JP2005259436A - Solar cell and its manufacturing method - Google Patents

Solar cell and its manufacturing method Download PDF

Info

Publication number
JP2005259436A
JP2005259436A JP2004067268A JP2004067268A JP2005259436A JP 2005259436 A JP2005259436 A JP 2005259436A JP 2004067268 A JP2004067268 A JP 2004067268A JP 2004067268 A JP2004067268 A JP 2004067268A JP 2005259436 A JP2005259436 A JP 2005259436A
Authority
JP
Japan
Prior art keywords
photoexcited
polymerization
solar cell
organic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004067268A
Other languages
Japanese (ja)
Other versions
JP4730759B2 (en
Inventor
Takeshi Akiyama
毅 秋山
Atsushi Yamada
淳 山田
Keitaro Sumiya
啓太郎 角谷
Yoshio Matsushita
美穂 松下
Hideki Nakayama
英樹 中山
Keiichi Kohama
恵一 小浜
Kensuke Takechi
憲典 武市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Toyota Motor Corp
Original Assignee
Kyushu University NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Toyota Motor Corp filed Critical Kyushu University NUC
Priority to JP2004067268A priority Critical patent/JP4730759B2/en
Publication of JP2005259436A publication Critical patent/JP2005259436A/en
Application granted granted Critical
Publication of JP4730759B2 publication Critical patent/JP4730759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solar cell superior in photoelectric transfer efficiency. <P>SOLUTION: The solar cell has a charge transporting polymer and a photoexcited organic molecule between two electrodes. In the organic solar cell, a charge transporting polymer layer having a charge transporting polymer as a main component is formed by polymerization, thereafter, a photoexcited organic molecule layer having photoexcited organic molecule as a main component is formed by polymerization by chemical bonding to the polymer layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、有機材料を用いた太陽電池及びその製法に関するものである。   The present invention relates to a solar cell using an organic material and a manufacturing method thereof.

化石燃料は、エネルギー源として現在主流を占めているが、有限であり、また、炭酸ガスによる地球温暖化の問題があり、代替エネルギーが求められている。
太陽電池は、このような問題がなく、注目を集めている。
現在、普及している太陽電池は、シリコン系である。
しかしながら、シリコン系太陽電池は、製造コストが高いという問題がある。
そこで、安価が有機材料を用いた太陽電池の開発が進められている。
有機太陽電池としては、電極間にポルフィリン誘導体を挟持したものが開示されている(特許文献1参照)。
しかし、ポルフィリン誘導体は、電荷輸送効果が十分でなかった。
Fossil fuels currently occupy the mainstream as an energy source, but are finite and have a problem of global warming due to carbon dioxide gas, and alternative energy is required.
Solar cells do not have such problems and are attracting attention.
Currently, solar cells that are widely used are silicon-based.
However, silicon-based solar cells have a problem of high manufacturing costs.
Therefore, development of inexpensive solar cells using organic materials has been promoted.
As an organic solar cell, a solar cell in which a porphyrin derivative is sandwiched between electrodes is disclosed (see Patent Document 1).
However, the porphyrin derivative has not been sufficient in charge transport effect.

そこで、光励起有機分子と電荷輸送高分子の混合溶液から電解重合による薄膜作成法による製造方法が開発された(非特許文献1参照)。   Then, the manufacturing method by the thin film preparation method by electropolymerization from the mixed solution of a photoexcited organic molecule and a charge transport polymer was developed (refer nonpatent literature 1).

しかし、この方法によると、光励起有機分子の電荷輸送高分子に対する量を少なくしないと成膜できないという問題があった。このため、光励起有機分子のドープ量は少なくせざるを得ず、光電変換性能が小さくなるという問題がある。また、光励起有機分子のドープ量が少ないため、アルミ等の金属界面とのショットキー障壁部位が少なくなり、電荷分離、移動が難しいため、乾式有機太陽電池に応用することは困難であった。   However, this method has a problem that the film cannot be formed unless the amount of the photoexcited organic molecule with respect to the charge transport polymer is reduced. For this reason, there is a problem that the doping amount of the photoexcited organic molecules must be reduced, and the photoelectric conversion performance is reduced. Further, since the amount of doped photoexcited organic molecules is small, the number of Schottky barrier portions with the metal interface such as aluminum is reduced, and charge separation and migration are difficult, so that it is difficult to apply to dry organic solar cells.

また、光励起有機分子と電荷輸送高分子の混合溶液をスピンコート法により成膜する方法は、光励起有機分子と電荷輸送高分子の結合が不十分であり、光励起有機分子で励起された電子の移動効率が低く、光電変換性能が低いという問題があった。   In addition, the method of forming a film of a mixed solution of photoexcited organic molecules and charge transporting polymer by spin coating method has insufficient bonding between photoexcited organic molecules and charge transporting polymer, and the movement of electrons excited by photoexcited organic molecules There was a problem that efficiency was low and photoelectric conversion performance was low.

更に、蒸着により成膜する方法もあるが(特許文献2参照)、これも光励起有機分子と電荷輸送高分子の結合が不十分であり、光励起有機分子で励起された電子の移動効率が低く、光電変換性能が低いという問題があった。
特開平6−252379号公報 特開2002−94085号公報 2002年 光化学討論会 予稿集
Furthermore, there is a method of forming a film by vapor deposition (see Patent Document 2), but this also has insufficient bonding between the photoexcited organic molecule and the charge transport polymer, and the transfer efficiency of the electrons excited by the photoexcited organic molecule is low. There was a problem that the photoelectric conversion performance was low.
JP-A-6-252379 JP 2002-94085 A Proceedings of 2002 Photochemical Conference

従って、本発明の目的は、このような問題点がなく、光電変換性能が高い太陽電池を提供することにある。   Accordingly, an object of the present invention is to provide a solar cell that does not have such problems and has high photoelectric conversion performance.

