し、焼結反応のバラツキを抑制して、焼結鉱の品質および歩留りを向上させる焼結原料の装入方法、および装入装置を検討した結果、下記の(a)〜(d)に示される知見を得た。
【0014】
(a)給鉱ホッパーから流し板や給鉱シュートなどの粒度偏析機能を有する給鉱装置を介して、緩やかにパレット上に焼結原料を落下装入させると、原料粒子が粒径および密度などの相違によって斜面分級され、通気性の良好な充填層を形成しやすい。
【0015】
(b)パレット幅方向の両端部近傍においても上記(a)と同様に分級され、通気性の良好な充填層を形成しやすい。さらにパレットの両端部近傍では、パレット側板による壁面効果により、両端部近傍以外の幅方向中央部に比較して、空隙率が高く通気性が極度に高い状態となりやすい。
(c)パレット幅方向の両端部のみ、粒度偏析機能を有する給鉱装置を介さずに焼結原料を自由落下させてパレット上に装入すると、分級作用を受けずにランダムに近い原料粒子配列の充填層が形成され、幅方向の両端部では、幅方向の中央部に比較して、粒子の充填密度が高くなり、上記(b)の通気性過多の状態を是正できる。
(d)パレットの全幅に対して10%以内の幅のパレット両端部近傍において、原料を自由落下させて装入すると、両端部近傍における通気性の極度に高い状態を是正できるので、好ましい。
【0016】
本発明は、上記の知見に基づいて完成されたものであり、その要旨は、下記の(1)〜(3)に示す焼結原料の装入方法、および(4)〜(7)に示す焼結原料の装入装置にある。
【0017】
(1)給鉱ホッパーから、切り出し量調整装置、フィーダーおよび粒度偏析機能を有する給鉱装置をこれらの順に介して原料をパレットに装入する焼結機の原料装入方法において、前記パレットの幅方向両端部近傍を除く部分では前記粒度偏析機能を有する給鉱装置を介して原料を装入し、パレットの幅方向両端部近傍では前記粒度偏析機能を有する給鉱装置を介さずに原料を前記パレットに落下させて装入することを特徴とする焼結機の原料装入方法。
【0018】
(2)前記粒度偏析機能を有する給鉱装置が、流し板と前記流し板の下流に位置する給鉱シュート、または給鉱シュートにより構成されることを特徴とする前記(1)に記載の焼結機の原料装入方法。
【0019】
(3)前記(1)または(2)に記載の焼結機の原料装入方法において、パレットの幅方向両端部近傍の幅は、パレット全幅の10%以下であることが好ましい。
【0020】
(4)原料の給鉱ホッパーと、前記供給ホッパーの下部に位置してホッパー内の原料の切り出し量を調整する切り出し量調整装置と、前記切り出し量調整装置の下方に位置して原料を供給するフィーダーと、前記フィーダーの下方に位置して原料をさらに下方に位置するパレットの幅方向両端部近傍を除く部分へは案内供給し、前記幅方向両端部近傍へは原料を案内することなく落下させる粒度偏析機能を有する給鉱装置とを備えた焼結機の原料装入装置。
【0021】
(5)前記粒度偏析機能を有する給鉱装置が、流し板と前記流し板の下方に位置する給鉱シュート、または給鉱シュートにより構成されたことを特徴とする前記(4)に記載の焼結機の原料装入装置。
【0022】
(6)前記給鉱シュートが、傾斜を有する板および/または傾斜を有するスリットにより構成されたことを特徴とする前記(5)に記載の焼結機の原料装入装置。
【0023】
(7)前記(4)〜(6)のいずれかに記載の焼結機の原料装入装置において、パレットの幅方向両端部近傍の幅は、パレット全幅の10%以下であることが好ましい。
【0024】
本発明において、「切り出し量調整装置」とは、給鉱ホッパーからの焼結原料の流出量を調整する装置をいう。
「フィーダー」とは、切り出し量調整装置により切り出された焼結原料を粒度偏析機能を有する給鉱装置に供給する装置をいう。
「粒度偏析機能を有する給鉱装置」とは、焼結原料を粒度偏析を起こさせながらパレット上に導く装置をいい、「案内供給」とは、焼結原料を当該給鉱装置を介して供給することをいう。
「給鉱シュート」とは、粒度偏析機能を有する給鉱装置であって、給鉱ホッパーから切り出された焼結原料をパレット上に供給する装置をいう。
【0025】
「流し板」とは、給鉱ホッパーから切り出された焼結原料を、例えば上記給鉱シュートに流下供給するための中継板をいう。
【0026】
【発明の実施の形態】
本発明は、パレットの幅方向両端部近傍を除く他の部分では、粒度偏析機能を有する給鉱装置を介して原料をパレットに緩やかに装入することにより偏析装入し、パレットの幅方向両端部近傍では、粒度偏析機能を有する給鉱装置を介さずに原料をパレットに自由落下させて装入することにより、原料を充填密度の高い状態で装入してパレットの幅方向両端部における通気性の著しい上昇を是正し、焼結鉱の品質および歩留りを向上させる焼結原料の装入方法、および装入装置を要旨とするものである。
【0027】
パレット上に充填された焼結原料層内の通気性は、焼結反応を大きく支配する。この原料層内の通気性に影響を及ぼす因子としては、主として粒度偏析と充填密度の2つがある。このうち、粒度偏析については、前述したように、パレット上の原料層の上層側に細粒原料を、そして下層側に粗粒原料を粒度偏析させ、上層側および下層側ではそれぞれ層内の粒度構成を均一粒径分布に近い分布とすることによって、粒子間に生じる空隙率を確保し、通気性を向上させている。したがって、粒度偏析の状況如何によっては空隙率が変化して通気性が変化する。
【0028】
図1は、通気性に影響を及ぼす粒度偏析の影響を示す模式図であり、同図(a)は粒度偏析がない状態、同図(b)は粒度偏析がある状態をそれぞれ表す。この粒度偏析を制御するには、例えば給鉱シュートの角度を変更する方法があるが、幅方向で分割した調整ができないため、粒度偏析による幅方向の通気性制御は困難であった。
【0029】
充填密度の影響については下記のとおりである。図2は、通気性に影響を及ぼす充填密度の影響を示す模式図であり、同図(a)は充填密度が高い状態、同図(b)は充填密度が低い状態をそれぞれ表す。充填密度が低い場合は、原料粒子間の空隙率が大きく、したがって通気性は良好であるが、高密度になると、空隙率が小さくなるため通気性が悪化する。
【0030】
図3は、従来技術である分割ゲートによる幅方向充填密度制御の概略図であり、同図(a)は装置の概略図、同図(b)はゲート開度調整による充填密度および焼成完了位置での幅方向温度分布をそれぞれ示す図である。
【0031】
床敷鉱供給ホッパー1内に貯蔵された床敷鉱8は焼結パレット9上に落下装入され、床敷鉱層81を形成する。焼結原料給鉱ホッパー2内の焼結原料7は、焼結原料給鉱ホッパー2下部の給鉱分割ゲート3の開度を調整することにより所定量を切り出され、ロールフィーダー4により、下方に位置する給鉱シュート5上に供給さる。給鉱シュート5に供給された焼結原料7は、給鉱シュート5上の斜面を転動または滑落する過程で分級されて、パレット9上にすでに形成されている床敷鉱層81上に偏析装入される。
【0032】
ここで、焼結原料給鉱ホッパー2の下部に位置する切り出しゲートのパレット幅方向の分割化により、パレット幅方向で原料供給量を制御して充填密度を調整する前記図3の方法は、前記の図2で述べた通気性に及ぼす充填密度の効果を利用したもので、ある程度のバラツキ抑制は可能である。また、この方法は、ゲート開度を大きくした場合には原料供給量が増加し、カットオフプレート6での焼結原料7の押え込み量が増加して充填密度が高くなること、および、ゲート開度を小さくした場合には充填密度が低くなることを利用して、パレット幅方向における充填密度を調整する方法である。
