JP5194893B2 - Dye-sensitized photoelectric conversion element and solar cell - Google Patents

Dye-sensitized photoelectric conversion element and solar cell Download PDF

Info

Publication number
JP5194893B2
JP5194893B2 JP2008056082A JP2008056082A JP5194893B2 JP 5194893 B2 JP5194893 B2 JP 5194893B2 JP 2008056082 A JP2008056082 A JP 2008056082A JP 2008056082 A JP2008056082 A JP 2008056082A JP 5194893 B2 JP5194893 B2 JP 5194893B2
Authority
JP
Japan
Prior art keywords
group
dye
substituent
photoelectric conversion
heterocyclic group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008056082A
Other languages
Japanese (ja)
Other versions
JP2009212035A (en
Inventor
秀和 川▲崎▼
文貴 望月
英也 三輪
一国 西村
明彦 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2008056082A priority Critical patent/JP5194893B2/en
Publication of JP2009212035A publication Critical patent/JP2009212035A/en
Application granted granted Critical
Publication of JP5194893B2 publication Critical patent/JP5194893B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明は、色素増感光電変換素子及びこれを用いた太陽電池に関する。   The present invention relates to a dye-sensitized photoelectric conversion element and a solar cell using the same.

1991年に増感色素としてルテニウム錯体を用いた新規色素増感太陽電池が10%の変換効率を持つことがグレッツェル教授により発表(非特許文献1参照)されて以来、色素増感太陽電池は次世代の電力源として注目されている。ルテニウム錯体は長波長領域に吸収を持つために幅広い波長の光を取り入れることができ、そのために高い変換効率が達成されたものと考えられる。   Since 1991, when Prof. Gretzel announced that a new dye-sensitized solar cell using a ruthenium complex as a sensitizing dye has a conversion efficiency of 10% (see Non-Patent Document 1), It is attracting attention as a generational power source. Since ruthenium complexes have absorption in the long wavelength region, light of a wide range of wavelengths can be taken in. Therefore, it is considered that high conversion efficiency has been achieved.

しかし、ルテニウムはレアメタルであることから高価な物質である。また、色素増感光電変換素子の変換効率の向上には、形状因子の改善が必須である。そこで、本発明者らは、簡便かつ安価に合成可能な非金属有機増感色素を用い、増感色素を半導体層上に吸着させる際に、複数の増感色素を溶解させた溶液を用いて半導体層上に密に増感色素を吸着させることにより、形状因子の向上が得られると考えた。   However, since ruthenium is a rare metal, it is an expensive substance. In addition, improvement of the form factor is essential for improving the conversion efficiency of the dye-sensitized photoelectric conversion element. Therefore, the present inventors use a nonmetallic organic sensitizing dye that can be synthesized easily and inexpensively, and use a solution in which a plurality of sensitizing dyes are dissolved when the sensitizing dye is adsorbed on the semiconductor layer. It was considered that an improvement in the shape factor can be obtained by densely adsorbing the sensitizing dye on the semiconductor layer.

しかし、色素増感太陽電池の性能は、半導体層の伝導帯準位、増感色素分子のLUMO及びHOMO準位、電解液のレドックス準位の影響が大きく、複数の増感色素分子を用いることになれば、複数のLUMO及びHOMO準位が存在することになり、電子授受において複雑化して電子の移動がスムーズに進行せず、電池の効率が低下する問題があった。
B.O’Regan and M.Gratzel,Nature,353,737(1991)
However, the performance of the dye-sensitized solar cell is greatly affected by the conduction band level of the semiconductor layer, the LUMO and HOMO levels of the sensitizing dye molecule, and the redox level of the electrolyte, and a plurality of sensitizing dye molecules should be used. In this case, there are a plurality of LUMO and HOMO levels, and there is a problem that the transfer of electrons is complicated and the movement of electrons does not proceed smoothly and the efficiency of the battery is lowered.
B. O'Regan and M.M. Gratzel, Nature, 353, 737 (1991)

本発明は、上記課題に鑑みなされたものであり、その目的は、安価な増感色素を用いて、変換効率の高い色素増感光電変換素子及び該色素増感光電変換素子を用いた太陽電池を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a dye-sensitized photoelectric conversion element having a high conversion efficiency using an inexpensive sensitizing dye and a solar cell using the dye-sensitized photoelectric conversion element. Is to provide.

本発明の上記課題は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.導電性支持体上の酸化物半導体に複数の色素を担持させてなる色素担持半導体電極と対向電極とを、電荷移動層を介して対向配置してなる色素増感光電変換素子において、前記複数の色素が、下記一般式(1)と(4)、または一般式(2)と(5)、または一般式(3)と(6)で表される2種の色素を有し、かつ、前記2種の色素の分子長の差(|L1−L2|)が下記式(X)に従うことを特徴とする色素増感光電変換素子。 1. In the dye-sensitized photoelectric conversion element in which a dye-carrying semiconductor electrode in which a plurality of dyes are carried on an oxide semiconductor on a conductive support and a counter electrode are arranged to face each other with a charge transfer layer interposed therebetween, The dye has two kinds of dyes represented by the following general formulas (1) and (4), or general formulas (2) and (5), or general formulas (3) and (6), and A dye-sensitized photoelectric conversion element characterized in that a difference in molecular length (| L 1 −L 2 |) between two kinds of dyes is in accordance with the following formula (X).

Figure 0005194893
Figure 0005194893

(一般式(1)及び一般式(4)中、Ar1はアリール基を表し、置換基を有していてもよい。R1、R2は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R3、R10は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X1、X7は酸性基を表す。R1、R2、Ar1は連結し、環を形成してもよい。
一般式(2)及び(5)中、Ar2、Ar3はアリール基を表し、置換基を有していてもよい。R4は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R5、R6、R11、R12は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X2、X3、X8、X9は酸性基を表す。R4、Ar2、Ar3は連結し、環を形成してもよい。
一般式(3)及び(6)中、Ar4、Ar5、Ar6はアリール基を表し、置換基を有していてもよい。R7、R8、R9、R13,R14、R15は単結合、アルキレン基、アリーレン基または2価の複素環基を表し、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基は置換基を有していてもよい。Ar4、Ar5、Ar6は連結し、環を形成してもよい。X4、X5、X6、X10、X11、X12は酸性基を表す。)
式(X) 0.1≦|L1−L2|≦2.2(nm)
(式中、L1は一般式(1)〜(3)で表される色素の分子長を表し、L2は一般式(4)〜(6)で表される色素の分子長を表す。分子長L1及びL2は、Combridge Soft社製ChemDraw Ultra Ver.9.0.1にて化合物を作図する際に、最も分子長が長くなるよう作図、構造最適化した構造において、中心窒素原子から酸性基が結合している原子までの原子間距離(nm)を表す。)
2.導電性支持体上の酸化物半導体に複数の色素を担持させてなる色素担持半導体電極と対向電極とを、電荷移動層を介して対向配置してなる色素増感光電変換素子において、前記複数の色素が、下記一般式(7)と(10)、または一般式(8)と(11)、または一般式(9)と(12)で表される2種の色素を有し、かつ、前記2種の色素の分子長の差(|L1−L2|)が下記式(X)に従うことを特徴とする色素増感光電変換素子。
(In General Formula (1) and General Formula (4), Ar 1 represents an aryl group and may have a substituent. R 1 and R 2 are a hydrogen atom, a halogen atom, an alkyl group, an amino group, Represents an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group, and heterocyclic group may have a substituent, and R 3 and R 10 are a single bond, an alkylene group, an arylene group, or a divalent group. And an alkylene group, an arylene group or a divalent heterocyclic group may have a substituent, and X 1 and X 7 each represents an acidic group, R 1 , R 2 and Ar 1 may be linked to form a ring.
In general formulas (2) and (5), Ar 2 and Ar 3 each represents an aryl group and may have a substituent. R 4 represents a hydrogen atom, a halogen atom, an alkyl group, an amino group, an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group and heterocyclic group may have a substituent. R 5 , R 6 , R 11 , and R 12 each represents a single bond, an alkylene group, an arylene group, or a divalent heterocyclic group, or a linking group thereof. The alkylene group, the arylene group, or the divalent heterocyclic group is It may have a substituent. X 2 , X 3 , X 8 and X 9 represent an acidic group. R 4 , Ar 2 and Ar 3 may be connected to form a ring.
In general formulas (3) and (6), Ar 4 , Ar 5 , and Ar 6 represent an aryl group and may have a substituent. R 7 , R 8 , R 9 , R 13 , R 14 and R 15 each represents a single bond, an alkylene group, an arylene group or a divalent heterocyclic group, an alkylene group, an arylene group or a divalent heterocyclic group; Alternatively, these bonding groups may have a substituent. Ar 4 , Ar 5 and Ar 6 may be linked to form a ring. X 4 , X 5 , X 6 , X 10 , X 11 and X 12 each represents an acidic group. )
Formula (X) 0.1 ≦ | L 1 −L 2 | ≦ 2.2 (nm)
(Wherein, L 1 is the general formula (1) to (represents the molecular length of the dyes represented by 3), L 2 represents a general formula (4) the molecular length of the dye represented by - (6). The molecular lengths L 1 and L 2 are the central nitrogen atom in the structure optimized for the longest molecular length when the compound is drawn with ChemDraw Ultra Ver. 9.0.1 manufactured by Hybrid Soft. To the atom to which the acidic group is bonded (nm).
2. In the dye-sensitized photoelectric conversion element in which a dye-carrying semiconductor electrode in which a plurality of dyes are carried on an oxide semiconductor on a conductive support and a counter electrode are arranged to face each other with a charge transfer layer interposed therebetween, The dye has two kinds of dyes represented by the following general formulas (7) and (10), or general formulas (8) and (11), or general formulas (9) and (12), and A dye-sensitized photoelectric conversion element characterized in that a difference in molecular length (| L 1 −L 2 |) between two kinds of dyes is in accordance with the following formula (X).

