JP2006269890A - Flexible solar cell using sodium chloride for substrate and its manufacturing method - Google Patents

Flexible solar cell using sodium chloride for substrate and its manufacturing method Download PDF

Info

Publication number
JP2006269890A
JP2006269890A JP2005088048A JP2005088048A JP2006269890A JP 2006269890 A JP2006269890 A JP 2006269890A JP 2005088048 A JP2005088048 A JP 2005088048A JP 2005088048 A JP2005088048 A JP 2005088048A JP 2006269890 A JP2006269890 A JP 2006269890A
Authority
JP
Japan
Prior art keywords
solar cell
layer
substrate
manufacturing
nacl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005088048A
Other languages
Japanese (ja)
Inventor
Shigeyuki Nakamura
重之 中村
Yoshiyuki Nishihara
義之 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2005088048A priority Critical patent/JP2006269890A/en
Publication of JP2006269890A publication Critical patent/JP2006269890A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive flexible solar cell by making a substrate exfoliate by a simple method, using the substrate material which does not limit the method for film formation of an efficient thin film solar cell. <P>SOLUTION: A manufacturing method of a solar cell is not limited by using NaCl as a substrate material, but an efficient flexible solar cell is easily obtained by dissolving and making an NaCl substrate exfoliate by washing with pure water after the film formation of a solar cell layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、太陽電池モジュールの製造方法に関するものである。 The present invention relates to a method for manufacturing a solar cell module.

現在、太陽電池の製造においては低コスト化、省スペースが重視されるようになっている。特に人工衛星や宇宙ステーションなどでは太陽電池が主な動力源となるが、地球上でこれを作製、収納、打ち上げ、宇宙で展開、そして使用することになる。このとき太陽電池を曲げることで、より収納量を増やし、尚且つ省スペースを実現することが可能なフレキシブル太陽電池はこれからの宇宙開発に必要不可欠である。またフレキシブル太陽電池は宇宙での用途以外にも、その薄く曲げることが可能であるという特徴から、平面だけでなく曲面にも太陽電池を設置することができ、また将来の小型電子機器の動力源としても期待されている。 Currently, in the manufacture of solar cells, cost reduction and space saving are emphasized. Solar cells are the main power source for satellites and space stations in particular, but they will be produced, stored, launched, deployed and used in space. At this time, a flexible solar cell capable of increasing the storage capacity and realizing space saving by bending the solar cell is indispensable for future space development. In addition to the use in space, flexible solar cells can be bent thinly, so solar cells can be installed not only on flat surfaces but also on curved surfaces, and power sources for future small electronic devices. Is also expected.

従来の技術においてフレキシブル太陽電池の製造方法としては様々なものが発案されているが、最も多いのがPET、ポリスチレンなどの絶縁性フレキシブル基板を用いて、この上に太陽電池層を成長されていくことによりフレキシブル太陽電池を製造する方法である。しかしながらこれらのフレキシブル基板は一般的に高温に弱いため、太陽電池層における各層結晶成長の方法のうち高温成長法の多くが取れない。また耐熱性の高いポリイミドなどのフレキシブル基板は高価であり低価格での作製が難しい。これらのフレキシブル基板は付着力が弱いという欠点もある。 Various methods for manufacturing flexible solar cells have been proposed in the prior art, but the most common method is to grow a solar cell layer on an insulating flexible substrate such as PET or polystyrene. This is a method for producing a flexible solar cell. However, since these flexible substrates are generally vulnerable to high temperatures, many of the high-temperature growth methods cannot be taken out of the crystal growth methods for each layer in the solar cell layer. In addition, flexible substrates such as polyimide with high heat resistance are expensive and difficult to manufacture at a low price. These flexible substrates also have the drawback of poor adhesion.

また、従来の技術において例えば特許文献1があるが、太陽電池層の下に位置する基板などを除去する場合、機械的に破断を行うには層破断後に破断面が平坦とするよう配慮せねばならず、平坦とするためには優先配位する格子面が破断方向と同方向となるような結晶の選定が必要である。また破断用の層などは太陽電池の構成にはないものを余分に加えることになるため、その分格子整合や材料、破断するための装置などのコストの問題を余分に抱えることとなる。
特開2003−17726
Moreover, although there exists patent document 1 in a prior art, when removing the board | substrate etc. which are located under a solar cell layer, in order to perform mechanical fracture | rupture, you have to consider so that a fracture surface may become flat after layer fracture. In order to make it flat, it is necessary to select a crystal in which the preferentially coordinated lattice plane is in the same direction as the fracture direction. In addition, since an extra layer that is not included in the configuration of the solar cell is added as an additional layer for breaking, extra cost problems such as lattice matching, materials, and an apparatus for breaking are required.
JP2003-17726

上記に示すように、フレキシブル太陽電池の従来の基板材料は高温に弱いため太陽電池各層の成膜方法を限定し、高効率フレキシブル太陽電池の製造が難しい。 As described above, since conventional substrate materials for flexible solar cells are vulnerable to high temperatures, the method of forming each layer of the solar cell is limited, and it is difficult to manufacture highly efficient flexible solar cells.

また従来のフレキシブル太陽電池の基板材料はコストが高く、大量生産を行う際好ましくない基板材料である。 Moreover, the substrate material of the conventional flexible solar cell is expensive and is not preferable for mass production.

基板材料を機械的に破断するには、破断後の断面が平坦とするような配慮や、破断する層が太陽電池製造に与える影響なども考慮する必要があるため、低コストのためにはこの方法は好ましくない。 In order to mechanically break the substrate material, it is necessary to consider the fact that the cross section after the break is flat and the effect of the layer to be broken on solar cell production. The method is not preferred.

本発明はこのような事情に基づいて行われたものであり、その目的は高効率薄膜太陽電池の成膜方法を限定しない基板材料を用い、且つ簡易な方法で基板を剥離させることにより、安価なフレキシブル太陽電池を提供するものである。 The present invention has been made based on such circumstances, and the object thereof is to use a substrate material that does not limit the film formation method of a high-efficiency thin film solar cell, and to inexpensively peel the substrate by a simple method. A flexible solar cell is provided.

上記の問題を解決するために、この発明でフレキシブル太陽電池の基板材料としてNaClを用いる。NaCl基板は半導体結晶成長によく用いられる基板材料であり、高温にも耐えるため成膜法を限定しない。これにより高い変換効率を持つ太陽電池層の成膜が可能となる。 In order to solve the above problems, NaCl is used as the substrate material of the flexible solar cell in the present invention. The NaCl substrate is a substrate material often used for semiconductor crystal growth, and is resistant to high temperatures, so the film forming method is not limited. This makes it possible to form a solar cell layer having high conversion efficiency.

NaClは水に溶け易い性質を持つため、太陽電池層成膜後にこの特徴を生かしてNaCl基板を水に溶かすことで剥離させる。この方法を利用して高効率薄膜太陽電池を成膜、その後NaCl基板を剥離させることで高効率フレキシブル太陽電池を製造することを特徴とする。 Since NaCl easily dissolves in water, it is peeled off by dissolving the NaCl substrate in water taking advantage of this feature after the solar cell layer is formed. A high-efficiency flexible solar cell is manufactured by forming a high-efficiency thin-film solar cell using this method and then peeling off the NaCl substrate.

本発明によれば、成膜方法を限定されず高効率薄膜太陽電池を作製し、これを簡易なプロセスでフレキシブル化することが出来るので、フレキシブル太陽電池の高効率、低コストに有効である。また、この方法を用いることでこれまでフレキシブル化の困難であった太陽電池材料でもフレキシブル太陽電池の製造が可能となる。これにより様々な材料で太陽電池のフレキシブル化が進み、太陽電池の一般家庭への普及に貢献する。そして、太陽電池の多用途化により電子機器、電荷機器の開発、発展に大きく貢献する。   According to the present invention, a high-efficiency thin-film solar cell can be produced without any limitation on the film formation method, and can be made flexible by a simple process, which is effective for high efficiency and low cost of the flexible solar cell. In addition, by using this method, it is possible to manufacture a flexible solar cell even with a solar cell material that has been difficult to be flexible. As a result, solar cells are made more flexible with various materials, which contributes to the popularization of solar cells to ordinary households. And the multi-use of solar cells will greatly contribute to the development and development of electronic devices and charge devices.

以下、この発明の実施形態について図面を参照しながら説明する。尚実施形態の全図において、同一または対応する部分には同一の符号を付す。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings of the embodiment, the same or corresponding parts are denoted by the same reference numerals.

まず以下に発明の第1の実施形態を説明する。図1〜図3は発明の第1の実施形態による太陽電池の製造方法を工程順に示す断面図である。 First, a first embodiment of the invention will be described below. 1-3 is sectional drawing which shows the manufacturing method of the solar cell by the 1st Embodiment of invention in order of a process.

第1の実施形態として、まずNaCl基板1上に例えばスパッタ法により裏面反射層並びに裏面電極として例えばAg膜2を0.8μm、その上に例えばプラズマCVD(Chemical Vapor Deposition)法によりn形Si層3を0.3μm、その上に活性層となるi層としてアモルファスSi4を3μm、さらにp形Si層5を0.3μm堆積させる。その上に例えば熱CVD法により透明導電性酸化物膜として例えばITO(Indium Tin Oxide)膜6を0.5μmを堆積し、電極として例えばAl/Ni電極7を設置し、太陽電池層部分をつくる。尚このとき、例えばフッ酸を用いてAg裏面反射層2をエッチングすることによりテクスチャ構造を施すことで光閉じ込め効果を高める(図1)。 As a first embodiment, first, for example, an Ag film 2 is 0.8 μm on the NaCl substrate 1 by sputtering, for example, as a back reflective layer and a back electrode, and an n-type Si layer 3 is formed thereon by, for example, plasma CVD (Chemical Vapor Deposition). 0.3 μm is deposited thereon, and 3 μm of amorphous Si 4 and 0.3 μm of p-type Si layer 5 are further deposited thereon as an i layer serving as an active layer. On top of that, for example, an ITO (Indium Tin Oxide) film 6 of 0.5 μm is deposited as a transparent conductive oxide film by a thermal CVD method, for example, an Al / Ni electrode 7 is installed as an electrode to form a solar cell layer portion. At this time, the light confinement effect is enhanced by applying a texture structure by etching the Ag back reflecting layer 2 using, for example, hydrofluoric acid (FIG. 1).

NaClは水に溶け易い性質をもつ。太陽電池層堆積後、例えば純水により洗浄処理を行うことにより、基板部分のNaCl1を溶解させる。(図2)これにより太陽電池層からNaCl基板1を剥離させることによりフレキシブル太陽電池を得る(図3)。 NaCl is easily soluble in water. After the solar cell layer is deposited, NaCl1 in the substrate portion is dissolved, for example, by performing a cleaning process with pure water. (FIG. 2) Thus, a flexible solar cell is obtained by peeling the NaCl substrate 1 from the solar cell layer (FIG. 3).

図4〜図6は発明の第2の実施形態による太陽電池の製造方法を工程順に示す断面図である。 4-6 is sectional drawing which shows the manufacturing method of the solar cell by the 2nd Embodiment of invention in order of a process.

第2の実施形態として、まずNaCl基板1上に例えばスパッタ法により裏面電極として例えばMo電極膜8を0.8μm、その上に例えば真空蒸着法により光吸収層として例えばp-CIGS(Cu(InGa)Se2)薄膜9を2μm、その上に例えば蒸着法によりバッファ層として例えばCdS膜10を0.1μm、その上に例えばスパッタ法により半絶縁膜として例えばZnO膜11を0.3μm、その上に例えば熱CVD法により透明導電膜として例えばITO膜6を0.3μm、その上に例えば真空蒸着法により反射防止膜として例えばMgF2膜12を0.3μmを堆積し、電極として例えばAl/Ni電極7を設置し、太陽電池層部分をつくる(図4)。 As a second embodiment, first, for example, a Mo electrode film 8 is 0.8 μm on the NaCl substrate 1 as a back electrode by, for example, sputtering, and a light absorption layer is, for example, p-CIGS (Cu (InGa), for example, by vacuum evaporation. The Se 2 ) thin film 9 is 2 μm, on which, for example, a buffer layer is deposited by, for example, vapor deposition, for example, a CdS film 10 is 0.1 μm, for example, a semi-insulating film, for example, ZnO film 11 is, for example, 0.3 μm by sputtering. For example, an ITO film 6 of 0.3 μm is deposited as a transparent conductive film by CVD, and an MgF 2 film 12 of 0.3 μm is deposited as an antireflection film by vacuum deposition, for example, and an Al / Ni electrode 7 is installed as an electrode. Then, a solar cell layer portion is formed (FIG. 4).

太陽電池層体積後、例えば純水により洗浄処理を行うことにより、基板部分のNaCl1を溶解させる(図5)。これにより太陽電池層からNaCl基板1を剥離させることによりフレキシブル太陽電池を得る(図6)。 After the solar cell layer volume, the substrate portion NaCl1 is dissolved, for example, by washing with pure water (FIG. 5). Thereby, a flexible solar cell is obtained by peeling the NaCl substrate 1 from the solar cell layer (FIG. 6).

図7〜図10は発明の第3の実施形態による太陽電池の製造方法を工程順に示す断面図である。 7-10 is sectional drawing which shows the manufacturing method of the solar cell by the 3rd Embodiment of invention in order of a process.

発明の第1、第2の実施形態の結果としてNaCl基板1剥離後の太陽電池層の機械的強度が不足する場合には、NaCl基板1剥離前(図4)に電極部分2および7を加工する(図7)。 When the mechanical strength of the solar cell layer after peeling the NaCl substrate 1 is insufficient as a result of the first and second embodiments of the invention, the electrode parts 2 and 7 are processed before peeling the NaCl substrate 1 (FIG. 4). (FIG. 7).

電極部2および7加工後、例えばPETのフレキシブル基板13を付加する(図8)。 After processing the electrode parts 2 and 7, for example, a PET flexible substrate 13 is added (FIG. 8).

フレキシブル基板13付加後、NaCl基板1を剥離することによりフレキシブル太陽電池を得る(図9、図10)。 After adding the flexible substrate 13, the NaCl substrate 1 is peeled off to obtain a flexible solar cell (FIGS. 9 and 10).

本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention 本発明の太陽電池装置の製造方法の一例を示す概略断面図Schematic sectional drawing which shows an example of the manufacturing method of the solar cell apparatus of this invention

符号の説明Explanation of symbols

1 NaCl基板
2 Ag裏面反射層
3 n-Si層
4 i-Si活性層
5 p-Si層
6 ITO透明導電膜
7 Al/Ni電極
8 Mo裏面電極
9 CIGS光吸収層
10 CdSバッファ層
11 ZnO半絶縁層
12 MgF2反射防止膜
13 PETフレキシブル基板
1 NaCl substrate 2 Ag back reflection layer 3 n-Si layer 4 i-Si active layer 5 p-Si layer 6 ITO transparent conductive film 7 Al / Ni electrode 8 Mo back electrode 9 CIGS light absorption layer 10 CdS buffer layer 11 ZnO half Insulating layer 12 MgF 2 anti-reflective coating 13 PET flexible substrate

Claims (8)

太陽電池の基板としてNaCl基板を用いることを特徴とする太陽電池装置 Solar cell device using NaCl substrate as substrate of solar cell 絶縁体基板上にNaCl層を形成しその上に太陽電池層を形成することを特徴とする太陽電池装置 A solar cell device characterized in that a NaCl layer is formed on an insulator substrate and a solar cell layer is formed thereon. 上記請求項1および2においてNaCl層を太陽電池層から剥離させることによってフレキシブル太陽電池を得ることを特徴とする太陽電池の製造方法 A method for producing a solar cell according to claim 1 or 2, wherein a flexible solar cell is obtained by peeling off the NaCl layer from the solar cell layer. 上記請求項3においてNaCl層を溶解することにより除去することを特徴とする太陽電池の製造方法 The method for producing a solar cell according to claim 3, wherein the NaCl layer is removed by dissolving the NaCl layer. 上記請求項4において特に太陽電池層にテクスチャ構造を施すことを特徴とする太陽電池の製造方法 5. A method for manufacturing a solar cell according to claim 4, wherein the solar cell layer is textured. 上記請求項4および5において太陽電池の光吸収層として多結晶Si、アモルファスSi、III-V、II-VI、I-III-VI族化合物半導体の少なくとも一種類の結晶を用いることを特徴とする太陽電池の製造方法 In the above-described claims 4 and 5, at least one kind of crystal of polycrystalline Si, amorphous Si, III-V, II-VI, or I-III-VI compound semiconductor is used as the light absorption layer of the solar cell. Manufacturing method of solar cell 上記請求項4および5において太陽電池の光吸収層を構成する材料に多結晶Si、アモルファスSi、III-V、II-VI、I-III-VI族化合物半導体の少なくとも一種類の結晶を含むことを特徴とする太陽電池の製造方法 The material constituting the light absorption layer of the solar cell according to claims 4 and 5 includes at least one crystal of polycrystalline Si, amorphous Si, III-V, II-VI, and I-III-VI compound semiconductor. For manufacturing a solar cell 上記請求項1〜4においてNaCl層剥離後の太陽電池に新たにフレキシブル基板を付加することを特徴とする太陽電池の製造方法 A method for producing a solar cell according to any one of claims 1 to 4, wherein a flexible substrate is newly added to the solar cell after peeling off the NaCl layer.
JP2005088048A 2005-03-25 2005-03-25 Flexible solar cell using sodium chloride for substrate and its manufacturing method Pending JP2006269890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088048A JP2006269890A (en) 2005-03-25 2005-03-25 Flexible solar cell using sodium chloride for substrate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088048A JP2006269890A (en) 2005-03-25 2005-03-25 Flexible solar cell using sodium chloride for substrate and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006269890A true JP2006269890A (en) 2006-10-05

Family

ID=37205503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088048A Pending JP2006269890A (en) 2005-03-25 2005-03-25 Flexible solar cell using sodium chloride for substrate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006269890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049389A (en) * 2007-07-20 2009-03-05 Japan Aerospace Exploration Agency Method of manufacturing solar battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132043A (en) * 1989-10-18 1991-06-05 Hitachi Ltd Semiconductor device and semiconductor substrate, and their manufacture
JPH042173A (en) * 1990-04-19 1992-01-07 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPH09246580A (en) * 1996-03-13 1997-09-19 Toshiba Corp Photoelectric conversion element
JP2000277763A (en) * 1999-03-23 2000-10-06 Sanyo Electric Co Ltd Solar cell and fabrication thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132043A (en) * 1989-10-18 1991-06-05 Hitachi Ltd Semiconductor device and semiconductor substrate, and their manufacture
JPH042173A (en) * 1990-04-19 1992-01-07 Sanyo Electric Co Ltd Manufacture of photovoltaic device
JPH09246580A (en) * 1996-03-13 1997-09-19 Toshiba Corp Photoelectric conversion element
JP2000277763A (en) * 1999-03-23 2000-10-06 Sanyo Electric Co Ltd Solar cell and fabrication thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049389A (en) * 2007-07-20 2009-03-05 Japan Aerospace Exploration Agency Method of manufacturing solar battery

Similar Documents

Publication Publication Date Title
US10269994B2 (en) Liftoff process for exfoliation of thin film photovoltaic devices and back contact formation
CN103746013B (en) A kind of Graphene solar cell and preparation method thereof
US9337436B2 (en) Transferable transparent conductive oxide
US20140352751A1 (en) Solar cell or tandem solar cell and method of forming same
CN105580142B (en) Solar cell
TW201023372A (en) Photovoltaic cell structure and manufacturing method thereof
CN101764169B (en) Solar cell element and production method thereof
US8492191B2 (en) Method for manufacturing see-through solar battery module
CN105742402A (en) Preparation method of laminated solar battery, and structure of lamination solar battery
TW201232797A (en) Photovoltaic module
CN203733813U (en) Graphene solar cell
JP2006269890A (en) Flexible solar cell using sodium chloride for substrate and its manufacturing method
JP2012256881A (en) Manufacturing method of solar cell module
JP2010080885A (en) Method for producing solar cell
CN104842073A (en) Laser etching method and device of film solar cell
JP4245131B2 (en) Method for manufacturing thin film solar cell
CN102790098A (en) Back reflective solar battery and manufacturing method thereof
JP2001358351A (en) Method and apparatus for fabricating photovoltaic element, and solar cell module
TW201123511A (en) Method for fabricating thin film solar cell and thin film solar cell
JP2013506992A (en) Photovoltaic power generation apparatus and manufacturing method thereof
KR101091319B1 (en) Solar cell and method of fabricating the same
WO2017203751A1 (en) Solar cell and method for manufacturing same, and solar cell panel
KR20110034761A (en) A solar cell and method for the same
US20150027521A1 (en) Low reflection electrode for photovoltaic devices
KR101277111B1 (en) Solar cell and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406