【0033】
しかし、原料をパレットに装入後、幅方向に高低差がなく均一な層厚となるように、カットオフプレートにより押さえ込んでならすものの、幅方向での原料供給量を制御した押え込みだけでは充分な制御ができず、パレット側板近傍では、著しい通気性の上昇により焼結反応が先行し、幅方向の焼結反応のバラツキを充分に抑制することはできない。
【0034】
そこで、パレット側板近傍の通気性をさらに抑制して幅方向全体の焼結反応のバラツキを抑制できる方法および装置を検討し、前記(1)〜(7)に示す原料装入方法、および装入装置の発明を完成した。また、本発明では、原料がパレット内に落下装入後にカットオフプレートで層厚を均一にならすため、幅方向で焼結鉱原料層厚に差異が発生せず、したがって、点火炉での着火不良も発生しない。そのため、幅方向全体の焼結反応のバラツキを抑制して、焼結鉱の品質および歩留りを向上させることができる。以下に、好ましい実施の形態について述べる。
【0035】
a)パレット幅方向両端部近傍とはパレット全幅の10%以下の領域:
図5は、焼結機における焼成時の排ガス温度分布でを示す図であり、同図(a)は焼結機長方向の排ガス温度分布、同図(b)は同図(a)中の▲1▼、▲2▼、▲3▼および▲4▼の位置におけるパレット直下での幅方向温度分布をそれぞれ表す。同図において、符号12は点火炉を、同14は主排風機を示す。
【0036】
同図(a)に示されるとおり、焼結機長方向のウインドボックス13の下降管での排ガス温度分布すなわち、幅方向全体の平均温度分布と、パレット直下幅方向端部5%の位置での排ガス温度分布とを比較すると、幅方向端部での温度推移が幅方向全体の温度推移よりも先行して上昇し、またピーク温度は漏風に起因して低くなっている。また、同図(b)においても、パレット幅方向両端部の温度は、他のパレット幅方向中央部に比してピーク温度が低く、温度低下も早いことが確認できる。
【0037】
図6は、給鉱ホッパー下部の分割ゲート調整により給鉱し焼成した焼結鉱のパレット幅方向断面での成品歩留り分布を示す図である。パレット幅方向両端部の約10%以内の領域における歩留りが低下している。
【0038】
上述のとおり、パレット幅方向両端部の10%以内の領域では、幅方向中央部に比べて風量過多のため、中央部に比較して早期に焼成が開始し、かつ早期に焼成が完了することから、成品歩留りを維持するのに必要な焼成時の高温保持時間が不足し、歩留りが低下する。したがって、パレット内に焼結原料を供給する際に偏析装入装置を介さずに直接パレット上に自由落下させる範囲は、パレット幅方向両端部、すなわちパレット側板近傍の幅方向で10%以内の範囲とすることが好ましい。
焼結原料を上記のパレット幅方向両端部の領域に直接的に自由落下させることにより、原料の落下速度を上昇させ、この領域の原料充填層の圧密効果を向上させて充填密度を増加させることができる。
【0039】
b)パレット幅方向両端部近傍における原料の直接落下:
パレット両端部近傍の通気性を抑制するための、原料の直接落下手段としては、流し板を設け、そのパレット幅方向両端部近傍に相当する部分を切り欠くか、またはその部分の流し板の幅を狭くすることが好ましい。また、偏析装入装置である給鉱シュート(傾斜板、傾斜スリット、傾斜篩など)の幅を、パレット幅方向両端部に相当する部分だけ狭くすることも好ましい。
【0040】
【実施例】
本発明の効果を確認するため、装入方法および装入装置についての検討を行い、次いで、操業成績に及ぼす効果について試験を行った。
【0041】
1)流し板の利用
図4は、本発明に係る焼結原料装入装置を示す概略図であり、同図(a)は焼結機長方向と直交する方向からみた概略図、同図(b)は流し板のパレット幅方向両端部近傍に相当する部分に切り欠き部を設けたことを示すとともに、パレット幅方向の原料の充填状態を模式的に表す図、そして同図(c)は流し板のパレット幅方向両端部近傍に相当する部分を幅方向に短縮したことを示すとともに、パレット幅方向の原料の充填状態を模式的に表す図である。
【0042】
原料給鉱ホッパー2内に収容された焼結原料7は、前記ホッパー下部に設けた切り出しゲートにより流量を調整された後、ロールフィーダーにて切り出され、流し板10の上面を滑り、粒度偏析の機能を有した給鉱シュート5を介して、連続的に移動するパレット内に供給される。この際、パレット幅方向端部近傍、すなわちパレット側板近傍の位置に相当する流し板の両端部をパレットの全幅よりも短くすることにより、この部分の原料は、図中の符号11にて示されるように、ロールフィーダーから直接パレット上に自由落下し、落下速度の上昇による原料の圧密効果の上昇により、充填密度が増加する。
【0043】
したがって、パレット幅方向両端部近傍においては、原料充填層の通気性が抑制され、著しい通気性上昇が回避される。この効果を得るには、流し板のパレット幅方向両端部近傍に切り欠き部101を設けるか、または、同図中の符号102にて示すように、流し板の幅をパレット幅方向に対して短縮した流し板を設けることが好ましい。また、流し板のパレット幅方向両端部近傍の短縮量は、いずれの場合もパレット全幅の10%以下であることが好ましい。
【0044】
図5は、すでに述べたとおり、焼結機における焼成時の排ガス温度分布でを示す図であり、同図(a)は焼結機長方向の排ガス温度分布、同図(b)は同図(a)中の機長方向の各位置におけるパレット直下での幅方向温度分布をそれぞれ表す。また、図6には、焼成を完了した焼結鉱をパレットから抜き出して、高さおよび幅方向の各位置から焼結鉱サンプルを採取し、その全量についてシャッター強度試験を実施して、成品歩留りを評価した結果を示す。ここで、シャッター強度試験は、採取した焼結鉱サンプルの全量を2mの高さから厚み10mmの鋼板上へ4回落下さ、全焼結ケーキ量に対する粒径5mm以上の焼結鉱の質量分率により、歩留りを求めることにより実施した。前記のとおり、パレット幅方向両端部近傍の歩留りが低下している。
【0045】
なお、充填密度を上昇させる部位をパレット幅方向端部近傍の10%以上に拡大しても、本来成品歩留りが悪化しない比較的幅方向の中央部の充填密度が高くなるのみであり、全体としては、成品歩留り改善効果は飽和状態となる。また、全体の焼成速度は低下傾向となることから、原料の自由落下による充填密度上昇範囲は、パレット幅方向端部の10%以内とすることが好ましい。
【0046】
2)給鉱シュートの変更
上記の試験は、流し板を有する焼結機を用いた試験であるが、流し板を有しない焼結機においても同様な効果を得ることができる。
【0047】
図7は、本発明に係る他の焼結原料装入装置を示す概略図であり、同図(a)は焼結機長方向と直交する方向からみた概略図、同図(b)は給鉱シュートのパレット幅方向両端部を幅方向に短縮したことを示すとともに、パレット幅方向の原料の充填状態を模式的に表す図である。
【0048】
同図に示すように、焼結原料を装入する際の給鉱シュート5の幅を、同図の符号51により示すように、狭くすることにより、パレット幅方向両端部近傍における原料の落下速度を上昇させ、パレット上の原料の充填密度を高めて、過度の通気性上昇を抑制することができる。なお、同図中の符号6は、焼結原料の押さえ込み量を増加させるためのカットオフプレートである。
【0049】
