JP2024000617A - Method for manufacturing sintered ore and apparatus for manufacturing sintered ore - Google Patents

Method for manufacturing sintered ore and apparatus for manufacturing sintered ore Download PDF

Info

Publication number
JP2024000617A
JP2024000617A JP2022099388A JP2022099388A JP2024000617A JP 2024000617 A JP2024000617 A JP 2024000617A JP 2022099388 A JP2022099388 A JP 2022099388A JP 2022099388 A JP2022099388 A JP 2022099388A JP 2024000617 A JP2024000617 A JP 2024000617A
Authority
JP
Japan
Prior art keywords
raw material
charging
layer
charging layer
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022099388A
Other languages
Japanese (ja)
Inventor
一洋 岩瀬
Kazuhiro Iwase
慎平 藤原
Shimpei Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2022099388A priority Critical patent/JP2024000617A/en
Publication of JP2024000617A publication Critical patent/JP2024000617A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a sintered ore capable of obtaining a yield improvement effect of the sintered ore by using an air fuel supply device and an apparatus for manufacturing the sintered ore.
SOLUTION: A method for manufacturing sintered ore comprises: a granulation step in which sintering raw materials including iron-containing raw materials, carbon-containing raw materials, and CaO-containing raw materials are granulated using a granulator to form granulated particles; a charging layer forming step of charging grain particles into an endless movable pallet with a raw material supply device of a sintering machine to form a charging layer; a sintering step for igniting the carbon-containing raw material contained in a surface layer of the charging layer in an ignition furnace provided on a downstream side of the raw material supply device, and supplying gaseous fuel to the charging layer from a gaseous fuel supply device provided on the downstream side of the ignition furnace, and sucking air in the charging layer with a wind box provided below the pallet to ignite the carbon-containing raw material to form the charged layer into a sintered cake; and a crushing step for crushing the sintered cake into a sintering ore, wherein in the charging layer forming step, the charging layer is formed such that dry standard charging density of the charging layer is 1.80 dry-ton/m3 or less.
SELECTED DRAWING: Figure 1
COPYRIGHT: (C)2024,JPO&INPIT

Description

本発明は、高炉用原料である焼結鉱の製造方法及び焼結鉱の製造設備に関する。 The present invention relates to a method for producing sintered ore, which is a raw material for a blast furnace, and equipment for producing sintered ore.

高炉用原料である焼結鉱は、一般に、鉄鉱石粉、製鉄所内回収粉、焼結鉱篩下粉などの鉄含有原料と、石灰石及びドロマイトなどの含CaO原料と、粉コークスや無煙炭などの炭材(固体燃料)とを焼結原料として、無端移動型焼結機であるドワイトロイド焼結機(以下、「焼結機」と記載する)を用いて製造される。 Sintered ore, which is a raw material for blast furnaces, is generally made up of iron-containing raw materials such as iron ore powder, recovered powder in steel works, and sintered ore unsieved powder, CaO-containing raw materials such as limestone and dolomite, and charcoal such as coke powder and anthracite. It is manufactured using a Dwight Lloyd sintering machine (hereinafter referred to as "sintering machine"), which is an endless moving sintering machine, using a solid fuel as a sintering raw material.

焼結原料は、焼結機の無端移動式のパレットに装入され、焼結原料の装入層が形成される。装入層の厚み(高さ)は400~800mm前後である。その後、装入層の上方に設置された点火炉により、この装入層中の炭材に点火される。パレットの下に設置されている風箱を介して空気を下方に吸引することにより、装入層中の炭材を順次燃焼させる。この燃焼は、パレットの移動に伴って次第に下層に且つ前方に進行する。このときに発生する燃焼熱によって、焼結原料が燃焼、溶融し、焼結ケーキが生成される。得られた焼結ケーキは、その後、排鉱部において破砕されて焼結鉱となる。 The sintering raw material is charged into an endlessly movable pallet of the sintering machine, and a charging layer of the sintering raw material is formed. The thickness (height) of the charging layer is approximately 400 to 800 mm. Thereafter, the coal material in this charging layer is ignited by an ignition furnace installed above the charging layer. By suctioning air downward through a wind box installed under the pallet, the carbonaceous material in the charging layer is sequentially combusted. This combustion gradually progresses to the lower layer and forward as the pallet moves. The combustion heat generated at this time burns and melts the sintering raw material, producing a sintered cake. The obtained sintered cake is then crushed in an ore discharge section to become sintered ore.

上述した焼結機では、焼結鉱の歩留を向上させることが重要である。焼結鉱の強度及び歩留を向上させる技術として、特許文献1には、点火炉の下流側に気体燃料供給装置を設け、装入層の上側から気体燃料を供給する焼結機が開示されている。特許文献1によると、ウインドボックスによって空気が下方に吸引されることで気体燃料が装入層内に供給され、当該気体燃料が燃焼することで熱不足によって焼結が不十分になりやすい装入層上層部の焼結鉱の歩留だけでなく、装入層中層及び下層部の焼結鉱の歩留も高められるとしている。 In the above-mentioned sintering machine, it is important to improve the yield of sintered ore. As a technique for improving the strength and yield of sintered ore, Patent Document 1 discloses a sintering machine that is provided with a gaseous fuel supply device on the downstream side of an ignition furnace and supplies gaseous fuel from above the charging layer. ing. According to Patent Document 1, gaseous fuel is supplied into the charging layer by sucking air downward by a wind box, and the gaseous fuel is combusted, which tends to cause insufficient sintering due to lack of heat. It is said that not only the yield of sintered ore in the upper layer of the layer, but also the yield of sintered ore in the middle and lower layers of the charged layer will be increased.

特開2010-107154号公報Japanese Patent Application Publication No. 2010-107154

しかしながら、特許文献1に開示された焼結機を用いても、焼結鉱の歩留が向上しない場合があるという課題があった。本発明は、気体燃料供給装置を用いることによる焼結鉱の歩留向上効果が得られる焼結鉱の製造方法及び焼結鉱の製造設備を提供することを目的とする。 However, even if the sintering machine disclosed in Patent Document 1 is used, there is a problem that the yield of sintered ore may not be improved. An object of the present invention is to provide a method for producing sintered ore and equipment for producing sintered ore, which can improve the yield of sintered ore by using a gaseous fuel supply device.

