JP2006278604A - 太陽電池モジュール - Google Patents

太陽電池モジュール Download PDF

Info

Publication number
JP2006278604A
JP2006278604A JP2005093597A JP2005093597A JP2006278604A JP 2006278604 A JP2006278604 A JP 2006278604A JP 2005093597 A JP2005093597 A JP 2005093597A JP 2005093597 A JP2005093597 A JP 2005093597A JP 2006278604 A JP2006278604 A JP 2006278604A
Authority
JP
Japan
Prior art keywords
solar cell
cell element
cell module
conductive material
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005093597A
Other languages
English (en)
Inventor
Maiko Tanaka
麻衣子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005093597A priority Critical patent/JP2006278604A/ja
Publication of JP2006278604A publication Critical patent/JP2006278604A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

【課題】太陽電池素子温度の上昇による発電効率の低下を緩和し、太陽電池素子の温度上昇による発電効率の低下を防ぎつつ、小型化できる太陽電池モジュールを提供する。
【解決手段】平面的に配列され、単結晶もしくは多結晶の材料からなる第1の太陽電池素子及び第2の太陽電池素子と、第1の太陽電池素子の上面と第2の太陽電池素子の下面とを電気的に接続する導電材と、を少なくとも備え、前記第1の太陽電池素子の上面を前記第2の太陽電池素子の上面よりも高く設定し、両者の高さの差を3mm以上とする太陽電池モジュール。また平面的に配列された第1の太陽電池素子及び第2の太陽電池素子と、第1の太陽電池素子の上面と第2の太陽電池素子の下面とを電気的に接続する導電材と、該導電材に取着される放熱板と、を備えたことを特徴とする太陽電池モジュール。
【選択図】 図1