焼結原料の給鉱シュートには、上記に例示したものの他に下記の形式のものがある。図11は、本発明を適用できるスリット型シュートを有する原料装入装置の模式図である。同様に、図12は、スリット型シュートおよびディフレクタープレートを有する原料装入装置の模式図である。いずれの形式の装置であっても、同様にシュートの幅を狭くすることにより本発明を適用できる。
3)操業成績に及ぼす効果
本発明法の効果を確認するため、パレット幅:3.66m、有効面積260mのDL焼結機を用いて、焼結鉱の焼成試験を行った。なお、基準操業とした比較例においては、原料層高:500mm、生産率:1.51t/h/mとし、給鉱ホッパーからの焼結原料の切り出しは、幅方向の分割ゲートによる調整のみとした。これに対して、本発明例では、パレット幅方向両端部近傍(パレット幅の5%)に相当する部分に切り欠きを設けた流し板を有する原料装入装置を用いた。
図8は、本発明法の効果を示す図であり、同図(a)は焼結機長方向の排ガス温度分布、同図(b)は比較例および本発明例について、原料充填状態、充填密度および焼成完了位置でのパレット幅方向の温度分布をそれぞれ表す。また、図9は、本発明例における焼成完了位置を示す概略図である。
【0050】
図8(a)の機長方向の排ガス温度分布に見られるとおり、ウィンドボックス内パレット直下端部(パレット幅方向端部)の温度パターンは、ウィンドボックス下降管排ガス(パレット幅方向全体の排ガス)温度パターンにほぼ重なり、また、ピーク温度も全体の排ガス温度とほぼ同じ温度となるまで上昇した。すなわち、パレット幅方向端部近傍(パレット側板近傍)では、パレット幅方向中央部よりも先行しがちな焼成反応が幅方向で均一化し、過度の通気性上昇による漏風が抑制されたことを表わしている。
【0051】
図8(b)に示される焼成完了位置での幅方向温度分布は、図9の焼成完了位置における温度分布であり、本発明例では、比較例に比して、幅方向の温度分布が均一化されている。これは、本発明例では、分割ゲートのみにより原料の充填密度を調整した比較例に比べて、パレット幅方向端部近傍(パレット側板近傍)の充填密度が上昇して、幅方向温度分布がほぼ均一化され、その結果、焼成が均一化されたことによる。
【0052】
表1に、本発明例および比較例についての、操業条件および操業結果を示す。
【0053】
【表1】

Figure 2004339560
【0054】
同表において、生産率および返鉱量は、比較例の値を100として指数化した値で表示した。また、回転強度は、JIS M 8712に規定された方法により、TI(+10mm%)を測定し、表示した。
図10は、本発明法の効果を示す図であり、同図(a)は比較例におけるパレット幅方向断面での焼結鉱成品の歩留り分布を示し、同図(b)は本発明例におけるパレット幅方向断面での焼結鉱成品の歩留り分布を示す。
表1および図10に示されるとおり、本発明法の適用により、焼結鉱の強度は上昇してそのバラツキは低減し、返鉱量は低下して歩留りが向上していることがわかる。
【0055】
【発明の効果】
本発明の方法によれば、焼結鉱成品歩留り悪化の原因となっていたパレット幅方向端部近傍における焼結原料層の著しい通気性上昇を抑制し、パレット幅方向の均一焼成を達成できるので、焼結鉱の品質および歩留りを向上させることができる。また、本発明の焼結原料装入装置は、上記のパレット幅方向端部近傍の通気性の抑制を達成し、焼結鉱の品質および歩留りを向上させるための好適な装入装置である。
【図面の簡単な説明】
【図1】通気性に影響を及ぼす粒度偏析の影響を示す模式図であり、同図(a)は粒度偏析がない状態、同図(b)は粒度偏析がある状態をそれぞれ表す。
【図2】通気性に影響を及ぼす充填密度の影響を示す模式図であり、同図(a)は充填密度が高い状態、同図(b)は充填密度が低い状態をそれぞれ表す。
【図3】従来技術である分割ゲートによる幅方向充填密度制御の概略図であり、同図(a)は装置の概略図、同図(b)はゲート開度調整による充填密度および焼成完了位置での幅方向温度分布をそれぞれ表す。
【図4】本発明に係る焼結原料装入装置を示す概略図であり、同図(a)は焼結機長方向と直交する方向からみた概略図、同図(b)は流し板のパレット幅方向両端部近傍に相当する部分に切り欠き部を設けたことを示すとともに、パレット幅方向の原料の充填状態を模式的に表す図、そして同図(c)は流し板のパレット幅方向両端部近傍に相当する部分を幅方向に短縮したことを示すとともに、パレット幅方向の原料の充填状態を模式的に表す図である。
【図5】焼結機における焼成時の排ガス温度分布でを示す図であり、同図(a)は焼結機長方向の排ガス温度分布、同図(b)は同図(a)中の▲1▼、▲2▼、▲3▼および▲4▼の位置におけるパレット直下での幅方向温度分布をそれぞれ表す。
【図6】分割ゲート調整により給鉱し焼成した焼結鉱のパレット幅方向断面での成品歩留り分布を示す図である。
【図7】本発明に係る他の焼結原料装入装置を示す概略図であり、同図(a)は焼結機長方向と直交する方向からみた概略図、同図(b)は給鉱シュートのパレット幅方向両端部を幅方向に短縮したことを示すとともに、パレット幅方向の原料の充填状態を模式的に表す図である。
【図8】本発明法の効果を示す図であり、同図(a)は焼結機長方向の排ガス温度分布、同図(b)は比較例および本発明例について、原料充填状態、充填密度および焼成完了位置でのパレット幅方向の温度分布をそれぞれ表す。
【図9】本発明例における焼成完了位置を示す概略図である。
【図10】本発明法の効果を示す図であり、同図(a)は比較例におけるパレット幅方向断面での焼結鉱成品の歩留り分布を示し、同図(b)は本発明例におけるパレット幅方向断面での焼結鉱成品の歩留り分布を示す。
【図11】本発明を適用できるスリット型シュートを有する原料装入装置の模式図である。
【図12】本発明を適用できるスリット型シュートおよびディフレクタープレートを有する原料装入装置の模式図である。
【符号の説明】
1:床敷鉱供給ホッパー、
2:焼結原料給鉱ホッパー、
3:給鉱分割ゲート、
4:ロールフィーダー、
5:給鉱シュート、
51:給鉱シュートの幅短縮部、
52:スリット型シュート、
53:ディフレクタープレート、
6:カットオフプレート、
7:焼結原料、
71:焼結原料層、
8:床敷鉱、
81:床敷鉱層、
9:焼結パレット、
10:流し板、
101:流し板の切り欠き部、
102:流し板の板幅短縮部、
11:パレット上に直接落下する焼結原料、
12:点火炉、
13:ウィンドボックス、
14:主排風機、[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a method for charging a sintering raw material into a pallet in the production of a sintered ore, in which a raw material near an end in the width direction of the pallet is charged by a charging method different from that of the part other than the end. In addition, the present invention relates to a raw material charging method and a raw material charging device capable of improving the quality and yield of sintered ore.
