JPH09246580A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPH09246580A
JPH09246580A JP8056473A JP5647396A JPH09246580A JP H09246580 A JPH09246580 A JP H09246580A JP 8056473 A JP8056473 A JP 8056473A JP 5647396 A JP5647396 A JP 5647396A JP H09246580 A JPH09246580 A JP H09246580A
Authority
JP
Japan
Prior art keywords
fullerene
layer
photoelectric conversion
thin film
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8056473A
Other languages
Japanese (ja)
Inventor
Hirohisa Miyamoto
浩久 宮本
Hideyuki Nishizawa
秀之 西沢
Masahiro Hosoya
雅弘 細矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8056473A priority Critical patent/JPH09246580A/en
Publication of JPH09246580A publication Critical patent/JPH09246580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PROBLEM TO BE SOLVED: To obtain a photoelectric conversion element whose area can be made large and whose photoelectric conversion efficiency is enhanced more than that of an inorganic semiconductor/π conjugated system polymer solar cell by a method wherein a photoelectropolymerization π conjugate polymer layer is formed on a semiconductor layer containing a fullerene. SOLUTION: A π conjugate polymer layer 12 is formed on a fullerene thin- film layer 11. A fullerene is a substance in which carbon atoms are combined in a higher order manner, and fullerene C70 fullerene C76 , fullerene C82 , fullerene C84 , fullerene C90 and the like are enumerated in addition to fullerene C60 in which 60 carbon atoms are combined. The fullerene is formed as an amorphous fullerene thin film by a vapor deposition method or the like. A π conjugate polymer which forms the π conjugate polymer layer is the homopolymer of an unsaturated monomer such as, e.g. acetylene, pyrrole, thiophene, furan or the lilqe. When the π conjugate olymer layer is formed on a layer containing the fullerene, a photoelectropolymerization method is used. That is to say, the unsaturated mmonomer is electropolymerized on the layer containing the fullerene while light is irradiated, and the conjugate polymer layer which is composed of the homopolymer is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光電変換素子に関
する。
TECHNICAL FIELD The present invention relates to a photoelectric conversion element.

【0002】[0002]

【従来の技術】光電変換素子の一例である太陽電池は、
n−Si、アモルファスSi(a−Si)或いはGaA
sに代表される半導体と金属から構成されるショットキ
ー(schottky)接合型及び半導体と半導体とか
ら構成されるp−n接合型に分類される。
2. Description of the Related Art A solar cell, which is an example of a photoelectric conversion element,
n-Si, amorphous Si (a-Si) or GaA
It is classified into a Schottky junction type composed of a semiconductor represented by s and a metal, and a pn junction type composed of a semiconductor and a semiconductor.

【0003】一般に、ショットキー接合型太陽電池は、
n−Si等の半導体層上に金属を蒸着することで接合を
形成し、p−n接合型太陽電池は、真性半導体へイオン
注入をすることで、順次p型及びn型半導体層を作成、
接合を形成している。又、a−Siを用いた太陽電池
は、高周波グロー放電法、真空蒸着法及びスパッタ法に
よりp型半導体層、絶縁体層、n型半導体層を作成し、
p−i−n接合を形成している。
Generally, Schottky junction type solar cells are
A junction is formed by vapor-depositing a metal on a semiconductor layer such as n-Si, and a p-n junction solar cell sequentially forms p-type and n-type semiconductor layers by implanting ions into an intrinsic semiconductor.
Forming a bond. A solar cell using a-Si has a p-type semiconductor layer, an insulator layer, and an n-type semiconductor layer formed by a high-frequency glow discharge method, a vacuum deposition method, and a sputtering method.
A p-i-n junction is formed.

【0004】近年、半導体層にπ共役系高分子を用いた
研究例が報告されている(例えば、ジャーナル オブ
エレクトロケミカル ソサエティー 129巻、173
7頁、(1982)、アプライド フィジカル レター
62巻、585頁、(1993)等)。
In recent years, research examples using π-conjugated polymers in semiconductor layers have been reported (for example, Journal of
Electrochemical Society Volume 129, 173
7 (1982), Applied Physical Letter, Vol. 62, 585, (1993), etc.).

【0005】[0005]

【発明が解決しようとする課題】上記π共役系高分子を
半導体層として用いた場合、低温プロセスで容易に薄膜
を形成することができるため、大面積化・大規模集積化
に対応でき、しかもフレキシブルである等の利点を有し
ている。しかしながら、この素子の光電変換効率は無機
半導体を用いた素子のそれよりも低いという問題があ
る。
When the above π-conjugated polymer is used as a semiconductor layer, a thin film can be easily formed by a low temperature process, and thus it is possible to cope with large area and large scale integration. It has advantages such as flexibility. However, there is a problem that the photoelectric conversion efficiency of this element is lower than that of the element using an inorganic semiconductor.