Figure 0005194893
Figure 0005194893

(一般式(7)及び一般式(10)中、Ar21、Ar22、Ar23は2価のアリール基を表し、置換基を有していてもよい。R21、R23は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R22、R30は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X21、X27は酸性基を表す。Ar21、Ar22、Ar23は連結し、環を形成してもよい。
一般式(8)及び一般式(11)中、Ar24、Ar25、Ar26はアリール基を表し、置換基を有していてもよい。R24は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R25、R26、R31、R32は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X22、X23、X28、X29は酸性基を表す。Ar24、Ar25、Ar26は連結し、環を形成してもよい。
一般式(9)及び一般式(12)中、Ar27、Ar28、Ar29はアリール基を表し、置換基を有していてもよい。R27、R28、R29、R33、R34、R35は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。Ar27、Ar28、Ar29は連結し、環を形成してもよい。X24、X25、X26、X30、X31、X32は酸性基を表す。)
式(X) 0.1≦|L1−L2|≦2.2(nm)
(式中、L1は一般式(7)〜(9)で表される色素の分子長を表し、L2は一般式(10)〜(12)で表される色素の分子長を表す。分子長L1及びL2は、Combridge Soft社製ChemDraw Ultra Ver.9.0.1にて化合物を作図する際に、最も分子長が長くなるよう作図、構造最適化した構造において、中心窒素原子から酸性基が結合している原子までの原子間距離(nm)を表す。)
3.前記1または2に記載の色素増感光電変換素子を用いることを特徴とする太陽電池。
(In the general formula (7) and the general formula (10), Ar 21 , Ar 22 and Ar 23 each represent a divalent aryl group and may have a substituent. R 21 and R 23 represent a hydrogen atom, Represents a halogen atom, an alkyl group, an amino group, an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group and heterocyclic group may have a substituent, R 22 and R 30 are a single bond, Represents an alkylene group, an arylene group, or a divalent heterocyclic group, or a bonding group thereof, and the alkylene group, the arylene group, or the divalent heterocyclic group may have a substituent, X 21 , X 27 Represents an acidic group, and Ar 21 , Ar 22 and Ar 23 may be linked to form a ring.
In General Formula (8) and General Formula (11), Ar 24 , Ar 25 and Ar 26 represent an aryl group and may have a substituent. R 24 represents a hydrogen atom, a halogen atom, an alkyl group, an amino group, an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group or heterocyclic group may have a substituent. R 25 , R 26 , R 31 and R 32 each represents a single bond, an alkylene group, an arylene group, or a divalent heterocyclic group, or a linking group thereof, and the alkylene group, the arylene group, or the divalent heterocyclic group is It may have a substituent. X 22 , X 23 , X 28 and X 29 each represents an acidic group. Ar 24 , Ar 25 and Ar 26 may be linked to form a ring.
In General Formula (9) and General Formula (12), Ar 27 , Ar 28 , and Ar 29 each represent an aryl group and may have a substituent. R 27 , R 28 , R 29 , R 33 , R 34 , and R 35 each represents a single bond, an alkylene group, an arylene group, or a divalent heterocyclic group, or a linking group thereof. An alkylene group, an arylene group, or 2 The valent heterocyclic group may have a substituent. Ar 27 , Ar 28 and Ar 29 may be linked to form a ring. X 24 , X 25 , X 26 , X 30 , X 31 and X 32 represent an acidic group. )
Formula (X) 0.1 ≦ | L 1 −L 2 | ≦ 2.2 (nm)
(In the formula, L 1 represents the molecular length of the dye represented by the general formulas (7) to (9), and L 2 represents the molecular length of the dye represented by the general formulas (10) to (12). The molecular lengths L 1 and L 2 are the central nitrogen atom in the structure optimized for the longest molecular length when the compound is drawn with ChemDraw Ultra Ver. 9.0.1 manufactured by Hybrid Soft. To the atom to which the acidic group is bonded (nm).
3. 3. A solar cell using the dye-sensitized photoelectric conversion element as described in 1 or 2 above.

本発明によれば、安価な増感色素を用いて、変換効率の高い色素増感光電変換素子及び該色素増感光電変換素子を用いた太陽電池を提供することができる。   According to the present invention, it is possible to provide a dye-sensitized photoelectric conversion element having a high conversion efficiency using an inexpensive sensitizing dye and a solar cell using the dye-sensitized photoelectric conversion element.

色素増感太陽電池の開発においては、高効率の変換効率を得るために、色素を半導体層に共着させる際には色素同士の会合を防ぎ、電子注入が効率よくなるようデオキシコール酸等の凝集防止剤を導入することが知られていた。また、逆に良好な特性を発揮する凝集を意図して発達させるため、複数の色素を吸着させることにより、特異な凝集構造を形成し電池特性の向上もなされる。しかし、色素の組み合わせによっては、そのエネルギー準位のミスマッチにより逆に効率を落としてしまう。   In the development of dye-sensitized solar cells, in order to obtain high conversion efficiency, when dyes are co-attached to a semiconductor layer, aggregation of deoxycholic acid and the like is prevented so that association between the dyes is prevented and electron injection is efficient. It was known to introduce an inhibitor. On the contrary, in order to develop the agglomeration with good characteristics, a plurality of dyes are adsorbed to form a unique agglomerated structure and improve the battery characteristics. However, depending on the combination of dyes, the efficiency is reduced due to the mismatch of the energy levels.

そこで本発明者らは、類似構造であり分子サイズの異なる2種以上の増感色素分子を共吸着させることにより、凝集構造を発達させ、かつ電位のミスマッチが引き起こされることなく、変換効率の向上にも寄与する色素増感光電変換素子がないかを検討した。その結果、導電性支持体上の酸化物半導体に複数の色素を担持させてなる色素担持半導体電極と対向電極とを、電荷移動層を介して対向配置してなる色素増感光電変換素子において、前記複数の色素が、前記一般式(1)〜(6)で表される特定の類似構造で、かつ、組み合わせる2種の色素の分子長の差(|L1−L2|)を0.1〜2.2nmとすることにより、変換効率の高い色素増感光電変換素子が得られることを見出し、本発明に至った。 Therefore, the present inventors co-adsorbed two or more types of sensitizing dye molecules having different structures and different molecular sizes, thereby developing an aggregate structure and improving conversion efficiency without causing potential mismatch. We investigated whether there was a dye-sensitized photoelectric conversion element that also contributed to the above. As a result, in a dye-sensitized photoelectric conversion element in which a dye-carrying semiconductor electrode in which a plurality of dyes are carried on an oxide semiconductor on a conductive support and a counter electrode are arranged to face each other via a charge transfer layer, The plurality of dyes have a specific similar structure represented by the general formulas (1) to (6), and a difference in molecular length (| L 1 −L 2 |) between two kinds of dyes to be combined is 0. It has been found that a dye-sensitized photoelectric conversion element with high conversion efficiency can be obtained by setting the thickness to 1 to 2.2 nm, and the present invention has been achieved.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明の色素増感光電変換素子(以下、単に光電変換素子ともいう)について、図で説明する。   The dye-sensitized photoelectric conversion element of the present invention (hereinafter also simply referred to as a photoelectric conversion element) will be described with reference to the drawings.

図1は、本発明の光電変換素子の一例を示す構成断面図である。   FIG. 1 is a cross-sectional view showing an example of the photoelectric conversion element of the present invention.

図1に示すように、基板1、1′、透明導電膜2、7、酸化物半導体3、色素4、電解質5、隔壁9等から構成されている。   As shown in FIG. 1, it is comprised from the board | substrates 1, 1 ', the transparent conductive films 2 and 7, the oxide semiconductor 3, the pigment | dye 4, the electrolyte 5, and the partition 9.

本発明においては、透明導電膜2を設けた基板1(合わせて導電性支持体とも言う。)上に、酸化物半導体3の粒子を焼結して形成した空孔を有する酸化物半導体層を有し、その空孔表面に色素4を吸着させた色素担持半導体電極を用いる。   In the present invention, an oxide semiconductor layer having pores formed by sintering particles of an oxide semiconductor 3 on a substrate 1 (also referred to as a conductive support) provided with a transparent conductive film 2 is provided. A dye-carrying semiconductor electrode having a dye 4 adsorbed on the surface of the pores is used.

対向電極6としては、基板1′上に透明導電膜7が形成され、その上に白金8を蒸着したものが用いられ、両極間には電解質5が充填され電解質層(電荷移動層)が形成される。   As the counter electrode 6, a transparent conductive film 7 is formed on a substrate 1 ′ and platinum 8 is vapor-deposited thereon, and an electrolyte 5 (charge transfer layer) is formed by filling an electrolyte 5 between both electrodes. Is done.

本発明においては、導電性支持体上の酸化物半導体3に複数の色素4を担持させてなる色素担持半導体電極と対向電極6とを、電荷移動層を介して対向配置してなる色素増感光電変換素子において、前記複数の色素4が、前記一般式(1)と(4)、または前記一般式(2)と(5)、または前記一般式(3)と(6)で表される2種の色素を有し、かつ、前記2種の色素の分子長の差(|L1−L2|)が前記式(X)に従うことを特徴とする。 In the present invention, dye sensitization in which a dye-carrying semiconductor electrode in which a plurality of dyes 4 are carried on an oxide semiconductor 3 on a conductive support and a counter electrode 6 are arranged to face each other via a charge transfer layer. In the photoelectric conversion element, the plurality of dyes 4 are represented by the general formulas (1) and (4), the general formulas (2) and (5), or the general formulas (3) and (6). It has two kinds of dyes, and the difference in molecular length between the two kinds of dyes (| L 1 −L 2 |) is in accordance with the formula (X).

本発明で良好な光電変換素子が得られる要因としては、以下のように考えている。色素を酸化物半導体上に吸着させる際、単一の色素を用いると分子の立体的に混み合う中心アミン周辺での立体的な反発により吸着量は限られ、酸化物半導体上に色素未吸着部位が生じる。そこで、中心窒素原子から吸着基(酸性基)に至るまでの分子長が違う増感色素分子を複数用いれば、生じる空間を埋めるように、異長の分子が配位して酸化物半導体上に密に色素を吸着させることができる。それにより形状因子が向上し、変換効率も向上する。   The reason why a good photoelectric conversion element can be obtained in the present invention is considered as follows. When a dye is adsorbed on an oxide semiconductor, if a single dye is used, the amount of adsorption is limited due to steric repulsion around the central amine where the molecules are sterically crowded, and the dye unadsorbed sites on the oxide semiconductor Occurs. Therefore, if multiple sensitizing dye molecules with different molecular lengths from the central nitrogen atom to the adsorbing group (acidic group) are used, molecules of different lengths coordinate with each other on the oxide semiconductor so as to fill the generated space. Dye can be adsorbed densely. Thereby, the shape factor is improved and the conversion efficiency is also improved.

また、2種の色素について中心窒素原子から酸性基が結合している原子までの長さの差|L1−L2|が0.1nm以上で、1炭素分の長さの差があれば中心窒素原子周辺の立体的な反発は緩和されると考えられる。また、長さの差|L1−L2|が2.2nmを超えると、色素の類似性が減少して好ましい凝集構造を形成しなくなり、均一に酸化物半導体上に吸着できなくなると考えられる。 If the difference in length from the central nitrogen atom to the atom to which the acidic group is bonded | L 1 −L 2 | It is thought that the steric repulsion around the central nitrogen atom is alleviated. In addition, when the difference in length | L 1 −L 2 | exceeds 2.2 nm, the similarity of the dyes is reduced and a preferable aggregate structure is not formed, and it is considered that the adsorption cannot be uniformly performed on the oxide semiconductor. .

2種の色素の分子長L1及びL2は、Combridge Soft社製ChemDraw Ultra Ver.9.0.1にて化合物を作図する際に、最も分子長が長くなるよう作図、構造最適化した構造において、中心窒素原子から酸性基が結合している原子までの原子間距離(nm)である。これを求めるには、CombridgeSoft社製ChemDraw Ultra Ver.9.0.1にて色素分子の構造が取りうる立体構造のうち中心窒素原子から酸性基が結合している原子までが最長になるように作画した後、CombridgeSoft社製Chem 3D Pro Ver.9.0.1のMM2計算にて構造最適化をし、中心窒素原子から酸性基が結合している原子までの距離を測定し、L1、L2、L3、L4とする。一般式(2)、(3)、(5)、(6)のように複数の酸性基を有する色素においては、中心窒素原子から酸性基までの長さで最も長い距離をL1、L2、L3、L4とする。 The molecular lengths L 1 and L 2 of the two types of dyes were obtained from ChemDraw Ultra Ver. 9. When drawing a compound at 9.0.1, the interatomic distance (nm) from the central nitrogen atom to the atom to which the acidic group is bonded in the structure optimized for the longest molecular length It is. To determine this, ChemDraw Ultra Ver. In 9.0.1, after drawing so that the length from the central nitrogen atom to the atom to which the acidic group is bonded is the longest among the three-dimensional structures that can be taken by the structure of the dye molecule, Chem 3D Pro Ver. 9. The structure is optimized by MM2 calculation of 9.0.1, and the distance from the central nitrogen atom to the atom to which the acidic group is bonded is measured, and is set as L1, L2, L3, and L4. In the dye having a plurality of acidic groups as in the general formulas (2), (3), (5) and (6), the longest distance from the central nitrogen atom to the acidic group is L1, L2, L3. , L4.