[0002]
[Prior art]
In a sinter ore production process using a Dwight-Lloyd (hereinafter referred to as "DL") type sintering machine, a sintering raw material layer charged on a pallet of a sintering machine is subjected to a sintering process in a raw material surface layer using an ignition furnace. Ignites coke, etc., and sucks air from below the raw material layer, and causes air to pass through the raw material layer from top to bottom, causing a combustion reaction to occur sequentially from above to below the raw material layer, and the heat of combustion Causes the sintering reaction to proceed. Therefore, the thermal distribution of the raw material layer in the height direction is such that the upper layer has an insufficient amount of heat and the lower layer has an excessive amount of heat.
[0003]
This is because in the upper layer, after the completion of the combustion of the coke in the raw material, the coke is quenched by the low-temperature air sucked from the upper layer, whereas in the lower layer, the temperature gradually rises due to the progress of the firing of the upper layer, and the temperature is sufficiently increased. This is because coke and the like are burned after being preheated, and are gradually cooled by the residual heat of the upper portion even after the completion of the combustion. Therefore, the lower part of the raw material layer becomes hotter and the air flow resistance increases due to the fusion of the raw material and the like. Various charging methods and devices have been proposed.
[0004]
As a method for this, the sintering raw material cut out from a roll feeder provided at the lower part of the sintering raw material hopper is rolled on a sintering machine pallet via a raw material charging device such as a feed chute that has a grain size segregation function. In general, a method of dropping and segregating the sintering raw material according to particle size by utilizing the slope classification effect of the raw material is used. By this method, variations in air permeability in the sintering material layer on the pallet are reduced, and variations in the temperature in the layer and the sintering reaction are also reduced.
[0005]
However, variation in the sintering reaction occurs not only in the height direction of the sintering raw material layer on the pallet but also in the pallet width direction. This is because, near the pallet side plate, the sintering raw material is likely to be roughly filled by the wall effect, and therefore, near the pallet side plate, compared to the center in the width direction of the pallet where the sintering material is relatively densely filled. Since the air permeability becomes extremely high, air preferentially flows through the gap between the side plate and the raw material filling layer on the pallet, and a deviation in the width direction occurs in the progress of the sintering reaction. is there.
[0006]
In such a state, the yield of the sintering raw material near the pallet side plate decreases because the high-temperature holding time required for sintering to maintain the yield is shortened, and the sintering raw material in the center in the width direction is reduced. With regard to (2), since the air volume becomes insufficient near the side plate and firing is delayed, problems such as an increase in variation in sintering quality in the width direction occur.
[0007]
As a method for suppressing the variation in the sintering reaction in the pallet width direction, there is known a method of controlling the supply amount of the raw material in the width direction by a division gate when charging the raw material into the pallet.
[0008]
For example, in Patent Document 1, in a raw material charging method in which a sintering compound raw material is cut out from a charging hopper and charged into a sintering pallet, a cutout gate of the charging hopper is divided into at least three or more in the width direction of the pallet. At the same time, it is possible to adjust the supply amount of the compounding material in each divided gate, detect the filling density of the filling material on the sintering pallet under the roll feeder with the density meter corresponding to each divided gate, and set it in advance There is disclosed a method of adjusting the compounding material supply amount of each divided gate so that the packing density distribution in the pallet width direction is obtained. However, in this method, even if it is possible to control the overall permeability of the sintering reaction by controlling the air permeability in the width direction, it is possible to control the excessive air permeability area near the pallet side plate only by controlling the raw material supply amount. It has been difficult to increase the packing density of the raw materials to a sufficient extent.
[0009]
Patent Literature 2 discloses a control method using a difference in air permeability between a sintering raw material and a bedrock ore. That is, by adjusting the opening degree of the bedding ore cutting gate provided in the ore feeding section and adjusting the bedding ore layer thickness, the packed layer thickness of the sintering material having substantially poor air permeability is controlled, and the combustion front is controlled. Is a method of controlling the exhaust gas temperature in the width direction in the wind box near the position where the exhaust gas reaches the great bar in the pallet to have an optimum temperature distribution. However, in the method disclosed herein, when the thickness of the bedrock layer is increased in order to improve the air permeability, the thickness of the raw material layer is substantially reduced. Could not be controlled sufficiently.
[0010]
Further, Patent Document 3 discloses a rotatable first roller disposed at a central portion in a pallet width direction above a raw material layer between a raw material charging chute of a sintering machine and an ignition furnace; The second rotatable roller provided at the center is provided so as to be independently movable in the vertical direction by shifting the position in the traveling direction of the pallet, and the consolidation depth of the second roller on both sides is set at the center of the second roller. A sintering method for consolidating and sintering a raw material layer deeper than the consolidation depth of one roller is disclosed. This method aims at solving the problem that the suction air volume is excessive at both sides of the pallet than at the center due to the wall effect and the cold strength is reduced. However, in the method disclosed herein, a difference in the thickness direction of the raw material layer on the pallet occurs in the width direction. Therefore, in the ignition furnace, a difference occurs in the interval between the burner and the upper surface of the raw material layer in the pallet width direction, and the ignition has a width. There is a problem that the direction becomes uneven and the yield of the sintered mineral product deteriorates.
[0011]
Further, Patent Document 4 discloses that the degree of dispersion and / or classification of a sintering raw material falling toward the center of a sintering pallet is increased, and sintering is performed on both ends of the pallet in a state where they are reduced. A method is disclosed in which the sintering reaction variation in the pallet width direction is suppressed by dropping the raw material. However, this method is a method of controlling the degree of classification, and is not sufficient as a comprehensive charging control method including control of the raw material density.
[Patent Document 1]
JP-A-63-45327 (Claims)
[Patent Document 2]
JP-A-9-49031 (Claims and paragraph [0008])
[Patent Document 3]
JP-A-5-39531 (Claims and paragraphs [0007] to [0010])
[Patent Document 4]
JP-A-63-250424 (Claims and upper right column of page 2)
[0012]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for charging a sintering raw material near a pallet width direction end of a sintering machine by a method different from a charging method for a pallet center other than the vicinity of the end. Provided is a charging method and a charging device for a sintering raw material that suppresses a state of excessive air permeability in the vicinity of a part, suppresses a variation in a sintering reaction in a pallet width direction, and improves the quality and yield of a sintered ore. Is to do.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present inventor suppresses the state of excessive air permeability near the end in the width direction of the sintering machine pallet, suppresses variation in the sintering reaction, and improves the quality of the sintered ore. As a result of studying a charging method of a sintering raw material and a charging device for improving the yield, the following findings (a) to (d) were obtained.
[0014]
(A) When the sintering raw material is gently dropped onto a pallet from a feed hopper through a feeder having a particle size segregation function such as a sink plate or a feed chute, the raw material particles are reduced in size and density. Is classified by the slope, and it is easy to form a filled layer having good air permeability.
[0015]
(B) Even in the vicinity of both ends in the pallet width direction, classification is performed in the same manner as in (a), and a filled layer with good air permeability is easily formed. Furthermore, in the vicinity of both ends of the pallet, the porosity is high and the air permeability is likely to be extremely high as compared with the center part in the width direction other than the vicinity of both ends due to the wall effect by the pallet side plate.
(C) When only the both ends in the width direction of the pallet are dropped on the sintering raw material without being passed through an ore supply device having a grain size segregation function and loaded onto the pallet, the raw material particle arrangement is almost random without being subjected to classification. Is formed at both ends in the width direction, as compared with the center portion in the width direction, so that the packing density of the particles is higher, and the state of excessive air permeability (b) can be corrected.
(D) It is preferable that the raw material is freely dropped and loaded in the vicinity of both ends of the pallet having a width of 10% or less with respect to the entire width of the pallet because an extremely high state of air permeability in the vicinity of both ends can be corrected.
[0016]
The present invention has been completed based on the above findings, and the gist of the present invention is shown in the following (1) to (3) charging methods for sintering raw materials and (4) to (7). It is in the charging device for sintering raw materials.
[0017]
(1) In a raw material charging method for a sintering machine, a raw material is charged into a pallet from an ore supplying hopper through a cutout amount adjusting device, a feeder, and a ore supplying device having a particle size segregation function in this order. Except for the vicinity of both ends in the direction, the raw material is charged through the ore supply device having the particle size segregation function, and in the vicinity of both ends in the width direction of the pallet, the raw material is supplied without passing through the ore supply device having the particle size segregation function. A raw material charging method for a sintering machine, wherein the raw material is dropped on a pallet and charged.
[0018]
(2) The sintering apparatus according to (1), wherein the ore feeder having the grain size segregation function includes a sink plate and a feed chute located downstream of the sink plate, or a feed chute. The method of charging the raw material of the knot.
[0019]
(3) In the method for charging a sintering machine according to the above (1) or (2), the width of the pallet near both ends in the width direction is preferably 10% or less of the entire width of the pallet.
[0020]
(4) a raw material supply hopper, a cutout amount adjusting device positioned below the supply hopper to adjust the cutout amount of the raw material in the hopper, and a cutout amount adjusting device positioned below the cutout amount supply device to supply the raw material. The feeder and the pallets located below the feeder are guided and supplied to portions other than the vicinity of both ends in the width direction of the pallet located further below, and the materials are dropped to the vicinity of the both ends in the width direction without being guided. A raw material charging device for a sintering machine including a mineral feeder having a grain size segregation function.
[0021]
(5) The sintering apparatus according to (4), wherein the ore feeder having the grain size segregation function is constituted by a sink plate and a feed chute located below the sink plate, or a feed chute. Material loading equipment for knotting.
[0022]
(6) The raw material charging apparatus for a sintering machine according to (5), wherein the feed chute is constituted by a plate having a slope and / or a slit having a slope.
[0023]
(7) In the raw material charging apparatus for a sintering machine according to any one of the above (4) to (6), it is preferable that the width near both ends in the width direction of the pallet is 10% or less of the entire width of the pallet.
[0024]
In the present invention, the “cutout amount adjusting device” refers to a device that adjusts an outflow amount of a sintering raw material from a feed hopper.
The “feeder” refers to a device that supplies the sintering raw material cut out by the cutout amount adjusting device to an ore feeder having a particle size segregation function.
The “mineral feeder having a grain size segregation function” refers to a device that guides a sintering raw material onto a pallet while causing the grain size segregation. “Guided supply” supplies the sintering raw material through the ore feeding device. To do.
The “mineral feed chute” is a mineral feeder having a grain size segregation function, and is a device that supplies a sintering raw material cut out from a feeder hopper onto a pallet.
[0025]
The term "sink plate" refers to a relay plate for supplying the sintering raw material cut out from the feed hopper to the feed chute, for example.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, in other parts except for the vicinity of both ends of the pallet in the width direction, the raw materials are gently charged into the pallet through a feeder having a grain size segregation function, and segregation charging is performed. In the vicinity of the pallet, the raw material is dropped into the pallet and charged without passing through the ore supply device having the particle size segregation function, so that the raw material is charged at a high packing density and the air flows at both ends in the width direction of the pallet. It is an object of the present invention to provide a method and a device for charging a sintering raw material which corrects a remarkable increase in the properties and improves the quality and yield of the sinter.
[0027]
The air permeability in the sintering raw material layer filled on the pallet largely controls the sintering reaction. Factors that affect the air permeability in the raw material layer mainly include two factors: particle size segregation and packing density. As described above, regarding the particle size segregation, as described above, the fine material is segregated on the upper layer of the material layer on the pallet, and the coarse material is segregated on the lower layer. By making the composition a distribution close to the uniform particle size distribution, the porosity generated between the particles is secured, and the air permeability is improved. Therefore, depending on the state of the particle size segregation, the porosity changes and the air permeability changes.
[0028]
FIGS. 1A and 1B are schematic diagrams showing the influence of particle size segregation on air permeability. FIG. 1A shows a state without particle size segregation, and FIG. 1B shows a state with particle size segregation. In order to control the grain size segregation, for example, there is a method of changing the angle of the feed chute. However, it is difficult to perform divisional adjustment in the width direction, so that it is difficult to control the air permeability in the width direction by the grain size segregation.
[0029]
The effect of the packing density is as follows. FIGS. 2A and 2B are schematic diagrams showing the influence of the packing density on the air permeability. FIG. 2A shows a state where the packing density is high, and FIG. 2B shows a state where the packing density is low. When the packing density is low, the porosity between the raw material particles is large, and thus the air permeability is good. However, when the packing density is high, the porosity becomes small and the air permeability deteriorates.
[0030]
FIGS. 3A and 3B are schematic diagrams of width direction packing density control using a divided gate according to the prior art. FIG. 3A is a schematic diagram of the apparatus, and FIG. 3B is a diagram showing the packing density and firing completion position by adjusting the gate opening. It is a figure which shows the width direction temperature distribution in each.
[0031]
The bedding ore 8 stored in the bedding ore supply hopper 1 is dropped on a sintering pallet 9 to form a bedding ore layer 81. A predetermined amount of the sintering raw material 7 in the sintering raw material supply hopper 2 is cut out by adjusting the opening degree of the ore supply division gate 3 at the lower part of the sintering raw material supply hopper 2. It is fed onto the located feed chute 5. The sintering raw material 7 supplied to the feed chute 5 is classified in the process of rolling or sliding down the slope on the feed chute 5, and is segregated on the bedding ore layer 81 already formed on the pallet 9. Is entered.