【0006】本発明の目的は、大面積化が可能であり、
フレキシブルな、π共役系高分子を使用し、しかも太陽
電池に用いた場合その光電変換効率を無機半導体/π共
役系高分子型太陽電池のそれよりも向上させることがで
きる光電変換素子を提供することにある。
An object of the present invention is to increase the area,
Provided is a flexible photoelectric conversion element which uses a π-conjugated polymer and can improve its photoelectric conversion efficiency when used in a solar cell as compared with that of an inorganic semiconductor / π-conjugated polymer solar cell. Especially.

【0007】[0007]

【課題を解決するための手段】本発明者らは、鋭意研究
を行った結果、フラーレンを含有する層からなる半導体
層上にπ共役系高分子層を形成させることにより、両層
の界面の結合が強固に行われ、そのように構成された素
子が、本発明の目的を達成し得ることを見出して本発明
を完成した。
Means for Solving the Problems As a result of intensive studies, the inventors of the present invention formed a π-conjugated polymer layer on a semiconductor layer composed of a layer containing fullerene, thereby forming an interface between the two layers. The present invention has been completed by finding that an element having such a strong bond and thus configured can achieve the object of the present invention.

【0008】すなわち、本発明はフラーレンを含有する
半導体層と、その半導体層上に形成された光電解重合π
共役高分子層とを具備したことを特徴とする光電変換素
子を要旨とする。
That is, the present invention relates to a semiconductor layer containing fullerene, and a photoelectrolytic polymerization π formed on the semiconductor layer.
A gist is a photoelectric conversion element comprising a conjugated polymer layer.

【0009】[0009]

【発明の実施の形態】本発明を図1及び図2により説明
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described with reference to FIGS.

【0010】図1は、本発明の光電変換素子の一例の断
面図である。図1において、フラーレン薄膜層11上に
π共役高分子層12が形成されている。
FIG. 1 is a sectional view of an example of the photoelectric conversion element of the present invention. In FIG. 1, the π-conjugated polymer layer 12 is formed on the fullerene thin film layer 11.

【0011】フラーレンは、炭素原子が高次に結合した
物質であり、炭素原子が60個結合した物(以下、C60
と表示する。)の他、C70、C76、C82、C84、C90
96等及び更に高次の物が知られている。本発明では、
そのいずれもが使用可能である。これらフラーレンは、
蒸着法、分子ビームエピタキシー(MBE)法、スパッ
タ法、スプレー塗布法又はキャスト法等により、結晶性
或いはアモルファスフラーレン薄膜とする。上記の内で
も、蒸着法で作製された薄膜が好ましい。
Fullerenes are substances in which carbon atoms are bonded in a higher order, and those in which 60 carbon atoms are bonded (hereinafter, C 60
Is displayed. ), C 70 , C 76 , C 82 , C 84 , C 90 ,
C 96 and the like and higher ones are known. In the present invention,
Either of them can be used. These fullerenes are
A crystalline or amorphous fullerene thin film is formed by a vapor deposition method, a molecular beam epitaxy (MBE) method, a sputtering method, a spray coating method or a cast method. Among the above, a thin film produced by a vapor deposition method is preferable.

【0012】使用するフラーレンの形態は、結晶性フラ
ーレンよりもアモルファスフラーレンの方が好ましい。
この制御は、例えば蒸着法では、基板温度を制御するこ
とで容易に実現できる。
The form of fullerene used is preferably amorphous fullerene rather than crystalline fullerene.
This control can be easily realized by controlling the substrate temperature in the vapor deposition method, for example.

【0013】又、本発明では、フラーレン単独以外に、
フラーレンを、例えばポリカーボネート、ポリスチレ
ン、ポリオレフィン等の合成樹脂からなるバインダーに
分散した物からの薄膜も用いることができる。
In the present invention, in addition to the fullerene alone,
A thin film obtained by dispersing fullerene in a binder made of a synthetic resin such as polycarbonate, polystyrene, or polyolefin can also be used.

【0014】本発明においてπ共役高分子層を形成する
π共役系高分子は、例えば、アセチレン、ピロール、チ
オフェン、フラン、セレノフェン、アズレン、ピレン、
ベンゾチオフェン、インドール、カルバゾール、イソナ
フテン、ジアセチレン、フェニレンビニレン、チエニレ
ンビニレン等の不飽和モノマーのホモポリマーである。
それらホモポリマーの誘導体も使用可能である。
In the present invention, the π-conjugated polymer forming the π-conjugated polymer layer is, for example, acetylene, pyrrole, thiophene, furan, selenophene, azulene, pyrene,
It is a homopolymer of unsaturated monomers such as benzothiophene, indole, carbazole, isonaphthene, diacetylene, phenylene vinylene and thienylene vinylene.
Derivatives of those homopolymers can also be used.

【0015】本発明においてフラーレンを含有する層の
上へのπ共役高分子層の形成方法は重要であり、光電解
重合法を用いる。その方法は、フラーレンを含有する層
の上に、光照射下で上記不飽和モノマーを電解重合して
そのホモポリマーからなるπ共役高分子層を形成させる
方法である。図2にフラーレン/π共役高分子積層膜作
製プロセスを示す。
In the present invention, the method of forming the π-conjugated polymer layer on the fullerene-containing layer is important, and the photoelectrolytic polymerization method is used. The method is a method of electrolytically polymerizing the above-mentioned unsaturated monomer on a layer containing fullerene under irradiation of light to form a π-conjugated polymer layer composed of a homopolymer thereof. FIG. 2 shows a process for producing a fullerene / π-conjugated polymer laminated film.

【0016】電解液21としては、上記不飽和モノマ
ー、支持電解質及び支持電解質の溶媒からなるものを使
用する。支持電解質は、溶媒に溶解し解離するものであ
ればよく、特に限定されない。代表的な支持電解質を挙
げると、塩化ナトリウム、塩化カリウム等のアルカリ金
属の塩化物、テトラブチルアンモニウムテトラフルオロ
ボレート等のアルキルアンモニウム塩等が挙げられる。
As the electrolytic solution 21, a solution composed of the unsaturated monomer, the supporting electrolyte and the solvent of the supporting electrolyte is used. The supporting electrolyte is not particularly limited as long as it dissolves in a solvent and dissociates. Typical supporting electrolytes include chlorides of alkali metals such as sodium chloride and potassium chloride, alkylammonium salts such as tetrabutylammonium tetrafluoroborate, and the like.

【0017】溶媒としては、水、アルコール類、エーテ
ル類、ケトン類、ニトリル類、アミン類、アミド類、硫
黄化合物或いはニトロメタン、ニトロベンゼン、ジクロ
ロメタン、1,2−ジクロロエタン、プロピレンカーボ
ネート及びエチレンーカーボネート等が挙げられる。
Examples of the solvent include water, alcohols, ethers, ketones, nitriles, amines, amides, sulfur compounds or nitromethane, nitrobenzene, dichloromethane, 1,2-dichloroethane, propylene carbonate and ethylene carbonate. Can be mentioned.

【0018】上記のような電解液中に、作用極22とし
てフラーレン含有薄膜及び対極23として白金或いは炭
素等の導電体、参照極24としてカロメル電極、Ag/
AgCl電極或いはAg電極を浸し、ガルバノスタット
(定電流電解電源)25に接続した定電流を流し、フラ
ーレン薄膜へハロゲンランプ等の光源26を用いて光照
射する。フラーレンは光伝導性を有しているので、光照
射している間だけフラーレン薄膜は導電性基板として振
る舞う。すなわち、フラーレン薄膜上に光照射すること
で、その界面にπ共役高分子層が形成される。上記定電
流を小さくすることで緻密な膜を成膜することが可能と
なり、電流密度で0.001〜10mA/cm2 の範囲
にすればよい。
In the above electrolytic solution, a fullerene-containing thin film as a working electrode 22, a conductor such as platinum or carbon as a counter electrode 23, a calomel electrode as a reference electrode 24, Ag /
The AgCl electrode or the Ag electrode is dipped, a constant current connected to a galvanostat (constant current electrolysis power source) 25 is passed, and the fullerene thin film is irradiated with light using a light source 26 such as a halogen lamp. Since the fullerene has photoconductivity, the fullerene thin film behaves as a conductive substrate only while being irradiated with light. That is, by irradiating the fullerene thin film with light, a π-conjugated polymer layer is formed at the interface. It becomes possible to form a dense film by reducing the constant current, and the current density may be in the range of 0.001 to 10 mA / cm 2 .

【0019】上記において、フラーレン含有薄膜22と
して、基板上に予め該薄膜を形成したものを用いてもよ
い。基板としては、臭化カリウム、塩化ナトリウム等の
イオン結晶板、ガラス板上に透明の導電膜、例えばIT
O、を形成した物、金属箔、例えば金箔、アルミニウム
箔、更にはガラス板上に上記の金属箔を形成した物等が
挙げられる。
In the above, the fullerene-containing thin film 22 may be a thin film previously formed on a substrate. As the substrate, an ion crystal plate of potassium bromide, sodium chloride or the like, a transparent conductive film on a glass plate, such as IT
Examples thereof include those formed with O, metal foils such as gold foil, aluminum foil, and those obtained by forming the above metal foil on a glass plate.