斯かる実情に鑑み、本発明者は、鋭意研究を行った結果、電荷輸送高分子を主成分とする電荷輸送高分子層と、光励起有機分子を主成分とする光励起有機分子層の2層に分け、これらの層を重合により形成し、かつ両層間も化学結合させれば、上記問題点がなく高性能の有機太陽電池が得られることを見出し本発明を完成した。   In view of such circumstances, as a result of intensive research, the inventor of the present invention has two layers: a charge transporting polymer layer mainly composed of a charge transporting polymer and a photoexcited organic molecule layer mainly composed of a photoexcited organic molecule. It was found that if these layers were formed by polymerization and both layers were chemically bonded, a high-performance organic solar cell could be obtained without the above-mentioned problems, and the present invention was completed.

即ち、本発明は次のものを提供するものである。   That is, the present invention provides the following.

<1> 2つの電極間に電荷輸送高分子と光励起有機分子を有する太陽電池であって、電荷輸送高分子を主成分とする電荷輸送高分子層を重合により形成した後、該高分子層に化学結合して光励起有機分子を主成分とする光励起有機分子層を重合により形成したことを特徴とする有機太陽電池。   <1> A solar cell having a charge transport polymer and a photoexcited organic molecule between two electrodes, and after forming a charge transport polymer layer mainly composed of a charge transport polymer by polymerization, An organic solar cell characterized in that a photoexcited organic molecular layer mainly composed of photoexcited organic molecules by chemical bonding is formed by polymerization.

<2> 重合が逐次重合である<1>記載の有機太陽電池。   <2> The organic solar cell according to <1>, wherein the polymerization is sequential polymerization.

<3> 電荷輸送高分子層における電荷輸送高分子に対する光励起有機分子の含有比率が0.1〜80mol%である<1>又は<2>記載の有機太陽電池。   <3> The organic solar cell according to <1> or <2>, wherein the content ratio of the photoexcited organic molecule to the charge transport polymer in the charge transport polymer layer is 0.1 to 80 mol%.

<4> 電荷輸送高分子を主成分とする電荷輸送高分子層に接する電極から、光励起有機分子を主成分とする光励起有機分子層に接触する電極に近づくにつれて、両層の電荷輸送高分子の含有量比が段階的に減少すると共に、光励起有機分子の含有量比が段階的に増加し、かつ電荷輸送高分子と光励起有機分子は互いに共有結合していることを特徴とする<1>、<2>又は<3>記載の有機太陽電池。   <4> From the electrode in contact with the charge transport polymer layer mainly composed of the charge transport polymer to the electrode in contact with the photoexcited organic molecule layer mainly composed of the photoexcited organic molecule, <1> characterized in that the content ratio decreases stepwise, the content ratio of the photoexcited organic molecule increases stepwise, and the charge transport polymer and the photoexcited organic molecule are covalently bonded to each other. <2> or <3> The organic solar cell according to <3>.

<5> 光励起有機分子を主成分とする光励起有機分子層中で、電荷輸送高分子に対する光励起有機分子の含有比率が0.1〜80mol%である請求項1〜4の何れか1項記載の有機太陽電池。   <5> The content ratio of the photoexcited organic molecule to the charge transporting polymer in the photoexcited organic molecule layer mainly composed of the photoexcited organic molecule is 0.1 to 80 mol%. 5. Organic solar cell.

<6> 電極上に電荷輸送高分子を主成分とする電荷輸送高分子層を重合により形成した後、該高分子層に化学結合して光励起有機分子を主成分とする光励起有機分子層を重合により形成し、次いで他方の電極を形成することを特徴とする有機太陽電池の製造方法。   <6> A charge transporting polymer layer mainly composed of a charge transporting polymer is formed on the electrode by polymerization, and then chemically bonded to the polymer layer to polymerize the photoexcited organic molecule layer mainly composed of photoexcited organic molecules. And then forming the other electrode. A method for producing an organic solar cell, comprising:

<7> 電極上に、光励起有機分子を主成分とする光励起有機分子層を重合により形成した後、該有機分子層に化学結合して電荷輸送高分子を主成分とする電荷輸送高分子層を重合により形成し、次いで他方の電極を形成することを特徴とする有機太陽電池の製造方法。   <7> A photoexcited organic molecular layer mainly composed of photoexcited organic molecules is formed on the electrode by polymerization, and then a charge transporting polymer layer mainly composed of the charge transporting polymer is chemically bonded to the organic molecular layer. A method for producing an organic solar cell, characterized by forming by polymerization and then forming the other electrode.

<8> 重合が電解重合である<6>又は<7>記載の製造方法。   <8> The production method according to <6> or <7>, wherein the polymerization is electrolytic polymerization.

<9> 反応液を表面上に流動させて行うことを特徴とする<6>、<7>又は<8>記載の製造方法。   <9> The production method according to <6>, <7>, or <8>, wherein the reaction liquid is flowed on the surface.