[0032]
Here, by dividing the cut-out gate located at the lower part of the sintering raw material supply hopper 2 in the pallet width direction, the method of FIG. The effect of the packing density on the air permeability described with reference to FIG. 2 is used, and a certain degree of variation can be suppressed. In addition, in this method, when the gate opening degree is increased, the raw material supply amount increases, the pressing amount of the sintering raw material 7 in the cut-off plate 6 increases, and the packing density increases. This is a method of adjusting the packing density in the pallet width direction by utilizing the fact that the packing density decreases when the degree is reduced.
[0033]
However, after loading the raw material on the pallet, the raw material is pressed down by the cut-off plate so that there is no difference in height in the width direction and the layer thickness is uniform, but it is not enough to control the raw material supply amount in the width direction. Control cannot be performed, and in the vicinity of the pallet side plate, the sintering reaction precedes due to a remarkable increase in air permeability, and the sintering reaction variation in the width direction cannot be sufficiently suppressed.
[0034]
Therefore, a method and apparatus capable of further suppressing the air permeability near the pallet side plate and suppressing the variation of the sintering reaction in the entire width direction were studied, and the raw material charging method and charging method described in the above (1) to (7) were examined. The invention of the device was completed. Further, in the present invention, since the raw material falls down into the pallet and is charged into the pallet, the layer thickness is made uniform by the cut-off plate, so that there is no difference in the thickness of the sintered ore raw material layer in the width direction. No defects occur. Therefore, the variation of the sintering reaction in the entire width direction can be suppressed, and the quality and yield of the sintered ore can be improved. Hereinafter, preferred embodiments will be described.
[0035]
a) The area near both ends in the pallet width direction is an area of 10% or less of the entire width of the pallet:
FIG. 5 is a diagram showing an exhaust gas temperature distribution during firing in a sintering machine. FIG. 5 (a) shows an exhaust gas temperature distribution in the sintering machine length direction, and FIG. The widthwise temperature distributions immediately below the pallet at the positions 1), 2), 3) and 4) are shown. In the figure, reference numeral 12 indicates an ignition furnace, and reference numeral 14 indicates a main exhaust fan.
[0036]
As shown in FIG. 3A, the exhaust gas temperature distribution in the downcomer of the wind box 13 in the length direction of the sintering machine, that is, the average temperature distribution in the entire width direction, and the exhaust gas at the position of 5% immediately below the pallet at the end in the width direction. Comparing with the temperature distribution, the temperature transition at the end in the width direction rises before the temperature transition in the entire width direction, and the peak temperature is low due to the leakage. Also, in FIG. 3B, it can be confirmed that the peak temperatures at the both ends in the pallet width direction are lower than those at the center portions in the other pallet width directions, and the temperature drops quickly.
[0037]
FIG. 6 is a view showing a product yield distribution in a pallet width direction cross section of a sintered ore fed and fired by adjusting a split gate at a lower portion of a feed hopper. The yield is reduced in a region within about 10% of both ends in the pallet width direction.
[0038]
As described above, in a region within 10% of both ends in the width direction of the pallet, since the air volume is excessive as compared with the central portion in the width direction, the firing starts earlier than the central portion and the firing is completed earlier. Therefore, the high-temperature holding time required for firing to maintain the product yield is insufficient, and the yield is reduced. Therefore, when supplying the sintering raw material into the pallet, the range of free fall directly on the pallet without passing through the segregation charging device is within 10% in the width direction at both ends of the pallet in the width direction of the pallet, that is, in the width direction near the pallet side plate. It is preferable that
By directly dropping the sintering raw material directly to the above-mentioned pallet width direction both end regions, the falling speed of the raw material is increased, the consolidation effect of the raw material packed layer in this region is improved, and the packing density is increased. Can be.
[0039]
b) Direct drop of raw materials near both ends in the pallet width direction:
As a means for directly dropping the raw material for suppressing air permeability near both ends of the pallet, a sink plate is provided, and a portion corresponding to the vicinity of both ends in the width direction of the pallet is cut out, or the width of the sink plate at that portion is cut off. Is preferably reduced. It is also preferable that the width of the feed chute (inclined plate, inclined slit, inclined sieve, etc.), which is a segregation charging device, is narrowed only at portions corresponding to both ends in the pallet width direction.
[0040]
【Example】
In order to confirm the effect of the present invention, a charging method and a charging device were examined, and then a test was performed on the effect on operating results.
[0041]
1) Use of sink
FIG. 4 is a schematic view showing a sintering raw material charging apparatus according to the present invention, wherein FIG. 4 (a) is a schematic view seen from a direction orthogonal to the sintering machine length direction, and FIG. 4 (b) is a pallet of a sink plate. This figure shows that notches are provided in portions corresponding to the vicinity of both ends in the width direction, and also schematically shows the filling state of the raw material in the pallet width direction, and FIG. FIG. 7 is a diagram showing that a portion corresponding to a portion near the portion has been shortened in the width direction, and also schematically shows a state of filling of raw materials in the pallet width direction.
[0042]
The sintering raw material 7 contained in the raw material supply hopper 2 is cut out by a roll feeder after the flow rate is adjusted by a cutout gate provided at the lower part of the hopper, and slides on the upper surface of the flow plate 10 to reduce the particle size segregation. It is supplied into a continuously moving pallet via a feeding chute 5 having a function. At this time, by shortening both ends of the sink plate near the pallet width direction end, that is, the position near the pallet side plate, than the entire width of the pallet, the raw material in this portion is indicated by reference numeral 11 in the figure. As described above, the material is dropped directly from the roll feeder directly onto the pallet, and the packing density is increased due to an increase in the consolidation effect of the raw material due to an increase in the falling speed.
[0043]
Therefore, in the vicinity of both ends in the pallet width direction, the gas permeability of the raw material filling layer is suppressed, and a significant increase in gas permeability is avoided. In order to obtain this effect, the notch 101 is provided in the vicinity of both ends of the sink plate in the pallet width direction, or the width of the sink plate is set with respect to the pallet width direction as shown by reference numeral 102 in the figure. It is preferred to provide a shortened sink plate. The amount of shortening near the both ends of the sink plate in the pallet width direction is preferably 10% or less of the entire width of the pallet in any case.
[0044]
FIG. 5 is a diagram showing the exhaust gas temperature distribution at the time of sintering in the sintering machine as described above. FIG. 5 (a) shows the exhaust gas temperature distribution in the sintering machine length direction, and FIG. The temperature distribution in the width direction immediately below the pallet at each position in the machine length direction in a) is shown. In addition, FIG. 6 shows that the sintered ore whose firing has been completed is extracted from the pallet, a sintered ore sample is collected from each position in the height and width directions, and a shutter strength test is performed on the entire amount of the sintered ore. The result of evaluating is shown. Here, the shutter strength test is performed by dropping the entire amount of the collected sinter sample from a height of 2 m onto a steel plate having a thickness of 10 mm four times, and calculating the mass fraction of the sinter having a particle size of 5 mm or more with respect to the total sinter cake amount. And the yield was determined. As described above, the yield near the both ends in the pallet width direction is reduced.
[0045]
In addition, even if the area where the filling density is increased is increased to 10% or more near the end of the pallet in the pallet width direction, only the filling density in the central portion in the width direction which does not originally deteriorate the product yield is increased, and as a whole, Means that the product yield improvement effect is saturated. In addition, since the overall firing rate tends to decrease, it is preferable that the range in which the packing density increases due to the free fall of the raw material is within 10% of the end in the pallet width direction.
[0046]
2) Change of feed chute
Although the above test is a test using a sintering machine having a sink plate, a similar effect can be obtained in a sintering machine having no sink plate.
[0047]
FIG. 7 is a schematic view showing another sintering raw material charging apparatus according to the present invention, wherein FIG. 7 (a) is a schematic view seen from a direction orthogonal to the sintering machine length direction, and FIG. It is a figure which shows that the pallet width direction both ends of the chute were shortened in the width direction, and also schematically shows the filling state of the raw material in the pallet width direction.
[0048]
As shown in the figure, the width of the feed chute 5 at the time of charging the sintering raw material is narrowed as shown by reference numeral 51 in the figure, so that the falling speed of the raw material near both ends in the pallet width direction is reduced. To increase the packing density of the raw material on the pallet, thereby suppressing an excessive increase in air permeability. Reference numeral 6 in the figure is a cut-off plate for increasing the amount of pressing of the sintering raw material.
[0049]
There are the following types of sintering feed chute in addition to those exemplified above. FIG. 11 is a schematic diagram of a raw material charging apparatus having a slit type chute to which the present invention can be applied. Similarly, FIG. 12 is a schematic diagram of a raw material charging apparatus having a slit type chute and a deflector plate. The present invention can be applied to any type of device by similarly reducing the width of the chute.
3) Effect on operating results
To confirm the effect of the method of the present invention, the pallet width: 3.66 m, effective area 260 m 2 The sintering test was performed using a DL sintering machine. In the comparative example of the standard operation, the height of the raw material layer was 500 mm, and the production rate was 1.51 t / h / m. 2 The cutting of the sintering raw material from the feed hopper was performed only by the widthwise dividing gate. On the other hand, in the example of the present invention, a raw material charging apparatus having a sink plate provided with cutouts in portions corresponding to the vicinity of both ends in the pallet width direction (5% of the pallet width) was used.
8A and 8B are diagrams showing the effect of the method of the present invention, wherein FIG. 8A shows the exhaust gas temperature distribution in the longitudinal direction of the sintering machine, and FIG. And the temperature distribution in the pallet width direction at the firing completion position. FIG. 9 is a schematic view showing a firing completion position in the example of the present invention.
[0050]
As can be seen from the exhaust gas temperature distribution in the machine length direction in FIG. 8A, the temperature pattern at the lower end of the pallet in the wind box (the end in the pallet width direction) is the temperature of the exhaust gas in the wind box downcomer (exhaust gas in the entire pallet width direction). It almost overlapped the pattern, and the peak temperature rose until it was almost the same as the entire exhaust gas temperature. That is, in the vicinity of the pallet width direction end portion (the vicinity of the pallet side plate), the firing reaction, which tends to precede the pallet width direction center portion, is made uniform in the width direction, and the air leakage due to excessive increase in air permeability is suppressed. I have.
[0051]
The temperature distribution in the width direction at the firing completion position shown in FIG. 8B is the temperature distribution at the firing completion position in FIG. 9. In the present invention, the temperature distribution in the width direction is more uniform than in the comparative example. Has been This is because, in the present invention example, the packing density near the pallet width direction end (the vicinity of the pallet side plate) is increased and the width direction temperature distribution is substantially reduced as compared with the comparative example in which the packing density of the raw material is adjusted only by the division gate. This is because the sintering is made uniform, and as a result, sintering is made uniform.
[0052]
Table 1 shows the operating conditions and the operating results for the inventive examples and comparative examples.
[0053]
[Table 1]
Figure 2004339560
[0054]
In the same table, the production rate and the amount of returned ore are shown as values indexed with the value of the comparative example as 100. In addition, the rotational strength was measured and indicated by TI (+10 mm%) by the method specified in JIS M8712.
10A and 10B are diagrams showing the effect of the method of the present invention. FIG. 10A shows the yield distribution of the sintered mineral product in the cross section in the pallet width direction in the comparative example, and FIG. 3 shows the yield distribution of sintered mineral products in a cross section in the pallet width direction.
As shown in Table 1 and FIG. 10, it can be seen that the application of the method of the present invention increases the strength of the sintered ore, reduces its variation, reduces the amount of ore returned, and improves the yield.
[0055]
【The invention's effect】
According to the method of the present invention, it is possible to suppress a significant increase in the permeability of the sintering raw material layer in the vicinity of the pallet width direction end, which has caused the deterioration of the yield of sintered mineral products, and to achieve uniform firing in the pallet width direction. In addition, the quality and yield of sintered ore can be improved. Further, the sintering raw material charging device of the present invention is a suitable charging device for achieving the suppression of the air permeability near the pallet width direction end and improving the quality and yield of the sinter.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the influence of particle size segregation on air permeability, wherein FIG. 1A shows a state without particle size segregation, and FIG. 1B shows a state with particle size segregation.
FIGS. 2A and 2B are schematic diagrams showing the influence of packing density on air permeability, wherein FIG. 2A shows a state where the packing density is high, and FIG. 2B shows a state where the packing density is low.
FIGS. 3A and 3B are schematic views of a conventional technique for controlling the packing density in the width direction by using a divided gate. FIG. 3A is a schematic view of an apparatus, and FIG. 3B is a packing density and firing completion position by adjusting a gate opening. Represents the temperature distribution in the width direction.
FIG. 4 is a schematic view showing a sintering raw material charging apparatus according to the present invention, wherein FIG. 4 (a) is a schematic view seen from a direction perpendicular to the sintering machine length direction, and FIG. This figure shows that notches are provided in portions corresponding to the vicinity of both ends in the width direction, and also schematically shows the filling state of the raw material in the pallet width direction, and FIG. FIG. 9 is a diagram showing that a portion corresponding to the vicinity of a portion has been shortened in the width direction, and also schematically shows a filling state of the raw material in the pallet width direction.
FIG. 5 is a diagram showing an exhaust gas temperature distribution during sintering in a sintering machine. FIG. 5 (a) shows an exhaust gas temperature distribution in the sintering machine length direction, and FIG. The widthwise temperature distributions immediately below the pallet at the positions 1), 2), 3) and 4) are shown.
FIG. 6 is a diagram showing a product yield distribution in a cross section in a pallet width direction of a sintered ore fed and fired by adjusting a split gate.
FIG. 7 is a schematic diagram showing another sintering raw material charging apparatus according to the present invention, wherein FIG. 7 (a) is a schematic diagram viewed from a direction orthogonal to the sintering machine length direction, and FIG. It is a figure which shows that the both ends of the chute in the pallet width direction were shortened in the width direction, and also schematically shows the filling state of the raw material in the pallet width direction.
8A and 8B are diagrams showing the effect of the method of the present invention. FIG. 8A shows the exhaust gas temperature distribution in the sintering machine length direction, and FIG. 8B shows the raw material filling state and packing density of the comparative example and the present invention example. And the temperature distribution in the pallet width direction at the firing completion position.
FIG. 9 is a schematic view showing a firing completion position in the example of the present invention.
10A and 10B are diagrams showing the effect of the method of the present invention, wherein FIG. 10A shows the yield distribution of sintered mineral products in a cross section in the pallet width direction in a comparative example, and FIG. 3 shows the yield distribution of sintered mineral products in a cross section in the pallet width direction.
FIG. 11 is a schematic view of a raw material charging apparatus having a slit type chute to which the present invention can be applied.
FIG. 12 is a schematic diagram of a raw material charging apparatus having a slit type chute and a deflector plate to which the present invention can be applied.
[Explanation of symbols]
1: Bedding ore supply hopper,
2: Sintering raw material supply hopper,
3: Mining split gate,
4: Roll feeder,
5: Mining chute,
51: width reduction part of the feed chute,
52: slit type chute,
53: deflector plate,
6: cut-off plate,
7: sintering raw material,
71: sintering raw material layer,
8: Bedding,
81: Bedding mineral layer,
9: Sintered pallet,
10: sink plate,
101: Notch of sink plate,
102: Plate width reduction part of sink plate,
11: Sintering raw material that falls directly on the pallet,
12: Ignition furnace,
13: wind box,
14: Main exhaust fan,

Claims (7)

給鉱ホッパーから、切り出し量調整装置、フィーダーおよび粒度偏析機能を有する給鉱装置をこれらの順に介して原料をパレットに装入する焼結機の原料装入方法において、前記パレットの幅方向両端部近傍を除く部分では前記粒度偏析機能を有する給鉱装置を介して原料を装入し、パレットの幅方向両端部近傍では前記粒度偏析機能を有する給鉱装置を介さずに原料を前記パレットに落下させて装入することを特徴とする焼結機の原料装入方法。In a raw material charging method for a sintering machine in which a raw material is charged to a pallet from a mining hopper through a cutout amount adjusting device, a feeder, and a mining device having a grain size segregation function, the widthwise ends of the pallet are provided. Except for the vicinity, the raw material is charged through the ore supply device having the particle size segregation function, and near the both ends in the width direction of the pallet, the raw material is dropped onto the pallet without passing through the ore supply device having the particle size segregation function. A method for charging raw materials for a sintering machine, wherein the raw materials are charged. 前記粒度偏析機能を有する給鉱装置が、流し板と前記流し板の下流に位置する給鉱シュート、または給鉱シュートにより構成されることを特徴とする請求項1に記載の焼結機の原料装入方法。2. The raw material for a sintering machine according to claim 1, wherein the feeder having the grain size segregation function includes a sink plate and a feeder chute located downstream of the sinker, or a feeder chute. 3. How to charge. 前記のパレットの幅方向両端部近傍の幅がパレット全幅の10%以下であることを特徴とする請求項1または2に記載の焼結機の原料装入方法。The raw material charging method for a sintering machine according to claim 1 or 2, wherein the width of the pallet near both ends in the width direction is 10% or less of the entire width of the pallet. 原料の給鉱ホッパーと、前記供給ホッパーの下部に位置してホッパー内の原料の切り出し量を調整する切り出し量調整装置と、前記切り出し量調整装置の下方に位置して原料を供給するフィーダーと、前記フィーダーの下方に位置して原料をさらに下方に位置するパレットの幅方向両端部近傍を除く部分へは案内供給し、前記幅方向両端部近傍へは原料を案内することなく落下させる粒度偏析機能を有する給鉱装置とを備えた焼結機の原料装入装置。A feed hopper for the raw material, a cutout amount adjusting device positioned below the feed hopper to adjust the cutout amount of the raw material in the hopper, and a feeder positioned below the cutout amount adjusting device to supply the raw material, A particle segregation function that guides and supplies raw materials to portions other than the vicinity of both ends in the width direction of the pallet located further below the feeder, and drops the raw materials to the vicinity of both ends in the width direction without guiding. A raw material charging device for a sintering machine, comprising a ore feeding device having: 前記粒度偏析機能を有する給鉱装置が、流し板と前記流し板の下方に位置する給鉱シュート、または給鉱シュートにより構成されたことを特徴とする請求項4に記載の焼結機の原料装入装置。The raw material for a sintering machine according to claim 4, wherein the feeder having the grain size segregation function is constituted by a sink plate and a feeder chute located below the sinker plate, or a feeder chute. Charging device. 前記給鉱シュートが、傾斜を有する板および/または傾斜を有するスリットにより構成されたことを特徴とする請求項5に記載の焼結機の原料装入装置。The raw material charging apparatus for a sintering machine according to claim 5, wherein the ore feeding chute is constituted by an inclined plate and / or an inclined slit. 前記のパレットの幅方向両端部近傍の幅がパレット全幅の10%以下であることを特徴とする請求項4〜6のいずれかに記載の焼結機の原料装入装置。The raw material charging device for a sintering machine according to any one of claims 4 to 6, wherein the width of the pallet near both ends in the width direction is 10% or less of the entire width of the pallet.
JP2003136506A 2003-05-14 2003-05-14 Raw material charging method and raw material charging apparatus for sintering machine Expired - Lifetime JP4124020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136506A JP4124020B2 (en) 2003-05-14 2003-05-14 Raw material charging method and raw material charging apparatus for sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136506A JP4124020B2 (en) 2003-05-14 2003-05-14 Raw material charging method and raw material charging apparatus for sintering machine

Publications (2)

Publication Number Publication Date
JP2004339560A true JP2004339560A (en) 2004-12-02
JP4124020B2 JP4124020B2 (en) 2008-07-23

Family

ID=33526452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136506A Expired - Lifetime JP4124020B2 (en) 2003-05-14 2003-05-14 Raw material charging method and raw material charging apparatus for sintering machine

Country Status (1)

Country Link
JP (1) JP4124020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225682A (en) * 2005-02-15 2006-08-31 Jfe Steel Kk Method and apparatus for manufacturing sintered ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225682A (en) * 2005-02-15 2006-08-31 Jfe Steel Kk Method and apparatus for manufacturing sintered ore

Also Published As

Publication number Publication date
JP4124020B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
BRPI0923120B1 (en) METHOD AND APPARATUS FOR LOADING RAW MATERIALS IN A SINTERING MACHINE
KR101841961B1 (en) Sintering apparatus and method
JP4124020B2 (en) Raw material charging method and raw material charging apparatus for sintering machine
KR101974429B1 (en) Method for producing sintered ore
JPH0339424A (en) Method for controlling air permeability of sintered raw material bed
JP5124969B2 (en) Sinter ore manufacturing method
KR100668699B1 (en) Device feeding raw materials for sinter ore
JP2003277841A (en) Method for producing sintered ore
JP3950244B2 (en) Sintering raw material charging control method
CN108351172A (en) Device and method for loading raw material
JP2005351526A (en) Sintered material loading device
JPH02263935A (en) Method for controlling air permeability in sintering raw material layer
JP2006307320A (en) Method for producing sintered ore
KR100396073B1 (en) Sintered ore manufacturing system
JP3858491B2 (en) Method and apparatus for improving ventilation of sintered raw material layer
JP6155602B2 (en) Method for producing sintered ore
JPH0814007B2 (en) Agglomerated ore manufacturing method
JP4815841B2 (en) Sintering method
JP3573078B2 (en) Method and apparatus for producing sintered ore
JP2001227872A (en) Device for feeding material into sintering machine and its method for using
JPH02301525A (en) Method for charging raw material into sintering machine
JP6477312B2 (en) Method for charging sintered raw material grains
JPH046777B2 (en)
JPH01100226A (en) Sintering operational method
JP2000328147A (en) Manufacture of sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Ref document number: 4124020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term