【0020】フラーレンは、その表面のπ電子密度が非
常に高いことが特徴の化合物であり、一方、π共役系高
分子もπ電子密度の高い物質である。すなわち、フラー
レン含有薄膜上に上記のようにして重合形成されたπ共
役高分子層の接合部分は、π−π電子の相互作用によ
り、強固で理想的な接合を作り得る。
Fullerene is a compound characterized by having a very high π electron density on its surface, and π-conjugated polymer is also a substance having a high π electron density. That is, the junction portion of the π-conjugated polymer layer polymerized and formed on the fullerene-containing thin film as described above can form a strong and ideal junction due to the interaction of π-π electrons.

【0021】フラーレンを含有する層の膜厚は、0.0
1〜50μmであることが望ましい。又、その上に形成
するπ共役高分子層の膜厚は、0.1〜10μmである
ことが望ましい。
The thickness of the layer containing fullerene is 0.0
It is desirable to be 1 to 50 μm. Further, the film thickness of the π-conjugated polymer layer formed thereon is preferably 0.1 to 10 μm.

【0022】上記のように、本発明の光電変換素子は半
導体層にフラーレンを使用したことにより、n−Si等
の無機半導体を用いた場合よりも、高効率の光電変換素
子を作製することができる。又、π共役高分子層上にフ
ラーレンを含有する層を設けた従来の素子に比べ、π−
π電子の相互作用により、強固な接合界面の形成が可能
である。更に、上記のようにして構成された本発明の光
電変換素子は、柔軟性に富み、大気中における安定性に
優れている。
As described above, since the photoelectric conversion element of the present invention uses fullerene in the semiconductor layer, it is possible to produce a photoelectric conversion element having a higher efficiency than in the case of using an inorganic semiconductor such as n-Si. it can. In addition, in comparison with a conventional device in which a layer containing a fullerene is provided on a π-conjugated polymer layer, π-
A strong junction interface can be formed by the interaction of π electrons. Further, the photoelectric conversion element of the present invention configured as described above is rich in flexibility and excellent in stability in the atmosphere.

【0023】又、本発明の光電変換素子は、フラーレン
を含有する層の一部分を、選択的に金属でドープして導
電層を発現すれば、その導電層は電極として作用するの
で、素子構造を間便にすることができる。金属として
は、カリウム、リチウム、ナトリウム、ルビジウム、セ
シウム等が挙げられる。更に、本発明の光電変換素子の
フラーレンを含有する層及び/又はπ共役高分子層の上
に導電層を設けることも可能である。導電層としては、
アルミニウム、金、シリコン、白金等の金属、酸化イン
ジウム、酸化錫等の金属酸化物等が挙げられる。
Further, in the photoelectric conversion device of the present invention, if a part of the layer containing fullerene is selectively doped with a metal to develop a conductive layer, the conductive layer acts as an electrode, so that the device structure is You can make it between flights. Examples of the metal include potassium, lithium, sodium, rubidium, cesium and the like. Furthermore, a conductive layer can be provided on the fullerene-containing layer and / or the π-conjugated polymer layer of the photoelectric conversion device of the present invention. As the conductive layer,
Examples thereof include metals such as aluminum, gold, silicon and platinum, and metal oxides such as indium oxide and tin oxide.

【0024】本発明の光電変換素子は、太陽電池等に用
いることができる。
The photoelectric conversion element of the present invention can be used in solar cells and the like.

【0025】[0025]

【実施例】以下、本発明を実施例により詳細に説明す
る。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0026】(実施例1)本実施例では、図3で示した
工程で光電変換素子を作製した。
Example 1 In this example, a photoelectric conversion element was manufactured by the process shown in FIG.

【0027】基板31としてのKBr板上に、真空蒸着
法により厚さ約0.5μmのC70薄膜32を形成した薄
板とした。次に、10ミリモル/リットルのピロール、
0.1モル/リットルのテトラブチルアンモニウムテト
ラフルオロボレートを含有するアセトニトリル溶液33
に、上記の薄板を浸して作用極とし、白金からなる対極
34に、カロメル電極35を参照電極に使用した三電極
式の定電流電解装置36に接続した。
A thin plate was prepared by forming a C 70 thin film 32 having a thickness of about 0.5 μm on a KBr plate as a substrate 31 by a vacuum evaporation method. Then 10 mmol / l of pyrrole,
Acetonitrile solution 33 containing 0.1 mol / l tetrabutylammonium tetrafluoroborate 33
Then, the thin plate was immersed in the above to make a working electrode, and a counter electrode 34 made of platinum was connected to a three-electrode type constant current electrolysis device 36 using a calomel electrode 35 as a reference electrode.

【0028】作用極のKBr方向からハロゲンランプ3
7により光を照射し、その間電流密度0.2mA/cm
2 の定電流電解を行った。その結果、C70薄膜32上に
速やかにピロールの光電解重合膜38を得ることができ
た。重合膜38の膜厚は、約0.5μmであった。
From the KBr direction of the working electrode, the halogen lamp 3
7 to irradiate light, during which the current density is 0.2 mA / cm
2 constant current electrolysis was performed. As a result, it was possible to quickly obtain the photoelectrolytic polymerized film 38 of pyrrole on the C 70 thin film 32. The film thickness of the polymer film 38 was about 0.5 μm.

【0029】次いで、上記で得られた複合膜を純水に浸
し、KBr層を溶解することで、C70薄膜32とポリピ
ロール薄膜38の複合膜とし、100℃で一昼夜真空乾
燥することにより、本発明の光電変換素子を作製した。
Then, the composite film obtained above is immersed in pure water to dissolve the KBr layer to form a composite film of the C 70 thin film 32 and the polypyrrole thin film 38, which is vacuum dried at 100 ° C. for a whole day and night. The photoelectric conversion element of the invention was produced.

【0030】上記で作製した光電変換素子、1mW/c
2 の強度のアルゴンイオンレーザを照射した。その時
に得られた電流−電圧特性曲線を図4に示した。ここ
で、解放電圧(V oc)は0.89Vであり、短絡電
流は6.18μA/cm2 であった。又、フィル ファ
クター(FF)は0.60であり、出力変換効率は0.
06%であった。
The photoelectric conversion device produced above, 1 mW / c
Irradiation was carried out with an argon ion laser having an intensity of m 2 . The current-voltage characteristic curve obtained at that time is shown in FIG. Here, the release voltage (V oc) was 0.89 V and the short-circuit current was 6.18 μA / cm 2 . The fill factor (FF) is 0.60, and the output conversion efficiency is 0.
It was 06%.

【0031】(実施例2)実施例1と同様にして、C70
薄膜51とポリピロール薄膜52の複合膜からなる本発
明の光電変換素子を作製し、図5に示すように、ポリピ
ロール薄膜52側にマスクをして、C70薄膜51側にア
ルミニウム層(Al層)53を蒸着した。Al層53の
膜厚は、約0.1μmであった。
Example 2 In the same manner as in Example 1, C 70
A photoelectric conversion element of the present invention comprising a composite film of a thin film 51 and a polypyrrole thin film 52 was prepared, and as shown in FIG. 5, a polypyrrole thin film 52 side was masked and a C 70 thin film 51 side was an aluminum layer (Al layer). 53 was vapor deposited. The film thickness of the Al layer 53 was about 0.1 μm.

【0032】次に、上記のアルミニウム蒸着の素子のC
70薄膜51側から実施例1と同様にして、アルゴンイオ
ンレーザを照射した。その時に得られた電流−電圧特性
曲線を図6に示した。ここで、V ocは0.95Vで
あり、短絡電流は7.01μA/cm2 であった。又、
FFは0.62であり、出力変換効率は0.07%であ
った。
Next, C of the above-mentioned aluminum vapor deposition device is used.
Argon ion laser irradiation was performed from the 70 thin film 51 side in the same manner as in Example 1. The current-voltage characteristic curve obtained at that time is shown in FIG. Here, V oc was 0.95 V and the short-circuit current was 7.01 μA / cm 2 . or,
The FF was 0.62 and the output conversion efficiency was 0.07%.

【0033】(実施例3)実施例1と同様にして、C70
薄膜とポリピロール薄膜の複合膜からなる本発明の光電
変換素子を作製し、図7に示すように、ポリピロール薄
膜72側にマスクをした後、C70薄膜71側からカリウ
ムをドーピングしてK3 70薄膜73を作製した。X線
を用いる電子分光法の一つであるESCAによりK3
70薄膜73の膜厚を測定したところ、約0.1μmであ
った。
Example 3 In the same manner as in Example 1, C 70
A photoelectric conversion element of the present invention comprising a composite film of a thin film and a polypyrrole thin film was prepared, and as shown in FIG. 7, after masking the polypyrrole thin film 72 side, potassium was doped from the C 70 thin film 71 side to form K 3 C 70 A thin film 73 was produced. ESCA, which is one of the electron spectroscopy methods using X-rays, gives K 3 C.
When the film thickness of the 70 thin film 73 was measured, it was about 0.1 μm.

【0034】次に、上記のカリウムドーピングした素子
のC70薄膜71側から実施例1と同様にして、アルゴン
イオンレーザを照射した。その時に得られた電流−電圧
特性曲線は、図6と同じ特性を示した。
Then, an argon ion laser was irradiated from the C 70 thin film 71 side of the above potassium-doped element in the same manner as in Example 1. The current-voltage characteristic curve obtained at that time showed the same characteristic as in FIG.

【0035】(実施例4)実施例1と同様にして、C70
薄膜81とポリピロール薄膜82の複合膜からなる本発
明の光電変換素子を作製し、図8に示すように、ポリピ
ロール薄膜82側にマスクをした後、C70薄膜81側に
アルミニウム(Al)を蒸着した。Al層83の膜厚は
約0.1μmであった。次いで、Al層83にマスクを
し、ポリピロール薄膜82側に金(Au)を蒸着した。
Au層84の膜厚は約0.1μmであった。
(Embodiment 4) In the same manner as in Embodiment 1, C 70
A photoelectric conversion element of the present invention composed of a composite film of a thin film 81 and a polypyrrole thin film 82 was prepared, a polypyrrole thin film 82 side was masked, and then aluminum (Al) was vapor-deposited on the C 70 thin film 81 side as shown in FIG. did. The film thickness of the Al layer 83 was about 0.1 μm. Next, the Al layer 83 was masked, and gold (Au) was vapor-deposited on the polypyrrole thin film 82 side.
The film thickness of the Au layer 84 was about 0.1 μm.

【0036】次に、上記の素子のC70薄膜81側から実
施例1と同様にして、アルゴンイオンレーザを照射し
た。その時に得られた電流−電圧特性曲線を図9に示し
た。ここで、V ocは0.90Vであり、短絡電流は
8.30μA/cm2 であった。又、FFは0.65で
あり、出力変換効率は0.07%であった。
Next, an argon ion laser was irradiated from the C 70 thin film 81 side of the above element in the same manner as in Example 1. The current-voltage characteristic curve obtained at that time is shown in FIG. Here, V oc was 0.90 V and the short-circuit current was 8.30 μA / cm 2 . The FF was 0.65 and the output conversion efficiency was 0.07%.

【0037】(比較例1)10ミリモル/リットルのピ
ロール、0.1モル/リットルのテトラブチルアンモニ
ウムテトラフルオロボレートを含有するアセトニトリル
溶液に透明導電性ガラス(ガラス/ITO)を浸し作用
極とし、白金を対極に、カロメル電極を参照電極に使用
した三電極式の定電流電解装置に接続した。電流密度
0.2mA/cm2 で定電流電解を行い、ポリピロール
電解重合膜を得た。ポリピロール薄膜の膜厚は約0.5
μmであった。
(Comparative Example 1) A transparent conductive glass (glass / ITO) was immersed in an acetonitrile solution containing 10 mmol / liter of pyrrole and 0.1 mol / liter of tetrabutylammonium tetrafluoroborate to form a working electrode, and platinum was used. Was connected to a counter electrode and a three-electrode type constant current electrolysis device using a calomel electrode as a reference electrode. Constant current electrolysis was performed at a current density of 0.2 mA / cm 2 to obtain a polypyrrole electropolymerized film. The thickness of polypyrrole thin film is about 0.5
μm.

【0038】この薄膜を100℃の真空乾燥機中で一昼
夜乾燥させ、その後この薄膜上に、真空蒸着法によりC
70を約0.5μm蒸着した。次いで、C70薄膜上に、A
lを約0.1μm蒸着して電極とすることにより、光電
変換素子を作製した。上記の各工程を図10に示す。
This thin film was dried in a vacuum dryer at 100 ° C. for 24 hours, and then C was deposited on this thin film by vacuum deposition.
70 was vapor-deposited by about 0.5 μm. Then, on the C 70 thin film, A
A photoelectric conversion element was produced by vapor-depositing 1 of about 0.1 μm into an electrode. The above steps are shown in FIG.

【0039】次に、上記の光電変換素子のC70薄膜10
4側から実施例1と同様にして、アルゴンイオンレーザ
を照射した。その時に得られた電流−電圧特性曲線を図
11に示した。ここで、V ocは0.70Vであり、
短絡電流は5.20μA/cm2 であった。又、FFは
0.25であり、出力変換効率は0.02%であった。
Next, the C 70 thin film 10 of the photoelectric conversion element described above is used.
Irradiation with an argon ion laser was performed from the 4 side in the same manner as in Example 1. The current-voltage characteristic curve obtained at that time is shown in FIG. Here, V oc is 0.70V,
The short-circuit current was 5.20 μA / cm 2 . The FF was 0.25 and the output conversion efficiency was 0.02%.

【0040】[0040]

【発明の効果】本発明の光電変換素子は、フラーレン含
有層と、その層上に光電解重合法で形成されたπ共役高
分子層とからなるという構成を採ることにより、両層の
界面が強固かつ理想的に接合されており、その結果とし
て、従来の半導体/π共役高分子層からなる光電変換素
子に比べ、変換効率が格段に優れている。
EFFECTS OF THE INVENTION The photoelectric conversion device of the present invention has a structure in which the fullerene-containing layer and the π-conjugated polymer layer formed on the layer by the photoelectrolytic polymerization method are used so that the interface between both layers is They are firmly and ideally bonded, and as a result, the conversion efficiency is remarkably excellent as compared with the conventional photoelectric conversion element composed of a semiconductor / π-conjugated polymer layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光電変換素子の一例の断面図である。FIG. 1 is a cross-sectional view of an example of a photoelectric conversion element of the present invention.

【図2】本発明の光電変換素子を作製するための光電解
重合装置の概略図である。
FIG. 2 is a schematic view of a photoelectrolytic polymerization apparatus for producing the photoelectric conversion element of the present invention.

【図3】本発明の実施例1における光電変換素子の製造
工程を示す断面図である。
FIG. 3 is a cross-sectional view showing the manufacturing process of the photoelectric conversion element according to the first embodiment of the present invention.

【図4】本発明の実施例1で得られた光電変換素子の光
照射時の電流−電圧曲線である。
FIG. 4 is a current-voltage curve of the photoelectric conversion element obtained in Example 1 of the present invention during light irradiation.

【図5】本発明の実施例2における光電変換素子の製造
工程を示す断面図である。
FIG. 5 is a cross-sectional view showing the manufacturing process of the photoelectric conversion element according to the second embodiment of the present invention.

【図6】本発明の実施例2で得られた光電変換素子の光
照射時の電流−電圧曲線である。
FIG. 6 is a current-voltage curve at the time of light irradiation of the photoelectric conversion element obtained in Example 2 of the present invention.

【図7】本発明の実施例3における光電変換素子の製造
工程を示す断面図である。
FIG. 7 is a cross-sectional view showing the manufacturing process of the photoelectric conversion element according to the third embodiment of the present invention.

【図8】本発明の実施例4における光電変換素子の製造
工程を示す断面図である。
FIG. 8 is a cross-sectional view showing the manufacturing process of the photoelectric conversion element according to the fourth embodiment of the present invention.

【図9】本発明の実施例4で得られた光電変換素子の光
照射時の電流−電圧曲線である。
FIG. 9 is a current-voltage curve of the photoelectric conversion element obtained in Example 4 of the present invention during light irradiation.

【図10】本発明の比較例1における光電変換素子の製
造工程を示す断面図である。
FIG. 10 is a cross-sectional view showing the manufacturing process of the photoelectric conversion element in Comparative Example 1 of the present invention.

【図11】本発明の比較例1で得られた光電変換素子の
光照射時の電流−電圧曲線である。
FIG. 11 is a current-voltage curve of the photoelectric conversion element obtained in Comparative Example 1 of the present invention during light irradiation.

【符号の説明】[Explanation of symbols]

11 フラーレン層 12 π共役高分子層 32,51,71,81,104 C70薄膜 38,52,72,82,103 ポリピロール薄膜 21,33 電解液 22 作用極 23,34 対極 24,35 参照極 25,36 定電流電源 26,37 光源 31 KBr 53,83,105 Al層 84 Au層 101 ガラス 102 ITO11 Fullerene layer 12 π-conjugated polymer layer 32, 51, 71, 81, 104 C 70 thin film 38, 52, 72, 82, 103 Polypyrrole thin film 21, 33 Electrolyte 22 Working electrode 23, 34 Counter electrode 24, 35 Reference electrode 25 , 36 constant current power source 26, 37 light source 31 KBr 53, 83, 105 Al layer 84 Au layer 101 glass 102 ITO

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フラーレンを含有する半導体層と、その
半導体層上に形成された光電解重合π共役高分子層とを
具備したことを特徴とする光電変換素子。
1. A photoelectric conversion device comprising a semiconductor layer containing fullerene, and a photoelectrolytic polymerization π-conjugated polymer layer formed on the semiconductor layer.
JP8056473A 1996-03-13 1996-03-13 Photoelectric conversion element Pending JPH09246580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8056473A JPH09246580A (en) 1996-03-13 1996-03-13 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8056473A JPH09246580A (en) 1996-03-13 1996-03-13 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH09246580A true JPH09246580A (en) 1997-09-19

Family

ID=13028081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8056473A Pending JPH09246580A (en) 1996-03-13 1996-03-13 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH09246580A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100409040B1 (en) * 2001-06-13 2003-12-11 부진효 Preparation of organic polymer-like thin films from thiopene derivatives using plasma enhanced chemical vapor deposition
EP1447860A1 (en) * 2003-02-17 2004-08-18 Rijksuniversiteit Groningen Organic material photodiode
JP2004277736A (en) * 2003-02-28 2004-10-07 Kyoto Univ Conductive polymer, its producing method and organic solar cell using it
JP2005259436A (en) * 2004-03-10 2005-09-22 Kyushu Univ Solar cell and its manufacturing method
FR2871296A1 (en) * 2004-06-02 2005-12-09 Univ Cergy Pontoise PROCESS FOR PREPARING A PHOTO-ACTIVE SEMICONDUCTOR MATERIAL, MATERIAL THUS PRODUCED AND APPLICATIONS
JP2006269890A (en) * 2005-03-25 2006-10-05 Institute Of National Colleges Of Technology Japan Flexible solar cell using sodium chloride for substrate and its manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100409040B1 (en) * 2001-06-13 2003-12-11 부진효 Preparation of organic polymer-like thin films from thiopene derivatives using plasma enhanced chemical vapor deposition
EP1447860A1 (en) * 2003-02-17 2004-08-18 Rijksuniversiteit Groningen Organic material photodiode
WO2004073082A1 (en) * 2003-02-17 2004-08-26 Rijksuniversiteit Groningen Organic material photodiode
JP2006518110A (en) * 2003-02-17 2006-08-03 リイクスウニヴェルシタイト グロニンゲン Organic material photodiode
US7906797B2 (en) 2003-02-17 2011-03-15 Rijksuniversiteit Groningen Organic material photodiode
US8481996B2 (en) 2003-02-17 2013-07-09 Rijksuniversiteit Groningen Organic material photodiode
JP2004277736A (en) * 2003-02-28 2004-10-07 Kyoto Univ Conductive polymer, its producing method and organic solar cell using it
JP2005259436A (en) * 2004-03-10 2005-09-22 Kyushu Univ Solar cell and its manufacturing method
JP4730759B2 (en) * 2004-03-10 2011-07-20 国立大学法人九州大学 Solar cell and manufacturing method thereof
FR2871296A1 (en) * 2004-06-02 2005-12-09 Univ Cergy Pontoise PROCESS FOR PREPARING A PHOTO-ACTIVE SEMICONDUCTOR MATERIAL, MATERIAL THUS PRODUCED AND APPLICATIONS
WO2005124891A1 (en) * 2004-06-02 2005-12-29 Universite De Cergy-Pontoise Method for preparing a photoactive semiconductor material, material produced in this way, and associated applications
JP2006269890A (en) * 2005-03-25 2006-10-05 Institute Of National Colleges Of Technology Japan Flexible solar cell using sodium chloride for substrate and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4583025B2 (en) Nanoarray electrode manufacturing method and photoelectric conversion element using the same
US20040154657A1 (en) Apparatus and method for photovoltaic energy production based on internal charge emission in a solid-state heterostructure
KR100670857B1 (en) Conducting polymer nano structure photovoltaic device prepared by electrochemical polymerization method using block copolymer nano template and method for fabricating the same
US20100294350A1 (en) Photo-electrode comprising conductive non-metal film, and dye-sensitized solar cell comprising the same
US4488943A (en) Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends
Zhang et al. Graphene enabled all-weather solar cells for electricity harvest from sun and rain
US4585581A (en) Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
KR20070056581A (en) Electrode for a solar cell, manufacturing method thereof and a solar cell comprising the same
JP2002111031A (en) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
JP2012043640A (en) Photoelectric conversion element, method for manufacturing the same, and solar cell
Del-Oso et al. Electrochemical deposition of poly [ethylene-dioxythiophene](PEDOT) films on ITO electrodes for organic photovoltaic cells: control of morphology, thickness, and electronic properties
Micaroni et al. Photoelectrochemistry of poly (3-methylthiophene), I: Surface morphology and thickness effect
JPH09246580A (en) Photoelectric conversion element
Chen et al. Photoelectrochemical cells based on a novel porphyrin containing light harvesting conducting copolymer
KR100926263B1 (en) Conducting polymer composite film photovoltaic device prepared by electrochemical polymerization using conducting monomer functional group modified fullerene derivative and method for fabricating the same
KR100783333B1 (en) Method for fabricating solar cells using electrochemical deposition
JPH08222281A (en) Photochemical battery containing kind of fluorene, photoelectric transfer element and manufacture of electrode for photochemical battery
JP2947588B2 (en) Organic solar cells
KR100959760B1 (en) Photovoltaic cell and method of manufacturing the same
JPS60149177A (en) Manufacture of photoelectric conversion element
JPH0378978A (en) Manufacture of photo-electrochemical cell
JP2014179537A (en) Inorganic and organic hybrid photoelectric conversion device
Imoto et al. Merocyanine Dye-Sensitization of Polythiophene in a Conjugated Polymer/TiO2 p–n Hetero-Junction Solar Cell
JP2005150278A (en) Electrode and functional element
Dosenovicova et al. Selective photoelectrochemical deposition of polypyrrole onto hydrogenated a-Si for optoelectronic applications