JP2006278730A - Led-mounting board with reflecting member, its manufacturing method, and led module - Google Patents

Led-mounting board with reflecting member, its manufacturing method, and led module Download PDF

Info

Publication number
JP2006278730A
JP2006278730A JP2005095741A JP2005095741A JP2006278730A JP 2006278730 A JP2006278730 A JP 2006278730A JP 2005095741 A JP2005095741 A JP 2005095741A JP 2005095741 A JP2005095741 A JP 2005095741A JP 2006278730 A JP2006278730 A JP 2006278730A
Authority
JP
Japan
Prior art keywords
led
reflecting member
buffer layer
reflecting
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005095741A
Other languages
Japanese (ja)
Other versions
JP4629474B2 (en
Inventor
Keiji Nishimoto
恵司 西本
Yoshihiko Kanayama
喜彦 金山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005095741A priority Critical patent/JP4629474B2/en
Publication of JP2006278730A publication Critical patent/JP2006278730A/en
Application granted granted Critical
Publication of JP4629474B2 publication Critical patent/JP4629474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an LED-mounting board etc. with a reflecting member wherein a bonding between the reflecting member and the mounting board is protected against deterioration, even while the mounting board is made of aluminum nitride, and the reflecting member is made of alumina. <P>SOLUTION: The LED-mounting board 40 is mounted with white color LEDs 18. The LED-mounting board 40 is equipped with an insulating board 12 formed of aluminum nitride sintered material, and a reflecting board 14 formed of the alumina sintered material and provided with reflecting holes 16, which surround the mounted white color LEDs 18. The insulating board 12 and the reflecting board 14 are integrally bonded together by a buffer layer 20, made of a sintered material of a mixture of aluminum nitride and alumina. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、LED用実装基板およびその製造方法、ならびにLEDモジュールに関し、特に、反射部材付きのLED用実装基板等に関する。   The present invention relates to an LED mounting substrate, a method for manufacturing the same, and an LED module, and more particularly to an LED mounting substrate with a reflective member.

LEDは白熱電球やハロゲン電球に比べて高効率・長寿命であり、特に、近年、LEDの高輝度化が進むにつれ、当該LEDを照明用途に用いる研究が活発になされている。しかしながら、いくら高輝度化が進んでいるとはいえ、LED1個の輝度は白熱電球等と比べて格段に低いので、実装基板にLEDを多数個実装することで照明装置としての輝度を向上させることが行われている。さらには、LED個々の光を有効に利用するために、各LEDを取り囲む反射孔が設けられる。当該反射孔の側壁(反射面)によって、LEDから側方に射出された光も前方へと反射され、光の有効利用が図られる。   LEDs have higher efficiency and longer life than incandescent bulbs and halogen bulbs, and in particular, as LED brightness increases in recent years, research on the use of LEDs for lighting purposes has been actively conducted. However, although the brightness has been increased, the brightness of one LED is much lower than that of an incandescent bulb, etc., so that the brightness of the lighting device can be improved by mounting a large number of LEDs on the mounting board. Has been done. Furthermore, in order to use each light of LED effectively, a reflection hole surrounding each LED is provided. By the side wall (reflection surface) of the reflection hole, the light emitted from the LED to the side is also reflected forward, so that the light can be effectively used.

また、多数個を実装する関係上、実装基板の放熱性を十分に考慮する必要ある。
放熱性(熱伝導性)のよい基板材料として窒化アルミニウム(AlN)が知られている(特許文献1)。しかし、窒化アルミニウムは光を透過するので、これのみで反射孔付き実装基板を作製しようとすると、別途、実装基板に設けた孔に反射膜を形成する必要がある。
In addition, due to the mounting of a large number, it is necessary to fully consider the heat dissipation of the mounting board.
Aluminum nitride (AlN) is known as a substrate material with good heat dissipation (thermal conductivity) (Patent Document 1). However, since aluminum nitride transmits light, it is necessary to separately form a reflective film in a hole provided in the mounting substrate when an attempt is made to manufacture a mounting substrate with a reflective hole by itself.

一方、光の反射率の比較的よい基板材料として、アルミナ(Al23)がある(特許文献2)。これを用いれば、孔に反射膜を形成することなく(すなわち、開設した孔がそのまま反射孔として機能することとなり)、光の有効利用が図られる。しかしながら、アルミナは、窒化アルミニウムよりも熱伝導率が低い。
そこで、実装基板を窒化アルミニウムで作製し、反射孔を有する反射部材をアルミナで作って、当該実装基板に当該反射部材を接着剤で貼り付けることが考えられる。しかし、接着層から光が漏れて、光の利用効率が下がるといった問題が生じる。LEDの側方から射出される光の内、接着層に入射する光はそのまま接着層に吸収されてしまうので、この分の光が有効利用されないからである。
特開平9−40467号公報 特開2003−60243号公報
On the other hand, there is alumina (Al 2 O 3 ) as a substrate material having a relatively good light reflectance (Patent Document 2). If this is used, light is effectively used without forming a reflection film in the hole (that is, the opened hole functions as a reflection hole as it is). However, alumina has a lower thermal conductivity than aluminum nitride.
Therefore, it is conceivable that the mounting substrate is made of aluminum nitride, the reflecting member having the reflecting holes is made of alumina, and the reflecting member is attached to the mounting substrate with an adhesive. However, there is a problem in that light leaks from the adhesive layer and the light use efficiency decreases. This is because, of the light emitted from the side of the LED, the light incident on the adhesive layer is directly absorbed by the adhesive layer, and this amount of light is not effectively used.
Japanese Patent Laid-Open No. 9-40467 JP 2003-60243 A

また、そこで、窒化アルミニウムもアルミナもセラミック材料であることから、一体に焼結して接合する(一体接合)ことも考えられる。しかしながら、焼結時における窒化アルミニウムとアルミナの収縮速度や収縮率の違いから、うまく接合できないおそれがある。また、仮に接合できたとしても、両者の熱膨張係数の違いから、LEDの点灯・消灯の繰り返しによって、接合部が剥がれるおそれがある。   Further, since both aluminum nitride and alumina are ceramic materials, it can be considered that they are integrally sintered and joined (integrated joining). However, due to the difference in shrinkage rate and shrinkage rate between aluminum nitride and alumina during sintering, there is a possibility that bonding cannot be performed well. Moreover, even if it can join, there exists a possibility that a junction part may peel by repetition of lighting / extinguishing of LED from the difference in thermal expansion coefficient of both.

本発明は、上記した課題に鑑み、実装基板の材料に窒化アルミニウム、反射部材の材料にアルミナを用いながら、上記した問題の生じにくいLED用実装基板とその製造方法、および当該LED用実装基板を有するLEDモジュールを提供することを目的とする。   In view of the above-described problems, the present invention provides an LED mounting substrate that is less likely to cause the above problems and an LED mounting substrate, while using aluminum nitride as the mounting substrate material and alumina as the reflective member material, and the LED mounting substrate. It aims at providing the LED module which has.

上記の目的を達成するため、本発明に係る反射部材付きLED用実装基板は、LEDが実装されるLED用実装基板であって、窒化アルミニウムの焼結体からなる絶縁基板と、アルミナの焼結体からなり、実装状態の前記LEDを取り囲む反射孔を有する反射部材とを有し、前記絶縁基板と前記反射部材とが、窒化アルミニウムとアルミナの混合物の焼結体からなる緩衝層によって一体的に接合されていることを特徴とする。   In order to achieve the above object, an LED mounting substrate with a reflecting member according to the present invention is an LED mounting substrate on which an LED is mounted, and is an insulating substrate made of a sintered body of aluminum nitride, and sintered alumina. A reflective member having a reflective hole surrounding the LED in a mounted state, and the insulating substrate and the reflective member are integrally formed by a buffer layer made of a sintered body of a mixture of aluminum nitride and alumina. It is characterized by being joined.

また、前記LEDの電極が電気的に接続される配線パターンであって、前記緩衝層と略面一に形成された配線パターンを有することを特徴とする。
上記の目的を達成するため、本発明に係る反射部材付きLED用実装基板の製造方法は、反射孔が開設された反射部材付きLED用実装基板の製造方法であって、アルミナ粉末と粘結剤との混練体であって、前記反射孔となる孔が開設された反射部材素体を準備する工程と、窒化アルミニウム粉末と粘結剤との混練体であって、シート状をした絶縁基板素体を準備する工程と、窒化アルミニウム粉末、アルミナ粉末、および粘結剤の混練体であって、シート状をした緩衝層素体を準備する工程と、前記反射部材素体と前記絶縁基板素体とで前記緩衝層素体を挟んだ状態で焼結する工程とを有することを特徴とする。
Further, the present invention is a wiring pattern in which the electrodes of the LED are electrically connected, and has a wiring pattern formed substantially flush with the buffer layer.
In order to achieve the above object, a manufacturing method of an LED mounting substrate with a reflecting member according to the present invention is a manufacturing method of an LED mounting substrate with a reflecting member having a reflection hole, and includes an alumina powder and a binder. And a step of preparing a reflecting member element having a hole serving as a reflection hole, and a kneading element of an aluminum nitride powder and a binder, and a sheet-like insulating substrate element A step of preparing a body, a step of preparing a sheet-shaped buffer layer body, which is a kneaded body of aluminum nitride powder, alumina powder, and a binder, the reflective member body and the insulating substrate body And a step of sintering with the buffer layer element sandwiched therebetween.

また、前記焼結の工程の前に、前記緩衝層素体の一方の主面に、前記LED用実装基板の配線パターンに対応する凹部を形成する工程と、前記凹部にタングステンペーストを充填する工程とを有することを特徴とする。
上記目的を達成するため、本発明に係るLEDモジュールは、上記反射部材付きLED用実装基板と、前記反射孔で囲まれる位置に実装されたLEDとを有することを特徴とする。
Further, before the sintering step, a step of forming a recess corresponding to the wiring pattern of the LED mounting substrate on one main surface of the buffer layer element body, and a step of filling the recess with a tungsten paste It is characterized by having.
In order to achieve the above object, an LED module according to the present invention includes the LED mounting substrate with a reflecting member and an LED mounted at a position surrounded by the reflecting hole.

本発明に係るLED用実装基板によれば、緩衝層は、絶縁基板の組成物である窒化アルミニウムと反射部材の組成物であるアルミナの混合物の焼結体からなる。したがって、緩衝層の熱膨張係数は、絶縁基板と反射部材の間の値となる。このような緩衝層によって、絶縁基板と反射部材とが一体的に接合されているので、実装されるLEDの点灯・消灯の繰り返しによって、絶縁基板と反射部材とが膨張・収縮を繰り返したとしても、当該緩衝層によって両者の膨張・収縮の差が吸収されることとなり、当該両者の接合が損なわれるといった事態を可能な限り防止することができる。   According to the LED mounting substrate of the present invention, the buffer layer is made of a sintered body of a mixture of aluminum nitride that is the composition of the insulating substrate and alumina that is the composition of the reflecting member. Therefore, the thermal expansion coefficient of the buffer layer is a value between the insulating substrate and the reflecting member. Since the insulating substrate and the reflecting member are integrally joined by such a buffer layer, even if the insulating substrate and the reflecting member are repeatedly expanded and contracted by repeated lighting and extinguishing of the mounted LED, The buffer layer absorbs the difference between the expansion and contraction of the two, and the situation where the connection between the two is impaired can be prevented as much as possible.

また、本発明に係るLED用実装基板の製造方法によれば、緩衝層素体は、絶縁基板素体の組成物である窒化アルミニウム粉末と反射部材素体の組成物であるアルミナ粉末の両方と粘結剤の混練体からなる。したがって、焼結時における緩衝層素体の収縮率や収縮速度といった特性は、絶縁基板素体と反射部材素体の中間の特性となる。このような緩衝層素体を反射部材素体と絶縁基板素体で挟んだ状態で焼結がなされるので、収縮率や収縮速度の違いに起因する焼結時の反射部材素体と絶縁基板素体との間のずれが、当該緩衝層素体によって吸収されることとなり、反射部材素体と絶縁基板素体は緩衝層素体によって良好に接合されることとなる。   Further, according to the method for manufacturing an LED mounting substrate according to the present invention, the buffer layer element includes both an aluminum nitride powder that is a composition of the insulating substrate element and an alumina powder that is a composition of the reflective member element. It consists of a kneaded body of a binder. Therefore, the characteristics such as the shrinkage rate and shrinkage speed of the buffer layer body during sintering are intermediate characteristics between the insulating substrate body and the reflective member body. Since such a buffer layer element is sintered in a state where it is sandwiched between the reflecting member element and the insulating substrate element, the reflecting member element and the insulating substrate at the time of sintering due to the difference in shrinkage rate and contraction speed The deviation between the element body is absorbed by the buffer layer element body, and the reflecting member element body and the insulating substrate element body are satisfactorily bonded by the buffer layer element body.

本発明に係るLEDモジュールによれば、上記したLED用実装基板にLEDが実装されて構成されているので、LEDの点灯・消灯の繰り返しによって、反射部材と絶縁基板の接合が損なわれることがなくなり、耐久性が向上することとなる。   According to the LED module of the present invention, since the LED is mounted on the above-described LED mounting board, the joining of the reflective member and the insulating board is not impaired by the repeated turning on / off of the LED. Durability will be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1(a)は、実施の形態1に係るLEDモジュール10の概略構成を示す斜視図である。図1(b)は、図1(a)において、平面Aで切断した断面図であり、図1(c)は、図1(b)におけるB部の拡大図である。なお、図1(a)を含むすべての図において、各構成部材間の縮尺は統一していない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1A is a perspective view showing a schematic configuration of the LED module 10 according to Embodiment 1. FIG. 1B is a cross-sectional view taken along the plane A in FIG. 1A, and FIG. 1C is an enlarged view of a portion B in FIG. 1B. In all the drawings including FIG. 1A, the scales between the constituent members are not unified.

図1(a)、図1(b)に示すように、LEDモジュール10は、方形をした絶縁基板12と、反射部材の一例として示す、方形板状体をした反射板14を有する。
絶縁基板12は、窒化アルミニウム(AlN)の焼結体からなる。
反射板14は、アルミナ(Al23)の焼結体からなり、N行M列(本例では、4行4列)のマトリックス状に配された反射孔16を複数個(本例では、16個)有する。反射孔16は、その内壁面が、前記絶縁基板12とは反対側に向かって拡がった略円錐台形状に形成されている。アルミナの有する白色性から、前記内壁面がそのまま反射面として機能する。反射孔16毎に、後述するように、白色LED18が1個ずつ配される。
As shown in FIGS. 1A and 1B, the LED module 10 includes a rectangular insulating substrate 12 and a reflecting plate 14 having a rectangular plate shape as an example of a reflecting member.
The insulating substrate 12 is made of a sintered body of aluminum nitride (AlN).
The reflecting plate 14 is made of a sintered body of alumina (Al 2 O 3 ), and includes a plurality of (in this example) reflecting holes 16 arranged in a matrix of N rows and M columns (4 rows and 4 columns in this example). , 16). The reflection hole 16 is formed in a substantially truncated cone shape whose inner wall surface extends toward the side opposite to the insulating substrate 12. Due to the whiteness of alumina, the inner wall surface functions as a reflecting surface as it is. As described later, one white LED 18 is disposed for each reflection hole 16.

絶縁基板12と反射板16とは、緩衝層20によって一体的に接合されている。緩衝層20は、窒化アルミニウムとアルミナの混合物の焼結体からなる。緩衝層20の上面(反射板16と対向する面)と下面(絶縁基板12と対向する面)には、配線パターン22,24が形成されている。ここで、前記上面に形成されている配線パターン22を表面パターン22と、前記下面に形成されている配線パターン24を内部パターン24と称することとする。   The insulating substrate 12 and the reflecting plate 16 are integrally joined by the buffer layer 20. The buffer layer 20 is made of a sintered body of a mixture of aluminum nitride and alumina. Wiring patterns 22 and 24 are formed on the upper surface (the surface facing the reflecting plate 16) and the lower surface (the surface facing the insulating substrate 12) of the buffer layer 20. Here, the wiring pattern 22 formed on the upper surface is referred to as a surface pattern 22, and the wiring pattern 24 formed on the lower surface is referred to as an internal pattern 24.

表面パターン22の一部は、図1(c)、図1(d)示すように、平面視で前記反射孔16の内側に在る。なお、図1(d)は、LEDモジュール10における一の反射孔16部分の、後述する凸レンズ26および白色LED18等を取り除いた状態で示す平面図である。
図1(c)、図1(d)に示すように、表面パターン22に、LEDチップ28のp電極とn電極(いずれも不図示)がバンプ30によって接合されて(機械的に接合されると共に、電気的に接続されて)、フリップチップ実装されている。LEDチップ28には、例えば、青色発光するものを用いることができる。
A part of the surface pattern 22 exists inside the reflection hole 16 in a plan view as shown in FIGS. 1 (c) and 1 (d). FIG. 1D is a plan view showing a state where one of the reflection holes 16 in the LED module 10 is removed with a convex lens 26 and a white LED 18 described later.
As shown in FIGS. 1C and 1D, the p-electrode and n-electrode (both not shown) of the LED chip 28 are bonded to the surface pattern 22 by a bump 30 (mechanically bonded). As well as being electrically connected) and flip-chip mounted. As the LED chip 28, for example, one that emits blue light can be used.

また、実装されたLEDチップ28を覆うように蛍光体膜32が形成されている。蛍光体膜32は、例えば、シリコーンなどの透光性樹脂に、(Ba,Sr)2SiO4:Eu2+やY3(Al,Ga)512:Ce3+の黄緑色蛍光体粉末とSr2Si58:Eu2+や(Ca,Sr)S:Eu2+などの赤色蛍光体粉末などを分散させたものからなる。
前記LEDチップ28と蛍光体膜32とで白色LED18が構成される。すなわち、LEDチップ28から射出される青色光は、蛍光体膜32で一部が吸収され黄緑色光と赤色光に変換される。青色光と黄緑色光と赤色光が合成されて白色光となって、蛍光体膜32から出射されるのである。
A phosphor film 32 is formed so as to cover the mounted LED chip 28. The phosphor film 32 is, for example, a yellow-green phosphor powder of (Ba, Sr) 2 SiO 4 : Eu 2+ or Y 3 (Al, Ga) 5 O 12 : Ce 3+ on a translucent resin such as silicone. And Sr 2 Si 5 N 8 : Eu 2+ and red phosphor powder such as (Ca, Sr) S: Eu 2+ are dispersed.
The LED chip 28 and the phosphor film 32 constitute a white LED 18. That is, part of the blue light emitted from the LED chip 28 is absorbed by the phosphor film 32 and converted into yellow-green light and red light. Blue light, yellow-green light, and red light are combined into white light and emitted from the phosphor film 32.

さらに、蛍光体膜32を覆うように凸レンズ26が配されている。凸レンズ26は、透光性樹脂の一例として示す、例えば、エポキシ樹脂からなる。後述するように、凸レンズ26は、溶融したエポキシ樹脂を、16個の白色LED18毎に設けられた反射孔16に充填した後、固化することによって形成される。
LEDチップ28が実装される表面パターン22は、前記内部パターン24とビアホール(via hole)34を介して電気的に接続されている。そして、16個のLEDチップ28は、表面パターン22、ビアホール34、および内部パターン24によって直列に接続されている。そして、直列接続されたLEDチップ28の内、高電位側末端のLEDチップのp側電極が表面パターン、ビアホール、内部パターン(いずれも、図には現れていない)を介して、アノード端子36と電気的に接続され、低電位側末端のLEDチップのn側電極が表面パターン、ビアホール、内部パターン(いずれも、図には現れていない)を介して、カソード端子38と電気的に接続されている。なお、LEDモジュール10において、白色LED18(LEDチップ28、蛍光体膜32)、バンプ30、および凸レンズ28を除いた残余の部分が、LED用実装基板40となる。
Further, a convex lens 26 is disposed so as to cover the phosphor film 32. The convex lens 26 is made of, for example, an epoxy resin as an example of a translucent resin. As will be described later, the convex lens 26 is formed by filling a reflecting hole 16 provided for each of the 16 white LEDs 18 with solidified epoxy resin, and then solidifying.
The surface pattern 22 on which the LED chip 28 is mounted is electrically connected to the internal pattern 24 via a via hole 34. The 16 LED chips 28 are connected in series by the surface pattern 22, the via hole 34, and the internal pattern 24. Then, among the LED chips 28 connected in series, the p-side electrode of the high-potential side LED chip is connected to the anode terminal 36 via the surface pattern, via hole, and internal pattern (none of which appear in the figure). The n-side electrode of the low-potential side LED chip is electrically connected to the cathode terminal 38 via the surface pattern, via hole, and internal pattern (none of which appear in the figure). Yes. In the LED module 10, the remaining portion excluding the white LED 18 (LED chip 28, phosphor film 32), the bump 30, and the convex lens 28 becomes the LED mounting substrate 40.

上記のように構成されたLEDモジュール10において、アノード端子36とカソード端子38を介して給電すると、16個の白色LED18が全て発光する。白色LED18からの射出光の一部は、反射孔16の壁面(反射面)で反射され、また一部は直接に凸レンズ26を通過して、LEDモジュール10外へと射出される。また、LEDチップ28の発する熱は、窒化アルミニウムからなる絶縁基板12によって、当該LEDチップ28の背後へと効果的に放散される。   In the LED module 10 configured as described above, when power is supplied through the anode terminal 36 and the cathode terminal 38, all the 16 white LEDs 18 emit light. Part of the light emitted from the white LED 18 is reflected by the wall surface (reflective surface) of the reflection hole 16, and part of the light passes directly through the convex lens 26 and is emitted outside the LED module 10. Further, the heat generated by the LED chip 28 is effectively dissipated to the back of the LED chip 28 by the insulating substrate 12 made of aluminum nitride.

この際、反射板14と絶縁基板12とは、両者の成分を含むセラミック材料の焼結体(緩衝層20)で隙間無く一体的に接合されているので、両者を接着剤で貼着した場合に生じるような光の漏れを可能な限り防止できる。
また、緩衝層20は、反射板14と絶縁基板12の両者の成分を含むセラミック材料の焼結体で形成されているので、その熱膨張係数は、反射板14と絶縁基板12の間の値となる。したがって、LEDモジュール10(LEDチップ28)の点灯・消灯の繰り返しによって、反射板14と絶縁基板12とが膨張・収縮を繰り返したとしても、緩衝層20によって両者の膨張・収縮の差が吸収されることとなり、当該両者の接合が損なわれる(反射板14と絶縁基板12が剥がれる)といった事態を可能な限り防止することができる。
At this time, since the reflecting plate 14 and the insulating substrate 12 are integrally joined without a gap by a sintered body (buffer layer 20) of a ceramic material containing both components, the two are attached with an adhesive. As much as possible, the leakage of light that occurs in
Further, since the buffer layer 20 is formed of a sintered body of a ceramic material containing components of both the reflector 14 and the insulating substrate 12, the thermal expansion coefficient is a value between the reflector 14 and the insulating substrate 12. It becomes. Therefore, even if the reflector 14 and the insulating substrate 12 are repeatedly expanded and contracted by repeatedly turning on and off the LED module 10 (LED chip 28), the buffer layer 20 absorbs the difference between the expansion and contraction of the two. Thus, it is possible to prevent as much as possible the situation that the bonding between the two is impaired (the reflecting plate 14 and the insulating substrate 12 are peeled off).

続いて、上記の構成からなるLEDモジュール10の製造方法について、図2、図3を参照しながら説明する。
先ず、窒化アルミニウム(AlN)の粉末とポリビニルブチラールなどの粘結剤の他、エタノールなどの溶剤、ジエチルフタレートなどの可塑剤をよく混練して得たスラリーから、ドクターブレード法によりグリーンシート42を作製し、これを複数枚(本例では4枚)重ねて圧着して、シート状をした絶縁基板素体44を形成する[工程A1]。
Then, the manufacturing method of the LED module 10 which consists of said structure is demonstrated, referring FIG. 2, FIG.
First, a green sheet 42 is produced by a doctor blade method from a slurry obtained by thoroughly kneading a powder of aluminum nitride (AlN) and a binder such as polyvinyl butyral, a solvent such as ethanol, and a plasticizer such as diethyl phthalate. Then, a plurality of sheets (four in this example) are stacked and pressure-bonded to form a sheet-like insulating substrate body 44 [step A1].

絶縁基板素体44の上面に、スクリーン版46を重ねて、タングステン(W)ペースト48をスクリーン印刷する[工程B1,C1]。なお、印刷されたタングステンペーストが、後述する焼結工程を経て、前記内部パターン24となる。
上記A1〜C1と並行して、窒化アルミニウム(AlN)の粉末、アルミナ(Al23)の粉末、ポリビニルブチラールなどの粘結剤の他、エタノールなどの溶剤、ジエチルフタレートなどの可塑剤をよく混練して得たスラリーから、ドクターブレード法によりグリーンシートを作製して、緩衝層素体50を形成する[工程D1]。
A screen plate 46 is overlaid on the upper surface of the insulating substrate body 44, and a tungsten (W) paste 48 is screen-printed [steps B1, C1]. The printed tungsten paste becomes the internal pattern 24 through a sintering process described later.
In parallel with the above A1 to C1, in addition to binders such as aluminum nitride (AlN) powder, alumina (Al 2 O 3 ) powder, polyvinyl butyral, etc., solvents such as ethanol and plasticizers such as diethyl phthalate are often used. A green sheet is produced from the slurry obtained by kneading by the doctor blade method to form the buffer layer base body 50 [step D1].

緩衝層素体50に対し、パンチングプレス等によって、貫通孔52を開設し[工程E1]、当該貫通孔52に、スクリーン印刷法等によって、タングステン(W)ペースト54を充填する[工程F1]。なお、貫通孔52に充填されたタングステンペースト54が、後述する焼結工程を経て、ビアホール34となる。
続いて、タングステンペースト48が印刷された絶縁基板素体44に、タングステンペースト54が充填された緩衝層素体50を重ねて圧着し、緩衝層素体50上面に、タングステン(W)ペースト56をスクリーン印刷する[工程G1]。なお、当該圧着の際、絶縁基板素体44上のタングステンペースト48は、緩衝層素体50にめり込み、図示はしないが、タングステンペースト48に対応する絶縁基板素体44部分は、若干凹むこととなる。印刷された上記タングステンペースト56は、後述する焼結工程を経て、表面パターン22、アノード端子36、およびカソード端子38となる。
A through-hole 52 is formed in the buffer layer body 50 by a punching press or the like [Step E1], and the through-hole 52 is filled with a tungsten (W) paste 54 by a screen printing method or the like [Step F1]. The tungsten paste 54 filled in the through hole 52 becomes the via hole 34 through a sintering process described later.
Subsequently, the buffer layer element body 50 filled with the tungsten paste 54 is superimposed on the insulating substrate element body 44 on which the tungsten paste 48 is printed, and the tungsten layer (W) paste 56 is applied to the upper surface of the buffer layer element body 50. Screen printing [process G1]. At the time of the crimping, the tungsten paste 48 on the insulating substrate body 44 is sunk into the buffer layer body 50, and although not shown, the insulating substrate body 44 corresponding to the tungsten paste 48 is slightly recessed. Become. The printed tungsten paste 56 becomes the surface pattern 22, the anode terminal 36, and the cathode terminal 38 through a sintering process described later.

また、上記A1〜G1工程と並行して、アルミナの粉末(Al23)とポリビニルブチラールなどの粘結剤の他、エタノールなどの溶剤、ジエチルフタレートなどの可塑剤をよく混練して得たスラリーから、ドクターブレード法によりグリーンシート57を作製し、これを複数枚(本例では4枚)重ねて圧着して、シート状をした反射板素体58を形成する[工程H1]。 In addition to the above A1 to G1 steps, in addition to alumina powder (Al 2 O 3 ) and a binder such as polyvinyl butyral, a solvent such as ethanol and a plasticizer such as diethyl phthalate were well kneaded. A green sheet 57 is produced from the slurry by a doctor blade method, and a plurality of sheets (four sheets in this example) are stacked and pressure-bonded to form a sheet-like reflector plate body 58 [step H1].

反射板素体58に対し、パンチングプレス等によって、テーパー孔60を開設する[工程J1]。
工程G1で得た積層体に、テーパー孔60の開設された反射板素体58を重ねて圧着する[工程K1]。
続いて、工程K1で得た積層体を、500℃〜600℃で加熱し、有機成分を飛散させた後、窒素(N2)雰囲気中において1500℃〜1800℃で焼結する[工程M1]。このとき、反射板素体58と絶縁基板素体44との間には、両者の成分を含む緩衝層素体50が挟まれているので、収縮率や収縮速度の違いに起因する焼結時の反射板素体58と絶縁基板素体44との間のずれ(層間ずれ)が、当該緩衝層素体50によって吸収されることとなり、反射板素体58と絶縁基板素体44は緩衝層素体50によって良好に接合されることとなる。工程M1によって、反射板14付きLED用実装基板40が完成する。
A tapered hole 60 is opened in the reflector plate 58 by a punching press or the like [Step J1].
The reflector body 58 having the tapered hole 60 is overlapped and pressure-bonded to the laminate obtained in the step G1 [Step K1].
Subsequently, the laminate obtained in Step K1 is heated at 500 ° C. to 600 ° C. to scatter organic components, and then sintered at 1500 ° C. to 1800 ° C. in a nitrogen (N 2 ) atmosphere [Step M1]. . At this time, since the buffer layer body 50 containing both components is sandwiched between the reflector plate body 58 and the insulating substrate body 44, the sintering time due to the difference in shrinkage rate or shrinkage rate is caused. The deviation (interlayer deviation) between the reflecting plate element 58 and the insulating substrate element 44 is absorbed by the buffer layer element 50, and the reflecting plate element 58 and the insulating substrate element 44 have the buffer layer. Good bonding is achieved by the element body 50. Through the step M1, the LED mounting substrate 40 with the reflector 14 is completed.

次に、LEDチップ28をフリップチップ実装し[工程N1]、蛍光体膜32を配する[工程P1]。
最後に、インジェクションモールド法等により、エポキシ樹脂で凸レンズ26を形成して[工程Q1]、LEDモジュール10が完成する。
(実施の形態2)
次に、実施の形態2に係るLEDモジュール70について説明する。
Next, the LED chip 28 is flip-chip mounted [process N1], and the phosphor film 32 is disposed [process P1].
Finally, the convex lens 26 is formed of an epoxy resin by an injection molding method or the like [Step Q1], and the LED module 10 is completed.
(Embodiment 2)
Next, the LED module 70 according to Embodiment 2 will be described.

LEDモジュール70は、各LEDチップを直列接続する配線パターンと反射部材の構成が異なる以外は、基本的に、実施の形態1のLEDモジュール10と同じ構成である。したがって、共通部分には、同じ符号を付して、その説明は省略するか簡単に言及するにとどめ、異なる部分を中心に説明する。
図4(a)は、LEDモジュール70の概略構成を示す斜視図である。図4(b)は、図4(a)において、平面Cで切断した断面図であり、図4(c)は、図4(a)において、平面Dで切断した断面図である。
The LED module 70 has basically the same configuration as the LED module 10 of Embodiment 1 except that the wiring pattern for connecting the LED chips in series and the configuration of the reflecting member are different. Therefore, common portions are denoted by the same reference numerals, and the description thereof is omitted or simply mentioned, and different portions will be mainly described.
FIG. 4A is a perspective view showing a schematic configuration of the LED module 70. 4B is a cross-sectional view taken along the plane C in FIG. 4A, and FIG. 4C is a cross-sectional view taken along the plane D in FIG. 4A.

実施の形態1のLEDモジュール10は、LEDチップ28の直列接続を、緩衝層20の上下両面に形成すた配線パターン22,24およびこれらの配線パターン22,24を層間接続するビアホール34で実現した。これに対し、LEDモジュール70は、LEDチップ28の直列接続を、緩衝層72の片面側(上面側)に形成した配線パターン74によって実現している。   In the LED module 10 of the first embodiment, series connection of the LED chips 28 is realized by the wiring patterns 22 and 24 formed on the upper and lower surfaces of the buffer layer 20 and via holes 34 that connect these wiring patterns 22 and 24 to each other. . On the other hand, the LED module 70 realizes series connection of the LED chips 28 by a wiring pattern 74 formed on one side (upper surface side) of the buffer layer 72.

また、実施の形態1のLEDモジュール10は、一枚の反射板14で反射部材を構成したが、LEDモジュール70では、LEDチップ28(白色LED18)毎に個別に設けた反射ブロック76で反射部材を構成することとしている。反射部材を小さく分割することで、LEDの点灯・消灯によって生じる(加熱・冷却によって生じる)、緩衝層72との間の面方向の膨張・収縮の差(全体における差)が少なくなるので、さらに、接合が損なわれにくくなる。   Moreover, although the LED module 10 of Embodiment 1 comprised the reflective member with the reflective plate 14 of 1 sheet, in the LED module 70, it is a reflective member with the reflective block 76 provided for every LED chip 28 (white LED18). Is going to be configured. By dividing the reflecting member into smaller parts, the difference in expansion and contraction in the surface direction (difference in the whole) between the buffer layer 72 and the buffer layer 72 caused by turning on and off the LED (due to heating and cooling) is reduced. , It becomes difficult to damage the joint.

配線パターン74は、緩衝層72に埋設する形で敷設されており、緩衝層72における配線パターン74の存しない上面と配線パターン74の上面とが略面一(つらいち)になっている。直列接続されたLEDチップ28の内の高電位側末端のLEDチップのp電極(いずれも不図示)と電気的に接続された配線パターン74の一部は、アノード端子78と接続されている。また、低電位側末端のLEDチップのn電極(いずれも不図示)と電気的に接続された配線パターン74の一部は、カソード端子80と接続されている。   The wiring pattern 74 is laid so as to be embedded in the buffer layer 72, and the upper surface of the buffer layer 72 where the wiring pattern 74 does not exist and the upper surface of the wiring pattern 74 are substantially flush with each other. A part of the wiring pattern 74 that is electrically connected to the p-electrode (none of which is not shown) of the LED chip 28 at the end of the high potential side among the LED chips 28 connected in series is connected to the anode terminal 78. Further, a part of the wiring pattern 74 that is electrically connected to the n-electrode (both not shown) of the LED chip at the lower potential side end is connected to the cathode terminal 80.

反射ブロック76は、アルミナ(Al23)の焼結体からなり、実施の形態1と同様の形状をした反射孔16を有する。
緩衝層72は、実施の形態1の緩衝層20と同様、窒化アルミニウムとアルミナの混合物の焼結体からなる。
そして、各反射ブロック76は、緩衝層72によって、絶縁基板12に一体的に接合されている。緩衝層72による一体接合によってもたらされる効果は、実施の形態1の場合と同様である。なお、LEDモジュール70において、白色LED18(LEDチップ28、蛍光体膜32)、および凸レンズ26等を除いた残余の部分が、LED用実装基板81となる。
The reflection block 76 is made of a sintered body of alumina (Al 2 O 3 ) and has the reflection hole 16 having the same shape as that of the first embodiment.
The buffer layer 72 is made of a sintered body of a mixture of aluminum nitride and alumina, like the buffer layer 20 of the first embodiment.
Each reflection block 76 is integrally joined to the insulating substrate 12 by the buffer layer 72. The effect brought about by the integral joining by the buffer layer 72 is the same as in the case of the first embodiment. In the LED module 70, the remaining portion excluding the white LED 18 (LED chip 28, phosphor film 32), the convex lens 26, and the like becomes the LED mounting substrate 81.

上記の構成からなるLEDモジュール70の製造方法について、図5、図6を参照しながら説明する。なお、図5、図6の左端に記す工程記号において、「−c」を付したのは、図4(a)における平面Cに相当する位置での切断図を、「−d」を付したのは、同図における平面Dに相当する位置での切断図を示す。
先ず、シート状をした絶縁基板素体44を作製する[工程A2]。
A method of manufacturing the LED module 70 having the above configuration will be described with reference to FIGS. In addition, in the process symbol described at the left end of FIG. 5 and FIG. 6, “−c” is attached, and “−d” is attached to a cut view at a position corresponding to the plane C in FIG. FIG. 5 shows a cut-away view at a position corresponding to the plane D in FIG.
First, a sheet-like insulating substrate body 44 is produced [step A2].

これと並行して、緩衝層素体50を作製する[工程B2]。
絶縁基板素体44に緩衝層素体50を重ねて圧着する[工程C2]。
緩衝層素体50の上面に、前記配線パターン74と同様のパターンの畝状をした凸部を有する凹凸型82を押し付けて、溝(凹部)84を形成する[工程D2]。
前記溝84に、タングステン(W)ペースト86をスクリーン印刷等によって印刷する(溝84にタングステンペースト86を充填する。)[工程E2]。なお、印刷されたタングステンペースト86が、後述する焼結工程を経て、配線パターン74、アノード端子78、およびカソード端子80となる。
In parallel with this, the buffer layer body 50 is produced [step B2].
The buffer layer body 50 is stacked and pressure-bonded on the insulating substrate body 44 [step C2].
On the upper surface of the buffer layer body 50, a concave / convex mold 82 having a ridge-like convex part having the same pattern as the wiring pattern 74 is pressed to form a groove (concave part) 84 [step D2].
Tungsten (W) paste 86 is printed on the grooves 84 by screen printing or the like (the grooves 84 are filled with the tungsten paste 86) [Step E2]. The printed tungsten paste 86 becomes a wiring pattern 74, an anode terminal 78, and a cathode terminal 80 through a sintering process described later.

上記A2〜E2工程と並行して、アルミナの粉末(Al23)とポリビニルブチラールなどの粘結剤の他、エタノールなどの溶剤、ジエチルフタレートなどの可塑剤をよく混練して得たスラリーから、ドクターブレード法によりグリーンシート88を作製し、これを複数枚(本例では4枚)重ねて圧着して、積層体90を形成する[工程F2]。
上記積層体90に対し、パンチングプレス等によって、テーパー孔92を開設した後、個片に分割して、反射ブロック素体94を作製する[工程G2]。
In parallel with the above A2 to E2 steps, from a slurry obtained by thoroughly kneading an alumina powder (Al 2 O 3 ) and a binder such as polyvinyl butyral, a solvent such as ethanol, and a plasticizer such as diethyl phthalate. Then, a green sheet 88 is produced by a doctor blade method, and a plurality of sheets (four sheets in this example) are stacked and pressure-bonded to form a laminate 90 [step F2].
After the taper hole 92 is opened by the punching press etc. with respect to the said laminated body 90, it divides | segments into an individual piece and the reflective block element body 94 is produced [process G2].

工程E2で得た積層体上面に、16個の反射ブロック素体94を配置した後、圧着する[工程H2]。
続いて、工程H2で得た積層体を、500℃〜600℃で加熱し、有機成分を飛散させた後、窒素(N2)雰囲気中において1500℃〜1800℃で焼結する[工程J2]。このとき、緩衝層素体50の存在によって、各反射ブロック素体94と絶縁基板素体44とが良好に接合できる理由は、実施の形態1の場合と同じである。さらに、実施の形態2では、緩衝層素体50の上面とタングステンペースト86の上面が面一になっていて、実施の形態1のように緩衝層素体側に凹凸が少ないことからも、接合が良好に行われる。工程J2によって、反射ブロック76付きLED用実装基板81が完成する。
After arranging 16 reflective block bodies 94 on the top surface of the laminate obtained in step E2, pressure bonding is performed [step H2].
Subsequently, the laminate obtained in Step H2 is heated at 500 ° C. to 600 ° C. to disperse the organic components, and then sintered at 1500 ° C. to 1800 ° C. in a nitrogen (N 2 ) atmosphere [Step J2]. . At this time, the reason why each reflection block element 94 and the insulating substrate element 44 can be satisfactorily joined by the presence of the buffer layer element 50 is the same as in the first embodiment. Furthermore, in the second embodiment, the upper surface of the buffer layer body 50 and the upper surface of the tungsten paste 86 are flush with each other, and there are few irregularities on the buffer layer body side as in the first embodiment. Done well. Through the process J2, the LED mounting substrate 81 with the reflection block 76 is completed.

次に、LEDチップ28をフリップチップ実装し、蛍光体膜32を配した後、インジェクションモールド法等により、エポキシ樹脂で凸レンズ26を形成して[工程K2]、LEDモジュール70が完成する。
以上、本発明を実施の形態に基づいて説明してきたが、本発明は上記した形態に限らないことは勿論であり、例えば、以下のような形態とすることも可能である。
(1)実施の形態2では、反射部材(反射ブロック76)との接合面にある配線パターンを緩衝層に埋設し、当該配線パターンの上面と緩衝層の上面とを略面一に合わせる構成を採ったが、この構成を実施の形態1のLED用実装基板に採用することとしても構わない。
(2)上記実施の形態では、実装基板にLED(LEDチップ28)をフリップチップ実装したが、実装の形態はこれに限らない。例えば、LEDチップをフェースアップで実装し、LEDチップの電極と基板上の配線パターンとをボンディングワイヤーで電気的に接続するようにしても構わない。
(3)上記実施の形態では、LED用実装基板にベアチップ状態でLED(LEDチップ28)を実装して、LEDモジュールを構成したが、実装対象とするLEDはベアチップ形態のものに限らない。例えば、パッケージ構造化された面実装タイプのLEDでもよい。あるいは、特開2001−15817号公報(特許第3399440号公報)に記載されている、いわゆるサブマウント式のLEDを実装することとしても構わない。サブマウント式のLEDとは、LEDベアチップよりも一回り大きな主面積を有する基板(サブマウント素子)上にLEDベアチップを搭載し、当該サブマウント素子を受け皿として、LEDベアチップの周囲に蛍光体膜を形成してなるものである。サブマウント式のLEDを採用すると、実装基板に実装する前に、色むら等の検査が可能となることから、完成品(LEDモジュール)の歩留まりが向上することとなる。
Next, after the LED chip 28 is flip-chip mounted and the phosphor film 32 is disposed, the convex lens 26 is formed with an epoxy resin by an injection molding method or the like [Step K2], and the LED module 70 is completed.
As described above, the present invention has been described based on the embodiment. However, the present invention is not limited to the above-described form, and for example, the following form is also possible.
(1) In the second embodiment, the wiring pattern on the joint surface with the reflecting member (reflecting block 76) is embedded in the buffer layer, and the upper surface of the wiring pattern and the upper surface of the buffer layer are substantially flush with each other. Although adopted, this configuration may be adopted for the LED mounting substrate of the first embodiment.
(2) In the above embodiment, the LED (LED chip 28) is flip-chip mounted on the mounting substrate, but the mounting form is not limited to this. For example, the LED chip may be mounted face up, and the electrode of the LED chip and the wiring pattern on the substrate may be electrically connected by a bonding wire.
(3) In the above embodiment, the LED (LED chip 28) is mounted in the bare chip state on the LED mounting substrate to configure the LED module. However, the LED to be mounted is not limited to the bare chip form. For example, a packaged surface mount type LED may be used. Alternatively, a so-called submount type LED described in Japanese Patent Laid-Open No. 2001-15817 (Japanese Patent No. 3399440) may be mounted. The submount type LED is an LED bare chip mounted on a substrate (submount element) having a larger main area than the LED bare chip, and a phosphor film is formed around the LED bare chip as a receiving tray for the submount element. It is formed. When sub-mount type LEDs are employed, color unevenness and the like can be inspected before being mounted on a mounting substrate, so that the yield of finished products (LED modules) is improved.

本発明に係るLED用実装基板は、例えば、LEDを多数個実装し、これを照明用途に用いるための基板として好適に利用可能である。   The LED mounting substrate according to the present invention can be suitably used, for example, as a substrate for mounting a large number of LEDs and using them for lighting purposes.

(a)は、実施の形態1に係るLEDモジュールの概略構成を示す斜視図であり、(b)は、(a)において、平面Aで切断した断面図であり、(c)は、(b)におけるB部の拡大図であり、(d)は、上記LEDモジュールにおける一の反射孔部分の、凸レンズおよび白色LED等を取り除いた状態で示す平面図である。(A) is a perspective view which shows schematic structure of the LED module which concerns on Embodiment 1, (b) is sectional drawing cut | disconnected in the plane A in (a), (c) is (b) ) Is an enlarged view of a portion B, and FIG. 4D is a plan view showing a state where one convex hole portion in the LED module is removed from the convex lens, the white LED, and the like. 実施の形態1に係るLEDモジュールの製造工程の一部を示す図である。5 is a diagram showing a part of the manufacturing process of the LED module according to Embodiment 1. FIG. 実施の形態1に係るLEDモジュールの製造工程の一部を示す図である。5 is a diagram showing a part of the manufacturing process of the LED module according to Embodiment 1. FIG. (a)は、実施の形態2に係るLEDモジュールの概略構成を示す斜視図であり、(b)は、(a)において、平面Cで切断した断面図であり、(c)は、(a)において、平面Dで切断した断面図である。(A) is a perspective view which shows schematic structure of the LED module which concerns on Embodiment 2, (b) is sectional drawing cut | disconnected in the plane C in (a), (c) is (a) ) Is a cross-sectional view taken along a plane D. 実施の形態2に係るLEDモジュールの製造工程の一部を示す図である。6 is a diagram showing a part of the manufacturing process of the LED module according to Embodiment 2. FIG. 実施の形態2に係るLEDモジュールの製造工程の一部を示す図である。6 is a diagram showing a part of the manufacturing process of the LED module according to Embodiment 2. FIG.

符号の説明Explanation of symbols

10,70 LEDモジュール
12 絶縁基板
14 反射板
16 反射孔
18 白色LED
20,72 緩衝層
28 LEDチップ
40 LED用実装基板
44 絶縁基板素体
50 緩衝層素体
58 反射板素体
74 配線パターン
76 反射ブロック
81 LED用実装基板
94 反射ブロック素体
86 タングステン(W)ペースト
10, 70 LED module 12 Insulating substrate 14 Reflecting plate 16 Reflecting hole 18 White LED
20, 72 Buffer layer 28 LED chip 40 LED mounting substrate 44 Insulating substrate element 50 Buffer layer element 58 Reflecting plate element 74 Wiring pattern 76 Reflecting block 81 LED mounting substrate 94 Reflecting block element 86 Tungsten (W) paste

Claims (5)

LEDが実装されるLED用実装基板であって、
窒化アルミニウムの焼結体からなる絶縁基板と、
アルミナの焼結体からなり、実装状態の前記LEDを取り囲む反射孔を有する反射部材とを有し、
前記絶縁基板と前記反射部材とが、窒化アルミニウムとアルミナの混合物の焼結体からなる緩衝層によって一体的に接合されていることを特徴とする反射部材付きLED用実装基板。
An LED mounting board on which an LED is mounted,
An insulating substrate made of a sintered body of aluminum nitride;
A reflection member comprising a sintered body of alumina and having a reflection hole surrounding the LED in a mounted state;
The LED mounting substrate with a reflecting member, wherein the insulating substrate and the reflecting member are integrally joined by a buffer layer made of a sintered body of a mixture of aluminum nitride and alumina.
前記LEDの電極が電気的に接続される配線パターンであって、前記緩衝層と略面一に形成された配線パターンを有することを特徴とする請求項1記載の反射部材付きLED用実装基板。   The LED mounting substrate with a reflecting member according to claim 1, wherein the LED mounting board has a wiring pattern to which the electrodes of the LED are electrically connected and is formed substantially flush with the buffer layer. 反射孔が開設された反射部材付きLED用実装基板の製造方法であって、
アルミナ粉末と粘結剤との混練体であって、前記反射孔となる孔が開設された反射部材素体を準備する工程と、
窒化アルミニウム粉末と粘結剤との混練体であって、シート状をした絶縁基板素体を準備する工程と、
窒化アルミニウム粉末、アルミナ粉末、および粘結剤の混練体であって、シート状をした緩衝層素体を準備する工程と、
前記反射部材素体と前記絶縁基板素体とで前記緩衝層素体を挟んだ状態で焼結する工程と、
を有することを特徴とする反射部材付きLED用実装基板の製造方法。
A method for manufacturing an LED mounting board with a reflecting member having a reflecting hole,
A kneaded body of alumina powder and a binder, the step of preparing a reflecting member body in which the holes to be the reflecting holes are opened;
A kneaded body of an aluminum nitride powder and a binder, and preparing a sheet-like insulating substrate body;
A kneaded body of aluminum nitride powder, alumina powder, and binder, and preparing a sheet-like buffer layer body; and
Sintering in a state where the buffer layer element body is sandwiched between the reflecting member element body and the insulating substrate element body;
The manufacturing method of the mounting substrate for LED with a reflecting member characterized by having.
前記焼結の工程の前に、
前記緩衝層素体の一方の主面に、前記LED用実装基板の配線パターンに対応する凹部を形成する工程と、
前記凹部にタングステンペーストを充填する工程とを有することを特徴とする請求項3記載の反射部材付きLED用実装基板の製造方法。
Before the sintering step,
Forming a recess corresponding to the wiring pattern of the LED mounting substrate on one main surface of the buffer layer element;
The method for producing a mounting board for LED with a reflecting member according to claim 3, further comprising a step of filling the recess with a tungsten paste.
請求項1または2に記載の反射部材付きLED用実装基板と、
前記反射孔で囲まれる位置に実装されたLEDとを有することを特徴とするLEDモジュール。
The mounting substrate for LED with a reflecting member according to claim 1 or 2,
An LED module comprising: an LED mounted at a position surrounded by the reflection hole.
JP2005095741A 2005-03-29 2005-03-29 Mounting board for LED with reflecting member, manufacturing method thereof, and LED module Active JP4629474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005095741A JP4629474B2 (en) 2005-03-29 2005-03-29 Mounting board for LED with reflecting member, manufacturing method thereof, and LED module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005095741A JP4629474B2 (en) 2005-03-29 2005-03-29 Mounting board for LED with reflecting member, manufacturing method thereof, and LED module

Publications (2)

Publication Number Publication Date
JP2006278730A true JP2006278730A (en) 2006-10-12
JP4629474B2 JP4629474B2 (en) 2011-02-09

Family

ID=37213173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005095741A Active JP4629474B2 (en) 2005-03-29 2005-03-29 Mounting board for LED with reflecting member, manufacturing method thereof, and LED module

Country Status (1)

Country Link
JP (1) JP4629474B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117932A (en) * 2006-11-02 2008-05-22 Sumitomo Metal Electronics Devices Inc Reflector, light emitting element housing package equipped with the same, and light emitting device
KR100861123B1 (en) * 2007-02-05 2008-09-30 (주)플렉스라인 Flexible printed circuits board for back light unit and back light unit
JP2009060113A (en) * 2007-08-30 2009-03-19 Osram Opto Semiconductors Gmbh Housing comprising housing underpart
JP2009230060A (en) * 2008-03-25 2009-10-08 Seiko Epson Corp Electrophoresis device and electronic device
JP2011522414A (en) * 2008-05-27 2011-07-28 インテマティックス・コーポレーション Light emitting device
JP2014056929A (en) * 2012-09-12 2014-03-27 Sharp Corp Light-emitting element module manufacturing method and light-emitting element module board
WO2021102119A1 (en) * 2019-11-21 2021-05-27 Cree, Inc. Submount structures for light emitting diode packages
CN113284994A (en) * 2021-03-30 2021-08-20 华灿光电(浙江)有限公司 Epitaxial wafer of deep ultraviolet light-emitting diode and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106638A (en) * 1993-09-30 1995-04-21 Rohm Co Ltd Manufacture of light emitting diode chip
JP2000147332A (en) * 1998-11-13 2000-05-26 Technisco:Kk Package for optical semiconductor and its production
JP2000252524A (en) * 1999-02-25 2000-09-14 Citizen Electronics Co Ltd Surface mount light emitting diode and manufacture thereof
JP2000340876A (en) * 1999-03-23 2000-12-08 Furukawa Electric Co Ltd:The Optical semiconductor element package and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106638A (en) * 1993-09-30 1995-04-21 Rohm Co Ltd Manufacture of light emitting diode chip
JP2000147332A (en) * 1998-11-13 2000-05-26 Technisco:Kk Package for optical semiconductor and its production
JP2000252524A (en) * 1999-02-25 2000-09-14 Citizen Electronics Co Ltd Surface mount light emitting diode and manufacture thereof
JP2000340876A (en) * 1999-03-23 2000-12-08 Furukawa Electric Co Ltd:The Optical semiconductor element package and manufacture thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008117932A (en) * 2006-11-02 2008-05-22 Sumitomo Metal Electronics Devices Inc Reflector, light emitting element housing package equipped with the same, and light emitting device
KR100861123B1 (en) * 2007-02-05 2008-09-30 (주)플렉스라인 Flexible printed circuits board for back light unit and back light unit
JP2009060113A (en) * 2007-08-30 2009-03-19 Osram Opto Semiconductors Gmbh Housing comprising housing underpart
JP2009230060A (en) * 2008-03-25 2009-10-08 Seiko Epson Corp Electrophoresis device and electronic device
JP2011522414A (en) * 2008-05-27 2011-07-28 インテマティックス・コーポレーション Light emitting device
TWI462262B (en) * 2008-05-27 2014-11-21 Interlight Optotech Corp Light emitting device
JP2014056929A (en) * 2012-09-12 2014-03-27 Sharp Corp Light-emitting element module manufacturing method and light-emitting element module board
WO2021102119A1 (en) * 2019-11-21 2021-05-27 Cree, Inc. Submount structures for light emitting diode packages
US11837684B2 (en) 2019-11-21 2023-12-05 Creeled, Inc. Submount structures for light emitting diode packages
CN113284994A (en) * 2021-03-30 2021-08-20 华灿光电(浙江)有限公司 Epitaxial wafer of deep ultraviolet light-emitting diode and preparation method thereof
CN113284994B (en) * 2021-03-30 2023-03-14 华灿光电(浙江)有限公司 Epitaxial wafer of deep ultraviolet light-emitting diode and preparation method thereof

Also Published As

Publication number Publication date
JP4629474B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
JP4029843B2 (en) Light emitting device
JP4629474B2 (en) Mounting board for LED with reflecting member, manufacturing method thereof, and LED module
JP4882439B2 (en) Light emitting device and manufacturing method thereof
US7687823B2 (en) Light-emitting apparatus and method of producing the same
EP1803164B1 (en) Luminescent light source, method for manufacturing the same, and light-emitting apparatus
JP5104490B2 (en) Light emitting device and manufacturing method thereof
JP4961887B2 (en) Solid state device
JP5200394B2 (en) Light emitting device and method for manufacturing light emitting device
KR20100072163A (en) Semiconductor light-emitting device as well as light source device and lighting system including the same
JPWO2005020338A1 (en) Semiconductor light emitting element mounting member, light emitting diode constituent member using the same, and light emitting diode using the same
JP2008244165A (en) Lighting system
JP2010056277A (en) Light-emitting device and method of manufacturing the same
JP2009059883A (en) Light emitting device
JP2010130008A (en) Side view type led package structure, and manufacturing method and application thereof
JP5200471B2 (en) Light emitting device and manufacturing method thereof
JP2008198782A (en) Light-emitting device
JP2008078401A (en) Lighting device
JP2013062416A (en) Semiconductor light-emitting device and manufacturing method of the same
TWI600185B (en) Led package structure with multiple color temperature and method for manufacturing the same
JP2009004659A (en) Light emitting device
JP2009038161A (en) Light emitting element storage package
JP5126127B2 (en) Method for manufacturing light emitting device
JP6319026B2 (en) Light emitting device and manufacturing method thereof
JP4775403B2 (en) Method for manufacturing light emitting device
EP2713411B1 (en) Luminescence device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4629474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150