本発明の有機太陽電池は、光電変換性能が高い乾式有機太陽電池である。   The organic solar cell of the present invention is a dry organic solar cell with high photoelectric conversion performance.

本発明の太陽電池は、2つの電極間に電荷輸送高分子と光励起有機分子を有する太陽電池であって、電荷輸送高分子を主成分とする電荷輸送高分子層を重合により形成した後、該高分子層に化学結合して光励起有機分子を主成分とする光励起有機分子層を重合により形成したことを特徴とする。   The solar cell of the present invention is a solar cell having a charge transport polymer and a photoexcited organic molecule between two electrodes, and after forming a charge transport polymer layer containing the charge transport polymer as a main component by polymerization, A photoexcited organic molecular layer mainly composed of photoexcited organic molecules bonded chemically to the polymer layer is formed by polymerization.

以下、本発明を図面を用いて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

図1は、本発明の有機太陽電池の1例を示す断面図である。   FIG. 1 is a cross-sectional view showing an example of the organic solar battery of the present invention.

図1において、1は基板であり、材料としては、ガラスが一般的であるが、透明樹脂等も用いることができる。   In FIG. 1, reference numeral 1 denotes a substrate, and the material is generally glass, but a transparent resin or the like can also be used.

基板1上には、電極2が設けられている。この電極の材料としては、金、ITO、FTO等が挙げられる。電極を作成するには、このような金属を蒸着する方法が挙げられる。
電極2上には、電荷輸送高分子層3が設けられている。ここで用いられる電荷輸送高分子としては、ポリチオフェン、トリフェニルアミン、ポリアニリン、ポリピロール、フタロシアニン等が挙げられ、これらは、1種又は2種以上を選択して用いることができる。
An electrode 2 is provided on the substrate 1. Examples of the material for this electrode include gold, ITO, FTO and the like. In order to produce an electrode, the method of vapor-depositing such a metal is mentioned.
On the electrode 2, a charge transporting polymer layer 3 is provided. Examples of the charge transporting polymer used here include polythiophene, triphenylamine, polyaniline, polypyrrole, phthalocyanine and the like, and these can be used alone or in combination of two or more.

電荷輸送高分子層は、これら電荷輸送高分子を主成分とするが、後述する光励起有機分子を含むことが好ましい。電荷輸送高分子層中の電荷輸送高分子と光励起有機分子の量比は、同層中一定でもよいが、電極2から離れ、電極5に近づくにつれて、電荷輸送高分子の量が段階的に少なくなるような多層構造が好ましい。電荷輸送高分子層中の電荷輸送高分子に対する光励起有機分子の含有比率は、0.1〜80mol%とすることが好ましい。   The charge transport polymer layer contains these charge transport polymers as the main component, but preferably contains photoexcited organic molecules described later. The amount ratio of the charge transport polymer and the photoexcited organic molecule in the charge transport polymer layer may be constant in the same layer, but the amount of the charge transport polymer gradually decreases as the distance from the electrode 2 approaches the electrode 5. Such a multilayer structure is preferred. The content ratio of the photoexcited organic molecule to the charge transport polymer in the charge transport polymer layer is preferably 0.1 to 80 mol%.

電荷輸送高分子層を形成する方法は、重合によるが、逐次重合で電解重合とすることが好ましい。逐次重合法によれば、共有結合による高効率電子移動が可能となり、好ましい。具体的には、例えば電荷輸送高分子としてポリチオフェン(pTh)層を形成する場合、溶媒としてジクロロメタン、電解質としてテトラブチルアンモニウムヘキサフルオロホスフェート(TBAPF6)、及びビチオフェン(BITh)の混合溶液を用いて電解重合をおこなう。このとき、電位を0〜2Vで掃引(50mV/s)して電解重合反応によりpTh層を形成することが好ましい。   The method for forming the charge transporting polymer layer is based on polymerization, but it is preferable to perform sequential polymerization and electrolytic polymerization. The sequential polymerization method is preferable because it enables highly efficient electron transfer by covalent bond. Specifically, for example, when a polythiophene (pTh) layer is formed as a charge transport polymer, electrolytic polymerization is performed using a mixed solution of dichloromethane as a solvent, tetrabutylammonium hexafluorophosphate (TBAPF6), and bithiophene (BITh) as an electrolyte. To do. At this time, it is preferable to form a pTh layer by an electropolymerization reaction by sweeping the potential at 0 to 2 V (50 mV / s).

電荷輸送高分子層上3の上には、光励起有機分子層4が設けられている。これら両層は、化学接合させ、電荷の流れを良好にする。化学結合としては共有結合が好ましい。   A photoexcited organic molecular layer 4 is provided on the charge transporting polymer layer 3. Both these layers are chemically bonded to improve the flow of charge. As the chemical bond, a covalent bond is preferable.

光励起有機分子層で用いられる光励起有機分子としては、ポルフィリン、フラーレン、フタロシアニン、ルテニウム錯体等が挙げられる。   Examples of the photoexcited organic molecule used in the photoexcited organic molecular layer include porphyrin, fullerene, phthalocyanine, and ruthenium complex.

光励起有機分子層は、これら光励起有機分子を主成分とするが前述の電荷輸送高分子を含むことが好ましい。光励起有機分子中の光励起有機分子と電荷輸送高分子との量比は、同層中一定でもよいが、電極2から離れ、電極5に近づくにつれて、電荷輸送高分子の量が段階的に少なくなるような多層構造が好ましい。このようにすることにより、電極5側の光励起有機分子量が増大し、電極界面とのショットキー障壁部位が増大し、電荷分離移動効率を向上させることができ、太陽電池の光電変換効率が向上する。電荷輸送高分子に対する光励起有機分子の量は、0.1〜80mol%とすることが好ましい。   The photoexcited organic molecular layer is mainly composed of these photoexcited organic molecules, but preferably contains the above-described charge transporting polymer. The quantity ratio of the photoexcited organic molecule to the charge transporting polymer in the photoexcited organic molecule may be constant in the same layer, but the amount of the charge transporting polymer decreases stepwise as the distance from the electrode 2 approaches the electrode 5. Such a multilayer structure is preferred. By doing so, the photoexcited organic molecular weight on the electrode 5 side is increased, the Schottky barrier portion with the electrode interface is increased, the charge separation transfer efficiency can be improved, and the photoelectric conversion efficiency of the solar cell is improved. . The amount of the photoexcited organic molecule with respect to the charge transport polymer is preferably 0.1 to 80 mol%.

光励起有機分子層を形成する方法は、重合によるが、逐次重合で電解重合とすることが好ましい。具体的には、例えば光励起有機分子としてポルフィリン誘導体(TThP)層を形成する場合、溶媒としてジクロロメタン、電解質としてテトラブチルアンモニウムヘキサフルオロホスフェート(TBAPF6)、及びポルフィリン誘導体(TThP)の混合溶液を用いて電解重合をおこなう。このとき、電位を0〜2Vで掃引(50mV/s)して電解重合反応によりTThP層を形成することが好ましい。このとき、ポリチオフェン(pTh)に対するポルフィリン誘導体(TThP)の相対量を増大させるために、電解重合回数を5〜40サイクルで任意に調整することができる。   The method for forming the photoexcited organic molecular layer is based on polymerization, but it is preferable to perform electrolytic polymerization by sequential polymerization. Specifically, for example, when forming a porphyrin derivative (TThP) layer as a photoexcited organic molecule, electrolysis is performed using a mixed solution of dichloromethane as a solvent, tetrabutylammonium hexafluorophosphate (TBAPF6) as an electrolyte, and a porphyrin derivative (TThP). Polymerize. At this time, it is preferable to form a TThP layer by an electrolytic polymerization reaction by sweeping the potential at 0 to 2 V (50 mV / s). At this time, in order to increase the relative amount of the porphyrin derivative (TThP) to the polythiophene (pTh), the number of times of electrolytic polymerization can be arbitrarily adjusted in 5 to 40 cycles.

上記2つの電解重合反応時においては、反応液を表面上に流動させながら反応させることが好ましい。具体的には、反応液を攪拌させることが挙げられる。このようにすることにより、反応表面上に溶液の対流が生じ、膜の緻密化を促進させて再現性、均一性、膜強度を増加させることができ、電子又は正孔の伝導性を向上させることができる。さらに、短絡防止効果もある。反応液の流速は、0.01〜3000cm/秒が好ましく、更に、1〜300cm/秒が好ましい。また、攪拌は、スターラーの回転速度が1〜5000rpmが好ましく、特に100〜500rpmが好ましい。   At the time of the two electrolytic polymerization reactions, it is preferable that the reaction is carried out while flowing the reaction solution on the surface. Specifically, the reaction liquid can be stirred. By doing so, convection of the solution is generated on the reaction surface, and the densification of the film can be promoted, so that reproducibility, uniformity and film strength can be increased, and the conductivity of electrons or holes is improved. be able to. Furthermore, there is also a short circuit prevention effect. The flow rate of the reaction liquid is preferably 0.01 to 3000 cm / second, and more preferably 1 to 300 cm / second. The stirring is preferably performed at a stirrer rotational speed of 1 to 5000 rpm, particularly preferably 100 to 500 rpm.

光励起有機分子4上には、電極5が形成されている。この電極は、アルミニウム、等の蒸着により形成される。
電極5の上には、ガラス基板6がある。ガラス基板6は、電極5を蒸着した後、光励起有機分子層上に設置される。
本発明においては、上記層の他、他の層を設けてもよい。このような層としては、例えば、ポリ 3−ドデシルチオフェン(P3DT)を含有する短絡防止層等が挙げられる。
An electrode 5 is formed on the photoexcited organic molecule 4. This electrode is formed by vapor deposition of aluminum or the like.
On the electrode 5 is a glass substrate 6. The glass substrate 6 is placed on the photoexcited organic molecular layer after the electrode 5 is deposited.
In the present invention, in addition to the above layers, other layers may be provided. Examples of such a layer include a short-circuit prevention layer containing poly 3-dodecylthiophene (P3DT).

Figure 2005259436
Figure 2005259436

このような構造を有する本発明の太陽電池に、光を照射することにより、光励起有機分子の電子が励起され、発生した電子は、電極5の界面とのショットキー障壁を用いて電極5側に流れ、光励起有機分子で発生した正孔は、電荷輸送高分子を通り電極2に流れる。   By irradiating the solar cell of the present invention having such a structure with light, the electrons of the photoexcited organic molecules are excited, and the generated electrons are directed to the electrode 5 side using a Schottky barrier with the interface of the electrode 5. The holes generated by the photoexcited organic molecules flow to the electrode 2 through the charge transport polymer.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example is given and the present invention is explained still in detail, the present invention is not limited to these.

1、2(逐次重合の系)
真空蒸着して作成したくし型金電極上にP3DTクロロホルム溶液(23mM)をスピンコート(6回)法により塗布し、P3DT(S)/Auを得た。脱気条件下でP3DT(S)/Auを作用極とし1mMのBiThおよび0.1MのnBu4NPF6を含むCH2Cl2溶液(1mM)中、50mV/secで0〜2Vvs.Ag wireの範囲で10回電位挿引を行って、PolyBiTh(10)/P3DT(S)/Au(括弧内の数字は重合回数を示す。以下同じ)を得た。洗浄、乾燥の後、1mMのTThPおよび0.1MのnBu4NPF6を含むCH2Cl2溶液中、50mV/secで0〜2Vvs.Ag wireの範囲で1回もしくは10回電位挿引を行い、polyTThP(1)/polyBiTh(10)/P3DT(S)/AuまたはpolyTThP(10)/polyBiTh(10)/P3DT(S)/Auを得た。引き続きくし型マスクを施してTThP側にアルミニウムを真空蒸着し、Al/PolyTThP(1)/polyBiTh(10)/P3DT(S)/Au または Al/polyTThP(10)/polyBiTh(10)/P3DT(S)/Auを得た。
1, 2 (Sequential polymerization system)
A P3DT chloroform solution (23 mM) was applied by spin coating (six times) on a comb-shaped gold electrode prepared by vacuum evaporation to obtain P3DT (S) / Au. In a CH 2 Cl 2 solution (1 mM) containing 1 mM BiTh and 0.1 M nBu 4 NPF 6 using P3DT (S) / Au as the working electrode under degassing conditions, 0 to 2 V vs. 0 at 50 mV / sec. Potential insertion was performed 10 times in the range of Ag wire to obtain PolyBiTh (10) / P3DT (S) / Au (the numbers in parentheses indicate the number of polymerizations; the same applies hereinafter). After washing and drying, 0 to 2 Vvs. At 50 mV / sec in a CH 2 Cl 2 solution containing 1 mM TThP and 0.1 M nBu 4 NPF 6 . In the range of Ag wire, potential insertion is performed once or 10 times, and polyTThP (1) / polyBiTh (10) / P3DT (S) / Au or polyTThP (10) / polyBiTh (10) / P3DT (S) / Au Obtained. Subsequently, a comb mask is applied, and aluminum is vacuum-deposited on the TThP side, and Al / PolyTThP (1) / polyBiTh (10) / P3DT (S) / Au or Al / polyTThP (10) / polyBiTh (10) / P3DT (S ) / Au was obtained.

3、4(比較例、混合の系)
真空蒸着して作成したくし型金電極上に P3DT クロロホルム溶液(23mM)をスピンコート(6回)法により塗布し、P3DT(S)/Auを得た。また同一の P3DT溶液を金電極上にデップコートしてP3DT(D)/Auを得た。脱気条件下でこれらの電極を作用極とし0.25mM TThP、0.75mM BiTh、0.1M nBu4NPF6を含むCH2Cl2溶液中、50mV/secで0〜2Vvs.Ag wireの範囲で10回電位挿引を行って、poly(BiTh+TThP)(10)/P3DT(S)/Auまたはpoly(BiTh+TThP)(10)/P3DT(D)/Auを得た。引き続きくし型マスクを施してBiTh+TThP側にアルミニウムを真空蒸着し、Al/poly(BiTh+TThP)(10)/P3DT(S)/AuまたはAl/poly(BiTh+TThP)(10)/P3DT(D)/Auを得た。
3, 4 (Comparative example, mixed system)
A P3DT chloroform solution (23 mM) was applied by spin coating (six times) on a comb-shaped gold electrode prepared by vacuum evaporation to obtain P3DT (S) / Au. The same P3DT solution was dip coated on the gold electrode to obtain P3DT (D) / Au. Under deaeration conditions, these electrodes were used as working electrodes. In a CH 2 Cl 2 solution containing 0.25 mM TThP, 0.75 mM BiTh, and 0.1 M nBu 4 NPF 6, 0 to 2 Vvs. The potential insertion was performed 10 times in the range of Ag wire to obtain poly (BiTh + TThP) (10) / P3DT (S) / Au or poly (BiTh + TThP) (10) / P3DT (D) / Au. Subsequently, a comb mask is applied, and aluminum is vacuum-deposited on the BiTh + TThP side, and Al / poly (BiTh + TThP) (10) / P3DT (S) / Au or Al / poly (BiTh + TThP) (10) / P3DT (D) / Au Obtained.

Figure 2005259436
Figure 2005259436

括弧内の数字は重合回数を示す。(S)はスピンコート、(D)はディッピングを示す。 The numbers in parentheses indicate the number of polymerizations. (S) shows spin coating, and (D) shows dipping.

1)、2)、3)を比較することで、逐次重合の効果により短絡光電流が増加していることが判る。 By comparing 1), 2) and 3), it can be seen that the short-circuit photocurrent is increased due to the effect of sequential polymerization.