《色素》
本発明では、色素として、前記一般式(1)と(4)、または前記一般式(2)と(5)、または前記一般式(3)と(6)で表される2種の色素を組み合わせて用いる。
<Dye>
In the present invention, two kinds of dyes represented by the general formulas (1) and (4), the general formulas (2) and (5), or the general formulas (3) and (6) are used as the dyes. Use in combination.

一般式(1)及び一般式(4)において、Ar1はアリール基を表し、置換基を有していてもよい。R1、R2は水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、オクチル基、ノニル基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジエチルアミノ基等)、アリール基(例えば、フェニル基、トリル基、ナフチル基等)または複素環基(フラニル基、チエニル基、イミダゾリル基、チアゾリル基、モルホニル基等)を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R3、R10は単結合、アルキレン基(例えば、メチレン基、エチレン基、プロピレン基等)、アリーレン基(例えば、フェニレン基、トリレン基等)、または2価の複素環基(R1、R2で挙げた複素環基から1個の水素原子を除いた2価基等)またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X1、X7は酸性基(スルフォン酸基、リン酸基、カルボン酸基等)を表す。R1、R2、Ar1は連結し、環を形成してもよい。 In General Formula (1) and General Formula (4), Ar 1 represents an aryl group and may have a substituent. R 1 and R 2 are a hydrogen atom, a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), alkyl group (eg, methyl group, ethyl group, propyl group, butyl group, octyl group, nonyl group) Etc.), amino group (eg, amino group, methylamino group, ethylamino group, diethylamino group, etc.), aryl group (eg, phenyl group, tolyl group, naphthyl group, etc.) or heterocyclic group (furanyl group, thienyl group, etc.) An imidazolyl group, a thiazolyl group, a morpholyl group, and the like, and the alkyl group, amino group, aryl group, and heterocyclic group may have a substituent. R 3 and R 10 are a single bond, an alkylene group (eg, methylene group, ethylene group, propylene group, etc.), an arylene group (eg, phenylene group, tolylene group, etc.), or a divalent heterocyclic group (R 1 , R 2 represents a divalent group obtained by removing one hydrogen atom from the heterocyclic group described in 2) or a linking group thereof, and the alkylene group, arylene group or divalent heterocyclic group may have a substituent. Good. X 1 and X 7 each represents an acidic group (such as a sulfonic acid group, a phosphoric acid group, or a carboxylic acid group). R 1 , R 2 and Ar 1 may be linked to form a ring.

一般式(2)及び(5)において、Ar2、Ar3はアリール基を表し、置換基を有していてもよい。R4は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R5、R6、R11、R12は単結合、アルキレン基、アリーレン基、または2価の複素環基またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X2、X3、X8、X9は酸性基を表す。R4、Ar2、Ar3は連結し、環を形成してもよい。一般式(2)及び(5)において、ハロゲン原子、アルキル基、アミノ基、アリール基、複素環基、アルキレン基、アリーレン基、2価の複素環基、酸性基の具体例としては、一般式(1)及び一般式(4)で挙げたハロゲン原子、アルキル基、アミノ基、アリール基、複素環基、アルキレン基、アリーレン基、2価の複素環基、酸性基と同義である。 In the general formulas (2) and (5), Ar 2 and Ar 3 each represents an aryl group and may have a substituent. R 4 represents a hydrogen atom, a halogen atom, an alkyl group, an amino group, an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group and heterocyclic group may have a substituent. R 5 , R 6 , R 11 and R 12 each represents a single bond, an alkylene group, an arylene group, a divalent heterocyclic group or a linking group thereof, and the alkylene group, arylene group or divalent heterocyclic group is substituted. It may have a group. X 2 , X 3 , X 8 and X 9 represent an acidic group. R 4 , Ar 2 and Ar 3 may be connected to form a ring. In the general formulas (2) and (5), specific examples of the halogen atom, alkyl group, amino group, aryl group, heterocyclic group, alkylene group, arylene group, divalent heterocyclic group, and acidic group include the general formula It is synonymous with the halogen atom, alkyl group, amino group, aryl group, heterocyclic group, alkylene group, arylene group, divalent heterocyclic group and acidic group mentioned in (1) and general formula (4).

一般式(3)及び(6)において、Ar4、Ar5、Ar6はアリール基を表し、置換基を有していてもよい。R7、R8、R9、R13,R14、R15は単結合、アルキレン基、アリーレン基、または2価の複素環基またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。Ar4、Ar5、Ar6は連結し、環を形成してもよい。X4、X5、X6、X10、X11、X12は酸性基を表す。一般式(3)及び(6)において、ハロゲン原子、アルキル基、アミノ基、アリール基、複素環基、アルキレン基、アリーレン基、2価の複素環基、酸性基の具体例としては、一般式(1)及び一般式(4)で挙げたハロゲン原子、アルキル基、アミノ基、アリール基、複素環基、アルキレン基、アリーレン基、2価の複素環基、酸性基と同義である。 In the general formulas (3) and (6), Ar 4 , Ar 5 , and Ar 6 represent an aryl group and may have a substituent. R 7 , R 8 , R 9 , R 13 , R 14 , and R 15 each represents a single bond, an alkylene group, an arylene group, a divalent heterocyclic group, or a bonding group thereof, and represents an alkylene group, an arylene group, or a divalent group. The heterocyclic group may have a substituent. Ar 4 , Ar 5 and Ar 6 may be linked to form a ring. X 4 , X 5 , X 6 , X 10 , X 11 and X 12 each represents an acidic group. In the general formulas (3) and (6), specific examples of the halogen atom, alkyl group, amino group, aryl group, heterocyclic group, alkylene group, arylene group, divalent heterocyclic group and acidic group include the general formula It is synonymous with the halogen atom, alkyl group, amino group, aryl group, heterocyclic group, alkylene group, arylene group, divalent heterocyclic group and acidic group mentioned in (1) and general formula (4).

一般式(7)〜一般式(12)において、Ar21〜Ar29(Ar21、Ar22、Ar23、Ar24、Ar25、Ar26、Ar27、Ar28、Ar29を表す)はアリーレン基を表し、置換基を有していてもよい。R21、R2324は水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、沃素原子等)、アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、オクチル基、ノニル基等)、アミノ基(例えば、アミノ基、メチルアミノ基、エチルアミノ基、ジエチルアミノ基等)、アリール基(例えば、フェニル基、トリル基、ナフチル基等)または複素環基(フラニル基、チエニル基、イミダゾリル基、チアゾリル基、モルホニル基等)を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R22、R25、R26、R27、R28、R30、R31、R32、R33、R34、R35は単結合、アルキレン基(例えば、メチレン基、エチレン基、プロピレン基等)、アリーレン基(例えば、フェニレン基、トリレン基等)、または2価の複素環基(R1、R2で挙げた複素環基から1個の水素原子を除いた2価基等)またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X21、X22、X23、X24、X25、X26、X27、X28、X29、X30、X31、X32は酸性基(スルフォン酸基、リン酸基、カルボン酸基等)を表す。 In the general formula (7) to the general formula (12), Ar 21 to Ar 29 (represents Ar 21 , Ar 22 , Ar 23 , Ar 24 , Ar 25 , Ar 26 , Ar 27 , Ar 28 , Ar 29 ) are arylene. Represents a group and may have a substituent. R 21 and R 23 R 24 are a hydrogen atom, a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), an alkyl group (for example, a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, Nonyl group etc.), amino group (eg amino group, methylamino group, ethylamino group, diethylamino group etc.), aryl group (eg phenyl group, tolyl group, naphthyl group etc.) or heterocyclic group (furanyl group, thienyl etc.) Group, imidazolyl group, thiazolyl group, morpholyl group, etc.), and the alkyl group, amino group, aryl group, and heterocyclic group may have a substituent. R 22 , R 25 , R 26 , R 27 , R 28 , R 30 , R 31 , R 32 , R 33 , R 34 , R 35 are a single bond, an alkylene group (for example, a methylene group, an ethylene group, a propylene group, etc.) ), An arylene group (for example, a phenylene group, a tolylene group, etc.), a divalent heterocyclic group (a divalent group in which one hydrogen atom has been removed from the heterocyclic group mentioned for R 1 or R 2 ), or the like An alkylene group, an arylene group or a divalent heterocyclic group may have a substituent. X 21 , X 22 , X 23 , X 24 , X 25 , X 26 , X 27 , X 28 , X 29 , X 30 , X 31 , X 32 are acidic groups (sulfonic acid group, phosphoric acid group, carboxylic acid group) Etc.).

一般式(7)、(10)におけるAr21、Ar22、Ar23、R21、R23は連結し、環を形成してもよい。一般式(8)、(11)におけるAr24、Ar25、Ar26、R24、R25、R26は連結し、環を形成してもよい。一般式(9)、(12)におけるAr27、Ar28、Ar29、R24、R27、R28、R29は連結し、環を形成してもよい。 Ar 21 , Ar 22 , Ar 23 , R 21 , R 23 in the general formulas (7) and (10) may be linked to form a ring. Ar 24 , Ar 25 , Ar 26 , R 24 , R 25 and R 26 in the general formulas (8) and (11) may be linked to form a ring. Ar 27 , Ar 28 , Ar 29 , R 24 , R 27 , R 28 , R 29 in the general formulas (9) and (12) may be linked to form a ring.

酸性基としては、カルボン酸(−COOH)、ホスホン酸(−PO(OH)2)、スルホン酸(−SO2OH)が挙げられる。 Examples of the acidic group include carboxylic acid (—COOH), phosphonic acid (—PO (OH) 2 ), and sulfonic acid (—SO 2 OH).

以下に、一般式(1)〜(12)で表される色素の具体例を示すが、本発明はこれらの色素に限定されない。   Specific examples of the dyes represented by the general formulas (1) to (12) are shown below, but the present invention is not limited to these dyes.

Figure 0005194893
Figure 0005194893

Figure 0005194893
Figure 0005194893

Figure 0005194893
Figure 0005194893

本発明の前記一般式(1)〜(12)で表される色素は、一般的な合成法により調製することができるが、具体的な合成例を以下に示す。   The dyes represented by the general formulas (1) to (12) of the present invention can be prepared by a general synthesis method. Specific synthesis examples are shown below.

〈色素D−1の合成〉
下記トリフェニルアミン化合物に3当量のオキシ塩化リンならびに4当量のN,N′−ジメチルホルムアミドを加え、窒素雰囲気下にて8時間60℃で加熱した後、水を加え20℃1時間攪拌することによりホルミル体を得た。
<Synthesis of Dye D-1>
Add 3 equivalents of phosphorus oxychloride and 4 equivalents of N, N'-dimethylformamide to the following triphenylamine compound, heat at 60 ° C for 8 hours under nitrogen atmosphere, add water and stir at 20 ° C for 1 hour. To obtain a formyl body.

ホルミル体を酢酸に溶解し、1.2当量のシアノ酢酸ならびに2.5当量の酢酸アンモニウムを加え、120℃で60分加熱還流することにより、色素D−1を得た。得られた色素D−1は、核磁気共鳴スペクトル、マススペクトルで構造を確認した。   The formyl body was dissolved in acetic acid, 1.2 equivalents of cyanoacetic acid and 2.5 equivalents of ammonium acetate were added, and the mixture was heated to reflux at 120 ° C. for 60 minutes to obtain Dye D-1. The resulting dye D-1 was confirmed in structure by nuclear magnetic resonance spectrum and mass spectrum.

Figure 0005194893
Figure 0005194893

〈色素D−2の合成〉
上記トリフェニルアミン化合物のDMF溶液に1.05当量のN−ブロモスクシミドを加え、20℃で10分間攪拌した。反応液を酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理しブロモ体を得た。
<Synthesis of Dye D-2>
1.05 equivalents of N-bromosuccinimide was added to the DMF solution of the triphenylamine compound, and the mixture was stirred at 20 ° C. for 10 minutes. The reaction solution was extracted with ethyl acetate, washed with water, dried over magnesium sulfate, concentrated to dryness on a rotary evaporator, and treated with a silica column to obtain a bromo compound.

ブロモ体をTHFに溶解し、Pd(PPh34 0.03当量、チオフェンボロン酸1.5当量、炭酸カリウム1当量を加え、加熱還流下7時間攪拌した。反応液を酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで分離精製しチオフェン体を得た。 The bromo compound was dissolved in THF, 0.03 equivalents of Pd (PPh 3 ) 4 , 1.5 equivalents of thiophene boronic acid, and 1 equivalent of potassium carbonate were added, and the mixture was stirred for 7 hours with heating under reflux. The reaction solution was extracted with ethyl acetate, washed with water, dried over magnesium sulfate, concentrated to dryness on a rotary evaporator, and separated and purified on a silica column to obtain a thiophene.

トルエンにチオフェン体を溶解し、1.5当量のオキシ塩化リンならびに1.5当量のN,N′−ジメチルホルムアミドを加え、窒素雰囲気下にて5時間110℃で加熱した後、水を加え20℃で1時間攪拌した。反応液を酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムにて分離精製しホルミル体を得た。   Dissolve the thiophene in toluene, add 1.5 equivalents of phosphorus oxychloride and 1.5 equivalents of N, N′-dimethylformamide, heat at 110 ° C. for 5 hours under nitrogen atmosphere, add water and add 20 Stir at 1 ° C. for 1 hour. The reaction solution was extracted with ethyl acetate, washed with water, dried over magnesium sulfate, concentrated to dryness on a rotary evaporator, and separated and purified on a silica column to obtain a formyl form.

ホルミル体を酢酸に溶解し、2.5当量のシアノ酢酸ならびに2.5当量の酢酸アンモニウムを加え120℃で5時間加熱還流することにより、色素D−2を得た。得られた色素D−2は、核磁気共鳴スペクトル、マススペクトルで構造を確認した。   The formyl body was dissolved in acetic acid, 2.5 equivalents of cyanoacetic acid and 2.5 equivalents of ammonium acetate were added, and the mixture was heated to reflux at 120 ° C. for 5 hours to obtain Dye D-2. The resulting dye D-2 was confirmed in structure by nuclear magnetic resonance spectrum and mass spectrum.

Figure 0005194893
Figure 0005194893

〈色素D−7の合成〉
下記トリフェニルアミン化合物に6当量のオキシ塩化リンならびに8当量のN,N′−ジメチルホルムアミドを加え、窒素雰囲気下にて8時間60℃で加熱した後、水を加え20℃1時間攪拌することによりジホルミル体を得た。
<Synthesis of Dye D-7>
Add 6 equivalents of phosphorus oxychloride and 8 equivalents of N, N'-dimethylformamide to the following triphenylamine compound, heat at 60 ° C for 8 hours in a nitrogen atmosphere, add water and stir at 20 ° C for 1 hour. To obtain a diformyl form.

ジホルミル体を酢酸に溶解し、2.4当量のシアノ酢酸ならびに5当量の酢酸アンモニウムを加え120℃で60分加熱還流することにより、色素D−7を得た。得られた色素D−7は、核磁気共鳴スペクトル、マススペクトルで構造を確認した。   The diformyl form was dissolved in acetic acid, 2.4 equivalents of cyanoacetic acid and 5 equivalents of ammonium acetate were added, and the mixture was heated to reflux at 120 ° C. for 60 minutes to obtain Dye D-7. The structure of the obtained dye D-7 was confirmed by a nuclear magnetic resonance spectrum and a mass spectrum.

Figure 0005194893
Figure 0005194893

〈色素D−8の合成〉
トリフェニルアミン化合物のDMF溶液に2.1当量のN−ブロモスクシミドを加え、20℃で10分間攪拌した。反応液を酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムで処理しジブロモ体を得た。
<Synthesis of Dye D-8>
2.1 equivalents of N-bromosuccinimide was added to a DMF solution of a triphenylamine compound, and the mixture was stirred at 20 ° C. for 10 minutes. The reaction solution was extracted with ethyl acetate, washed with water, dried over magnesium sulfate, concentrated to dryness on a rotary evaporator, and treated with a silica column to obtain a dibromo compound.

このジブロモ体をTHFに溶解し、Pd(PPh34 0.12当量、チオフェンボロン酸2.2当量、炭酸カリウム3.0当量を加え、加熱還流下4時間攪拌した。反応液を酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエばポレータにて濃縮乾固し、シリカカラムで分離精製しジチオフェン体を得た。 This dibromo compound was dissolved in THF, 0.12 equivalents of Pd (PPh 3 ) 4 , 2.2 equivalents of thiophene boronic acid and 3.0 equivalents of potassium carbonate were added, and the mixture was stirred for 4 hours with heating under reflux. The reaction solution was extracted with ethyl acetate, washed with water, dried over magnesium sulfate, concentrated to dryness on a rotary evaporator, and separated and purified on a silica column to obtain a dithiophene.

トルエンにジチオフェン体を溶解し、10当量のオキシ塩化リンならびに5当量のN,N′−ジメチルホルムアミドを加え、窒素雰囲気下にて5時間110℃で加熱した後、水を加え20℃で1時間攪拌した。反応液を酢酸エチルで抽出、水洗、硫酸マグネシウムで乾燥後、ロータリーエバポレータにて濃縮乾固し、シリカカラムにて分離精製しジホルミル体を得た。   Dissolve the dithiophene in toluene, add 10 equivalents of phosphorus oxychloride and 5 equivalents of N, N′-dimethylformamide, heat at 110 ° C. for 5 hours in a nitrogen atmosphere, then add water for 1 hour at 20 ° C. Stir. The reaction solution was extracted with ethyl acetate, washed with water, dried over magnesium sulfate, concentrated to dryness on a rotary evaporator, and separated and purified on a silica column to obtain a diformyl form.

ジホルミル体を酢酸に溶解し、6当量のシアノ酢酸ならびに10当量の酢酸アンモニウムを加え、110℃で6時間加熱還流することにより、色素D−8を得た。得られた色素D−8は、核磁気共鳴スペクトル、マススペクトルで構造を確認した。   The diformyl form was dissolved in acetic acid, 6 equivalents of cyanoacetic acid and 10 equivalents of ammonium acetate were added, and the mixture was heated to reflux at 110 ° C. for 6 hours to obtain Dye D-8. The structure of the obtained dye D-8 was confirmed by a nuclear magnetic resonance spectrum and a mass spectrum.

Figure 0005194893
Figure 0005194893

〈色素D−13の合成〉
下記トリフェニルアミン化合物に9当量のオキシ塩化リンならびに12当量のN,N′−ジメチルホルムアミドを加え、窒素雰囲気下にて8時間60℃で加熱した後、水を加え20℃1時間攪拌することによりトリホルミル体を得た。
<Synthesis of Dye D-13>
Add 9 equivalents of phosphorus oxychloride and 12 equivalents of N, N′-dimethylformamide to the following triphenylamine compound, heat at 60 ° C. for 8 hours in a nitrogen atmosphere, add water and stir at 20 ° C. for 1 hour. Thus, a triformyl isomer was obtained.

トリホルミル体を酢酸に溶解し、3.6当量のシアノ酢酸ならびに7.5当量の酢酸アンモニウムを加え120℃で60分加熱還流することにより、色素D−13を得た。得られた色素D−13は、核磁気共鳴スペクトル、マススペクトルで構造を確認した。   The triformyl form was dissolved in acetic acid, 3.6 equivalents of cyanoacetic acid and 7.5 equivalents of ammonium acetate were added, and the mixture was heated to reflux at 120 ° C. for 60 minutes to obtain Dye D-13. The structure of the obtained dye D-13 was confirmed by a nuclear magnetic resonance spectrum and a mass spectrum.

Figure 0005194893
Figure 0005194893

このようにして得られた本発明に係る色素は、酸化物半導体に含むことにより増感し、本発明に記載の効果を奏することが可能となる。ここで、酸化物半導体に色素を含むとは半導体表面への吸着、酸化物半導体が多孔質等のポーラスな構造を有する場合には、酸化物半導体の多孔質構造に前記色素を充填する等の種々の態様が挙げられる。   The dye according to the present invention thus obtained is sensitized by being contained in an oxide semiconductor, and the effects described in the present invention can be achieved. Here, the fact that the oxide semiconductor contains a dye means adsorption to the semiconductor surface, and when the oxide semiconductor has a porous structure such as a porous structure, the oxide semiconductor has a porous structure filled with the dye. Various embodiments are mentioned.

また、半導体層1m2当たりの本発明に係る色素の総含有量は0.01〜100ミリモルの範囲が好ましく、さらに好ましくは0.1〜50ミリモルであり、特に好ましくは0.5〜20ミリモルである。 The total content of the dye according to the present invention per 1 m 2 of the semiconductor layer is preferably in the range of 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, particularly preferably 0.5 to 20 mmol. It is.

本発明に係る色素を用いて増感処理を行う場合、前記色素を併用するが、また他の化合物(例えば、米国特許第4,684,537号明細書、同4,927,721号明細書、同5,084,365号明細書、同5,350,644号明細書、同5,463,057号明細書、同5,525,440号明細書、特開平7−249790号公報、特開2000−150007号公報等に記載の化合物)と混合して用いることもできる。   When sensitizing treatment is performed using the dye according to the present invention, the dye is used in combination, but other compounds (for example, U.S. Pat. Nos. 4,684,537 and 4,927,721). 5,084,365, 5,350,644, 5,463,057, 5,525,440, JP-A-7-249790, And compounds described in JP-A-2000-150007 and the like.

(導電性支持体)
本発明の光電変換素子や本発明の太陽電池に用いられる導電性支持体としては、金属板のような導電性基板や、ガラス板やプラスチックフイルムのような非導電性基板に導電性物質を設けた構造のものを用いることができる。導電性支持体に用いられる材料の例としては、金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム)あるいは導電性金属酸化物(例えばインジウム−スズ複合酸化物、酸化スズにフッ素をドープしたもの)や炭素を挙げることができる。導電性支持体の厚さは特に制約されないが、0.3〜5mmが好ましい。
(Conductive support)
As the conductive support used in the photoelectric conversion element of the present invention and the solar cell of the present invention, a conductive substance is provided on a conductive substrate such as a metal plate or a non-conductive substrate such as a glass plate or a plastic film. A structure having a different structure can be used. Examples of materials used for the conductive support include metals (eg, platinum, gold, silver, copper, aluminum, rhodium, indium) or conductive metal oxides (eg, indium-tin composite oxide, tin oxide with fluorine). And doped carbon). The thickness of the conductive support is not particularly limited, but is preferably 0.3 to 5 mm.

また、導電性支持体は実質的に透明であることが好ましく、実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることがさらに好ましく、80%以上であることが最も好ましい。透明な導電性支持体を得るためには、ガラス板またはプラスチックフイルムの表面に、導電性金属酸化物からなる導電性層を設けることが好ましい。透明な導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。   Further, the conductive support is preferably substantially transparent, and substantially transparent means that the light transmittance is 10% or more, more preferably 50% or more, Most preferably, it is 80% or more. In order to obtain a transparent conductive support, it is preferable to provide a conductive layer made of a conductive metal oxide on the surface of a glass plate or a plastic film. When a transparent conductive support is used, light is preferably incident from the support side.

導電性支持体は表面抵抗は、50Ω/cm2以下であることが好ましく、10Ω/cm2以下であることがさらに好ましい。 The conductive support preferably has a surface resistance of 50 Ω / cm 2 or less, and more preferably 10 Ω / cm 2 or less.

《色素担持半導体電極の作製》
本発明に係る色素担持半導体電極の作製方法について説明する。
<< Preparation of dye-supported semiconductor electrode >>
A method for producing a dye-carrying semiconductor electrode according to the present invention will be described.

本発明に係る色素担持半導体電極の酸化物半導体が粒子状の場合には、酸化物半導体を導電性支持体に塗布あるいは吹き付けて、色素担持半導体電極を作製するのがよい。また、本発明に係る酸化物半導体が膜状であって、導電性支持体上に保持されていない場合には、酸化物半導体を導電性支持体上に貼合して色素担持半導体電極を作製することが好ましい。   When the oxide semiconductor of the dye-carrying semiconductor electrode according to the present invention is in the form of particles, the dye-carrying semiconductor electrode is preferably produced by applying or spraying the oxide semiconductor to a conductive support. Further, when the oxide semiconductor according to the present invention is in a film form and is not held on the conductive support, the oxide semiconductor is bonded onto the conductive support to produce a dye-carrying semiconductor electrode It is preferable to do.

本発明に係る色素担持半導体電極の好ましい態様としては、上記導電性支持体上に酸化物半導体の微粒子を用いて焼成により形成する方法が挙げられる。   A preferred embodiment of the dye-carrying semiconductor electrode according to the present invention includes a method of forming the oxide support fine particles on the conductive support by firing.

本発明に係る半導体が焼成により作製される場合には、色素を用いての該半導体の増感(吸着、多孔質層への充填等)処理は、焼成後に実施することが好ましい。焼成後、半導体に水が吸着する前に素早く化合物の吸着処理を実施することが特に好ましい。   When the semiconductor according to the present invention is produced by firing, the semiconductor sensitization (adsorption, filling in a porous layer, etc.) treatment with a dye is preferably performed after firing. It is particularly preferable to perform the compound adsorption treatment quickly after the firing and before the water is adsorbed to the semiconductor.

以下、本発明に好ましく用いられる、色素担持半導体電極を半導体微粉末を用いて焼成により形成する方法について詳細に説明する。   Hereinafter, a method for forming a dye-carrying semiconductor electrode, which is preferably used in the present invention, by baking using semiconductor fine powder will be described in detail.

(酸化物半導体微粉末含有塗布液の調製)
まず、酸化物半導体の微粉末を含む塗布液を調製する。この半導体微粉末はその1次粒子径が微細な程好ましく、その1次粒子径は1〜5000nmが好ましく、さらに好ましくは2〜50nmである。酸化物半導体微粉末を含む塗布液は、半導体微粉末を溶媒中に分散させることによって調製することができる。溶媒中に分散された半導体微粉末は、その1次粒子状で分散する。溶媒としては酸化物半導体微粉末を分散し得るものであればよく、特に制約されない。
(Preparation of coating liquid containing oxide semiconductor fine powder)
First, a coating liquid containing fine oxide semiconductor powder is prepared. The finer the primary particle diameter of the semiconductor fine powder, the better. The primary particle diameter is preferably 1 to 5000 nm, and more preferably 2 to 50 nm. The coating liquid containing the oxide semiconductor fine powder can be prepared by dispersing the semiconductor fine powder in a solvent. The semiconductor fine powder dispersed in the solvent is dispersed in the form of primary particles. The solvent is not particularly limited as long as it can disperse the oxide semiconductor fine powder.

前記溶媒としては、水、有機溶媒、水と有機溶媒との混合液が包含される。有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。塗布液中には、必要に応じ、界面活性剤や粘度調節剤(ポリエチレングリコール等の多価アルコール等)を加えることができる。溶媒中の酸化物半導体微粉末濃度の範囲は0.1〜70質量%が好ましく、さらに好ましくは0.1〜30質量%である。   Examples of the solvent include water, an organic solvent, and a mixed solution of water and an organic solvent. As the organic solvent, alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, acetone and acetyl acetone, hydrocarbons such as hexane and cyclohexane, and the like are used. A surfactant and a viscosity modifier (polyhydric alcohol such as polyethylene glycol) can be added to the coating solution as necessary. The range of the oxide semiconductor fine powder concentration in the solvent is preferably 0.1 to 70 mass%, more preferably 0.1 to 30 mass%.

(酸化物半導体微粉末含有塗布液の塗布と形成された半導体層の焼成処理)
上記のようにして得られた酸化物半導体微粉末含有塗布液を、導電性支持体上に塗布または吹きつけ、乾燥等を行った後、空気中または不活性ガス中で焼成して、導電性支持体上に酸化物半導体層(半導体膜)が形成される。
(Coating of coating liquid containing oxide semiconductor fine powder and baking of formed semiconductor layer)
The oxide semiconductor fine powder-containing coating solution obtained as described above is applied or sprayed onto a conductive support, dried, etc., and then baked in air or in an inert gas to be conductive. An oxide semiconductor layer (semiconductor film) is formed over the support.

導電性支持体上に塗布液を塗布、乾燥して得られる皮膜は、半導体微粒子の集合体からなるもので、その微粒子の粒径は使用した半導体微粉末の1次粒子径に対応するものである。   The film obtained by applying and drying the coating liquid on the conductive support is composed of an aggregate of semiconductor fine particles, and the particle size of the fine particles corresponds to the primary particle size of the semiconductor fine powder used. is there.

このようにして導電性支持体等の導電層上に形成された半導体微粒子層は、導電性支持体との結合力や微粒子相互の結合力が弱く、機械的強度の弱いものであることから、機械的強度を高め、基板に強く固着した半導体層とするため前記半導体微粒子層の焼成処理が行われる。   Thus, the semiconductor fine particle layer formed on the conductive layer such as the conductive support is weak in bonding strength with the conductive support and fine particles, and has low mechanical strength. The semiconductor fine particle layer is baked to increase the mechanical strength and form a semiconductor layer that is strongly fixed to the substrate.

本発明においては、この酸化物半導体層はどのような構造を有していてもよいが、多孔質構造膜(空隙を有する、ポーラスな層ともいう)であることが好ましい。   In the present invention, the oxide semiconductor layer may have any structure, but is preferably a porous structure film (also referred to as a porous layer having voids).

ここで、本発明に係る酸化物半導体層の空隙率は10体積%以下が好ましく、さらに好ましくは8体積%以下であり、特に好ましくは0.01〜5体積%である。なお、酸化物半導体層の空隙率は誘電体の厚み方向に貫通性のある空隙率を意味し、水銀ポロシメーター(島津ポアライザー9220型)等の市販の装置を用いて測定することができる。   Here, the porosity of the oxide semiconductor layer according to the present invention is preferably 10% by volume or less, more preferably 8% by volume or less, and particularly preferably 0.01 to 5% by volume. Note that the porosity of the oxide semiconductor layer means a porosity that is penetrable in the thickness direction of the dielectric, and can be measured using a commercially available device such as a mercury porosimeter (Shimadzu porer 9220 type).

多孔質構造を有する焼成物膜になった酸化物半導体層の膜厚は、少なくとも10nm以上が好ましく、さらに好ましくは100〜10000nmである。   As for the film thickness of the oxide semiconductor layer used as the baked material film | membrane which has a porous structure, 10 nm or more is preferable at least, More preferably, it is 100-10000 nm.

焼成処理時、焼成物膜の実表面積を適切に調製し、上記の空隙率を有する焼成物膜を得る観点から、焼成温度は1000℃より低いことが好ましく、さらに好ましくは200〜800℃の範囲であり、特に好ましくは300〜800℃の範囲である。   From the viewpoint of appropriately preparing the actual surface area of the fired product film during the firing treatment and obtaining a fired product film having the above porosity, the firing temperature is preferably lower than 1000 ° C, more preferably in the range of 200 to 800 ° C. Especially preferably, it is the range of 300-800 degreeC.

また、見かけ表面積に対する実表面積の比は、半導体微粒子の粒径及び比表面積や焼成温度等によりコントロールすることができる。また、加熱処理後、半導体粒子の表面積を増大させたり、半導体粒子近傍の純度を高め、色素から半導体粒子への電子注入効率を高める目的で、例えば、四塩化チタン水溶液を用いた化学メッキや三塩化チタン水溶液を用いた電気化学的メッキ処理を行ってもよい。   The ratio of the actual surface area to the apparent surface area can be controlled by the particle size, specific surface area, firing temperature, etc. of the semiconductor fine particles. In addition, for the purpose of increasing the surface area of the semiconductor particles after heating, increasing the purity in the vicinity of the semiconductor particles, and increasing the efficiency of electron injection from the dye into the semiconductor particles, for example, chemical plating using a titanium tetrachloride aqueous solution or three An electrochemical plating process using a titanium chloride aqueous solution may be performed.

(酸化物半導体の増感処理)
酸化物半導体の増感処理は、色素を適切な溶媒に溶解し、その溶液に前記半導体を焼成した基板を浸漬することによって行われる。その際には半導体層(半導体膜ともいう)を焼成により形成させた基板を、予め減圧処理したり加熱処理したりして膜中の気泡を除去しおくことが好ましい。このような処理により、本発明に係る色素が半導体層(半導体膜)内部深くに進入できるようになり、半導体層(半導体膜)が多孔質構造膜である場合には特に好ましい。
(Oxide semiconductor sensitization treatment)
The sensitization treatment of the oxide semiconductor is performed by dissolving the dye in an appropriate solvent and immersing the substrate on which the semiconductor is baked in the solution. In that case, it is preferable that a substrate on which a semiconductor layer (also referred to as a semiconductor film) is formed by baking is subjected to pressure reduction treatment or heat treatment in advance to remove bubbles in the film. By such treatment, the dye according to the present invention can penetrate deep inside the semiconductor layer (semiconductor film), which is particularly preferable when the semiconductor layer (semiconductor film) is a porous structure film.

本発明に係る色素を溶解するのに用いる溶媒は、前記化合物を溶解することができ、かつ、半導体を溶解したり半導体と反応したりすることのないものであれば格別の制限はない。しかしながら、溶媒に溶解している水分及び気体が半導体膜に進入して、前記化合物の吸着等の増感処理を妨げることを防ぐために、予め脱気及び蒸留精製しておくことが好ましい。   The solvent used for dissolving the dye according to the present invention is not particularly limited as long as it can dissolve the compound and does not dissolve the semiconductor or react with the semiconductor. However, in order to prevent moisture and gas dissolved in the solvent from entering the semiconductor film and hindering the sensitization treatment such as adsorption of the compound, it is preferable to perform deaeration and distillation purification in advance.

前記化合物の溶解において、好ましく用いられる溶媒はメタノール、エタノール、n−プロパノール等のアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン等のエーテル系溶媒、塩化メチレン、1,1,2−トリクロロエタン等のハロゲン化炭化水素溶媒であり、特に好ましくはメタノール、エタノール、アセトン、メチルエチルケトン、テトラヒドロフラン、塩化メチレンである。   Solvents preferably used in dissolving the compound are alcohol solvents such as methanol, ethanol and n-propanol, ketone solvents such as acetone and methyl ethyl ketone, ether ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and 1,4-dioxane. Solvents and halogenated hydrocarbon solvents such as methylene chloride and 1,1,2-trichloroethane, particularly preferably methanol, ethanol, acetone, methyl ethyl ketone, tetrahydrofuran and methylene chloride.

(増感処理の温度、時間)
酸化物半導体を焼成した基板を、本発明に係る色素を含む溶液に浸漬する時間は、半導体層(半導体膜)に前記化合物が深く進入して吸着等を充分に進行させ、酸化物半導体を十分に増感させることが好ましい。また、溶液中での前記化合物の分解等により生成した分解物が化合物の吸着を妨害することを抑制する観点から、25℃条件下では3〜48時間が好ましく、さらに好ましくは4〜24時間である。この効果は、特に半導体膜が多孔質構造膜である場合において顕著である。ただし、浸漬時間については25℃条件での値であり、温度条件を変化させた場合には、上記の限りではない。
(Tensing temperature and time)
The time for immersing the substrate on which the oxide semiconductor is baked in the solution containing the dye according to the present invention is such that the compound penetrates deeply into the semiconductor layer (semiconductor film) to sufficiently adsorb the oxide semiconductor, Sensitization is preferable. Further, from the viewpoint of suppressing degradation products generated by decomposition of the compound in the solution from interfering with the adsorption of the compound, it is preferably 3 to 48 hours under 25 ° C., more preferably 4 to 24 hours. is there. This effect is particularly remarkable when the semiconductor film is a porous structure film. However, the immersion time is a value under the condition of 25 ° C., and is not limited to the above when the temperature condition is changed.

浸漬しておくに当たり本発明に係る色素を含む溶液は、色素が分解しない限りにおいて、沸騰しない温度にまで加熱して用いてもよい。好ましい温度範囲は10〜100℃であり、さらに好ましくは25〜80℃であるが、前記の通り溶媒が前記温度範囲で沸騰する場合はこの限りでない。   In soaking, the solution containing the dye according to the present invention may be used by heating to a temperature at which it does not boil as long as the dye does not decompose. A preferable temperature range is 10 to 100 ° C., more preferably 25 to 80 ° C., but this is not the case when the solvent boils in the temperature range as described above.

《電解質》
本発明に用いられる電解質について説明する。
"Electrolytes"
The electrolyte used in the present invention will be described.

本発明の光電変換素子においては、対向電極間に電解質が充填され、電解質層(電荷移動層)が形成される。電解質としてはレドックス電解質が好ましく用いられる。ここで、レドックス電解質としては、I-/I3 -系や、Br-/Br3 -系、キノン/ハイドロキノン系等が挙げられる。このようなレドックス電解質は従来公知の方法によって得ることができ、例えば、I-/I3 -系の電解質は、ヨウ素のアンモニウム塩とヨウ素を混合することによって得ることができる。電解質層はこれらレドックス電解質の分散物で構成され、それら分散物は溶液である場合に液体電解質、常温において固体である高分子中に分散させた場合に固体高分子電解質、ゲル状物質に分散された場合にゲル電解質と呼ばれる。電解質層として液体電解質が用いられる場合、その溶媒としては電気化学的に不活性なものが用いられ、例えば、アセトニトリル、炭酸プロピレン、エチレンカーボネート等が用いられる。固体高分子電解質の例としては特開2001−160427号公報記載の電解質が、ゲル電解質の例としては「表面科学」21巻、第5号288〜293頁に記載の電解質が挙げられる。 In the photoelectric conversion element of the present invention, an electrolyte is filled between the counter electrodes, and an electrolyte layer (charge transfer layer) is formed. A redox electrolyte is preferably used as the electrolyte. Here, examples of the redox electrolyte include I / I 3 system, Br / Br 3 system, and quinone / hydroquinone system. Such a redox electrolyte can be obtained by a conventionally known method. For example, an I / I 3 based electrolyte can be obtained by mixing iodine ammonium salt and iodine. The electrolyte layer is composed of dispersions of these redox electrolytes. These dispersions are dispersed in liquid electrolytes when they are solutions, solid polymer electrolytes and gel substances when dispersed in polymers that are solid at room temperature. It is called a gel electrolyte. When a liquid electrolyte is used as the electrolyte layer, an electrochemically inert solvent is used as the solvent, for example, acetonitrile, propylene carbonate, ethylene carbonate, or the like is used. Examples of the solid polymer electrolyte include the electrolyte described in JP-A No. 2001-160427, and examples of the gel electrolyte include the electrolyte described in “Surface Science” Vol. 21, No. 5, pages 288 to 293.

《対向電極》
本発明に用いられる対向電極について説明する。
《Counter electrode》
The counter electrode used in the present invention will be described.

対向電極は導電性を有するものであればよく、任意の導電性材料が用いられるが、I3 -イオン等の酸化や、他のレドックスイオンの還元反応を充分な速さで行わせる触媒能を持ったものの使用が好ましい。このようなものとしては、白金電極、導電材料表面に白金めっきや白金蒸着を施したもの、ロジウム金属、ルテニウム金属、酸化ルテニウム、カーボン等が挙げられる。 The counter electrode as long as it has conductivity, but any conductive material is used, I 3 - oxidation and the like ions, the catalytic ability to perform fast enough the reduction reaction of other redox ions It is preferable to use what you have. Examples of such a material include a platinum electrode, a surface of a conductive material subjected to platinum plating or platinum deposition, rhodium metal, ruthenium metal, ruthenium oxide, and carbon.

〔太陽電池〕
本発明の太陽電池について説明する。
[Solar cell]
The solar cell of the present invention will be described.

本発明の太陽電池は、本発明の光電変換素子の一態様として、太陽光に最適の設計並びに回路設計が行われ、太陽光を光源として用いたときに最適な光電変換が行われるような構造を有する。即ち、色素増感された酸化物半導体に太陽光が照射されうる構造となっている。本発明の太陽電池を構成する際には、前記色素担持半導体電極、電解質層及び対向電極をケース内に収納して封止するか、あるいはそれら全体を樹脂封止することが好ましい。   The solar cell of the present invention has a structure in which the optimum design and circuit design for sunlight are performed as one aspect of the photoelectric conversion element of the present invention, and the optimum photoelectric conversion is performed when sunlight is used as a light source. Have That is, the oxide semiconductor subjected to dye sensitization can be irradiated with sunlight. When the solar cell of the present invention is constructed, it is preferable that the dye-carrying semiconductor electrode, the electrolyte layer and the counter electrode are housed in a case and sealed, or the whole is resin-sealed.

本発明の太陽電池に、太陽光または太陽光と同等の電磁波を照射すると、酸化物半導体に吸着された本発明に係る色素は、照射された光もしくは電磁波を吸収して励起する。励起によって発生した電子は酸化物半導体に移動し、次いで導電性支持体を経由して対向電極に移動して、電荷移動層のレドックス電解質を還元する。一方、酸化物半導体に電子を移動させた本発明に係る色素は酸化体となっているが、対向電極から電解質層のレドックス電解質を経由して電子が供給されることにより、還元されて元の状態に戻り、同時に電荷移動層のレドックス電解質は酸化されて、再び対向電極から供給される電子により還元されうる状態に戻る。このようにして電子が流れ、本発明の光電変換素子を用いた太陽電池を構成することができる。   When the solar cell of the present invention is irradiated with sunlight or an electromagnetic wave equivalent to sunlight, the dye according to the present invention adsorbed on the oxide semiconductor absorbs the irradiated light or electromagnetic wave and excites it. Electrons generated by excitation move to the oxide semiconductor, and then move to the counter electrode via the conductive support, thereby reducing the redox electrolyte of the charge transfer layer. On the other hand, the dye according to the present invention in which electrons are transferred to an oxide semiconductor is an oxidant, but is reduced by being supplied with electrons from the counter electrode via the redox electrolyte of the electrolyte layer. At the same time, the redox electrolyte of the charge transfer layer is oxidized and returned to a state where it can be reduced again by the electrons supplied from the counter electrode. In this way, electrons flow, and a solar cell using the photoelectric conversion element of the present invention can be configured.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

実施例
《光電変換セルの作製》
(光電変換セル1の作製)
市販の酸化チタンペースト(粒径18nm)をフッ素ドープ酸化スズ(FTO)導電性ガラス基板へ塗布した。60℃で10分間加熱してペーストペーストを乾燥した後、500℃で30分間焼成を行った。次に色素D−1と色素D−2の1:1混合物をエタノールに溶解し、3×10-4Mの溶液を作製した。前記酸化チタンを塗布焼結したFTOガラス基板を、この溶液に室温で12時間浸漬して色素の吸着処理を行い、光電変換電極とした。電解液にはヨウ化リチウム0.4M、ヨウ素0.05M、4−(t−ブチル)ピリジン0.5Mを含む3−メチルプロピオニトリル溶液を用いた。対極に白金板を用い、先に作製した光電変換電極ならびに電解液とクランプセルで組み立てることにより光電変換セル1を得た。
Example << Preparation of Photoelectric Conversion Cell >>
(Preparation of photoelectric conversion cell 1)
A commercially available titanium oxide paste (particle size 18 nm) was applied to a fluorine-doped tin oxide (FTO) conductive glass substrate. The paste paste was dried by heating at 60 ° C. for 10 minutes, and then baked at 500 ° C. for 30 minutes. Next, a 1: 1 mixture of the dye D-1 and the dye D-2 was dissolved in ethanol to prepare a 3 × 10 −4 M solution. The FTO glass substrate coated and sintered with the titanium oxide was immersed in this solution at room temperature for 12 hours to perform dye adsorption treatment to obtain a photoelectric conversion electrode. As the electrolytic solution, a 3-methylpropionitrile solution containing 0.4 M lithium iodide, 0.05 M iodine, and 0.5 M 4- (t-butyl) pyridine was used. A platinum plate was used as the counter electrode, and the photoelectric conversion cell 1 was obtained by assembling the photoelectric conversion electrode prepared earlier, the electrolyte solution, and the clamp cell.

(光電変換セル2〜11、26〜27の作製)
光電変換セル1の作製に用いた色素D−1と色素D−2を、表1記載の色素(併用)に変更した以外は光電変換セル1の作製と同様にして光電変換セル2〜11、26〜27を作製した。
(Production of photoelectric conversion cells 2 to 11 and 26 to 27)
Photoelectric conversion cells 2 to 11, in the same manner as the production of the photoelectric conversion cell 1, except that the dye D-1 and the dye D-2 used for the production of the photoelectric conversion cell 1 were changed to the dyes shown in Table 1 (combined use). 26-27 were produced.

(光電変換セル12の作製)
市販の酸化チタンペースト(粒径18nm)をフッ素ドープ酸化スズ(FTO)導電性ガラス基板へ塗布した。60℃で10分間加熱してペーストペーストを乾燥した後、500℃で30分間焼成を行った。次に色素D−1(単独使用)をエタノールに溶解し、3×10-4Mの溶液を作製した。前記酸化チタンを塗布焼結したFTOガラス基板を、この溶液に室温で12時間浸漬して色素の吸着処理を行い、光電変換電極とした。電解液にはヨウ化リチウム0.4M、ヨウ素0.05M、4−(t−ブチル)ピリジン0.5Mを含む3−メチルプロピオニトリル溶液を用いた。対極に白金板を用い、先に作製した光電変換電極ならびに電解液とクランプセルで組み立てることにより光電変換セル12を得た。
(Preparation of photoelectric conversion cell 12)
A commercially available titanium oxide paste (particle size 18 nm) was applied to a fluorine-doped tin oxide (FTO) conductive glass substrate. The paste paste was dried by heating at 60 ° C. for 10 minutes, and then baked at 500 ° C. for 30 minutes. Next, Dye D-1 (single use) was dissolved in ethanol to prepare a 3 × 10 −4 M solution. The FTO glass substrate coated and sintered with the titanium oxide was immersed in this solution at room temperature for 12 hours to perform dye adsorption treatment to obtain a photoelectric conversion electrode. As the electrolytic solution, a 3-methylpropionitrile solution containing 0.4 M lithium iodide, 0.05 M iodine, and 0.5 M 4- (t-butyl) pyridine was used. A platinum plate was used as the counter electrode, and the photoelectric conversion cell 12 was obtained by assembling the photoelectric conversion electrode, the electrolyte solution, and the clamp cell prepared above.

(光電変換セル13〜25の作製)
光電変換セル12の作製に用いた色素D−1を、表1記載の色素に変更した以外は光電変換セル12の作製と同様にして光電変換セル13〜25を作製した。
(Preparation of photoelectric conversion cells 13 to 25)
Photoelectric conversion cells 13 to 25 were produced in the same manner as the production of the photoelectric conversion cell 12 except that the dye D-1 used for the production of the photoelectric conversion cell 12 was changed to the dye described in Table 1.

光電変換セルの作製に用いた各色素の分子長を、前記Combridge Soft社製ChemDraw Ultra Ver.9.0.1にて化合物を作図する際に、最も分子長が長くなるよう作図、構造最適化した構造において、中心窒素原子から酸性基が結合している原子までの原子間距離(nm)として求め、組み合わせた二つの色素の分子長の差の絶対値を表1に示す。   The molecular length of each dye used for the production of the photoelectric conversion cell was measured using the above-mentioned ChemDraw Ultra Ver. 9. When drawing a compound at 9.0.1, the interatomic distance (nm) from the central nitrogen atom to the atom to which the acidic group is bonded in the structure optimized for the longest molecular length Table 1 shows the absolute value of the difference in molecular length between the two dyes combined.

Figure 0005194893
Figure 0005194893

《光電変換セルの評価》
作製した光電変換セルをAM1.5Gの擬似太陽光(100mA/cm2)に曝露した時の光電変換特性の測定を行った。即ち、光電変換素子について、I−Vテスターを用いて室温にて電流−電圧特性を測定し、短絡電流(Jsc)、開放電圧(Voc)、及び形状因子(F.F.)を求め、これらから光電変換効率(η(%))を求めた。なお、光電変換効率(η(%))は、下記式(A)に基づいて算出した。
<< Evaluation of photoelectric conversion cell >>
Photoelectric conversion characteristics were measured when the produced photoelectric conversion cell was exposed to AM1.5G simulated sunlight (100 mA / cm 2 ). That is, for the photoelectric conversion element, current-voltage characteristics were measured at room temperature using an IV tester, and a short circuit current (Jsc), an open circuit voltage (Voc), and a form factor (FF) were obtained. From this, the photoelectric conversion efficiency (η (%)) was determined. The photoelectric conversion efficiency (η (%)) was calculated based on the following formula (A).

式(A) η=100×(Voc×Jsc×F.F.)/P
ここで、Pは入射光強度[mW/cm-2]、Vocは開放電圧[V]、Jscは短絡電流密度[mA・cm-2]、F.F.は形状因子を示す。
Formula (A) η = 100 × (Voc × Jsc × FF) / P
Here, P is the incident light intensity [mW / cm −2 ], Voc is the open circuit voltage [V], Jsc is the short circuit current density [mA · cm −2 ], F. Indicates a form factor.

評価の結果を表2に示す。   The evaluation results are shown in Table 2.

Figure 0005194893
Figure 0005194893

表より、本発明の光電変換セルは、比較例の光電変換セルに比べ形状因子が向上ていることが分かる。この要因のひとつとして、1種の色素を用いた比較例の光電変換セルでは、半導体層上に色素の未吸着部ができて逆電子移動が起こるが、構造が類似で分子サイズの異なる色素2種を用いた本発明の光電変換セルでは、色素が半導体層上に密に吸着し、その結果として逆電子移動が防がれたことが考えられる。   From the table, it can be seen that the photoelectric conversion cell of the present invention has an improved form factor compared to the photoelectric conversion cell of the comparative example. As one of the factors, in the photoelectric conversion cell of the comparative example using one kind of dye, an unadsorbed portion of the dye is formed on the semiconductor layer and reverse electron transfer occurs, but the dye 2 having a similar structure and a different molecular size is used. In the photoelectric conversion cell of the present invention using seeds, it is considered that the dye was closely adsorbed on the semiconductor layer, and as a result, reverse electron transfer was prevented.

また、本発明の光電変換セル26では形状因子の向上が見られたが、比較例の光電変換セル27においては形状因子の低下が起こった。分子長に差がありすぎると色素の類似性が減少して好ましい凝集構造を形成しなくなり、均一に酸化物半導体上に吸着できなくなると考えられる。このことから分子長の長さの差は2.2nmまでが妥当であった。   Moreover, although the improvement of the shape factor was seen in the photoelectric conversion cell 26 of this invention, in the photoelectric conversion cell 27 of the comparative example, the fall of the shape factor occurred. If there is an excessive difference in molecular length, it is considered that the similarity of the dye is reduced and a preferable aggregate structure is not formed, and it is impossible to uniformly adsorb on the oxide semiconductor. From this, the difference in molecular length was reasonable up to 2.2 nm.

また、図2に本発明の光電変換セル1(色素D−1、D−2併用)、比較例の光電変換セル12(色素D−1単独使用)、比較例の光電変換セル13(色素D−2単独使用)の色素吸着したFTOガラス基板の吸収スペクトルを示す。図2から本発明の光電変換セル1では、光吸収波長の拡張が確認できた。これは2種の色素分子が類似構造を持つために凝集が発達したためであると考えられる。光電変換セル1以外の本発明の光電変換セル2〜11、26についても同様に光吸収波長の拡張が確認できた。   FIG. 2 shows the photoelectric conversion cell 1 of the present invention (in combination with Dye D-1 and D-2), the photoelectric conversion cell 12 in Comparative Example (using only Dye D-1), and the photoelectric conversion cell 13 in Comparative Example (Dye D). -2 single use) shows the absorption spectrum of the FTO glass substrate adsorbed with the dye. From FIG. 2, in the photoelectric conversion cell 1 of the present invention, extension of the light absorption wavelength was confirmed. This is thought to be due to the development of aggregation because the two types of dye molecules have similar structures. For the photoelectric conversion cells 2 to 11 and 26 of the present invention other than the photoelectric conversion cell 1, the extension of the light absorption wavelength was confirmed in the same manner.

この結果より、光吸収領域の異なる2種またはそれ以上の色素分子を共吸着させることにより、光吸収領域の拡張をさせることができ、電池特性の向上につながることが示唆された。   From this result, it was suggested that by co-adsorbing two or more dye molecules having different light absorption regions, the light absorption region can be expanded, leading to improvement of battery characteristics.

本発明の色素増感光電変換素子の一例を示す構成断面図である。It is a structure sectional view showing an example of the dye-sensitized photoelectric conversion element of the present invention. 色素吸着したFTOガラス基板の吸収スペクトルである。It is an absorption spectrum of a dye-adsorbed FTO glass substrate.

符号の説明Explanation of symbols

1,1′ 基板
2,7 透明導電膜
3 酸化物半導体
4 色素
5 電解質
6 対向電極
8 白金(Pt)
1, 1 'substrate 2, 7 transparent conductive film 3 oxide semiconductor 4 dye 5 electrolyte 6 counter electrode 8 platinum (Pt)

Claims (3)

導電性支持体上の酸化物半導体に複数の色素を担持させてなる色素担持半導体電極と対向電極とを、電荷移動層を介して対向配置してなる色素増感光電変換素子において、前記複数の色素が、下記一般式(1)と(4)、または一般式(2)と(5)、または一般式(3)と(6)で表される2種の色素を有し、かつ、前記2種の色素の分子長の差(|L1−L2|)が下記式(X)に従うことを特徴とする色素増感光電変換素子。
Figure 0005194893
(一般式(1)及び一般式(4)中、Ar1はアリール基を表し、置換基を有していてもよい。R1、R2は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R3、R10は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X1、X7は酸性基を表す。R1、R2、Ar1は連結し、環を形成してもよい。
一般式(2)及び(5)中、Ar2、Ar3はアリール基を表し、置換基を有していてもよい。R4は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R5、R6、R11、R12は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X2、X3、X8、X9は酸性基を表す。R4、Ar2、Ar3は連結し、環を形成してもよい。
一般式(3)及び(6)中、Ar4、Ar5、Ar6はアリール基を表し、置換基を有していてもよい。R7、R8、R9、R13,R14、R15は単結合、アルキレン基、アリーレン基または2価の複素環基を表し、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基は置換基を有していてもよい。Ar4、Ar5、Ar6は連結し、環を形成してもよい。X4、X5、X6、X10、X11、X12は酸性基を表す。)
式(X) 0.1≦|L1−L2|≦2.2(nm)
(式中、L1は一般式(1)〜(3)で表される色素の分子長を表し、L2は一般式(4)〜(6)で表される色素の分子長を表す。分子長L1及びL2は、Combridge Soft社製ChemDraw Ultra Ver.9.0.1にて化合物を作図する際に、最も分子長が長くなるよう作図、構造最適化した構造において、中心窒素原子から酸性基が結合している原子までの原子間距離(nm)を表す。)
In the dye-sensitized photoelectric conversion element in which a dye-carrying semiconductor electrode in which a plurality of dyes are carried on an oxide semiconductor on a conductive support and a counter electrode are arranged to face each other with a charge transfer layer interposed therebetween, The dye has two kinds of dyes represented by the following general formulas (1) and (4), or general formulas (2) and (5), or general formulas (3) and (6), and A dye-sensitized photoelectric conversion element characterized in that a difference in molecular length (| L 1 −L 2 |) between two kinds of dyes is in accordance with the following formula (X).
Figure 0005194893
(In General Formula (1) and General Formula (4), Ar 1 represents an aryl group and may have a substituent. R 1 and R 2 are a hydrogen atom, a halogen atom, an alkyl group, an amino group, Represents an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group, and heterocyclic group may have a substituent, and R 3 and R 10 are a single bond, an alkylene group, an arylene group, or a divalent group. And an alkylene group, an arylene group or a divalent heterocyclic group may have a substituent, and X 1 and X 7 each represents an acidic group, R 1 , R 2 and Ar 1 may be linked to form a ring.
In general formulas (2) and (5), Ar 2 and Ar 3 each represents an aryl group and may have a substituent. R 4 represents a hydrogen atom, a halogen atom, an alkyl group, an amino group, an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group and heterocyclic group may have a substituent. R 5 , R 6 , R 11 , and R 12 each represents a single bond, an alkylene group, an arylene group, or a divalent heterocyclic group, or a linking group thereof. The alkylene group, the arylene group, or the divalent heterocyclic group is It may have a substituent. X 2 , X 3 , X 8 and X 9 represent an acidic group. R 4 , Ar 2 and Ar 3 may be connected to form a ring.
In general formulas (3) and (6), Ar 4 , Ar 5 , and Ar 6 represent an aryl group and may have a substituent. R 7 , R 8 , R 9 , R 13 , R 14 and R 15 each represents a single bond, an alkylene group, an arylene group or a divalent heterocyclic group, an alkylene group, an arylene group or a divalent heterocyclic group; Alternatively, these bonding groups may have a substituent. Ar 4 , Ar 5 and Ar 6 may be linked to form a ring. X 4 , X 5 , X 6 , X 10 , X 11 and X 12 each represents an acidic group. )
Formula (X) 0.1 ≦ | L 1 −L 2 | ≦ 2.2 (nm)
(Wherein, L 1 is the general formula (1) to (represents the molecular length of the dyes represented by 3), L 2 represents a general formula (4) the molecular length of the dye represented by - (6). The molecular lengths L 1 and L 2 are the central nitrogen atom in the structure optimized for the longest molecular length when the compound is drawn with ChemDraw Ultra Ver. 9.0.1 manufactured by Hybrid Soft. To the atom to which the acidic group is bonded (nm).
導電性支持体上の酸化物半導体に複数の色素を担持させてなる色素担持半導体電極と対向電極とを、電荷移動層を介して対向配置してなる色素増感光電変換素子において、前記複数の色素が、下記一般式(7)と(10)、または一般式(8)と(11)、または一般式(9)と(12)で表される2種の色素を有し、かつ、前記2種の色素の分子長の差(|L1−L2|)が下記式(X)に従うことを特徴とする色素増感光電変換素子。
Figure 0005194893
(一般式(7)及び一般式(10)中、Ar21、Ar22、Ar23は2価のアリール基を表し、置換基を有していてもよい。R21、R23は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R22、R30は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X21、X27は酸性基を表す。Ar21、Ar22、Ar23は連結し、環を形成してもよい。
一般式(8)及び一般式(11)中、Ar24、Ar25、Ar26はアリール基を表し、置換基を有していてもよい。R24は水素原子、ハロゲン原子、アルキル基、アミノ基、アリール基または複素環基を表し、アルキル基、アミノ基、アリール基、複素環基は置換基を有していてもよい。R25、R26、R31、R32は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。X22、X23、X28、X29は酸性基を表す。Ar24、Ar25、Ar26は連結し、環を形成してもよい。
一般式(9)及び一般式(12)中、Ar27、Ar28、Ar29はアリール基を表し、置換基を有していてもよい。R27、R28、R29、R33、R34、R35は単結合、アルキレン基、アリーレン基、または2価の複素環基、またはこれらの結合基を表し、アルキレン基、アリーレン基または2価の複素環基は置換基を有していてもよい。Ar27、Ar28、Ar29は連結し、環を形成してもよい。X24、X25、X26、X30、X31、X32は酸性基を表す。)
式(X) 0.1≦|L1−L2|≦2.2(nm)
(式中、L1は一般式(7)〜(9)で表される色素の分子長を表し、L2は一般式(10)〜(12)で表される色素の分子長を表す。分子長L1及びL2は、Combridge Soft社製ChemDraw Ultra Ver.9.0.1にて化合物を作図する際に、最も分子長が長くなるよう作図、構造最適化した構造において、中心窒素原子から酸性基が結合している原子までの原子間距離(nm)を表す。)
In the dye-sensitized photoelectric conversion element in which a dye-carrying semiconductor electrode in which a plurality of dyes are carried on an oxide semiconductor on a conductive support and a counter electrode are arranged to face each other with a charge transfer layer interposed therebetween, The dye has two kinds of dyes represented by the following general formulas (7) and (10), or general formulas (8) and (11), or general formulas (9) and (12), and A dye-sensitized photoelectric conversion element characterized in that a difference in molecular length (| L 1 −L 2 |) between two kinds of dyes is in accordance with the following formula (X).
Figure 0005194893
(In the general formula (7) and the general formula (10), Ar 21 , Ar 22 and Ar 23 each represent a divalent aryl group and may have a substituent. R 21 and R 23 represent a hydrogen atom, Represents a halogen atom, an alkyl group, an amino group, an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group and heterocyclic group may have a substituent, R 22 and R 30 are a single bond, Represents an alkylene group, an arylene group, or a divalent heterocyclic group, or a bonding group thereof, and the alkylene group, the arylene group, or the divalent heterocyclic group may have a substituent, X 21 , X 27 Represents an acidic group, and Ar 21 , Ar 22 and Ar 23 may be linked to form a ring.
In General Formula (8) and General Formula (11), Ar 24 , Ar 25 and Ar 26 represent an aryl group and may have a substituent. R 24 represents a hydrogen atom, a halogen atom, an alkyl group, an amino group, an aryl group or a heterocyclic group, and the alkyl group, amino group, aryl group or heterocyclic group may have a substituent. R 25 , R 26 , R 31 and R 32 each represents a single bond, an alkylene group, an arylene group, or a divalent heterocyclic group, or a linking group thereof, and the alkylene group, the arylene group, or the divalent heterocyclic group is It may have a substituent. X 22 , X 23 , X 28 and X 29 each represents an acidic group. Ar 24 , Ar 25 and Ar 26 may be linked to form a ring.
In General Formula (9) and General Formula (12), Ar 27 , Ar 28 , and Ar 29 each represent an aryl group and may have a substituent. R 27 , R 28 , R 29 , R 33 , R 34 , and R 35 each represents a single bond, an alkylene group, an arylene group, or a divalent heterocyclic group, or a linking group thereof. An alkylene group, an arylene group, or 2 The valent heterocyclic group may have a substituent. Ar 27 , Ar 28 and Ar 29 may be linked to form a ring. X 24 , X 25 , X 26 , X 30 , X 31 and X 32 represent an acidic group. )
Formula (X) 0.1 ≦ | L 1 −L 2 | ≦ 2.2 (nm)
(In the formula, L 1 represents the molecular length of the dye represented by the general formulas (7) to (9), and L 2 represents the molecular length of the dye represented by the general formulas (10) to (12). The molecular lengths L 1 and L 2 are the central nitrogen atom in the structure optimized for the longest molecular length when the compound is drawn with ChemDraw Ultra Ver. 9.0.1 manufactured by Hybrid Soft. To the atom to which the acidic group is bonded (nm).
請求項1または2に記載の色素増感光電変換素子を用いることを特徴とする太陽電池。 A solar cell using the dye-sensitized photoelectric conversion element according to claim 1 or 2.
JP2008056082A 2008-03-06 2008-03-06 Dye-sensitized photoelectric conversion element and solar cell Expired - Fee Related JP5194893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056082A JP5194893B2 (en) 2008-03-06 2008-03-06 Dye-sensitized photoelectric conversion element and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056082A JP5194893B2 (en) 2008-03-06 2008-03-06 Dye-sensitized photoelectric conversion element and solar cell

Publications (2)

Publication Number Publication Date
JP2009212035A JP2009212035A (en) 2009-09-17
JP5194893B2 true JP5194893B2 (en) 2013-05-08

Family

ID=41184969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056082A Expired - Fee Related JP5194893B2 (en) 2008-03-06 2008-03-06 Dye-sensitized photoelectric conversion element and solar cell

Country Status (1)

Country Link
JP (1) JP5194893B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI458787B (en) 2009-05-15 2014-11-01 Ind Tech Res Inst Organic dyes and photoelectric conversion devices
JP5815514B2 (en) * 2009-06-19 2015-11-17 ドンジン セミケム カンパニー リミテッド NOVEL ORGANIC DYE AND METHOD FOR PRODUCING THE SAME
JP5630156B2 (en) * 2010-09-03 2014-11-26 東洋インキScホールディングス株式会社 Indanone derivatives and their use as colorants for dye-sensitized solar cells
EP2551865A3 (en) * 2011-07-29 2016-05-25 Konica Minolta Business Technologies, Inc. Photoelectric conversion element and solar cell
WO2013027838A1 (en) 2011-08-25 2013-02-28 独立行政法人物質・材料研究機構 Dye-sensitized solar cell and sensitizing dye
KR101192981B1 (en) * 2012-05-15 2012-10-19 주식회사 상보 Metal flexible dye-sensitized solar cell and manufacturing method thereof
CN104769045B (en) 2012-12-28 2018-04-03 株式会社艾迪科 Carrying body and photo-electric conversion element
US10937970B2 (en) 2017-10-31 2021-03-02 Samsung Electronics Co., Ltd. Compound and photoelectric device, image sensor and electronic device including the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4148374B2 (en) * 1997-07-18 2008-09-10 富士フイルム株式会社 Photoelectric conversion element and photoelectrochemical cell
JP2000268892A (en) * 1999-01-14 2000-09-29 Fuji Photo Film Co Ltd Photoelectric transducer and photo-cell
JP4295954B2 (en) * 2002-05-17 2009-07-15 シャープ株式会社 Dye-sensitized solar cell
JP5163849B2 (en) * 2007-01-17 2013-03-13 セイコーエプソン株式会社 Method for manufacturing photoelectric conversion element, photoelectric conversion element and electronic device

Also Published As

Publication number Publication date
JP2009212035A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5194893B2 (en) Dye-sensitized photoelectric conversion element and solar cell
JP5181814B2 (en) Photoelectric conversion element and solar cell
JP5206092B2 (en) Photoelectric conversion element and solar cell
JP2007311336A (en) Semiconductor electrode containing phosphate and solar battery using the same
JP2011204662A (en) Photoelectric conversion element and method of manufacturing the same, and electronic apparatus
JP2009269987A (en) Novel compound, photoelectric transducer and solar cell
JP4280020B2 (en) Oxide semiconductor electrode for photoelectric conversion and dye-sensitized solar cell
Martín-Gomis et al. Dye sensitized solar cells (DSSCs) based on bulky tert-octylphenoxy-carboxyphenyl substituted phthalocyanine without the presence of co-adsorbents
JP5181550B2 (en) Photoelectric conversion element
WO2012041010A1 (en) Solar cell electrolyte and application thereof
JP2009093909A (en) Dye-sensitized photoelectric conversion element, and manufacturing method thereof
JP5396987B2 (en) Photoelectric conversion element and solar cell
Echeverry et al. New organic dyes with high IPCE values containing two triphenylamine units as co-donors for efficient dye-sensitized solar cells
JP4291542B2 (en) Oxide semiconductor electrode for photoelectric conversion and dye-sensitized solar cell
JP5233318B2 (en) Photoelectric conversion element and solar cell
JP5206010B2 (en) Dye-sensitized photoelectric conversion element and solar cell
JP5266714B2 (en) Photoelectric conversion element and solar cell
JP6057982B2 (en) Metal oxide semiconductor electrode formed with porous thin film, dye-sensitized solar cell using the same, and method for producing the same
JP5223362B2 (en) Photoelectric conversion element and solar cell
JP4291541B2 (en) Oxide semiconductor electrode for photoelectric conversion and dye-sensitized solar cell
JP2007188809A (en) Gel electrolyte, photoelectric conversion element and solar cell
JP2010168511A (en) New compound, photoelectric transducer, and solar cell
JP2005353318A (en) Dye sensitized solar battery
JP2005078888A (en) Semiconductor for photoelectric conversion material, photoelectric conversion element and solar cell
JP2004127579A (en) Manufacturing method of metal-metal oxide composite electrode, photoelectric transducing element and photoelectric cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees