JP2000277763A - Solar cell and fabrication thereof - Google Patents

Solar cell and fabrication thereof

Info

Publication number
JP2000277763A
JP2000277763A JP11077328A JP7732899A JP2000277763A JP 2000277763 A JP2000277763 A JP 2000277763A JP 11077328 A JP11077328 A JP 11077328A JP 7732899 A JP7732899 A JP 7732899A JP 2000277763 A JP2000277763 A JP 2000277763A
Authority
JP
Japan
Prior art keywords
power generation
generation layer
film
layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11077328A
Other languages
Japanese (ja)
Other versions
JP4017281B2 (en
Inventor
Yoshihiro Hishikawa
善博 菱川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP07732899A priority Critical patent/JP4017281B2/en
Publication of JP2000277763A publication Critical patent/JP2000277763A/en
Application granted granted Critical
Publication of JP4017281B2 publication Critical patent/JP4017281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent conversion efficiency from lowering due to micro irregularities incident to the texture structure of a power generating layer by rounding the micro irregularities. SOLUTION: A transparent electrode film 1 is formed by thermal CVD on the surface of a glass substrate opposite to the light incident side and that surface is subjected to conventional texture processing based on etching with acid or alkaline solution to form pointed micro irregularities at first. After a p layer 4 is formed by doping a-Si with boron, a power generation layer 2 of a-SiGe is formed followed by formation of an n layer 5 by doping a-Si with phosphorus. The thin film of the p layer 4, the power generation layer 2 and the n layer 5 forms micro irregularities on the transparent electrode film 1. Consequently, the recessed A and the protrusions B on the power generation layer 2 have curved surfaces and the front ends thereof are rounded.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非晶質又は微結晶
のpin構造の太陽電池及びその製造方法に関する。
The present invention relates to a solar cell having an amorphous or microcrystalline pin structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来のこの種の太陽電池は、半導体層の
i型の薄い発電層で光を有効に利用するため、その光入
射側をテクスチャ構造とし、光の波長程度の微小な凹凸
による光の散乱を利用して発電層における光の吸収量を
増大することが行われている。
2. Description of the Related Art In a conventional solar cell of this type, in order to effectively use light in an i-type thin power generation layer of a semiconductor layer, the light incident side has a textured structure and is formed by minute irregularities of about the wavelength of light. It has been practiced to increase the amount of light absorption in the power generation layer by using light scattering.

【0003】具体的には、例えばガラス基板タイプの非
晶質の太陽電池であれば、ガラス基板の光入射側と反対
の面にSnO等の透明電極膜を形成し、形成時の成膜
条件を調整することにより作製された微小で尖った凹凸
形状(ピラミッド形状)のその膜面上に、非晶質pin
構造の半導体層を形成し、そのi型の発電層を微小凹凸
形状の薄膜とし、この薄膜内での光の散乱により、発電
層に光を閉じ込め、発電層における光の吸収量を増大し
ている。
Specifically, for example, in the case of a glass substrate type amorphous solar cell, a transparent electrode film such as SnO 2 is formed on the surface of the glass substrate opposite to the light incident side, and the film is formed at the time of formation. An amorphous pin was formed on the film surface in the form of fine and sharp irregularities (pyramid shape) produced by adjusting the conditions.
A semiconductor layer having a structure is formed, and the i-type power generation layer is formed into a thin film having minute irregularities. Light is confined in the power generation layer by scattering of light in the thin film, and the amount of light absorbed in the power generation layer is increased. I have.

【0004】[0004]

【発明が解決しようとする課題】前記従来のこの種の太
陽電池の場合、半導体層はその大半を占めるi型の発電
層が急峻に尖った微小凹凸形状の薄膜で形成されるた
め、つぎに説明するように変換効率が却って低下する問
題点がある。
In the above-mentioned conventional solar cell, the i-type power generation layer occupying the majority of the semiconductor layer is formed of a thin film having a sharply-pointed micro unevenness. As described, there is a problem that the conversion efficiency is rather lowered.

【0005】すなわち、前述のガラス基板タイプの太陽
電池の場合、その透明電極膜及び半導体層の接合部分の
概略構成は、半導体層をその発電層で代表すると、図5
に示すようになり、同図の1´はSnOの透明電極
膜、2´はpin構造の半導体層の発電層である。
That is, in the case of the above-mentioned solar cell of the glass substrate type, the schematic structure of the junction between the transparent electrode film and the semiconductor layer is as shown in FIG.
1 'is a transparent electrode film of SnO 2 and 2 ' is a power generation layer of a semiconductor layer having a pin structure.

【0006】そして、図5のように透明電極膜1´が急
峻に尖った微小凹凸形状であると、この膜面上に形成さ
れる半導体層の発電層2´も急峻な微小凹凸形状にな
る。
[0006] When the transparent electrode film 1 'has a sharply-pointed minute unevenness as shown in FIG. 5, the power generation layer 2' of the semiconductor layer formed on this film surface also has a sharply minute unevenness. .

【0007】なお、図5では上側が光入射側であるが、
製造時はガラス基板上に透明電極膜1´,半導体層が順
に積層され、図5の上下を逆にした状態で形成され、発
電層2´の図5の上方に突出している「山」の部分が微
小凹凸形状の凹部A´であり、下方に凹んでいる「谷」
の部分が凸部B´である。
In FIG. 5, the upper side is the light incident side,
At the time of manufacture, the transparent electrode film 1 'and the semiconductor layer are sequentially laminated on a glass substrate, are formed in a state where the top and bottom of FIG. 5 are inverted, and the "mountains" protruding above the power generation layer 2' in FIG. A part is a concave part A 'having a minute concave-convex shape, and a "valley" concaved downward.
Is a convex portion B '.

【0008】そして、凹部A´はその急峻に凹んだ先端
部分に欠陥が生じ易く、凸部B´は急峻に突出した先端
部分が薄くなってリークが発生し易いため、発電層2´
での変換効率が低下する。
In the concave portion A ', a defect is easily generated at the steeply concave end portion, and the steeply protruding end portion of the convex portion B' is thin, so that a leak easily occurs.
The conversion efficiency in is reduced.

【0009】また、凹部A´,凸部B´の先端部分に電
界が集中し、発電層2´の他の部分の電界強度が弱くな
り、この点からも発電層2´での変換効率が低下する。
そして、微結晶の太陽電池の場合にも同様の問題点が生
じる。
Further, the electric field concentrates on the tip portions of the concave portion A 'and the convex portion B', and the electric field intensity in other portions of the power generation layer 2 'is weakened. From this point, the conversion efficiency in the power generation layer 2' is also reduced. descend.
A similar problem occurs in the case of a microcrystalline solar cell.

【0010】本発明は、この種の太陽電池の発電層の膜
形状に起因した前記の変換効率の低下を防止することを
課題とし、変換効率が向上した非晶質又は微結晶のこの
種の太陽電池及びその製造方法を提供することを課題と
する。
An object of the present invention is to prevent the above-mentioned decrease in the conversion efficiency due to the film shape of the power generation layer of this type of solar cell, and to improve the conversion efficiency of this type of amorphous or microcrystal. It is an object to provide a solar cell and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】前記の課題を解決するた
め、本発明の太陽電池は、発電層の微小凹凸が曲面形状
であって丸味をおびていることを特徴とするものであ
る。
In order to solve the above-mentioned problems, a solar cell according to the present invention is characterized in that the minute irregularities of the power generation layer are curved and round.

【0012】そして、図5に対応する図1の本発明の太
陽電池の概略構成図に示すように、例えば透明電極膜1
上の発電層2の凹部Aが曲面形状であれば、その先端部
分は欠陥が発生しにくくなる。
Then, as shown in the schematic configuration diagram of the solar cell of the present invention in FIG. 1 corresponding to FIG.
If the concave portion A of the upper power generation layer 2 has a curved surface, a defect is less likely to occur at the tip portion.

【0013】また、発電層2の凸部Bが曲面形状であれ
ば、その先端部分の膜厚が均一になって薄くならず、リ
ークが発生しにくくなる。
Further, if the convex portion B of the power generation layer 2 has a curved surface, the film thickness at the tip end portion is uniform and not thin, so that leakage hardly occurs.

【0014】さらに、凹部A,凸部Bが曲面形状になる
と、それらの先端部分の電界集中が緩和され、発電層2
の他の部分の電界強度が弱くなったりしない。
Further, when the concave portions A and the convex portions B have curved surfaces, the electric field concentration at the tip portions thereof is reduced, and the power generation layer 2 is formed.
The electric field strength of other parts does not weaken.

【0015】したがって、発電層の凹凸が曲面形状で丸
味をおびていれば、その膜形状に起因した変換効率の低
下が防止され、従来より変換効率が向上する。
Accordingly, if the unevenness of the power generation layer has a round shape with a curved surface shape, a decrease in conversion efficiency due to the film shape is prevented, and the conversion efficiency is improved as compared with the related art.

【0016】そして、発電層の微小凹凸の平均高さは1
000Å以上3000Å以下であることが望ましく、発
電層の膜面の曲面形状の微小凹凸の曲率半径は、その平
均高さの20%以上50%以下であることが望ましい。
The average height of the minute unevenness of the power generation layer is 1
It is preferable that the radius of curvature of the fine irregularities of the curved surface of the power generation layer is 20% or more and 50% or less of its average height.

【0017】つぎに、本発明の太陽電池の製造方法は、
透明電極膜又は金属膜の微小凹凸形状の膜面に、酸又は
アルカリの溶液に浸す化学的エッチング処理,プラズマ
に曝すプラズマ処理の少なくとも一方を施し、透明電極
膜又は金属膜の膜面の微小凹凸を曲面形状した後、透明
電極膜上への半導体層の形成又は金属膜上への裏面電
極,半導体層の形成に移行し、半導体層のi型の発電層
を、曲面形状で丸味をおびた微小凹凸形状の薄膜に形成
する。
Next, the method for manufacturing a solar cell according to the present invention comprises:
The transparent electrode film or the metal film is subjected to at least one of a chemical etching process of dipping in an acid or alkali solution and a plasma process of exposing it to the plasma to expose the micro-rough surface of the transparent electrode film or the metal film. Then, the semiconductor layer was formed on the transparent electrode film or the back electrode and the semiconductor layer were formed on the metal film, and the i-type power generation layer of the semiconductor layer was rounded in a curved shape. It is formed on a thin film with minute irregularities.

【0018】したがって、発電層が微小凹凸形状であっ
てその凹凸が曲面形状で丸味をおびるように形成され、
テクスチャ構造化に伴う発電層の薄膜形状に起因した変
換効率の低下が防止され、変換効率が向上した非晶質又
は微結晶のガラス基板タイプ又は金属基板タイプの太陽
電池を製造することができる。
Therefore, the power generation layer is formed so as to have minute irregularities, and the irregularities are curved and rounded,
A reduction in conversion efficiency due to the thin film shape of the power generation layer due to the texture structuring is prevented, and an amorphous or microcrystalline glass substrate type or metal substrate type solar cell with improved conversion efficiency can be manufactured.

【0019】[0019]

【発明の実施の形態】本発明の実施の形態について、図
2ないし図4を参照して説明する。 (1形態)ガラス基板タイプの非晶質の太陽電池及びそ
の製造方法に適用した本発明の実施の1形態につき、図
2及び図3を参照して説明する。図2は光入射側を上側
にして太陽電池の要部の構成を示したものであり、製造
時は図2の上下を逆にした状態で形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. (1) One embodiment of the present invention applied to a glass substrate type amorphous solar cell and a method for manufacturing the same will be described with reference to FIGS. FIG. 2 shows the configuration of the main part of the solar cell with the light incident side facing upward, and is formed with the upside down of FIG.

【0020】そして、図中の1はガラス基板上に形成さ
れた膜厚8000ÅのSnOの透明電極膜、3は透明
電極膜1上に形成されたpin構造のアモルファスシリ
コン(a−Si)の半導体層であり、膜厚100Åのp
型a−SiCのp層4,膜厚3000Åのa−SiGe
の発電層(i層)2,膜厚2000Åのn型a−Siの
n層5からなる。
In the figure, reference numeral 1 denotes a transparent electrode film of SnO 2 having a film thickness of 8000 ° formed on a glass substrate, and 3 denotes an amorphous silicon (a-Si) having a pin structure formed on the transparent electrode film 1. A semiconductor layer having a thickness of 100
Type a-SiC p-layer 4, a-SiGe with a thickness of 3000 °
And an n-type a-Si n-layer 5 having a thickness of 2000 °.

【0021】6は半導体層3上に形成された膜厚400
0Åの裏面電極膜であり、ZnO/Agの2層構造であ
る。
Reference numeral 6 denotes a film thickness 400 formed on the semiconductor layer 3.
It is a back electrode film of 0 ° and has a two-layer structure of ZnO / Ag.

【0022】そして、この図2の太陽電池は微小凹凸形
状の薄膜で形成された発電層2において、図5の凹部A
´に相当する凹部A,図5の凸部B´に相当する凸部B
がいずれも曲面形状であって丸味をおびている。
The solar cell shown in FIG. 2 has a concave portion A shown in FIG.
5A, a convex portion B corresponding to the convex portion B 'in FIG.
Are all curved and rounded.

【0023】つぎに、図2の太陽電池の製造方法につい
て説明する。まず、ガラス基板の光入射側の面と反対側
の面上に熱CVD法で透明電極膜1を形成し、その表面
(光入射側からみると裏面)に酸又はアルカリの溶液の
エッチングなどに基づく従来と同様のテクスチャ処理を
施し、その表面を、最初は、先端部分が尖った平均高さ
約2000Åの急峻な微小凹凸形状にする。
Next, a method of manufacturing the solar cell of FIG. 2 will be described. First, the transparent electrode film 1 is formed on the surface of the glass substrate opposite to the surface on the light incident side by a thermal CVD method, and the surface (the back surface as viewed from the light incident side) is etched with an acid or alkali solution. The same texture processing as in the prior art is performed, and the surface is first formed into a steep fine irregular shape having an average height of about 2000 ° with a sharp tip.

【0024】つぎに、この急峻な微小凹凸形状の透明電
極膜1の膜面に、塩酸溶液に約0.5〜5分浸して主に
凸部Bの先端部分を曲面形状にする塩酸処理(化学的エ
ッチング処理)と、アルゴンプラズマに約1〜10分曝
して主に凹部Aの先端部分を曲面形状にするプラズマ処
理とを、塩酸処理,プラズマ処理の順又はその逆の順に
施す。
Next, on the film surface of the transparent electrode film 1 having the steep fine irregularities, a hydrochloric acid treatment is performed by immersing the film surface in a hydrochloric acid solution for about 0.5 to 5 minutes so that the tip of the convex portion B is mainly curved. A chemical etching process) and a plasma process of exposing the concave portion A to a curved surface mainly by exposing it to argon plasma for about 1 to 10 minutes are performed in the order of hydrochloric acid process and plasma process, or vice versa.

【0025】さらに、これらの処理により透明電極膜1
の膜面の微小凹凸形成が適当な曲面形状になった後、プ
ラズマCVD法による半導体層3の形成に移行する。
Further, the transparent electrode film 1
After the formation of the fine irregularities on the film surface becomes an appropriate curved surface, the process shifts to the formation of the semiconductor layer 3 by the plasma CVD method.

【0026】そして、a−Siにボロンをドープしてp
層4を形成した後、a−SiGeの発電層2を形成し、
その後、a−Siにリンをドープしてn層5を形成す
る。
Then, a-Si is doped with boron to
After forming the layer 4, the power generation layer 2 of a-SiGe is formed,
Thereafter, n-layer 5 is formed by doping a-Si with phosphorus.

【0027】このとき、p層4,発電層2,n層5の薄
膜は、透明電極膜1の微小凹凸形状になる。
At this time, the thin films of the p layer 4, the power generation layer 2, and the n layer 5 have minute irregularities of the transparent electrode film 1.

【0028】したがって、発電層2はその凹部A及び凸
部Bが曲面形状になってそれらの先端部分が丸味をおび
る。
Therefore, the power generation layer 2 has a concave portion A and a convex portion B having a curved surface shape, and their tip portions are rounded.

【0029】そして、n層5の形成後、この層5の上に
スパッタ法でZnO/Agの裏面電極膜6を形成して図
2の構造のガラス基板タイプの太陽電池を製造する。
After the formation of the n-layer 5, a ZnO / Ag back electrode film 6 is formed on the layer 5 by a sputtering method to manufacture a glass substrate type solar cell having the structure shown in FIG.

【0030】つぎに、発電層2の微小凹凸形状と太陽電
池の変換効率との関係について説明する。まず、発電層
2の微小凹凸の曲率半径及び平均高さを説明する。図3
に示すように、形成した発電層2の凹部A,凸部Bの先
端部分の曲面形状に合った円イ,ロ(2次元)又は球
(3次元)の半径r,rを微小凹凸の曲率半径とす
る。
Next, the relationship between the minute uneven shape of the power generation layer 2 and the conversion efficiency of the solar cell will be described. First, the radius of curvature and the average height of the minute unevenness of the power generation layer 2 will be described. FIG.
As shown in the figure, the radiuses r A , r B of the circles a, b (two-dimensional) or spheres (three-dimensional) conforming to the curved shape of the tip of the concave portion A, the convex portion B of the formed power generation layer 2 are minute irregularities. Radius of curvature.

【0031】また、発電層2の微小凹凸の高さを、曲面
形状にする前の元の高さを用いて客観的に把握するた
め、図3の円イ,ロが凹部A,凸部Bの曲面形状に接す
る2点pとp´,qとq´を求め、それらの接線の交点
,tを求め、交点t,tの距離hを元の凹凸
の高さとし、この高さの平均を発電層2の微小凹凸の平
均高さとする。
In order to objectively grasp the height of the minute unevenness of the power generation layer 2 by using the original height before forming the curved surface shape, circles a and b in FIG. and two points p in contact with a curved surface p', seeking q and q', their tangent intersection t a, obtains the t B, the intersection point t a, high Satoshi original uneven the distance h t B, the The average of the height is defined as the average height of the minute unevenness of the power generation layer 2.

【0032】なお、円イ,ロの外挿や距離hの計測は、
例えば、発電層2を電子顕微鏡で観察し、そのモニタ画
面での図3の作図から行う。
The extrapolation of the circles a and b and the measurement of the distance h are performed as follows.
For example, the power generation layer 2 is observed with an electron microscope, and the processing is performed from the drawing of FIG. 3 on the monitor screen.

【0033】一方、実験によると、透明電極膜1に塩酸
処理,プラズマ処理を全く施さなければ、p層4と発電
層2との界面及び発電層2とn層5との界面の急峻な微
小凹凸の平均高さは2000Åであった。
On the other hand, according to an experiment, if the hydrochloric acid treatment and the plasma treatment were not performed on the transparent electrode film 1 at all, the interface between the p layer 4 and the power generation layer 2 and the interface between the power generation layer 2 and the n layer 5 were steep and minute. The average height of the irregularities was 2000 °.

【0034】この太陽電池の透明電極膜1を塩酸溶液に
約0.5〜5分浸すと、発電層2の凹部Aが曲面形状に
なり、その後、アルゴンプラズマに約1〜10分間曝す
と、発電層2の凸部Bも曲面形状になることが確かめら
れた。
When the transparent electrode film 1 of this solar cell is immersed in a hydrochloric acid solution for about 0.5 to 5 minutes, the concave portion A of the power generation layer 2 has a curved surface shape, and then is exposed to argon plasma for about 1 to 10 minutes. It was confirmed that the convex portion B of the power generation layer 2 also had a curved surface shape.

【0035】そして、凹部A,凸部Bの曲面形状は塩酸
処理,プラズマ処理の時間によって変化し、両処理の時
間(合計時間)を0〜12分の間で種々に変えて太陽電
池を製造し、その変換効率(%)を測定したところ、発
電層2の微小凹凸の曲率半径の,その平均高さに対する
割合(%)と、太陽電池の変換効率(%)との関係は、
つぎの表1に示すようになった。
The shape of the curved surfaces of the concave portions A and the convex portions B changes depending on the time of the hydrochloric acid treatment and the plasma treatment, and the time (total time) of both treatments is variously changed from 0 to 12 minutes to manufacture a solar cell. When the conversion efficiency (%) was measured, the relationship between the ratio (%) of the radius of curvature of the minute unevenness of the power generation layer 2 to the average height and the conversion efficiency (%) of the solar cell was as follows.
The results are shown in Table 1 below.

【0036】[0036]

【表1】 [Table 1]

【0037】この表1から明らかなように、発電層2の
微小凹凸の曲率半径がその平均高さ(2000Å)の2
0%以上50%以下のときに、太陽電池の変換効率が向
上する。
As is apparent from Table 1, the radius of curvature of the minute irregularities of the power generation layer 2 is 2 times the average height (2000 °).
When it is 0% or more and 50% or less, the conversion efficiency of the solar cell is improved.

【0038】また、発電層2の微小凹凸の曲率半径をそ
の平均高さの30%に保ちながら発電層2の微小凹凸の
平均高さを300〜5000Åの範囲で変えて太陽電池
を製造し、これらの太陽電池(本発明の太陽電池)と、
同じ平均高さの急峻な微小凹凸の従来電池とにつき、変
換効率を測定して比較したところ、つぎの表2の結果が
得られた。
Further, while maintaining the radius of curvature of the fine irregularities of the power generation layer 2 at 30% of its average height, the average height of the fine irregularities of the power generation layer 2 is changed in the range of 300 to 5000 ° to manufacture a solar cell. These solar cells (the solar cells of the present invention),
The conversion efficiency was measured and compared with a conventional battery having the same average height and steep fine irregularities. The results were as shown in Table 2 below.

【0039】[0039]

【表2】 [Table 2]

【0040】この表2から明らかなように、微小凹凸の
平均高さが1000Å以上3000Å以下のときに、凹
部A,凸部Bを曲面形状にすることで太陽電池の変換効
率が向上する。
As is clear from Table 2, when the average height of the fine irregularities is 1000 ° or more and 3000 ° or less, the conversion efficiency of the solar cell is improved by forming the concave portions A and the convex portions B into curved surfaces.

【0041】すなわち、プラズマ処理を施すと、発電層
2の微小凹凸の主に凹部Aの先端部分が丸味をおびた形
状になり、この凹部Aでの結晶性や膜間の接合状態が改
善されて向上し、欠陥の発生が少なくなる。
That is, when the plasma treatment is performed, the tip of the concave portion A of the power generation layer 2 mainly has a rounded shape, and the crystallinity in the concave portion A and the bonding state between the films are improved. And the occurrence of defects is reduced.

【0042】また、塩酸処理を施すと、発電層2の微小
凹凸の主に凸部Bの先端部分が角を落として丸味をおび
た形状になり、この凸部Bでのリークの発生が防止され
る。
Further, when the hydrochloric acid treatment is performed, the tip of the convex portion B of the minute unevenness of the power generation layer 2 becomes rounded by dropping the corner, and the occurrence of the leak at the convex portion B is prevented. Is done.

【0043】さらに、凹部A,凸部Bの先端部分が丸味
をおびると、それらの部分への電界の集中が緩和され、
発電層2の他の部分の電界強度が弱くなることもない。
Further, when the tip portions of the concave portions A and the convex portions B are rounded, the concentration of the electric field on those portions is reduced,
The electric field intensity in other parts of the power generation layer 2 does not become weak.

【0044】したがって、発電層2の微小凹凸を曲面形
状とし、凹部A,凸部Bの先端部分を共に丸味をおびた
形状にすると、凹部Aでの欠陥の発生が防止され、同時
に、凸部Bでのリークの発生が防止され、しかも、凹部
A,凸部Bの先端部分の電界の集中が緩和され、この結
果、発電層2の形状因子(F.F.)が向上して太陽電
池の変換効率が向上する。
Therefore, when the minute irregularities of the power generation layer 2 are formed into a curved surface, and the tip portions of the concave portions A and the convex portions B are both rounded, the occurrence of defects in the concave portions A is prevented, and at the same time, the convex portions are formed. B is prevented from occurring, and the concentration of the electric field at the tips of the concave portions A and the convex portions B is alleviated. As a result, the shape factor (FF) of the power generation layer 2 is improved and the solar cell Conversion efficiency is improved.

【0045】そして、発電層2の微小凹凸の平均高さが
1000Å以上4000Å以下のときに、凹部A及び凸
部Bを曲面形状にして効果があることが、実験によって
確かめられた。
It was confirmed by experiments that the concave portion A and the convex portion B were effective when the average height of the fine irregularities of the power generation layer 2 was 1000 ° or more and 4000 ° or less.

【0046】また、微小凹凸による発電層2の薄膜内の
光閉じ込めの効果をを損なわないようにするため、微小
凹凸の曲率半径はその平均高さの20%以上50%以下
であることが望ましい。
In order not to impair the effect of light confinement in the thin film of the power generation layer 2 due to the minute unevenness, the radius of curvature of the minute unevenness is desirably 20% or more and 50% or less of its average height. .

【0047】このことは、表1において微小凹凸形状の
曲率半径が50%より大きいときの発電効率が低下する
ことからも明らかであり、発電層2の微小凹凸の曲率半
径が50%より大きくなると、その表面が平坦に近くな
って光散乱効果が減少するからである。
This is also evident from the fact that the power generation efficiency is reduced when the radius of curvature of the fine unevenness is larger than 50% in Table 1, and when the radius of curvature of the fine unevenness of the power generation layer 2 is larger than 50%. This is because the surface is almost flat and the light scattering effect is reduced.

【0048】ところで、前記の化学的エッチング処理及
びプラズマ処理の時間は溶液やガスの種類,量等の種々
の条件で異なるのは勿論である。
Incidentally, it goes without saying that the time of the chemical etching treatment and the plasma treatment varies depending on various conditions such as the type and amount of the solution or gas.

【0049】また、化学的エッチングの酸の溶液は塩酸
以外の硫酸やフッ酸等の溶液であってもよく、プラズマ
処理のガスはアルゴンガス以外のクリプトン,キヤノン
などの希ガスであってもよい。
The acid solution for chemical etching may be a solution of sulfuric acid or hydrofluoric acid other than hydrochloric acid, and the gas for plasma treatment may be a rare gas other than argon gas such as krypton or canon. .

【0050】そして、前記1形態にあっては化学的エッ
チング処理とプラズマ処理との両方を施したが、いずれ
か一方を施して凹部A,凸部Bのいずれか一方を曲面形
状にして丸味をつけるようにしても効果が得られるのは
勿論である。
In the first embodiment, both the chemical etching process and the plasma process are performed. However, either one of the processes is performed to form one of the concave portion A and the convex portion B into a curved surface shape, and the roundness is obtained. Of course, the effect can be obtained even if it is attached.

【0051】(他の形態)つぎに、金属基板タイプの微
結晶の太陽電池及びその製造方法に適用した本発明の実
施の他の形態につき、図4を参照して説明する。図4は
図1と同様に上側を光入射側にした太陽電池の構成図で
あり、7は金属基板としてのステンレス基板の上に蒸着
により形成された膜厚1μmのアルミニウムの金属膜で
ある。
(Other Embodiment) Next, another embodiment of the present invention applied to a microcrystalline solar cell of a metal substrate type and a method of manufacturing the same will be described with reference to FIG. FIG. 4 is a configuration diagram of a solar cell in which the upper side is the light incident side similarly to FIG. 1, and 7 is a 1 μm-thick aluminum metal film formed by vapor deposition on a stainless steel substrate as a metal substrate.

【0052】8は金属膜7の膜上にスパッタ法で形成さ
れた膜厚2000Åの裏面電極膜であり、ITO/Ag
/ZnOの3層構造である。
Reference numeral 8 denotes a back electrode film having a thickness of 2000 .ANG. Formed on the metal film 7 by sputtering.
/ ZnO three-layer structure.

【0053】9は裏面電極膜8の膜上にプラズマCVD
法で形成されたpin構造の微結晶の半導体層であり、
下から順の膜厚500Åのリンをドープして形成された
n型微結晶シリコンのn層10,膜厚1μmの微結晶シ
リコンの発電層(i層)11,膜厚100Åのボロンを
ドープして形成されてp型微結晶シリコンのp層12か
らなる。
9 is plasma CVD on the back electrode film 8.
A microcrystalline semiconductor layer having a pin structure formed by the method,
An n-type microcrystalline silicon n-layer 10 formed by doping phosphorus with a thickness of 500 ° in order from the bottom, a power generation layer (i-layer) 11 of microcrystalline silicon with a thickness of 1 μm, and a 100 ° -thick boron dope And a p-type microcrystalline silicon p-layer 12.

【0054】13はp層12の上にスパッタ法で形成さ
れた膜厚700ÅのITO膜からなる表面電極膜であ
る。
Reference numeral 13 denotes a surface electrode film made of an ITO film having a thickness of 700 ° formed on the p-layer 12 by sputtering.

【0055】そして、この太陽電池の製造に際しては、
金属膜7の表面を水酸化カリウムの溶液に5分浸して化
学的エッチング処理し、テクスチャ処理に基づく微小凹
凸形状の凸凸の先端部分を曲面形状にして丸味をつけた
後、裏面電極膜8及び半導体層9の各層10,11,1
2を順に形成する。
Then, when manufacturing this solar cell,
The surface of the metal film 7 is immersed in a solution of potassium hydroxide for 5 minutes and subjected to a chemical etching treatment. And each layer 10, 11, 1 of the semiconductor layer 9
2 are formed in order.

【0056】このとき、発電層11の薄膜の凸部C,凹
部Dが共に曲面形状になってそれらの先端部分が丸味を
おび、前記実施の1形態と同様の効果が得られる。
At this time, both the convex portion C and the concave portion D of the thin film of the power generation layer 11 have a curved shape, and their tip portions are rounded, and the same effect as in the first embodiment can be obtained.

【0057】なお、金属膜7を水酸化カリウムの溶液に
浸さないで形成した場合は、その膜面のテクスチャ処理
の微小凹凸形状に基づき、発電層11は凹部Dが急峻な
凹凸形状になる。
When the metal film 7 is formed without being immersed in a solution of potassium hydroxide, the power generation layer 11 has a steep unevenness in the concave portion D based on the minute unevenness in the texture processing of the film surface.

【0058】また、水酸カリウムの溶液に浸す時間を
0.3分〜5分の間で徐々に変えて形成した太陽電池
(本発明の太陽電池)と、この溶液に浸すことなく形成
した従来電池とにつき、発電層11の微小凹凸の平均高
さと変換効率との関係を比較したところ、つぎの表3が
得られた。
A solar cell (the solar cell of the present invention) formed by gradually changing the immersion time in a potassium hydroxide solution between 0.3 minutes and 5 minutes, and a conventional solar cell formed without immersion in this solution The following Table 3 was obtained by comparing the relationship between the average height of the fine irregularities of the power generation layer 11 and the conversion efficiency with respect to the battery.

【0059】[0059]

【表3】 [Table 3]

【0060】この表3からも明らかなように、発電層1
1の微小凹凸の平均高さが1000Å以上3000Å以
下であれば、曲面形状にすることによって変換効率が向
上する。
As is clear from Table 3, the power generation layer 1
When the average height of the fine irregularities is 1000 ° or more and 3000 ° or less, the conversion efficiency is improved by forming a curved surface.

【0061】そして、本発明はガラス基板タイプ、金属
基板タイプの非晶質又は非結晶質の種々の太陽電池及び
その製造方法に適用することができ、その際、化学的エ
ッチング処理の酸やアルカリの溶液,プラズマ処理のガ
スの種類や量及び処理時間等は、条件に応じて適当に設
定すればよい。
The present invention can be applied to various types of amorphous or non-crystalline solar cells of a glass substrate type or a metal substrate type and a method of manufacturing the same. The type and amount of the solution and the plasma processing gas, the processing time, and the like may be appropriately set according to the conditions.

【0062】[0062]

【発明の効果】本発明は以下の効果を奏する。まず、本
発明の太陽電池にあっては、微小凹凸形状の薄膜で形成
された発電層2,11の凹凸が曲面形状であって丸味を
おびているため、その凹部の先端部分での欠陥が少な
く、凸部の先端部分でのリークも少なく、しかも、それ
らの先端部分の電界の集中が防止されて発電層2,11
の他の部分の電界強度が弱くなることもない。
The present invention has the following effects. First, in the solar cell of the present invention, since the unevenness of the power generation layers 2 and 11 formed of the thin film with minute unevenness is curved and rounded, defects at the tip of the recess are small. In addition, the leakage at the tips of the projections is small, and the concentration of the electric field at those tips is prevented, so that the power generation layers 2, 11
The electric field strength of other parts does not decrease.

【0063】したがって、発電層2,11のテクスチャ
構造化に伴う微小凹凸形状に起因した変換効率の低下が
防止され、変換効率が向上した非晶質又は微結晶の太陽
電池を提供することができる。
Therefore, it is possible to provide an amorphous or microcrystalline solar cell in which the conversion efficiency is prevented from lowering due to the minute irregularities due to the texture structuring of the power generation layers 2 and 11, and the conversion efficiency is improved. .

【0064】つぎに、本発明の太陽電池の製造方法によ
ると、発電層2,11が微小凹凸形状であってその凹凸
が曲面形状で丸味をおびるように形成され、テクスチャ
構造化に伴う発電層2,11の薄膜形状に起因した変換
効率の低下が防止され、変換効率が向上した非晶質又は
微結晶のこの種の太陽電池を製造することができる。
Next, according to the method of manufacturing a solar cell of the present invention, the power generation layers 2 and 11 are formed to have fine irregularities, and the irregularities are formed into a round shape with a curved surface. A reduction in conversion efficiency due to the thin film shapes 2 and 11 is prevented, and an amorphous or microcrystalline solar cell with improved conversion efficiency can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の太陽電池の一部の概略構成図である。FIG. 1 is a schematic configuration diagram of a part of a solar cell of the present invention.

【図2】本発明の実施の1形態の太陽電池の構成図であ
る。
FIG. 2 is a configuration diagram of a solar cell according to one embodiment of the present invention.

【図3】図2の太陽電池の微小凹凸の曲率平均,平均高
さの説明図である。
3 is an explanatory diagram of an average curvature and an average height of minute unevenness of the solar cell of FIG. 2;

【図4】本発明の実施の他の形態の太陽電池の構成図で
ある。
FIG. 4 is a configuration diagram of a solar cell according to another embodiment of the present invention.

【図5】従来電池の一部の概略構成図である。FIG. 5 is a schematic configuration diagram of a part of a conventional battery.

【符号の説明】[Explanation of symbols]

1 透明電極膜 2,11 発電層(i層) 3,9 半導体層 6,8 裏面電極膜 7 金属膜 DESCRIPTION OF SYMBOLS 1 Transparent electrode film 2, 11 Power generation layer (i layer) 3, 9 Semiconductor layer 6, 8 Back electrode film 7 Metal film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発電層が微小凹凸形状の薄膜で形成され
た非晶質又は微結晶の太陽電池において、 前記発電層の微小凹凸が曲面形状であって丸味をおびて
いることを特徴とする太陽電池。
1. An amorphous or microcrystalline solar cell in which a power generation layer is formed of a thin film having minute irregularities, wherein the minute irregularities of the power generation layer are curved and rounded. battery.
【請求項2】 発電層の微小凹凸の平均高さが1000
Å以上3000Å以下であることを特徴とする請求項1
記載の太陽電池。
2. An average height of minute irregularities of a power generation layer is 1000.
2. The method according to claim 1, wherein the angle is not less than {3,000}.
The solar cell as described.
【請求項3】 発電層の微小凹凸の曲率半径が、前記発
電層の微小凹凸の平均高さの20%以上50%以下であ
ることを特徴とする請求項1又は請求項2記載の太陽電
池。
3. The solar cell according to claim 1, wherein a radius of curvature of the minute unevenness of the power generation layer is 20% to 50% of an average height of the minute unevenness of the power generation layer. .
【請求項4】 ガラス基板上に形成された透明電極膜の
微小凹凸形状の膜面上又は金属基板に微小凹凸形状の金
属膜を介して形成された裏面電極膜の膜面上に、非晶質
又は非結晶のpin構造の半導体層を形成する太陽電池
の製造方法において、 前記透明電極膜又は前記金属膜の微小凹凸形状の膜面
に、酸又はアルカリの溶液に浸す化学的エッチング処
理,プラズマに曝すプラズマ処理の少なくとも一方を施
し、 前記透明電極膜又は前記金属膜の膜面の微小凹凸を曲面
形状にした後、 前記透明電極膜の膜面上への前記半導体層の形成又は前
記金属膜の膜面上への前記裏面電極,前記半導体層の形
成に移行し、 前記半導体層のi型の発電層を、曲面形状で丸みをおび
た微小凹凸形状の薄膜に形成することを特徴とする太陽
電池の製造方法。
4. An amorphous material is formed on the surface of the fine electrode of the transparent electrode film formed on the glass substrate or on the surface of the back electrode film formed on the metal substrate via the metal film of the small unevenness. In a method for manufacturing a solar cell for forming a semiconductor layer having a crystalline or amorphous pin structure, a chemical etching process in which an acid or alkali solution is immersed in a finely uneven film surface of the transparent electrode film or the metal film, plasma After performing at least one of plasma treatments for exposing the transparent electrode film or the metal film to a curved surface with minute irregularities on the film surface, forming the semiconductor layer on the film surface of the transparent electrode film or the metal film Forming the back electrode and the semiconductor layer on the film surface of (i), and forming the i-type power generation layer of the semiconductor layer into a thin film having a curved surface and a rounded fine irregularity. Solar cell manufacturing method.
JP07732899A 1999-03-23 1999-03-23 Solar cell and manufacturing method thereof Expired - Lifetime JP4017281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07732899A JP4017281B2 (en) 1999-03-23 1999-03-23 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07732899A JP4017281B2 (en) 1999-03-23 1999-03-23 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000277763A true JP2000277763A (en) 2000-10-06
JP4017281B2 JP4017281B2 (en) 2007-12-05

Family

ID=13630878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07732899A Expired - Lifetime JP4017281B2 (en) 1999-03-23 1999-03-23 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4017281B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656809B2 (en) 2002-01-15 2003-12-02 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics
JP2005510884A (en) * 2001-11-29 2005-04-21 オリジン エナジー ソーラー ピーティーワイ リミテッド Semiconductor texturing process
JP2005515955A (en) * 2001-11-28 2005-06-02 サン−ゴバン グラス フランス Transparent substrate with electrodes
JP2006269890A (en) * 2005-03-25 2006-10-05 Institute Of National Colleges Of Technology Japan Flexible solar cell using sodium chloride for substrate and its manufacturing method
WO2010016468A1 (en) 2008-08-05 2010-02-11 旭硝子株式会社 Transparent conductive film substrate and solar cell using the substrate
JP2010258279A (en) * 2009-04-27 2010-11-11 Kyocera Corp Photoelectric conversion cell and photoelectric conversion module
US7875794B2 (en) 2000-11-29 2011-01-25 Transform Solar Pty Ltd Semiconductor wafer processing to increase the usable planar surface area
WO2011108722A1 (en) 2010-03-05 2011-09-09 Jx日鉱日石エネルギー株式会社 Transparent conductive substrate for solar cell, method for manufacturing the substrate, and solar cell using the substrate
JP2013041996A (en) * 2011-08-16 2013-02-28 Kaneka Corp Thin-film photoelectric conversion device
JP2013536584A (en) * 2011-05-28 2013-09-19 恵州市易暉太陽能科技有限公司 Conductive glass with surface irregularities dedicated to solar cells, manufacturing method and application thereof
CN103339688A (en) * 2011-01-26 2013-10-02 三菱电机株式会社 Transparent electrode substrate, method for producing same, photoelectric conversion device, method for producing same, and photoelectric conversion module
TWI474495B (en) * 2009-02-16 2015-02-21 Lg Display Co Ltd Method of fabricating solar cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875794B2 (en) 2000-11-29 2011-01-25 Transform Solar Pty Ltd Semiconductor wafer processing to increase the usable planar surface area
JP2005515955A (en) * 2001-11-28 2005-06-02 サン−ゴバン グラス フランス Transparent substrate with electrodes
JP2005510884A (en) * 2001-11-29 2005-04-21 オリジン エナジー ソーラー ピーティーワイ リミテッド Semiconductor texturing process
US6787427B2 (en) 2002-01-15 2004-09-07 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics
US6656809B2 (en) 2002-01-15 2003-12-02 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics
JP2006269890A (en) * 2005-03-25 2006-10-05 Institute Of National Colleges Of Technology Japan Flexible solar cell using sodium chloride for substrate and its manufacturing method
WO2010016468A1 (en) 2008-08-05 2010-02-11 旭硝子株式会社 Transparent conductive film substrate and solar cell using the substrate
TWI474495B (en) * 2009-02-16 2015-02-21 Lg Display Co Ltd Method of fabricating solar cell
JP2010258279A (en) * 2009-04-27 2010-11-11 Kyocera Corp Photoelectric conversion cell and photoelectric conversion module
KR20130050284A (en) 2010-03-05 2013-05-15 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Transparent conductive substrate for solar cell, method for manufacturing the substrate, and solar cell using the substrate
WO2011108722A1 (en) 2010-03-05 2011-09-09 Jx日鉱日石エネルギー株式会社 Transparent conductive substrate for solar cell, method for manufacturing the substrate, and solar cell using the substrate
CN103339688A (en) * 2011-01-26 2013-10-02 三菱电机株式会社 Transparent electrode substrate, method for producing same, photoelectric conversion device, method for producing same, and photoelectric conversion module
JP2013536584A (en) * 2011-05-28 2013-09-19 恵州市易暉太陽能科技有限公司 Conductive glass with surface irregularities dedicated to solar cells, manufacturing method and application thereof
KR101510578B1 (en) * 2011-05-28 2015-04-08 휘쩌우 이-플라이 솔라 컴퍼니.,리미티드. Surface-textured conductive glass for solar cells, and preparation method and application thereof
JP2013041996A (en) * 2011-08-16 2013-02-28 Kaneka Corp Thin-film photoelectric conversion device

Also Published As

Publication number Publication date
JP4017281B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
US7923626B2 (en) Transparent substrate comprising an electrode
KR101455448B1 (en) Substrate en verre transparent glass substrate and method for producing such a substrate
AU2022283784B2 (en) Solar cell, manufacturing method thereof, and photovoltaic module
JP5537101B2 (en) Crystalline silicon solar cell
WO1998043304A1 (en) Photovoltaic element and method for manufacture thereof
KR20120080583A (en) Solar cell and method for manufacturing such a solar cell
JPWO2003036657A1 (en) SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM, PROCESS FOR PRODUCING THE SAME, AND PHOTOELECTRIC CONVERSION ELEMENT
JP2000277763A (en) Solar cell and fabrication thereof
JP5777795B2 (en) Photovoltaic element
JP2018093180A (en) Method for patterning amorphous semiconductor layer
US8735715B2 (en) Tandem photovoltaic device and method for manufacturing the same
JP5127925B2 (en) Thin film solar cell and manufacturing method thereof
WO2014098146A1 (en) Translucent insulating substrate for thin-film solar cell, and thin-film solar cell
KR20150133243A (en) Photovoltaic element and manufacturing method therefor
CN216213480U (en) Solar cell's matte structure
JP2003069059A (en) Method for roughening glass substrate, and thin film polycrystalline silicon solar battery using the same
US8124437B2 (en) Forming protrusions in solar cells
JP2682658B2 (en) Semiconductor device
CN113035978A (en) Silicon wafer with different-surface structure and preparation method thereof, and solar cell and preparation method thereof
JPH0361348B2 (en)
JP2003197940A (en) Method for roughing substrate for solar battery
CN115036381A (en) P-type silicon back contact battery and preparation method thereof
US8901413B2 (en) Photovoltaic device including flexible substrate and method for manufacturing the same
CN218160413U (en) N-type TOPCON battery and photovoltaic module
JP6199299B2 (en) Thin film photoelectric conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

EXPY Cancellation because of completion of term