上記課題を解決するための手段は、以下の通りである。
[1]鉄含有原料、炭素含有原料及びCaO含有原料を含む焼結原料を造粒機で造粒して造粒粒子とする造粒ステップと、焼結機の原料供給装置で無端移動式のパレットに前記造粒粒子を装入して前記焼結原料の装入層を形成する装入層形成ステップと、前記原料供給装置の下流側に設けられる点火炉で前記装入層の表層に含まれる前記炭素含有原料に点火し、前記点火炉の下流側に設けられる気体燃料供給装置から気体燃料を前記装入層に供給し、前記パレットの下方に設けられたウインドボックスで前記装入層内の空気を吸引することで前記炭素含有原料を燃焼させて前記装入層を焼結ケーキとする焼結ステップと、前記焼結ケーキを破砕して焼結鉱とする破砕ステップと、を有し、前記装入層形成ステップでは、前記装入層の乾燥基準装入密度が1.80dry-ton/m以下になるように前記装入層を形成する、焼結鉱の製造方法。
[2]前記装入層の乾燥基準装入密度を算出する算出ステップをさらに有する、[1]に記載の焼結鉱の製造方法。
[3]前記算出ステップで算出された前記乾燥基準装入密度が1.80dry-ton/mより高い場合に、前記装入層形成ステップの条件を変更して、形成される前記装入層の装入密度を下げる、[2]に記載の焼結鉱の製造方法。
[4]前記算出ステップで算出された前記乾燥基準装入密度が1.80dry-ton/mより高い場合に、前記造粒ステップの条件を変更して、造粒される前記造粒粒子の粒度分布の分布幅を狭める、[2]又は[3]に記載の焼結鉱の製造方法。
[5]前記焼結原料のCaO含有原料の配合量を増やす、[4]に記載の焼結鉱の製造方法。
[6]鉄含有原料、炭素含有原料及びCaO含有原料を含む焼結原料を造粒機で造粒して造粒粒子とする造粒機と、無端移動式のパレットと、前記パレットに前記造粒粒子を装入して前記焼結原料の装入層を形成する原料供給装置と、前記装入層の表層に含まれる前記炭素含有原料を点火する点火炉と、前記点火炉の下流側に設けられ、前記装入層に気体燃料を供給する気体燃料供給装置と、前記パレットの下方に設けられ、前記装入層内の空気を吸引するウインドボックスとを有し、前記装入層を焼結して焼結ケーキとする焼結機と、前記焼結ケーキを破砕して焼結鉱とする破砕機と、前記造粒機、焼結機及び破砕機の動作を制御する制御装置と、を備え、前記制御装置は、前記装入層の乾燥基準装入密度が1.80dry-ton/m以下になるように前記焼結機を制御する、焼結鉱の製造設備。
[7]前記制御装置は、前記装入層の乾燥基準装入密度を算出する、[6]に記載の焼結鉱の製造設備。
[8]算出された前記乾燥基準装入密度が1.80dry-ton/mより高い場合に、前記制御装置は、前記焼結機の操業条件を変更して前記装入層の装入密度を下げる、[7]に記載の焼結鉱の製造設備。
[9]算出された前記乾燥基準装入密度が1.80dry-ton/mより高い場合に、前記制御装置は、前記造粒機の造粒条件を変更して前記造粒粒子の粒度分布の分布幅を狭める、[7]又は[8]に記載の焼結鉱の製造設備。
The means for solving the above problems are as follows.
[1] A granulation step in which a sintering raw material containing an iron-containing raw material, a carbon-containing raw material, and a CaO-containing raw material is granulated into granulated particles using a granulator, and an endlessly movable a charging layer forming step of charging the granulated particles into a pallet to form a charging layer of the sintering raw material; The carbon-containing raw material is ignited, gaseous fuel is supplied to the charging layer from a gaseous fuel supply device provided downstream of the ignition furnace, and a wind box provided below the pallet is used to fill the charging layer. a sintering step in which the carbon-containing raw material is combusted by suctioning air to form a sintered cake from the charging layer; and a crushing step in which the sintered cake is crushed to form sintered ore. . A method for producing sintered ore, wherein in the charging layer forming step, the charging layer is formed so that the dry standard charging density of the charging layer is 1.80 dry-ton/m 3 or less.
[2] The method for producing sintered ore according to [1], further comprising a calculation step of calculating a dry reference charging density of the charging layer.
[3] When the dry standard charge density calculated in the calculation step is higher than 1.80 dry-ton/m 3 , the charge layer is formed by changing the conditions of the charge layer forming step. The method for producing sintered ore according to [2], wherein the charging density of the sintered ore is lowered.
[4] When the dry standard charging density calculated in the calculation step is higher than 1.80 dry-ton/m 3 , the conditions of the granulation step are changed so that the granulated particles are The method for producing sintered ore according to [2] or [3], wherein the width of the particle size distribution is narrowed.
[5] The method for producing sintered ore according to [4], wherein the amount of the CaO-containing raw material in the sintering raw material is increased.
[6] A granulator that granulates a sintered raw material containing an iron-containing raw material, a carbon-containing raw material, and a CaO-containing raw material to form granulated particles using a granulator; a raw material supply device that charges grain particles to form a charging layer of the sintering raw material; an ignition furnace that ignites the carbon-containing raw material contained in the surface layer of the charging layer; and a downstream side of the ignition furnace. a gaseous fuel supply device that is provided and supplies gaseous fuel to the charging layer; and a wind box that is provided below the pallet and sucks air in the charging layer; a sintering machine for sintering into a sintered cake; a crushing machine for crushing the sintered cake into sintered ore; and a control device for controlling the operations of the granulator, sintering machine, and crushing machine. , wherein the control device controls the sintering machine so that the dry standard charging density of the charging layer is 1.80 dry-ton/m 3 or less.
[7] The sintered ore manufacturing equipment according to [6], wherein the control device calculates a dry reference charging density of the charging layer.
[8] When the calculated dry standard charging density is higher than 1.80 dry-ton/m 3 , the control device changes the operating conditions of the sintering machine to increase the charging density of the charging layer. The sintered ore manufacturing equipment according to [7], which lowers the sintered ore production equipment.
[9] When the calculated dry standard charging density is higher than 1.80 dry-ton/m 3 , the control device changes the granulation conditions of the granulator to adjust the particle size distribution of the granulated particles. The sintered ore manufacturing equipment according to [7] or [8], which narrows the distribution width of the sintered ore.

本発明に係る焼結鉱の製造方法の実施により、装入密度が1.80dry-ton/m3以下の装入層が形成されるので、気体燃料供給装置による気体燃料の供給により、焼結鉱の歩留向上効果が得られるようになる。 By carrying out the method for producing sintered ore according to the present invention, a charging layer with a charging density of 1.80 dry-ton/m3 or less is formed. yield improvement effect can be obtained.

図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱の製造設備を示す模式図である。FIG. 1 is a schematic diagram showing a sintered ore manufacturing facility in which the sintered ore manufacturing method according to the present embodiment can be carried out. 図2は、焼結試験で用いた焼結試験装置の断面模式図である。FIG. 2 is a schematic cross-sectional view of the sintering test apparatus used in the sintering test. 図3は、装入層の乾燥基準装入密度とLNG歩留向上効果との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the dry standard charging density of the charging layer and the LNG yield improvement effect. 図4は、装入層における造粒粒子の状態を示した模式図である。FIG. 4 is a schematic diagram showing the state of granulated particles in the charging layer. 図5は、1200℃以上の高温保持時間とLNG歩留向上効果との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the high temperature retention time of 1200° C. or higher and the LNG yield improvement effect. 図6は、乾燥基準装入密度と1200℃以上の高温保持時間との関係を示すグラフである。FIG. 6 is a graph showing the relationship between dry standard charging density and high temperature retention time of 1200° C. or higher.

以下、本発明を本発明の実施形態を通じて説明する。図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱の製造設備を示す模式図である。焼結鉱の製造設備10は、造粒機16と、焼結機20と、破砕機30と、制御装置40とを備える。 Hereinafter, the present invention will be explained through embodiments of the present invention. FIG. 1 is a schematic diagram showing a sintered ore manufacturing facility in which the sintered ore manufacturing method according to the present embodiment can be carried out. The sintered ore manufacturing facility 10 includes a granulator 16, a sintering machine 20, a crusher 30, and a control device 40.

造粒機16は、鉄含有原料、炭素含有原料及びCaO含有原料を含む焼結原料12を造粒して造粒粒子18とする。造粒機16が造粒粒子18を造粒する際、焼結原料12には造粒水14が添加される。この工程が造粒ステップとなる。造粒機16によって造粒された造粒粒子18は、焼結機20に搬送される。なお、鉄含有原料は、例えば、鉄鉱石や製鉄所内で発生するダストである。炭素含有原料は、例えば、粉コークスや無煙炭である。また、CaO含有原料は、例えば、生石灰、石灰石、スラグである。 The granulator 16 granulates the sintered raw material 12 containing an iron-containing raw material, a carbon-containing raw material, and a CaO-containing raw material to form granulated particles 18 . When the granulator 16 granulates the granulated particles 18, granulating water 14 is added to the sintering raw material 12. This process becomes the granulation step. Granulated particles 18 granulated by the granulator 16 are conveyed to a sintering machine 20. Note that the iron-containing raw material is, for example, iron ore or dust generated in a steel mill. The carbon-containing raw material is, for example, coke powder or anthracite coal. Further, the CaO-containing raw material is, for example, quicklime, limestone, or slag.

焼結機20は、例えば、ドワイトロイド式の焼結機である。焼結機20は、原料供給装置21と、パレット22と、カットオフプレート23と、点火炉24と、気体燃料供給装置25と、ウインドボックス26とを備える。原料供給装置21は、造粒粒子18をパレット22に装入する。 The sintering machine 20 is, for example, a Dwight Lloyd type sintering machine. The sintering machine 20 includes a raw material supply device 21 , a pallet 22 , a cutoff plate 23 , an ignition furnace 24 , a gaseous fuel supply device 25 , and a wind box 26 . The raw material supply device 21 charges the granulated particles 18 into a pallet 22 .

パレット22は、無端移動式のパレットである。原料供給装置21からパレット22内に造粒粒子18が装入されると、パレット22内に焼結原料12の装入層が形成される。カットオフプレート23は、装入層の表層を平らに均すとともに装入層の厚さを予め設定された目標とする層厚に合わせる。この工程が装入層形成ステップとなる。 The pallet 22 is an endlessly movable pallet. When the granulated particles 18 are charged into the pallet 22 from the raw material supply device 21, a charged layer of the sintering raw material 12 is formed within the pallet 22. The cutoff plate 23 flattens the surface layer of the charged layer and adjusts the thickness of the charged layer to a preset target layer thickness. This process becomes the charge layer forming step.

点火炉24は、原料供給装置21の下流側に設けられ、装入層の表層に含まれている炭素含有原料に点火する。気体燃料供給装置25は、装入層の表層側に気体燃料を供給する。気体燃料として、例えば、都市ガス(LNG)が供給される。気体燃料供給装置25から供給される気体燃料としては、都市ガスに限らず、高炉ガス、コークス炉ガス、高炉・コークス炉混合ガス、転炉ガス、天然ガス、メタンガス、エタンガス、プロパンガス、シェールガス及びこれらの混合ガスのうちから選ばれるいずれかの可燃性ガスを用いてよい。 The ignition furnace 24 is provided downstream of the raw material supply device 21 and ignites the carbon-containing raw material contained in the surface layer of the charging layer. The gaseous fuel supply device 25 supplies gaseous fuel to the surface side of the charging layer. For example, city gas (LNG) is supplied as the gaseous fuel. The gaseous fuel supplied from the gaseous fuel supply device 25 is not limited to city gas, but also includes blast furnace gas, coke oven gas, blast furnace/coke oven mixed gas, converter gas, natural gas, methane gas, ethane gas, propane gas, and shale gas. Any combustible gas selected from among these gases may be used.

ウインドボックス26は、パレット22の下方に設けられ、パレット22内に形成されている装入層内の空気を下方に吸引する。ウインドボックス26によって装入層内の空気が下方に吸引されると、装入層内の燃焼、溶融帯は装入層の下方に移動する。また、装入層内の空気が下方に吸引されることで、気体燃料供給装置25から供給された気体燃料は装入層の表層から装入層内に導入される。パレット22の移動とともに装入層内の燃焼、溶融帯が下方に移動することで、装入層の焼結原料12は焼結される。焼結原料12の焼結により、焼結ケーキが得られる。この工程が焼結ステップとなる。 The wind box 26 is provided below the pallet 22 and sucks air in the charging layer formed within the pallet 22 downward. When the air in the charge layer is sucked downward by the wind box 26, the combustion and melting zone in the charge layer moves below the charge layer. Further, by sucking the air in the charging layer downward, the gaseous fuel supplied from the gaseous fuel supply device 25 is introduced into the charging layer from the surface layer of the charging layer. As the pallet 22 moves, the combustion and molten zone within the charge layer moves downward, so that the sintered raw material 12 in the charge layer is sintered. By sintering the sintering raw material 12, a sintered cake is obtained. This process becomes the sintering step.

破砕機30は、焼結機20から排鉱される焼結ケーキを破砕して焼結ケーキの破砕物とする。焼結ケーキの破砕物は、冷却及び整粒されて焼結鉱32が製造される。この工程が破砕ステップとなる。 The crusher 30 crushes the sintered cake discharged from the sintering machine 20 to produce crushed sintered cakes. The crushed sintered cake is cooled and sized to produce sintered ore 32. This process becomes the crushing step.

制御装置40は、制御部41と、記憶部42とを有する例えば、ワークステーションやパソコン等の汎用コンピュータである。制御部41は、例えば、CPU等であって、記憶部42から読み込んだプログラムを実行することにより、造粒機16、焼結機20及び破砕機30の動作を制御する。記憶部42は、例えば、更新記録可能なフラッシュメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、メモリーカード等の情報記録媒体及びその読み書き装置である。記憶部42には、制御部41が各機能を実行するためのプログラムや当該プログラムで使用するデータ等が記憶されている。 The control device 40 is, for example, a general-purpose computer such as a workstation or a personal computer, which has a control section 41 and a storage section 42 . The control unit 41 is, for example, a CPU or the like, and controls the operations of the granulator 16, sintering machine 20, and crushing machine 30 by executing a program read from the storage unit 42. The storage unit 42 is, for example, an information recording medium such as an update-recordable flash memory, a built-in hard disk or a hard disk connected via a data communication terminal, a memory card, and a read/write device thereof. The storage unit 42 stores programs for the control unit 41 to execute various functions, data used in the programs, and the like.

制御部41は、焼結機20のパレット22内に形成される装入層の乾燥基準装入密度を算出する。制御部41は、焼結機20から湿潤基準の原料搬送速度データを取得し、事前に測定された焼結原料の水分含有量を減じることで乾燥基準の原料搬送速度を算出する。さらに、制御部41は乾燥基準の原料搬送速度を、焼結機20の機幅と、装入層の層厚と、パレットスピードで除することで乾燥基準装入密度を算出する。この工程が算出ステップとなる。制御部41は算出した乾燥基準装入密度を表示させてもよい。 The control unit 41 calculates the dry standard charging density of the charging layer formed in the pallet 22 of the sintering machine 20 . The control unit 41 obtains raw material conveyance speed data on a wet basis from the sintering machine 20, and calculates the raw material conveyance speed on a dry basis by subtracting the moisture content of the sintering raw material measured in advance. Furthermore, the control unit 41 calculates the dry standard charging density by dividing the dry standard raw material conveyance speed by the machine width of the sintering machine 20, the layer thickness of the charging layer, and the pallet speed. This process becomes a calculation step. The control unit 41 may display the calculated dry reference charging density.

制御部41は、算出した乾燥基準装入密度が1.80dry-ton/mより高い場合に、造粒機16の造粒条件や焼結機20の操業条件を変更して、装入層の乾燥基準装入密度が1.80dry-ton/m以下になるように装入層の装入密度を下げる。 When the calculated dry standard charging density is higher than 1.80 dry-ton/m 3 , the control unit 41 changes the granulation conditions of the granulator 16 and the operating conditions of the sintering machine 20 to reduce the charging layer. The charging density of the charging layer is lowered so that the dry standard charging density of the charging layer is 1.80 dry-ton/m 3 or less.

造粒機16の造粒条件を変更する場合に、制御部41は、造粒粒子18の粒度分布の分布幅が狭くなるように、造粒機16の造粒条件を変更する。造粒粒子18の粒度分布の分布幅が狭くなると、パレット22に装入される造粒粒子18の充填密度が低くなるので、装入層の装入密度は低下する。造粒粒子18の粒度分布の分布幅を狭める造粒条件は、造粒機16の回転速度、造粒機16への焼結原料12の装入量、造粒水14の添加量等を変えた造粒実験を行い、造粒された造粒粒子18の粒度分布の分布幅を確認することで、造粒粒子18の粒度分布の分布幅を狭める造粒条件を求めることができる。 When changing the granulation conditions of the granulator 16, the control unit 41 changes the granulation conditions of the granulator 16 so that the distribution width of the particle size distribution of the granulated particles 18 becomes narrower. When the distribution width of the particle size distribution of the granulated particles 18 becomes narrower, the packing density of the granulated particles 18 charged into the pallet 22 becomes lower, so that the charging density of the charging layer decreases. The granulation conditions for narrowing the distribution width of the particle size distribution of the granulated particles 18 include changing the rotational speed of the granulator 16, the amount of sintering raw material 12 charged into the granulator 16, the amount of granulation water 14 added, etc. By conducting a granulation experiment and confirming the distribution width of the particle size distribution of the granulated particles 18, granulation conditions that narrow the distribution width of the particle size distribution of the granulated particles 18 can be determined.

さらに、制御部41は、焼結原料12に配合されるCaO含有原料の配合量を増やしてもよい。CaOはバインダーとして機能するので、造粒され難い未造粒粉を造粒粒子に付着させ、粒度分布における細粒を減少させる。このため、CaO含有原料の配合量を増やすと、造粒粒子18の粒度分布の分布幅が狭くなる。なお、本実施形態に係る焼結鉱の製造方法において、CaO含有原料の配合量の増加も造粒条件の変更に含まれる。 Furthermore, the control unit 41 may increase the amount of the CaO-containing raw material mixed into the sintering raw material 12. Since CaO functions as a binder, it causes ungranulated powder that is difficult to be granulated to adhere to granulated particles, thereby reducing fine particles in the particle size distribution. Therefore, when the amount of the CaO-containing raw material is increased, the width of the particle size distribution of the granulated particles 18 becomes narrower. In addition, in the method for producing sintered ore according to the present embodiment, an increase in the amount of the CaO-containing raw material is also included in changing the granulation conditions.

また、焼結機20の操業条件を変更する場合に、制御部41は、原料供給装置21の装入ゲートの開度やカットオフプレート23の位置を変更する。装入ゲートの開度を変更する場合に、制御部41は、装入ゲートの開度を狭めてパレット22に装入される造粒粒子18の装入量を少なくする。造粒粒子18の装入量を少なくすることで、装入層の装入密度は低下する。 Further, when changing the operating conditions of the sintering machine 20, the control unit 41 changes the opening degree of the charging gate of the raw material supply device 21 and the position of the cutoff plate 23. When changing the opening degree of the charging gate, the control unit 41 narrows the opening degree of the charging gate to reduce the amount of granulated particles 18 charged into the pallet 22. By reducing the amount of granulated particles 18 charged, the charging density of the charging layer is reduced.

また、カットオフプレート23の位置を変更する場合に、制御部41は、カットオフプレート23の位置を高くして、装入層の装入密度を低下させる。カットオフプレート23は、造粒粒子18を下方に押し込むことで、装入層の表面を平らに均すとともに装入層の厚さを予め設定された厚さに合わせている。このため、カットオフプレート23の位置を高めることで、下方に押し込まれる造粒粒子18の量が減少するので、装入層の装入密度は低下する。 Furthermore, when changing the position of the cutoff plate 23, the control unit 41 raises the position of the cutoff plate 23 to reduce the charging density of the charging layer. The cut-off plate 23 forces the granulated particles 18 downward to level the surface of the charge layer and adjust the thickness of the charge layer to a preset thickness. Therefore, by raising the position of the cut-off plate 23, the amount of granulated particles 18 pushed downward is reduced, so that the charging density of the charging layer is reduced.

さらに、原料供給装置21が磁気ブレーキを有する場合には、制御部41は、磁気ブレーキを強めて、パレット22に装入される造粒粒子18の装入量を少なくしてもよい。造粒粒子18の装入量を少なくすることで、装入層の装入密度は低下する。 Furthermore, when the raw material supply device 21 has a magnetic brake, the control unit 41 may strengthen the magnetic brake to reduce the amount of granulated particles 18 charged into the pallet 22. By reducing the amount of granulated particles 18 charged, the charging density of the charging layer is reduced.

このように、制御部41は、造粒機16の造粒条件や焼結機20の操業条件を変更して、乾燥基準装入密度が1.80dry-ton/m以下になるように装入層の装入密度を下げる。これにより、気体燃料を供給することによる焼結鉱の歩留向上効果が得られるようになる。 In this way, the control unit 41 changes the granulation conditions of the granulator 16 and the operating conditions of the sintering machine 20 so that the dry standard charging density becomes 1.80 dry-ton/m 3 or less. Reduce the charging density of the inlet layer. Thereby, the effect of improving the yield of sintered ore by supplying gaseous fuel can be obtained.

次に、装入層の乾燥基準装入密度と気体燃料供給による歩留向上効果と1200℃以上の高温保持時間との関係を確認した焼結試験について説明する。図2は、焼結試験で用いた焼結試験装置の断面模式図である。焼結試験装置50は、点火フード51と、焼結ポット52と、ウインドボックス53とで構成される。点火フード51には点火バーナ54が設けられ、焼結ポット52内に形成された装入層55の表層に含まれる粉コークスを点火する。 Next, a sintering test that confirmed the relationship between the dry standard charging density of the charging layer, the yield improvement effect by gaseous fuel supply, and the high temperature retention time of 1200° C. or higher will be described. FIG. 2 is a schematic cross-sectional view of the sintering test apparatus used in the sintering test. The sintering test device 50 includes an ignition hood 51, a sintering pot 52, and a wind box 53. An ignition burner 54 is provided in the ignition hood 51 and ignites the coke powder contained in the surface layer of a charging layer 55 formed in the sintering pot 52.

焼結ポット52は、直径300mm、高さ600mmの円筒形状の容器である。焼結ポット52の上層、中層、下層には、それぞれ位置の温度を測定する熱電対56が設けられ、下端にはグレートバー57が設けられている。焼結ポット52内に焼結原料の造粒粒子を装入して、層厚600mmの装入層55を形成した。焼結原料として89質量%の鉄鉱石と、11質量%の石灰と、外掛けで4.0質量%の粉コークスとからなる焼結原料の造粒粒子を用いた。ウインドボックス53から10kPaの負圧で吸引するとともに、点火フード51から0.4体積%の都市ガス(LNG)を含む空気を点火終了直後から焼成時間全体の約1/3の時間に渡って供給して、焼結原料の装入層55を焼結する焼結試験を実施した。焼結試験中、3つの熱電対56を用いて装入層55の上層、中層、下層の温度を測定した。都市ガスを供給した場合は都市ガスの発熱量分に相当する粉コークスを焼結原料から控除した。また、歩留は、焼結後のサンプルを2m高さから4回落下させ、落下させたサンプルを目開き5mmの篩で篩分けし、篩上となったサンプルの質量を、焼結後のサンプル質量で除することで算出した。 The sintering pot 52 is a cylindrical container with a diameter of 300 mm and a height of 600 mm. Thermocouples 56 are provided in the upper, middle, and lower layers of the sintering pot 52 to measure the temperature at each location, and a grate bar 57 is provided at the lower end. Granulated particles of the sintering raw material were charged into the sintering pot 52 to form a charged layer 55 having a layer thickness of 600 mm. As a sintering raw material, granulated particles of a sintering raw material consisting of 89% by mass of iron ore, 11% by mass of lime, and 4.0% by mass of coke powder were used. A negative pressure of 10 kPa is sucked from the wind box 53, and air containing 0.4% by volume of city gas (LNG) is supplied from the ignition hood 51 for about 1/3 of the entire firing time from immediately after the ignition ends. Then, a sintering test was conducted in which the charge layer 55 of the sintering raw material was sintered. During the sintering test, three thermocouples 56 were used to measure the temperatures of the upper, middle, and lower layers of the charge layer 55. When city gas was supplied, coke powder equivalent to the calorific value of city gas was deducted from the sintering raw material. In addition, the yield is determined by dropping the sample after sintering from a height of 2 m four times, sieving the dropped sample with a 5 mm sieve, and calculating the mass of the sample on the sieve after sintering. Calculated by dividing by the sample mass.

図3は、装入層の乾燥基準装入密度とLNG歩留向上効果との関係を示すグラフである。図3において、横軸は乾燥基準装入密度(dry-ton/m)であり、縦軸はLNG歩留向上効果(point)である。ここでLNG歩留向上効果とは、都市ガスを供給して焼結した焼結鉱の歩留から都市ガスを供給せずに焼結した焼結鉱の歩留を減じた値である。例えば、都市ガスを供給することで、焼結鉱の歩留が80.0質量%から81.7質量%に向上した場合、LNG歩留向上効果は1.7pointになる。 FIG. 3 is a graph showing the relationship between the dry standard charging density of the charging layer and the LNG yield improvement effect. In FIG. 3, the horizontal axis is the dry standard charging density (dry-ton/m 3 ), and the vertical axis is the LNG yield improvement effect (point). Here, the LNG yield improvement effect is a value obtained by subtracting the yield of sintered ore sintered without supplying city gas from the yield of sintered ore sintered with city gas supplied. For example, if the yield of sintered ore increases from 80.0% by mass to 81.7% by mass by supplying city gas, the LNG yield improvement effect will be 1.7 points.

図3に示すように、装入層55の乾燥基準装入密度が高くなるに従ってLNG歩留向上効果は低下した。特に、乾燥基準装入密度が1.80dry-ton/mあたりでは、LNG歩留向上効果がなくなる傾向がみられた。この結果から、装入層の乾燥基準装入密度が高くなると、気体燃料を供給することによる歩留向上効果が低下することが確認された。また、図3から、乾燥基準装入密度を1.70dry-ton/m以下にすれば、LNG歩留向上効果が高まることから、装入層の乾燥基準装入密度を1.70ry-ton/m以下にすることが好ましい。さらに、乾燥基準装入密度を1.60dry-ton/m以下にすれば、LNG歩留向上効果を最大にできることから、装入層の乾燥基準装入密度を1.60ry-ton/m以下にすることがより好ましい。 As shown in FIG. 3, the LNG yield improvement effect decreased as the dry standard charging density of the charging layer 55 increased. In particular, when the dry standard charging density was around 1.80 dry-ton/m 3 , there was a tendency for the LNG yield improvement effect to disappear. From this result, it was confirmed that as the dry standard charging density of the charging layer increases, the yield improvement effect by supplying gaseous fuel decreases. Furthermore, from FIG. 3, if the dry standard charging density is set to 1.70 dry-ton/ m3 or less, the LNG yield improvement effect increases, so the dry standard charging density of the charging layer is set to 1.70 dry-ton/m3 or less. /m 3 or less is preferable. Furthermore, if the dry standard charging density is set to 1.60 ry-ton/m 3 or less, the LNG yield improvement effect can be maximized, so the dry standard charging density of the charging layer is set to 1.60 ry-ton/m 3 It is more preferable to do the following.

図4は、装入層における造粒粒子の状態を示した模式図である。図4(a)は、装入密度が低い装入層における造粒粒子18の状態を示す図であり、図4(b)は、装入密度が高い装入層における造粒粒子18の状態を示す図である。気体燃料は粉コークス等の固体燃料と異なり、気体の通り道となる空隙部のみで燃焼する。装入層の装入密度が低い場合、図4(a)に示すように、気体燃料の燃焼空間は広く、当該燃焼空間での気体燃料の局所流速は遅くなる。一方、装入層の装入密度が高い場合、図4(b)に示すように、気体燃料の燃焼空間は狭く、当該燃焼空間での気体燃料の局所流速は早くなる。 FIG. 4 is a schematic diagram showing the state of granulated particles in the charging layer. FIG. 4(a) is a diagram showing the state of the granulated particles 18 in a charging layer with a low charging density, and FIG. 4(b) is a diagram showing the state of the granulated particles 18 in a charging layer with a high charging density. FIG. Unlike solid fuels such as coke breeze, gaseous fuel burns only in the voids that allow gas to pass through. When the charging density of the charging layer is low, as shown in FIG. 4(a), the combustion space for the gaseous fuel is wide and the local flow velocity of the gaseous fuel in the combustion space is slow. On the other hand, when the charging density of the charging layer is high, as shown in FIG. 4(b), the combustion space for the gaseous fuel is narrow and the local flow velocity of the gaseous fuel in the combustion space becomes high.

すなわち、装入層の装入密度が低い場合には、気体燃料の燃焼空間が広く、局所的な気体燃料の流速が遅いので、気体燃料が十分に燃焼し、且つ、その燃焼熱が造粒粒子18に伝熱するための時間を比較的長く確保できる。この結果、気体燃料の燃焼熱が造粒粒子18に伝熱し、1200℃以上の高温保持時間が延長し、これにより、焼結鉱の歩留向上効果が発現したものと考えられる。一方、装入層の装入密度が高い場合には、気体燃料の燃焼空間が狭く、局所的な気体燃料の流速が早いので、気体燃料が十分に燃焼できず、且つ、その燃焼熱が造粒粒子に伝熱するための時間を確保できない。この結果、気体燃料の燃焼熱が造粒粒子18に伝熱できず、1200℃以上の高温保持時間が延長せず、焼結鉱の歩留向上効果が発現しにくくなったものと考えられる。 In other words, when the charging density of the charging layer is low, the gaseous fuel combustion space is wide and the local gaseous fuel flow velocity is slow, so the gaseous fuel is sufficiently combusted and the heat of combustion is used for granulation. A relatively long time for heat transfer to the particles 18 can be secured. As a result, the combustion heat of the gaseous fuel was transferred to the granulated particles 18, and the high temperature retention time of 1200° C. or higher was extended, which is considered to have the effect of improving the yield of sintered ore. On the other hand, when the charging density of the charging layer is high, the gaseous fuel combustion space is narrow and the local gaseous fuel flow velocity is high, so the gaseous fuel cannot be sufficiently combusted, and the combustion heat is not produced. It is not possible to secure enough time for heat to transfer to the particles. As a result, the combustion heat of the gaseous fuel could not be transferred to the granulated particles 18, and the high temperature retention time of 1200° C. or higher was not extended, making it difficult to exhibit the effect of improving the yield of sintered ore.

図5は、1200℃以上の高温保持時間とLNG歩留向上効果との関係を示すグラフである。図5において、横軸はΔ1200℃以上の高温保持時間(sec)であり、縦軸はLNG歩留向上効果(point)である。ここでΔ1200℃以上の高温保持時間とは、1200℃以上の高温保持時間の変化量を示し、「50」は、1200℃以上の高温保持時間が50秒延長したことを意味し、「-50」は1200℃以上の高温保持時間が50秒短縮したことを意味する。 FIG. 5 is a graph showing the relationship between the high temperature retention time of 1200° C. or higher and the LNG yield improvement effect. In FIG. 5, the horizontal axis is the high temperature holding time (sec) of Δ1200° C. or more, and the vertical axis is the LNG yield improvement effect (point). Here, Δ1200℃ or higher high temperature retention time indicates the amount of change in high temperature retention time of 1200℃ or higher, "50" means that the high temperature retention time of 1200℃ or higher is extended by 50 seconds, and "-50 ” means that the high temperature holding time of 1200° C. or higher was shortened by 50 seconds.

図5に示すように、1200℃以上の高温保持時間が長くなるに従って、LNG歩留向上効果は大きくなった。この結果から1200℃以上の高温保持時間が長くなることで、気体燃料を供給することによる歩留向上効果が高まることが確認された。 As shown in FIG. 5, the LNG yield improvement effect increased as the high temperature holding time of 1200° C. or higher became longer. From this result, it was confirmed that the yield improvement effect by supplying gaseous fuel increases as the high temperature holding time of 1200° C. or higher becomes longer.

図6は、乾燥基準装入密度と1200℃以上の高温保持時間との関係を示すグラフである。図6において、横軸は乾燥基準装入密度(dry-ton/m)であり、縦軸はΔ1200℃以上の高温保持時間(sec)である。 FIG. 6 is a graph showing the relationship between dry standard charging density and high temperature retention time of 1200° C. or higher. In FIG. 6, the horizontal axis is the dry standard charging density (dry-ton/m 3 ), and the vertical axis is the high temperature retention time (sec) of Δ1200° C. or more.

図6に示すように、乾燥基準装入密度が1.80dry-ton/mより高くなると、1200℃以上の高温保持時間はほとんど延長しなかった。一方、乾燥基準装入密度が1.80dry-ton/m以下であれば、気体燃料を供給することで1200℃以上の高温保持時間を延長できることが確認された。1200℃以上の高温保持時間が延長できれば焼結ケーキの強度が向上するので、装入層の乾燥基準装入密度を1.80dry-ton/m以下にすることで焼結鉱の歩留向上が実現できることがわかる。 As shown in FIG. 6, when the dry standard charging density was higher than 1.80 dry-ton/m 3 , the high temperature holding time of 1200° C. or higher was hardly extended. On the other hand, it was confirmed that if the dry standard charging density is 1.80 dry-ton/m 3 or less, the high temperature holding time of 1200° C. or higher can be extended by supplying gaseous fuel. If the high-temperature holding time of 1200°C or higher can be extended, the strength of the sintered cake will improve, so the yield of sintered ore can be improved by setting the dry standard charging density of the charging layer to 1.80 dry-ton/ m3 or less. It can be seen that this can be achieved.

以上、説明したように本実施形態に係る焼結鉱の製造方法では、装入層の乾燥基準装入密度が1.80dry-ton/m以下になるように装入層を形成するので、気体燃料を供給することによる歩留向上効果が得られるようになる。また、本実施形態に係る焼結鉱の製造方法では、装入層の乾燥基準装入密度を算出する。このように、装入層の乾燥基準装入密度を算出することで、気体燃料を供給することによる歩留向上効果が得られるか否か判断できるようになる。 As described above, in the method for producing sintered ore according to the present embodiment, the charging layer is formed so that the dry standard charging density of the charging layer is 1.80 dry-ton/m 3 or less. By supplying gaseous fuel, a yield improvement effect can be obtained. Moreover, in the method for producing sintered ore according to the present embodiment, the dry standard charging density of the charging layer is calculated. By calculating the dry reference charging density of the charging layer in this manner, it becomes possible to determine whether or not the yield improvement effect can be obtained by supplying the gaseous fuel.

10 焼結鉱の製造設備
12 焼結原料
14 造粒水
16 造粒機
18 造粒粒子
20 焼結機
21 原料供給装置
22 パレット
23 カットオフプレート
24 点火炉
25 気体燃料供給装置
26 ウインドボックス
30 破砕機
32 焼結鉱
40 制御装置
41 制御部
42 記憶部
50 焼結試験装置
51 点火フード
52 焼結ポット
53 ウインドボックス
54 点火バーナ
55 装入層
56 熱電対
57 グレートバー
10 Sintered ore manufacturing equipment 12 Sintering raw material 14 Granulation water 16 Granulation machine 18 Granulation particles 20 Sintering machine 21 Raw material supply device 22 Pallet 23 Cut-off plate 24 Ignition furnace 25 Gaseous fuel supply device 26 Wind box 30 Crushing Machine 32 Sintered ore 40 Control device 41 Control section 42 Storage section 50 Sintering test device 51 Ignition hood 52 Sintering pot 53 Wind box 54 Ignition burner 55 Charging layer 56 Thermocouple 57 Great bar

Claims (9)

鉄含有原料、炭素含有原料及びCaO含有原料を含む焼結原料を造粒機で造粒して造粒粒子とする造粒ステップと、
焼結機の原料供給装置で無端移動式のパレットに前記造粒粒子を装入して前記焼結原料の装入層を形成する装入層形成ステップと、
前記原料供給装置の下流側に設けられる点火炉で前記装入層の表層に含まれる前記炭素含有原料に点火し、前記点火炉の下流側に設けられる気体燃料供給装置から気体燃料を前記装入層に供給し、前記パレットの下方に設けられたウインドボックスで前記装入層内の空気を吸引することで前記炭素含有原料を燃焼させて前記装入層を焼結ケーキとする焼結ステップと、
前記焼結ケーキを破砕して焼結鉱とする破砕ステップと、
を有し、
前記装入層形成ステップでは、前記装入層の乾燥基準装入密度が1.80dry-ton/m以下になるように前記装入層を形成する、焼結鉱の製造方法。
A granulation step of granulating a sintered raw material containing an iron-containing raw material, a carbon-containing raw material, and a CaO-containing raw material using a granulator to form granulated particles;
a charging layer forming step of charging the granulated particles into an endlessly movable pallet using a raw material supply device of a sintering machine to form a charging layer of the sintering raw material;
The carbon-containing raw material contained in the surface layer of the charging layer is ignited in an ignition furnace provided on the downstream side of the raw material supply device, and the gaseous fuel is charged from the gaseous fuel supply device provided on the downstream side of the ignition furnace. a sintering step in which the carbon-containing raw material is supplied to a layer and the carbon-containing raw material is combusted by sucking air in the charging layer with a wind box provided below the pallet to turn the charging layer into a sintered cake; ,
a crushing step of crushing the sintered cake to produce sintered ore;
has
In the charging layer forming step, the charging layer is formed so that the dry standard charging density of the charging layer is 1.80 dry-ton/m 3 or less.
前記装入層の乾燥基準装入密度を算出する算出ステップをさらに有する、請求項1に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1, further comprising a calculation step of calculating a dry reference charging density of the charging layer. 前記算出ステップで算出された前記乾燥基準装入密度が1.80dry-ton/mより高い場合に、
前記装入層形成ステップの条件を変更して、形成される前記装入層の装入密度を下げる、請求項2に記載の焼結鉱の製造方法。
When the dry standard charging density calculated in the calculation step is higher than 1.80 dry-ton/m 3 ,
The method for producing sintered ore according to claim 2, wherein the charging density of the charging layer to be formed is lowered by changing the conditions of the charging layer forming step.
前記算出ステップで算出された前記乾燥基準装入密度が1.80dry-ton/mより高い場合に、
前記造粒ステップの条件を変更して、造粒される前記造粒粒子の粒度分布の分布幅を狭める、請求項2又は請求項3に記載の焼結鉱の製造方法。
When the dry standard charging density calculated in the calculation step is higher than 1.80 dry-ton/m 3 ,
The method for producing sintered ore according to claim 2 or 3, wherein the conditions of the granulation step are changed to narrow the distribution width of the particle size distribution of the granulated particles to be granulated.
前記焼結原料のCaO含有原料の配合量を増やす、請求項4に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 4, wherein the amount of the CaO-containing raw material added to the sintered raw material is increased. 鉄含有原料、炭素含有原料及びCaO含有原料を含む焼結原料を造粒機で造粒して造粒粒子とする造粒機と、
無端移動式のパレットと、前記パレットに前記造粒粒子を装入して前記焼結原料の装入層を形成する原料供給装置と、前記装入層の表層に含まれる前記炭素含有原料を点火する点火炉と、前記点火炉の下流側に設けられ、前記装入層に気体燃料を供給する気体燃料供給装置と、前記パレットの下方に設けられ、前記装入層内の空気を吸引するウインドボックスとを有し、前記装入層を焼結して焼結ケーキとする焼結機と、
前記焼結ケーキを破砕して焼結鉱とする破砕機と、
前記造粒機、焼結機及び破砕機の動作を制御する制御装置と、
を備え、
前記制御装置は、前記装入層の乾燥基準装入密度が1.80dry-ton/m以下になるように前記焼結機を制御する、焼結鉱の製造設備。
a granulator that granulates a sintered raw material containing an iron-containing raw material, a carbon-containing raw material, and a CaO-containing raw material to form granulated particles;
an endless movable pallet; a raw material supply device that charges the granulated particles into the pallet to form a charge layer of the sintering raw material; and ignites the carbon-containing raw material contained in the surface layer of the charge layer. a gaseous fuel supply device provided on the downstream side of the ignition furnace to supply gaseous fuel to the charging layer; and a window provided below the pallet to suck air in the charging layer. a sintering machine having a box for sintering the charging layer to form a sintered cake;
a crusher that crushes the sintered cake to produce sintered ore;
a control device that controls the operation of the granulator, sinterer, and crusher;
Equipped with
The control device controls the sintering machine so that the dry standard charging density of the charging layer is 1.80 dry-ton/m 3 or less.
前記制御装置は、前記装入層の乾燥基準装入密度を算出する、請求項6に記載の焼結鉱の製造設備。 The sintered ore manufacturing equipment according to claim 6, wherein the control device calculates a dry reference charging density of the charging layer. 算出された前記乾燥基準装入密度が1.80dry-ton/mより高い場合に、前記制御装置は、前記焼結機の操業条件を変更して前記装入層の装入密度を下げる、請求項7に記載の焼結鉱の製造設備。 If the calculated dry standard charge density is higher than 1.80 dry-ton/m 3 , the control device changes the operating conditions of the sintering machine to lower the charge density of the charge layer. The sintered ore manufacturing equipment according to claim 7. 算出された前記乾燥基準装入密度が1.80dry-ton/mより高い場合に、前記制御装置は、前記造粒機の造粒条件を変更して前記造粒粒子の粒度分布の分布幅を狭める、請求項7又は請求項8に記載の焼結鉱の製造設備。 When the calculated dry standard charging density is higher than 1.80 dry-ton/m 3 , the control device changes the granulation conditions of the granulator to increase the distribution width of the particle size distribution of the granulated particles. The sintered ore manufacturing equipment according to claim 7 or 8, wherein the sintered ore manufacturing equipment is narrowed.
JP2022099388A 2022-06-21 2022-06-21 Method for manufacturing sintered ore and apparatus for manufacturing sintered ore Pending JP2024000617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022099388A JP2024000617A (en) 2022-06-21 2022-06-21 Method for manufacturing sintered ore and apparatus for manufacturing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022099388A JP2024000617A (en) 2022-06-21 2022-06-21 Method for manufacturing sintered ore and apparatus for manufacturing sintered ore

Publications (1)

Publication Number Publication Date
JP2024000617A true JP2024000617A (en) 2024-01-09

Family

ID=89451771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022099388A Pending JP2024000617A (en) 2022-06-21 2022-06-21 Method for manufacturing sintered ore and apparatus for manufacturing sintered ore

Country Status (1)

Country Link
JP (1) JP2024000617A (en)

Similar Documents

Publication Publication Date Title
KR101475130B1 (en) Method for producing sintered ore
JP5253701B2 (en) Iron ore briquetting
JP5298634B2 (en) Quality control method for sintered ore
JP2013129895A (en) Sintering machine and method of supplying gas fuel
JP6959590B2 (en) Sintered ore manufacturing method
JP2024000617A (en) Method for manufacturing sintered ore and apparatus for manufacturing sintered ore
JP5561443B2 (en) Method for producing sintered ore
JP2015157980A (en) Production method of sintered ore
JP6179726B2 (en) Method for producing sintered ore
KR101220596B1 (en) Process for production of solid fuel for use in sintering, solid fuel for use in sintering, and process for manufacturing sintered ore using same
JP6988844B2 (en) Sintered ore manufacturing method
JP5428196B2 (en) Method for producing sintered ore and sintering machine
RU2774518C1 (en) Method for obtaining sintered ore
JP7342911B2 (en) Method for manufacturing sintered ore
JP5803454B2 (en) Oxygen-gas fuel supply device for sintering machine
JP7227053B2 (en) Method for producing sintered ore
KR101561279B1 (en) Method and apparatus for manufacturing molten iron
EP2862949B1 (en) Method for manufacturing sintered ore
TW201802250A (en) Method for manufacturing carbon-material-incorporated sintered ore
JP6521259B2 (en) Method of producing sintering material for producing sintered ore
KR101545721B1 (en) Apparatus for manufacturing molten iron and method for manufacturing the same
JP4815841B2 (en) Sintering method
JP2000256757A (en) Production of sintered ore
Das et al. Agglomeration
KR19990013132A (en) Sintered Ore Manufacturing Method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240126