Description

本発明は太陽電池素子の温度上昇により、発電効率が低下する事を防ぐ目的をもち、施工性の低下を防ぎ、且つ外観的に美観を損なわない太陽電池モジュールに関するものである。
近年、地球環境問題、省エネルギーへの関心の高まりとともに、自然エネルギーを利用した新エネルギー技術が注目されている。そのひとつとして、太陽エネルギーを利用したシステムの関心が高く、特に太陽光発電システムの住宅への普及が加速されている。
太陽光発電システムは、その主要な構成要素である太陽電池モジュールにより太陽光エネルギーを電力に変換して利用することで、家庭の電気負荷を低減させるものである。この太陽電池モジュールの形態には、結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、薄膜シリコン太陽電池などがある。これらの中で薄フィルム結晶シリコン太陽電池からなる太陽電池素子は、比較的低コストで大面積のものができる。また、導体金属基板上にシリコンを積層し、その上に透明電導層を設けたアモルファスシリコン電池が耐衝撃性などに優れている。ただ、結晶系太陽電池の変換効率が16%前後であるのに対し、薄膜系太陽電池の変換効率は8%前後であり、住宅の屋根などに設置される場合には限られた面積でより大きな発電電力が得られることが好ましいことから、
発電効率の高い結晶系太陽電池が多く用いられている。
また、太陽電池モジュールについては、下記のごとく、複数の太陽電池素子を直並列に接続し、光透過板・封入樹脂・耐候性フィルムで挟持する構造が一般的である。
図8に従来の太陽光発電システムに係る太陽電池モジュールの概略断面図を示す。
図8に示すように、太陽電池モジュール3はたとえばシリコン等から成る半導体の光電変換効果を利用して電力を発生させる太陽電池素子10(10a,10b)を複数個直列および並列に電気的に接続し、耐候性のある素材で覆うように成し、所要の出力電圧や出力電流を得る。この太陽電池素子10は単結晶や多結晶シリコンなどの結晶系太陽電池素子により構成される。このとき、太陽電池素子10aと太陽電池素子10bを直列接続するためには太陽電池素子10aの+極である裏面と、−極である太陽電池素子10bの表面を電気的に接続する必要があるので、太陽電池素子10aと10bの間には電気的に接続する導電材18等を通す為のクリアランスが設けられる。
太陽電池素子10の受光面にはガラス板や合成樹脂板などの光透過板11を配置し、その裏面である非受光面にはテフロン(登録商標)フィルムやPVF(ポリフッ化ビニル)、PET(ポレエチレンテレフタレート)などの耐候性フィルム12を被着し、さらに光透過板11と耐候性フィルム12との間には、たとえばEVA(エチレン−酢酸ビニル共重合樹脂)などから成る透明な合成樹脂を介在し、封止材16と成している。
そして、これら光透過板11、太陽電池素子10および耐候性フィルム12の重ね構造の矩形状の本体に対し、その各辺の周囲をアルミニウム金属やSUS等から成る枠体5を挟み込むように装着し、太陽電池モジュール3全体の強度を高めている。
また、太陽電池モジュール3の裏面、すなわち耐候性フィルム12の上にはABS樹脂などの合成樹脂やアルミニウム金属などで構成したジャンクションボックス17を接着し、太陽電池モジュール3の出力電力を取り出すターミナルと成している。
ところで、太陽電池モジュールは太陽光などの赤外線の吸収や、太陽電池の発電動作に伴って発生する熱量により、太陽電池素子の温度が上昇し太陽電池モジュールの発電効率を低下させることがすでに知られている。
一般的にこれらの太陽電池モジュールは、複数組み合わされて大容量化され、例えば建物の屋上や壁面に、あるいは地上に直接または架台上に、最も効率よく太陽光を受光出来るように、所定の方向及び角度で設置される。その結果、太陽電池モジュールは、太陽光エネルギーのみならず太陽熱エネルギーの輻射にも効果的に曝されることとなり、その表面温度は50℃以上に達する事もある。そうして生じた熱は、通常、太陽電池モジュールの外周部分の太陽電池素子については枠体が側面にあることから、熱伝導により枠体を通して放熱する事が可能であるが、太陽電池モジュールの中央部にゆくほど熱伝導できる熱量は減少し、中央部分については伝熱作用のある媒体が受光面の光透過板と隣接する太陽電池素子のみであるため熱が蓄積されやすい。
太陽電池の発電効率は素子温度によって変化し、温度が高いほど効率が低下する事が知られている。例えば、太陽電池素子の基材(シリコン系あるいはガリウム砒素系等)の違いによって特性が異なるが、単結晶シリコンセルの場合で、25℃における発電効率を100%とすると、素子温度が25℃より1℃上昇する毎に約0.5%ずつ効率が低下する。故に太陽電池モジュールに使用される素子温度を上昇させずに使用することが、太陽光発電システムを効率良く稼動させるための極めて重要な要素であるといえる。
そこで、太陽電池素子及び太陽電池モジュールの温度上昇を防ぐために、太陽電池モジュールの受光面の裏面側に熱放射率の高いフィルムを使用し放熱率を高めたり、太陽電池モジュールの裏面側の空間の側方に、当該空間とその外部の空間とを連通させる通風孔を形成して、太陽電池モジュール設置時に太陽電池モジュール本体裏面側の空間を風が通るようにし、冷却効果を高める考案がなされている(例えば、特許文献1を参照)。
また、太陽電池素子の背面側に樹脂充填材の内部、もしくは外部に熱伝導率の高い伝熱部材を熱伝達可能に設けるとともに、ヒートパイプの加熱部を伝熱部材に熱伝達可能に取付け、更にこのヒートパイプを太陽電池モジュールの外縁部に設けた放熱フィン状の枠に熱伝可能に取付け、ヒートパイプによって吸熱された熱を放熱させる事により太陽電池モジュールの温度上昇を防ぐ方法が提案されている(例えば、特許文献2を参照)。
特開平6−181333号公報 特開平9−186353号公報
しかしながら、前述の方法においては、いずれの方法においても、特殊な機能を持った部材を追加したり、部品の追加に伴う生産工程の複雑化、部品点数増加などの面で問題があった。
また、太陽電池モジュールを複数組合せ、太陽光発電システムとして使用する場合、太陽電池モジュール外縁部に放熱フィンを設けた構造においては、特殊な形状のため太陽電池モジュールを組合わせる際に繋ぎ合わせにくく、施工性が著しく低下するという問題がある。また、太陽電池モジュールは屋外で使用される場合が殆どであり、埃や砂など放熱フィンの隙間に入り込み損傷し易い。
さらにまた、太陽電池素子の裏面に熱伝導性の高い部品を追加し、太陽電池素子に溜まった熱を放熱させるという構造においては、太陽電池モジュールの厚みや重量が増すだけでなく、熱伝導部品自身の放熱の為に通風路などを確保する必要が生じ、さらにシステムの裏面の空間を大きく必要とするようになり、屋根面との一体感を損なうという外観面での問題もあった。
そこで、本発明は上述した諸問題に鑑みて案出されたものであって、その目的は太陽電池素子温度の上昇による発電効率の低下を緩和し、太陽電池素子の温度上昇による発電効率の低下を防ぎつつ、小型化できる太陽電池モジュールを提供する事である。
上記目的を達成させるために、本発明の太陽電池モジュールは、平面的に配列され、単結晶もしくは多結晶の材料からなる第1の太陽電池素子及び第2の太陽電池素子と、第1の太陽電池素子の上面と第2の太陽電池素子の下面とを電気的に接続する導電材と、を少なくとも備え、前記第1の太陽電池素子の上面を前記第2の太陽電池素子の上面よりも高く設定し、両者の高さの差を3mm以上としたことを特徴とする。
また本発明の太陽電池モジュールは、上記モジュールにおいて、前記第1及び第2の太陽電池素子の近接する端面同士の距離を、前記太陽電池素子の配列方向に関して0.6mm以下に設定したことを特徴とする。
さらに本発明の太陽電池モジュールは、上記モジュールにおいて、前記導電材が、前記第1及び第2の太陽電池素子の一辺に沿って複数個配置されていることを特徴とする。
またさらに本発明の太陽電池モジュールは、上記モジュールにおいて、前記導電材の前記一辺方向の幅が、前記第1及び第2の太陽電池素子の一辺の幅の3%以上に設定されていることを特徴とする。
さらにまた本発明の太陽電池モジュールは、上記モジュールにおいて、平面的に配列された第1の太陽電池素子及び第2の太陽電池素子と、第1の太陽電池素子の上面と第2の太陽電池素子の下面とを電気的に接続する導電材と、該導電材に取着される放熱板と、を備えたことを特徴とする。
またさらに本発明の太陽電池モジュールは、上記モジュールにおいて、前記放熱板は、前記太陽電池素子の上面の高さ方向に関して、前記第1の太陽電池素子と前記第2の太陽電池素子との間に位置していることを特徴とする。
本発明によれば、第1及び第2の太陽電池素子の高さを異ならせたことにより、導電材の長さが延びることによって導電材からの放電面積が増加する。その結果、太陽電池素子の温度を下げて発電効率を向上させることが出来る。
また、本発明の太陽電池モジュールによれば、導電材に放熱板を取着したことから、放熱面積をさらに増加させる事が可能である。
また、本発明の太陽電池モジュールによれば、太陽電池素子の高さを異ならせることにより、太陽電池素子の端面同士の距離を0.6mm以下にすることができ、太陽電池モジュールの小型化に供することができる。
本発明の太陽電池モジュールによれば、太陽電池素子の温度上昇による発電効率の低下を防ぐにあたり、特別の部材を用いる事なく行うことが可能である。
例えば、(例1)〜(例3)に示すごとく、光透過板、封入樹脂、耐候性フィルム等で矜持され、太陽電池素子が導電材で接続された形状の太陽電池モジュールであれば、太陽電池素子の配置に段差を作り、生じた段差部分に導電材を配置させると良い。さらに放熱を助けるため、導電材に放熱材を取り付けると効果的である。また、太陽電池モジュールの設置場所によっては、(例4)に示すごとく、光透過板、耐候性フィルムの等の形状を太陽電池素子に合わせることも有効な手段の1つである。
具体例として(例1)〜(例4)を以下に述べる。
(例1)
以下、本発明の太陽電池モジュールについて図1を基に詳細に説明する。
図1は本発明の太陽電池モジュールの断面図である。太陽電池モジュール1の太陽電池素子10aは隣接する太陽電池素子10bと異なる高さに配置する。導電材18(18a、18b)は太陽電池素子10aと太陽電池素子10bの出力を取り出す電極部分にそれぞれ接合される。このようにすることで、太陽電池素子10bに蓄積された熱は太陽電池素子10bの上方にある光透過板11による放熱以外に、導電材18aおよび18bに伝達され、前記導電材18の面積に相当する放熱部として作用する。よって、導電材18は太陽電池素子10aと太陽電池素子10bの間の距離を延ばすほどに放熱面積を増加させることができ好適である。また、従来の導電材と同じ長さであれば太陽電池間の距離を縮めたことで面積あたりの発電量を増加させることができる。かかる効果を十分に発揮するためには、太陽電池素子10aと太陽電池素子10bの上面の高さの差を3mm以上とすることが好ましく、より好ましくは両者の高さの差を5mm以上とすることである。
また太陽電池素子10a、10bの近接する端面同士の距離を、前記太陽電池素子の配列方向に関して0.6mm以下に設定することにより、太陽電池モジュールを小型化することができる。また上記距離を0mmに設定すれば、太陽電池モジュールを太陽電池素子の配列方向に最も小型化することができる。
さらに導電材18は、太陽電池素子10a、10b、10cの一辺(図1の奥行き方向に沿った一辺)に沿って複数個配置させておけば、より放熱面積を向上させることができる。なお、導電材18の前記一辺方向の幅(導電材18が複数個存在する場合は、これらの導電材18の幅の合計)は、太陽電池素子10a、10b、10cの一辺の幅の3%以上に設定することが好ましく(さらに好ましくは5%以上)、かかる範囲に設定すれば放熱効果を一層向上させることができる。
(例2)
図2は本発明の他の実施形態を示す太陽電池モジュールの断面図である。
上述した(例1)の太陽電池モジュールにおいては、全ての列に段差を生じさせたが、この場合、太陽電池素子10aに較べ太陽電池素子10cの方が高さが低くなる為、住宅の傾斜屋根のように一方が常に低くなっていく設置場所にしか適さない。
そこで図2に示すごとく太陽電池素子10は、全ての太陽電池素子が隣接する太陽電池素子とほぼ同じ高さとなるように太陽電池素子10の配列方向に対して各太陽電池素子を傾斜させるように階段状に配置する。太陽電池素子10自体の高さはほぼ一定であるが、太陽電池素子10の配置方法に傾きを持たせることによって、隣接する太陽電池素子10cと10dの向かい合う端部には高低差が生じ、図1に示す太陽電池モジュールと同様に発電面積比率を向上させ、かつ放熱効果を得ることも可能で、しかも水平状の設置環境にも対応させる事が出来る太陽電池モジュールとすることが出来る。
(例3)
前述した(例1)、(例2)によれば、太陽電池素子10の配置について全ての列において段差を生じさせるか、もしくは太陽電池素子10に角度を持たせたりというように、太陽電池素子1枚の配置について述べたが、図3に示すように、導電材18で接合された2枚の太陽電池素子10を太陽電池素子ユニット13とし、この太陽電池素子ユニット13を交互に配置させても良い。図4(a)は、前記太陽電池素子ユニット13を同じ方向に接続した太陽電池モジュールとしたものである。このような配置は(例1)、(例2)と同様に放熱効果を持たせつつも、従来の導電材と同じ長さであれば太陽電池間の距離を縮めたことで面積あたりの発電量を増加させることができ、また、高低差を長く取れば導電材18の長さが延びることによって放電面積が増加する。さらに、2ユニットごとに太陽電池素子の高さがもとの高さに戻るので、一定の幅で太陽電池モジュールとすることができる。また、太陽電池素子ユニット13の配置は、図4(b)に示すような同じ高さを向かい合わせにした配置とすることも可能であり、この場合は太陽電池素子を電気的に並列接続する場所に用いるのに適しており、また、太陽電池モジュールの外観に意匠性をもたせる効果がある。
このように、太陽電池素子の配置に変化を持たせることにより、導電材18は隣接する太陽電池素子10を接合する際、横方向だけでなく縦方向に伸びる事となり、導電材の距離を増加させる事が可能である。具体的には、例えば(例1)の太陽電池モジュールの場合、例えばこの導電材18を幅2mmとし、平面状における隣接する太陽電池素子10同士のクリアランスを3mmと仮定し、更に太陽電池素子10の段差配置における各高さを5mmとした場合、平面のみで得られる放熱面積は6mm2だが、高さを加えた場合2mm×3mm+2mm×5mmとなり16mm2となり、2.6倍の放熱面積を得られる事になる。
さらに、導電材18部分に以下に述べる放熱を補助するための放熱材19を取り付けることにより、その効果は倍増する。
具体的な方法を、図5を基に詳細に説明する。
図5(a)は図1の太陽電池モジュールに放熱材19を取り付けた斜視図であり、前記放熱材19は太陽電池素子10aと10bの間を電気的に接続する導電材18に溶接(ハンダ付け含む)や熱伝導性接着材によって取り付けられている。この放熱材の取り付け部分の構造を拡大したものが図5(b)である。放熱材19は太陽電池素子10aと太陽電池素子10bの間にそれぞれ接触しないように配置される。これは放熱材19が主に熱伝導性の良い銅やアルミニウムなどの金属材料が適しており、それらの素材は同時に導電性も有しており、導電材18による電気的接続を阻害する可能性があるからである。なお、一般に用いられる熱伝導ゴムを用いても良いが、これらのものも幾ばくかの導電性を有していることが多いので、太陽電池素子に接触させても良いように設計する場合には金属材等の外縁に絶縁体やコーティングを施すのが望ましい。放熱材19は導電材18に接して取り付き太陽電池素子10aおよび10bから熱伝導してきた熱を空間に放熱する。放熱材19の放熱は空気層でも良いし、樹脂等の充填材であっても良く、太陽電池素子の熱を効果的に放熱させる事が出来る。そして、例えば、前述した図5の太陽電池モジュールに用いられた太陽電池素子10のサイズが150mm角であり、それを18枚直列に接続し、短辺枠5a方向に5mmの段差をつけ導電材18に150mm×15mmの放熱材19を取り付けたものとした場合、その放熱材19と導電材18による放熱面積はおよそ40500mm2となり、150mm角サイズの太陽電池素子約2枚分の面積に及び、前述した例の平面状配置の面積と比較すると6750倍にも及ぶ放熱効果の増大が可能となる。なお、放熱材の取り付けについては(例2)(例3)太陽電池モジュールにおいても同様の取り付けが可能であり、さらに放熱材の取り付けは、導電材の表裏どちらでも同様の効果が得られる。このようにして、太陽電池素子の放熱効果を向上させることにより、太陽電池モジュールの周辺部の冷却による太陽電池モジュール中央部分の冷却のみならず、導電体18と放熱材19による直接放熱によっても冷却され、中央部の熱溜まりを解消する事が出来る。
(例4)
前述してきた(例1)〜(例3)の太陽電池モジュールは太陽電池素子の配置については段差、傾きを設けたが、これらの配置方法は封止材を平坦な光透過材と耐候性フィルムの間を充填させる事により固定され、太陽電池モジュールの外形としては一般的な矩形の太陽電池モジュールである。一方、図6(a)に示すように光透過材11を段差、もしくは図6(b)に示すような山切り型、もしくは図6(c)に示すような凸凹に挙げられるような階段状に形成し、太陽電池素子10は光透過材11に貼り付くような状態とする。このようにすることで、太陽電池素子10は光透過材11の形状に合う形で段差、傾きを有する事になり、このとき封止材は光透過材11、耐候性フィルム12、枠体に囲まれて出来た空間全てを充填せず、太陽電池素子10を密封する最小限の量に留め、耐候性フィルム12側に空気層20を設ける事により熱の拡散を促進させる事が可能となる。
また、図7(a)〜(c)は耐候性フィルム12を段差、山切り型、もしくは凹凸といった階段状に成型した場合の一例である。太陽電池素子10は耐候性フィルム12側に貼り付くような状態とし、前述した光透過材11に貼り付けた場合と同様に最小限の封止材を充填する。この場合も光透過材11側には空間(空気層20)が存在するようにする事で同様の効果が得られる。
なお、図6および図7の形態によれば、上述したような、光透過材11もしくは耐候性フィルム12を階段状に形成する事によって太陽電池素子10を(例1)〜(例3)と同様の階段状態にすることによって、太陽電池素子10が段差を持つことによって現れる立体方向のスペースによって得られる放熱面積の増加と空気層20への熱交換面積の増大という効果はそのままに、さらなる効果を得る事が可能である。すなわち、太陽電池モジュールの中に空間(空気層20)を介在させることにより、その空間(空気層20)内で空気の対流が起こるようにし、放熱の他に熱分散による局部的加熱箇所の冷却効果を持たせられる。また、外部から何らかの衝撃があった際に、空間(空気層20)部分がクッションの作用を持つため、太陽電池素子10にかかる影響を和らげる事が出来る。また、この空間(空気層20)が介在することで、外部からの騒音に対しても遮音効果がある。このような放熱による発電効率向上の効果と耐衝撃性構造を有する太陽電池モジュールは、例えば壁面への直に貼り付けるような、太陽電池モジュールの裏面に空間を持たない場所の設置に極めて有効である。
また、(例1)〜(例4)に示す太陽電池モジュールのように、隣接する太陽電池素子10のクリアランスが立体方向(縦方向)に存在するような形状においては、隣接する太陽電池素子10を電気的に接合する役目である導電材の配線を立体方向(縦方向)に行う事でが出来るため、平面状(横方向)にクリアランスを設ける必要がなくなる。このことは、太陽電池モジュールにおける太陽電池素子10の密集化を図ることができ、太陽電池モジュールの小型化の実現が可能となる。また、太陽電池モジュールの小型化は、太陽光発電システム設置面積における発電面積の密集度を高める結果となる。
なお、本発明は上記実施形態例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更や改良等はなんら差し支えない。
たとえば、上記実施形態例においては、(例1)〜(例4)に示すごとく、太陽電池素子の配置を階段状としたが、この形状に限らず、その他の形状、たとえば波型瓦状など、その波形形状に応じて適宜、太陽電池素子の配置構造を設定すればよい。
本発明の太陽モジュールにおける太陽電池素子と導電材の配置構造の一例を示した断面図である。 本発明の太陽モジュールにおける太陽電池素子の別の配置構造の一例を示した断面図である。 本発明の太陽電池モジュールにおける太陽電池素子を2枚を1ユニットとした一例を示す断面図である。 (a)、(b)はそれぞれ図3に示す太陽電池素子ユニットを使用した太陽電池モジュールの一例を示す断面図である。 (a)、(b)は本発明の太陽電池モジュールの一例を示した斜視図であり、(b)は(a)におけるA部の拡大図である。 本発明の太陽電池モジュールにおける太陽電池素子の別の配置の一例を示した断面図である。 本発明の太陽電池モジュールにおける太陽電池素子の他の配置の一例を示した断面図である。 従来の太陽電池モジュールの概略断面図である。
符号の説明
1:太陽電池モジュール
3:太陽電池モジュール
5:枠体
10:太陽電池素子
10a:太陽電池素子
10b:太陽電池素子
10c:太陽電池素子
11d:太陽電池素子
11:光透過材
12:耐候性フィルム
16:封止材
17:ジャンクションボックス
18:導電材
19:放熱材
20:空気層

Claims (6)

  1. 平面的に配列され、単結晶もしくは多結晶の材料からなる第1の太陽電池素子及び第2の太陽電池素子と、第1の太陽電池素子の上面と第2の太陽電池素子の下面とを電気的に接続する導電材と、を少なくとも備え、前記第1の太陽電池素子の上面を前記第2の太陽電池素子の上面よりも高く設定し、両者の高さの差を3mm以上としたことを特徴とする太陽電池モジュール。
  2. 前記第1及び第2の太陽電池素子の近接する端面同士の距離を、前記太陽電池素子の配列方向に関して0.6mm以下に設定したことを特徴とする請求項1に記載の太陽電池モジュール。
  3. 前記導電材は、前記第1及び第2の太陽電池素子の一辺に沿って複数個配置されていることを特徴とする請求項1または請求項2に記載の太陽電池モジュール。
  4. 前記導電材の前記一辺方向の幅は、前記第1及び第2の太陽電池素子の一辺の幅の3%以上に設定されていることを特徴とする請求項1乃至請求項3のいずれかに記載の太陽電池モジュール。
  5. 平面的に配列された第1の太陽電池素子及び第2の太陽電池素子と、第1の太陽電池素子の上面と第2の太陽電池素子の下面とを電気的に接続する導電材と、該導電材に取着される放熱板と、を備えたことを特徴とする太陽電池モジュール。
  6. 前記放熱板は、前記太陽電池素子の上面の高さ方向に関して、前記第1の太陽電池素子と前記第2の太陽電池素子との間に位置していることを特徴とする請求項5に記載の太陽電池モジュール。
JP2005093597A 2005-03-29 2005-03-29 太陽電池モジュール Pending JP2006278604A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005093597A JP2006278604A (ja) 2005-03-29 2005-03-29 太陽電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005093597A JP2006278604A (ja) 2005-03-29 2005-03-29 太陽電池モジュール

Publications (1)

Publication Number Publication Date
JP2006278604A true JP2006278604A (ja) 2006-10-12

Family

ID=37213066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005093597A Pending JP2006278604A (ja) 2005-03-29 2005-03-29 太陽電池モジュール

Country Status (1)

Country Link
JP (1) JP2006278604A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064646B1 (ja) 2021-10-26 2022-05-10 株式会社東芝 太陽電池モジュール

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7064646B1 (ja) 2021-10-26 2022-05-10 株式会社東芝 太陽電池モジュール
JP2023064209A (ja) * 2021-10-26 2023-05-11 株式会社東芝 太陽電池モジュール

Similar Documents

Publication Publication Date Title
US8222533B2 (en) Low profile photovoltaic (LPPV) box
US7625238B2 (en) Low profile photovoltaic edge connector
US20080110490A1 (en) Photovoltaic connection system
US20080134497A1 (en) Modular solar panels with heat exchange & methods of making thereof
US8933324B2 (en) Thermally mounting electronics to a photovoltaic panel
US20080253092A1 (en) Heat Dissipation System for Photovoltaic Interconnection System
JP3157502B2 (ja) 太陽電池モジュール
CN216794887U (zh) 一种太阳能发电元件阵列
JPH09186353A (ja) 太陽電池モジュール
JP3602721B2 (ja) 太陽電池モジュール
JP4328297B2 (ja) 太陽電池パネル用端子ボックス
RU2395136C1 (ru) Фотоэлектрический модуль
JP2013207079A (ja) 集光型太陽光発電パネル及び集光型太陽光発電装置
JP2006278604A (ja) 太陽電池モジュール
JP6292266B2 (ja) 集光型太陽光発電パネル及び集光型太陽光発電装置
US20170294866A1 (en) Solar cell module and solar cell array
KR101103981B1 (ko) 태양광 발전장치
JP2006278535A (ja) 太陽電池モジュールの固定構造
KR101235720B1 (ko) 슁글 형태의 태양광발전 모듈
JP2004342986A (ja) 太陽電池モジュール及び太陽電池モジュール設置構造体
KR101756888B1 (ko) 건물 일체형 태양광 모듈
JP2002141539A (ja) 太陽電池モジュールおよびその製造方法、並びに、発電装置
JP2007180065A (ja) 太陽電池アレイ
KR20130049123A (ko) 태양광 발전장치
JP2014110247A (ja) 太陽電池アレイ