[試験例1] [Test Example 1]

塩化メチレンに対し、1.50mmol/lの濃度のビチオフェンと、0.25mmol/lの濃度のテトラチエニルポルフィリンとなるようにそれぞれを溶解し、さらに0.1mmol/lの濃度になるようにテトラブチルアンモニウムヘキサフルオロリン酸を溶解させた。この溶液をナシ型フラスコに入れ、そこに電線によって外部から通電可能なITOガラスを浸漬させた。さらに対極用の白金電極と参照電極用の銀電極を液中に浸し、この溶液をフラスコ中で磁気撹拌した(攪拌は250rpmで行った)。サイクリックボルタンメトリーによってこのITOガラスの電位を自然電位から+2Vまで毎分50mVの速さで昇圧し、その後直ちに同じ速度で0Vまで降圧した。ここまでの一連の操作の再現性を確認するため、同様の製膜をさらに2回(計3回)行った。   In methylene chloride, each of bithiophene at a concentration of 1.50 mmol / l and tetrathienylporphyrin at a concentration of 0.25 mmol / l are dissolved, and tetrabutyl is further added to a concentration of 0.1 mmol / l. Ammonium hexafluorophosphoric acid was dissolved. This solution was put into a pear-shaped flask, and ITO glass that can be energized from the outside by electric wires was immersed therein. Further, a platinum electrode for a counter electrode and a silver electrode for a reference electrode were immersed in the liquid, and this solution was magnetically stirred in a flask (stirring was performed at 250 rpm). The potential of the ITO glass was increased from the natural potential to +2 V by cyclic voltammetry at a rate of 50 mV per minute, and then immediately decreased to 0 V at the same rate. In order to confirm the reproducibility of the series of operations so far, the same film formation was further performed twice (total 3 times).

得られたサイクリックボルタモグラムを図3にまとめた。これらの曲線は非常に近接しており、再現性のある製膜ができていることが分かる。また、2V時での電流値が非常に高いことから、溶液との電子のやりとりが起こりやすい膜、すなわち緻密な構造で、かつ、電解液が染みこみやすい構造の膜になっていることが分かる。   The obtained cyclic voltammograms are summarized in FIG. These curves are very close and it can be seen that a reproducible film is formed. In addition, since the current value at 2 V is very high, it can be seen that the film is easy to exchange electrons with the solution, that is, a film having a dense structure and a structure in which the electrolyte solution can easily permeate. .

[試験例2]
水に対し、0.1mmol/lの過塩素酸ナトリウムと5mmol/lのメチルビオロゲンを溶解させたものを電解液とし、白金電極を対極に、銀電極を参照電極として、白色光を照射し、実施例1で作製した高分子複合膜電極(3枚中はじめの1枚)の光電流を測定して、外部量子効率を算出した結果を図4に示す。
[Test Example 2]
A solution in which 0.1 mmol / l sodium perchlorate and 5 mmol / l methyl viologen are dissolved in water is used as an electrolyte, a platinum electrode is used as a counter electrode, and a silver electrode is used as a reference electrode. FIG. 4 shows the result of calculating the external quantum efficiency by measuring the photocurrent of the polymer composite membrane electrode (first one of the three) prepared in Example 1.

この結果から、上述の方法によって作製された高分子複合膜電極は、非常に高い外部量子効率を示すことが分かる。   From this result, it can be seen that the polymer composite membrane electrode produced by the above-described method exhibits a very high external quantum efficiency.

[比較(試験)例1]
上記の試験例1における、撹拌しながら電解重合を行うことを止めて、溶液を静止状態にし、そのまま電解重合を行った結果のサイクリックボルタモグラムを図3にまとめた(計3回)。
[Comparative (Test) Example 1]
The cyclic voltammograms of the results of the above-described Test Example 1 obtained by stopping the electrolytic polymerization while stirring and making the solution stationary and performing the electrolytic polymerization as it is are summarized in FIG. 3 (total 3 times).

この結果から、攪拌下の場合と異なり、ピーク位置や形状、2V時の電流などに大きくばらつきがあることが分かる。また、2V時の電流値が低いため、溶液との電子のやりとりが起こりにくい膜、すなわち空隙は多いが電解液が染みこみにくい膜になっていることが分かる。   From this result, it can be seen that there is a large variation in the peak position, shape, current at 2 V, and the like, unlike the case of stirring. In addition, since the current value at 2 V is low, it can be seen that the film is less likely to exchange electrons with the solution, that is, the film has a large number of voids but does not easily soak in the electrolyte.

[比較(試験)例2]
また、試験例1での光電流測定と全く同様の方法で、比較(試験)例1で作製した高分子複合膜電極(3枚中はじめの1枚)の光電流測定を行って、外部量子効率を算出した結果を図4にまとめた。
撹拌なしの場合は外部量子効率も大幅に低下することが分かる。
[Comparison (Test) Example 2]
Further, the photocurrent measurement of the polymer composite membrane electrode (first one of the three) prepared in Comparative (Test) Example 1 was performed in the same manner as the photocurrent measurement in Test Example 1, and the external quantum was measured. The results of calculating the efficiency are summarized in FIG.
It can be seen that the external quantum efficiency is greatly reduced without stirring.

本発明の太陽電池は、重合、特に逐次重合により作成されるため、共有結合による高効率電子移動が可能となる。また、光励起有機分子と電荷輸送高分子との量比を変化させることにより、電極界面とのショットキー障壁部位が増大し、電荷分離移動効率を向上させることができ、太陽電池の光電変換効率が向上する。また、反応液を表面上に流動させながら反応させることにより、反応表面上に溶液の対流が生じ、膜の緻密化を促進させて再現性、均一性、膜強度を増加させることができ、電子又は正孔の伝導性を向上させることができ、更に短絡防止効果もある。   Since the solar cell of the present invention is produced by polymerization, particularly sequential polymerization, highly efficient electron transfer by a covalent bond is possible. In addition, by changing the quantity ratio between the photoexcited organic molecule and the charge transport polymer, the Schottky barrier site with the electrode interface can be increased, the charge separation transfer efficiency can be improved, and the photoelectric conversion efficiency of the solar cell can be improved. improves. In addition, by reacting while allowing the reaction solution to flow on the surface, convection of the solution occurs on the reaction surface, which can promote densification of the film and increase reproducibility, uniformity, and film strength. Alternatively, the hole conductivity can be improved, and further, there is an effect of preventing a short circuit.

本発明の太陽電池の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the solar cell of this invention. 本発明の太陽電池の製造の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of manufacture of the solar cell of this invention. 膜の再現性を示す図である。It is a figure which shows the reproducibility of a film | membrane. 外部量子効率を示す図である。It is a figure which shows external quantum efficiency.

符号の説明Explanation of symbols

1 基板
2 電極
3 電荷輸送高分子層
4 光励起有機分子層
5 電極
6 基板
1 Substrate 2 Electrode 3 Charge Transport Polymer Layer 4 Photoexcited Organic Molecular Layer 5 Electrode 6 Substrate

Claims (9)

2つの電極間に電荷輸送高分子と光励起有機分子を有する太陽電池であって、電荷輸送高分子を主成分とする電荷輸送高分子層を重合により形成した後、該高分子層に化学結合して光励起有機分子を主成分とする光励起有機分子層を重合により形成したことを特徴とする有機太陽電池。   A solar cell having a charge transport polymer and a photoexcited organic molecule between two electrodes, wherein a charge transport polymer layer mainly composed of a charge transport polymer is formed by polymerization and then chemically bonded to the polymer layer. An organic solar cell comprising a photoexcited organic molecular layer mainly composed of photoexcited organic molecules formed by polymerization. 重合が逐次重合である請求項1記載の有機太陽電池。   The organic solar cell according to claim 1, wherein the polymerization is sequential polymerization. 電荷輸送高分子層における電荷輸送高分子に対する光励起有機分子の含有比率が0.1〜80mol%である請求項1又は2記載の有機太陽電池。   The organic solar cell according to claim 1 or 2, wherein the content ratio of the photoexcited organic molecule to the charge transport polymer in the charge transport polymer layer is 0.1 to 80 mol%. 電荷輸送高分子を主成分とする電荷輸送高分子層に接する電極から、光励起有機分子を主成分とする光励起有機分子層に接触する電極に近づくにつれて、両層の電荷輸送高分子の含有量比が段階的に減少すると共に、光励起有機分子の含有量比が段階的に増加し、かつ電荷輸送高分子と光励起有機分子は互いに共有結合していることを特徴とする請求項1、2又は3記載の有機太陽電池。   The content ratio of the charge transport polymer in both layers approaches the electrode in contact with the photoexcited organic molecule layer mainly composed of photoexcited organic molecules from the electrode in contact with the charge transport polymer layer composed mainly of the charge transport polymer. The content ratio of the photoexcited organic molecule increases stepwise, and the charge transporting polymer and the photoexcited organic molecule are covalently bonded to each other. The organic solar cell described. 光励起有機分子を主成分とする光励起有機分子層中で、電荷輸送高分子に対する光励起有機分子の含有比率が0.1〜80mol%である請求項1〜4の何れか1項記載の有機太陽電池。   The organic solar cell according to any one of claims 1 to 4, wherein a content ratio of the photoexcited organic molecule to the charge transporting polymer is 0.1 to 80 mol% in the photoexcited organic molecule layer containing the photoexcited organic molecule as a main component. . 電極上に電荷輸送高分子を主成分とする電荷輸送高分子層を重合により形成した後、該高分子層に化学結合して光励起有機分子を主成分とする光励起有機分子層を重合により形成し、次いで他方の電極を形成することを特徴とする有機太陽電池の製造方法。   A charge transporting polymer layer mainly composed of a charge transporting polymer is formed on the electrode by polymerization, and then a photoexcited organic molecular layer mainly composed of photoexcited organic molecules is formed by polymerization through chemical bonding to the polymer layer. Then, the other electrode is formed, A method for producing an organic solar cell, 電極上に、光励起有機分子を主成分とする光励起有機分子層を重合により形成した後、該有機分子層に化学結合して電荷輸送高分子を主成分とする電荷輸送高分子層を重合により形成し、次いで他方の電極を形成することを特徴とする有機太陽電池の製造方法。   A photo-excited organic molecular layer mainly composed of photo-excited organic molecules is formed on the electrode by polymerization, and then a charge-transporting polymer layer mainly composed of charge-transporting polymer is formed by polymerization and bonded to the organic molecular layer. Then, the other electrode is formed, and the manufacturing method of the organic solar cell characterized by the above-mentioned. 重合が電解重合である請求項6又は7記載の製造方法。   The production method according to claim 6 or 7, wherein the polymerization is electrolytic polymerization. 反応液を表面上に流動させて行うことを特徴とする請求項6、7又は8記載の製造方法。   The production method according to claim 6, 7 or 8, wherein the reaction solution is flowed on the surface.
JP2004067268A 2004-03-10 2004-03-10 Solar cell and manufacturing method thereof Expired - Fee Related JP4730759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067268A JP4730759B2 (en) 2004-03-10 2004-03-10 Solar cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067268A JP4730759B2 (en) 2004-03-10 2004-03-10 Solar cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005259436A true JP2005259436A (en) 2005-09-22
JP4730759B2 JP4730759B2 (en) 2011-07-20

Family

ID=35084963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067268A Expired - Fee Related JP4730759B2 (en) 2004-03-10 2004-03-10 Solar cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4730759B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311725A (en) * 2006-05-22 2007-11-29 Kyushu Univ Photoresponsive electrode for solar cell, method of manufacturing the same, and organic polymer solar cell employing the same
WO2009113599A1 (en) * 2008-03-12 2009-09-17 住友化学株式会社 Organic photoelectric conversion device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149177A (en) * 1984-01-13 1985-08-06 Mitsubishi Electric Corp Manufacture of photoelectric conversion element
JPS60251675A (en) * 1984-05-29 1985-12-12 Nippon Telegr & Teleph Corp <Ntt> Conductive high-molecular film solar cell and manufacture thereof
JPH04337675A (en) * 1991-05-14 1992-11-25 Mitsubishi Paper Mills Ltd Optoelectric transducer
JPH08253758A (en) * 1995-03-17 1996-10-01 Fujitsu Ltd Photoelectric device and its production
JPH09246580A (en) * 1996-03-13 1997-09-19 Toshiba Corp Photoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149177A (en) * 1984-01-13 1985-08-06 Mitsubishi Electric Corp Manufacture of photoelectric conversion element
JPS60251675A (en) * 1984-05-29 1985-12-12 Nippon Telegr & Teleph Corp <Ntt> Conductive high-molecular film solar cell and manufacture thereof
JPH04337675A (en) * 1991-05-14 1992-11-25 Mitsubishi Paper Mills Ltd Optoelectric transducer
JPH08253758A (en) * 1995-03-17 1996-10-01 Fujitsu Ltd Photoelectric device and its production
JPH09246580A (en) * 1996-03-13 1997-09-19 Toshiba Corp Photoelectric conversion element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311725A (en) * 2006-05-22 2007-11-29 Kyushu Univ Photoresponsive electrode for solar cell, method of manufacturing the same, and organic polymer solar cell employing the same
WO2009113599A1 (en) * 2008-03-12 2009-09-17 住友化学株式会社 Organic photoelectric conversion device
CN101971383B (en) * 2008-03-12 2013-01-09 住友化学株式会社 Organic photoelectric conversion device
US8723163B2 (en) 2008-03-12 2014-05-13 Sumitomo Chemical Company, Limited Organic photoelectric converter

Also Published As

Publication number Publication date
JP4730759B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
Kavan et al. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells
Janaky et al. Bringing conjugated polymers and oxide nanoarchitectures into intimate contact: Light-induced electrodeposition of polypyrrole and polyaniline on nanoporous WO3 or TiO2 nanotube array
Song et al. Toward higher energy conversion efficiency for solid polymer electrolyte dye-sensitized solar cells: ionic conductivity and TiO2 pore-filling
US20060070651A1 (en) Highly efficient counter electrode for dye-sensitized solar cell and method of producing the same
Hsu et al. A liquid junction photoelectrochemical solar cell based on p-type MeNH3PbI3 perovskite with 1.05 V open-circuit photovoltage
Veerender et al. Free-standing polypyrrole films as substrate-free and Pt-free counter electrodes for quasi-solid dye-sensitized solar cells
JP2006518471A (en) Electrode system manufacturing method, electrode system manufactured therefrom, and electric element including the same
Cai et al. Self-assembly of graphene oxide/polyaniline multilayer counter electrodes for efficient dye-sensitized solar cells
JP2006318770A (en) Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same
Chi et al. Rubbery copolymer electrolytes containing polymerized ionic liquid for dye-sensitized solar cells
Yang et al. Electroactive and sustainable Cu-MoF/PEDOT composite electrocatalysts for multiple redox mediators and for high-performance dye-sensitized solar cells
Kim et al. Origin of high open-circuit voltage in solid state dye-sensitized solar cells employing polymer electrolyte
JP5194893B2 (en) Dye-sensitized photoelectric conversion element and solar cell
Park et al. Poly (3, 4-Ethylenedioxythiophene) inverse opal electrode fabricated from poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate)-filled polystyrene template for dye-sensitized solar cells
Yan et al. Solar cells constructed with polythiophene thin films grown along tethered thiophene–dye conjugates via photoelectrochemical polymerization
KR101726127B1 (en) Counter electrode with block copolymer for dye sensitized solar cell and dye sensitized solar cell comprising the same
Kim et al. Solid-state dye-sensitized TiO2 solar cells using poly (3, 4-ethylenedioxythiophene) as substitutes of iodine/iodide electrolytes and noble metal catalysts on FTO counter electrodes
Olaya et al. A self-assembled organic/metal junction for water photo-oxidation
Gunasekera et al. Conducting polymers as cost effective counter electrode material in dye-sensitized solar cells
JP2007324080A (en) Electrolyte-catalyst composite electrode for dye-sensitized solar battery, its manufacturing method, and dye-sensitized solar battery comprising the same
JP2003317814A (en) Photovoltaic cell
Kang et al. Covalent attachment of ferrocene to silicon microwire arrays
JP4730759B2 (en) Solar cell and manufacturing method thereof
Shao et al. Toward stable and efficient solar cells with electropolymerized films
CN103503097B (en) It is formed with the metal-oxide semiconductor (MOS) electrode of porous film, the DSSC utilizing this electrode and manufacture method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees