JP2006318770A - Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same - Google Patents

Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same Download PDF

Info

Publication number
JP2006318770A
JP2006318770A JP2005140481A JP2005140481A JP2006318770A JP 2006318770 A JP2006318770 A JP 2006318770A JP 2005140481 A JP2005140481 A JP 2005140481A JP 2005140481 A JP2005140481 A JP 2005140481A JP 2006318770 A JP2006318770 A JP 2006318770A
Authority
JP
Japan
Prior art keywords
metal
catalyst electrode
catalyst
electrode
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005140481A
Other languages
Japanese (ja)
Other versions
JP4911556B2 (en
Inventor
Kazato Yanada
風人 梁田
Hideki Nukui
秀樹 温井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2005140481A priority Critical patent/JP4911556B2/en
Publication of JP2006318770A publication Critical patent/JP2006318770A/en
Application granted granted Critical
Publication of JP4911556B2 publication Critical patent/JP4911556B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst electrode which can be simply manufactured by using a cheap material, excellent in durability capable of quickly reducing oxidant of redox pair contained in an electrolyte, and to provide a dye-sensitized solar battery provided with the catalyst electrode having an excellent photoelectric conversion rate. <P>SOLUTION: The catalyst electrode contains at least a metal layer and a corrosion resistant conductive layer formed on a metal layer. The corrosion resistant conductive layer contains a catalytic compound composed of at least one kind of material selected from a transition metal, a conductive carbon material, a conductive polymeric material, and an organic metal complex. The dye-sensitized solar battery provided with the above catalyst electrode as a counter electrode is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、色素増感型太陽電池の触媒電極、及びそれを備えた色素増感型太陽電池に関する。   The present invention relates to a catalyst electrode of a dye-sensitized solar cell and a dye-sensitized solar cell including the same.

近年、多孔質金属半導体層に可視光域を吸収させる増感色素を担持させた色素増感型太陽電池が検討されている。この色素増感型太陽電池は、使用する材料が安価であること、比較的シンプルなプロセスで製造できること等の利点からその実用化が期待されている。   In recent years, dye-sensitized solar cells in which a sensitizing dye that absorbs a visible light region is supported on a porous metal semiconductor layer have been studied. This dye-sensitized solar cell is expected to be put to practical use because of the advantages that it is inexpensive and can be manufactured by a relatively simple process.

前記の色素増感型太陽電池は、可視光を吸収して励起した増感色素から半導体電極に電子が注入され、集電体を通して外部に電流が取り出される。一方、増感色素の酸化体は電解質中の酸化還元対により還元されて再生する。酸化された酸化還元対は、半導体電極に対向して設置された触媒電極表面で還元されてサイクルが一周する。   In the dye-sensitized solar cell, electrons are injected into the semiconductor electrode from the sensitizing dye excited by absorbing visible light, and current is taken out through the current collector. On the other hand, the oxidized form of the sensitizing dye is reduced and regenerated by a redox pair in the electrolyte. The oxidized redox pair is reduced on the surface of the catalyst electrode placed opposite to the semiconductor electrode, and the cycle goes around.

色素増感型太陽電池に従来用いられている触媒電極としては、導電性酸化物が集電体として被覆されてなる基体上に、塩化白金酸を塗布・熱処理したものや、白金を蒸着、もしくは電析させた白金触媒電極が知られている。   As a catalyst electrode conventionally used in a dye-sensitized solar cell, a chloroplatinic acid is applied and heat-treated on a substrate coated with a conductive oxide as a current collector, platinum is deposited, or Electroplated platinum catalyst electrodes are known.

電解質は実用を考慮して高粘度化やゲル化などが検討されているが、上記に示したような白金触媒電極を備えた色素増感型太陽電池において、電解質の高粘度化にともない酸化還元対であるヨウ素の拡散が該太陽電池内での電子移動反応の律速過程となり、太陽電池特性を低下させてしまうという問題があった。このため、触媒電極表面でのヨウ素還元反応をより速やかに進行させるためには膜厚を厚く、かつ、凹凸を形成させて表面積を拡大させる必要が出てきた結果、白金使用量が増加、または製造プロセスが煩雑になり製造コストが高くなるという問題もあった。   In consideration of practical use, electrolytes have been studied for higher viscosity and gelation. However, in dye-sensitized solar cells equipped with platinum catalyst electrodes as shown above, redox is accompanied by higher electrolyte viscosity. The diffusion of iodine as a pair becomes a rate-determining process of the electron transfer reaction in the solar cell, and there is a problem that the solar cell characteristics are deteriorated. For this reason, in order to advance the iodine reduction reaction on the surface of the catalyst electrode more rapidly, it is necessary to increase the surface area by increasing the surface area by forming a film thickness and unevenness, or the amount of platinum used increases, or There is also a problem that the manufacturing process becomes complicated and the manufacturing cost increases.

また、集電体として一般的に使用されている導電性酸化物は導電性が不足するため膜厚を厚くする必要があり、その結果、触媒電極のコストが上がってしまうという問題があった。さらに、実用サイズの色素増感型太陽電池においては、該導電性酸化物層の膜厚を厚くしても電導度が不足するため、太陽電池性能が大幅に低下してしまうという問題があった。   In addition, the conductive oxide generally used as a current collector is insufficient in conductivity, so that it is necessary to increase the film thickness. As a result, the cost of the catalyst electrode increases. Furthermore, in the dye-sensitized solar cell of practical size, there is a problem that the solar cell performance is greatly deteriorated because the conductivity is insufficient even if the conductive oxide layer is thickened. .

特許文献1には、モノマーを重合させると同時に形成される有機膜からなるホール集電電極(触媒電極)を使用した色素増感型太陽電池が開示されている。   Patent Document 1 discloses a dye-sensitized solar cell using a hole current collecting electrode (catalyst electrode) made of an organic film formed simultaneously with polymerization of a monomer.

この文献によると、従来の触媒電極形成方法に比べ、簡潔な工程で安価にホール集電電極を作製でき、製造プロセス及び製造コストの面で有利な色素増感型太陽電池を提供し得ると記載されている。   According to this document, it is described that a hole-collecting electrode can be produced at a low cost by a simple process compared with a conventional method for forming a catalyst electrode, and a dye-sensitized solar cell advantageous in terms of production process and production cost can be provided. Has been.

特許文献2では、アナターゼ型酸化チタンよりも電導度の高い導電性酸化物粒子を導電助剤に用いることで、導電性の向上を図った炭素電極が開示され、その結果前記酸化還元対の酸化体の還元反応を速やかに進行させることができるとともに、白金触媒ガラス電極よりも広い電極面積を確保しやすく、また、軽量かつ化学的に安定で低コストの電極ができると記載されている。   Patent Document 2 discloses a carbon electrode that has improved conductivity by using conductive oxide particles having higher conductivity than anatase-type titanium oxide as a conductive additive, and as a result, oxidation of the redox couple is disclosed. It is described that the reduction reaction of the body can be advanced promptly, a larger electrode area than that of the platinum catalyst glass electrode can be easily secured, and a lightweight, chemically stable and low-cost electrode can be obtained.

しかしながら、ホール集電電極として導電性高分子材料もしくは粉体状の炭素材料を用いた場合では実用化サイズでは導電性が不足しており、高い変換効率を得るためには導電性を補完しなければならない。すなわち、依然として触媒電極においては高導電性の集電体が被覆されてなる基体の使用が欠かせないが、一般的に酸化還元対として用いられているヨウ素による腐食を避けるため、高価な導電性酸化物が被覆されてなる基体を使用しているのが現状である。   However, when a conductive polymer material or a powdery carbon material is used as the hole collector electrode, the practical size is insufficient, and the conductivity must be supplemented to obtain high conversion efficiency. I must. In other words, the catalyst electrode still requires the use of a substrate coated with a highly conductive current collector. However, in order to avoid corrosion due to iodine, which is generally used as a redox couple, it is expensive. The current situation is that a substrate coated with an oxide is used.

非特許文献1にあるように、触媒電極製造コストの大半は材料費、とりわけ導電性酸化物が被覆されてなる基体が占めており、白金の使用量削減に伴う製造コストの削減だけでは不十分である。したがって、耐食性と高い導電性を有した安価な基体を用い、実用サイズにおいても優れた電池特性を示す触媒電極、さらに、該触媒電極を備えた色素増感型太陽電池が求められている。   As described in Non-Patent Document 1, most of the catalyst electrode manufacturing cost is occupied by the material cost, especially the substrate coated with the conductive oxide, and it is not enough to reduce the manufacturing cost due to the reduction of platinum usage. It is. Therefore, there is a need for a catalyst electrode that uses an inexpensive substrate having corrosion resistance and high conductivity, exhibits excellent battery characteristics even in practical size, and a dye-sensitized solar cell including the catalyst electrode.

特開2003−317814号公報JP 2003-317814 A 特開2004−127849号公報Japanese Patent Laid-Open No. 2004-127849 湿式太陽電池実用化可能性調査、「平成11年度 新エネルギー・産業技術総合開発機構委託業務成果報告書 太陽光発電システム実用化技術開発 超効率結晶化合物太陽電池の製造技術開発 周辺要素技術に関する調査研究」、財団法人産業創造研究所、平成12年3月、p.41−42Wet Solar Cell Practicability Study, “1999 New Energy and Industrial Technology Development Organization Consignment Results Report Solar Power Generation System Practical Technology Development Manufacturing Technology for Super-Efficient Crystalline Compound Solar Cell Research on Peripheral Elemental Technology "Industry Creation Institute, March 2000, p. 41-42

本発明は前記した実情に鑑み、安価な材料および簡便な製造法により作製でき、かつ、電解質中に含まれる酸化還元対の酸化体を速やかに還元することができる耐久性に優れた高導電性の触媒電極、およびこれを備え、優れた光電変換効率を有する色素増感型太陽電池を提供することを課題とする。   In view of the above-described circumstances, the present invention can be produced by an inexpensive material and a simple manufacturing method, and can quickly reduce an oxidized form of a redox pair contained in an electrolyte, and has excellent durability. It is an object of the present invention to provide a catalyst electrode and a dye-sensitized solar cell having the same and having excellent photoelectric conversion efficiency.

本発明者らは、前記の課題を解決すべく鋭意検討した結果、金属層及び該金属層上に形成された耐食性導電層を少なくとも含み、該耐食性導電層に、遷移金属、導電性炭素材料、導電性高分子材料、もしくは、有機金属錯体の中から選ばれた少なくとも1種からなる触媒化合物を含有する電極が、高耐食性と高導電性を有し、長期間に渡って電解質中に含まれる酸化還元対の酸化体を速やかに還元することができる触媒電極となることを見出し、本研究を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention include at least a metal layer and a corrosion-resistant conductive layer formed on the metal layer, and the corrosion-resistant conductive layer includes a transition metal, a conductive carbon material, An electrode containing a conductive polymer material or at least one catalyst compound selected from organometallic complexes has high corrosion resistance and high conductivity and is included in the electrolyte for a long period of time. The inventors have found that the catalyst electrode can rapidly reduce the oxidant of the redox couple, and has completed this research.

すなわち、本発明は、以下に示すものである。
1.光増感作用を有する色素を含む光透過性の半導体電極と、酸化還元対となる化学種を含む電解質層とを有する色素増感型太陽電池において、前記電解質層を介して前記半導体電極に対向配置される触媒電極であって、該触媒電極が、金属層及び該金属層上に形成された耐食性導電層とを少なくとも含み、該耐食性導電層に、触媒化合物を含有していることを特徴とする触媒電極。
2.前記金属層が、鉄、ニッケル、クロム、モリブデン、チタン、アルミニウムの中から選ばれた少なくとも1種の金属、もしくはそれらの合金、もしくはステンレス鋼からなることを特徴とする上記1に記載の触媒電極。
3.前記耐食性導電層が、金属酸化物からなることを特徴とする上記1に記載の触媒電極。
4.前記金属酸化物が、酸化スズ、酸化インジウム、酸化スズと酸化インジウムの混合体、酸化チタン、酸化亜鉛、酸化イリジウム、もしくは酸化ルテニウムの中から選ばれた少なくとも1種類を含有している上記3に記載の触媒電極。
5.前記耐食性導電層が、金属窒化物からなることを特徴とする上記1に記載の触媒電極。
6.前記金属窒化物が、クロム、チタン、ジルコニウム、バナジウム、ニオブのうち少なくとも1種類から選ばれた金属の窒化物である上記5に記載の触媒電極。
7.前記耐食性導電層が、金属ホウ化物からなることを特徴とする上記1に記載の触媒電極。
8.前記金属ホウ化物が、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、もしくはタングステンのうち少なくとも1種類から選ばれた金属のホウ化物である上記7に記載の触媒電極。
9.前記耐食性導電層が、金属炭化物からなることを特徴とする上記1に記載の触媒電極。
10.前記金属炭化物が、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、もしくはタングステンのうち少なくとも1種類から選ばれた金属の炭化物であることを特徴とする上記9に記載の触媒電極。
11.前記耐食性導電層の電気電導度が、1×10−9S/cm以上であることを特徴とする上記3から10のいずれか1項に記載の触媒電極。
12.前記触媒化合物が、遷移金属、導電性炭素材料、導電性高分子材料、もしくは、有機金属錯体の中から選ばれた少なくとも1種からなることを特徴とする上記1に記載の触媒電極。
13.前記遷移金属が白金であることを特徴とする上記12に記載の触媒電極。
14.前記導電性高分子材料が、ピロール、チオフェン、アニリンおよびそれらの誘導体の中から選ばれる少なくとも1種類の重合体であることを特徴とする上記12に記載の触媒電極。
15.前記有機金属錯体が、ポルフィリン錯体、フタロシアニン錯体およびそれらの誘導体の中から選ばれた少なくとも1種類であることを特徴とする上記12に記載の触媒電極。
16.光増感作用を有する色素を含む光透過性の半導体電極と、酸化還元対となる化学種を含む電解質層と、前記電解質層を介して前記半導体電極に対向配置される対極とを有する色素増感型太陽電池であって、該対極が、上記1から15のいずれかに記載の触媒電極であることを特徴とする色素増感型太陽電池。
That is, the present invention is as follows.
1. In a dye-sensitized solar cell having a light-transmitting semiconductor electrode containing a dye having a photosensitizing action and an electrolyte layer containing a chemical species serving as a redox pair, the semiconductor electrode faces the semiconductor electrode through the electrolyte layer. A catalyst electrode to be disposed, wherein the catalyst electrode includes at least a metal layer and a corrosion-resistant conductive layer formed on the metal layer, and the corrosion-resistant conductive layer contains a catalyst compound. Catalytic electrode.
2. 2. The catalyst electrode according to 1 above, wherein the metal layer is made of at least one metal selected from iron, nickel, chromium, molybdenum, titanium, and aluminum, or an alloy thereof, or stainless steel. .
3. 2. The catalyst electrode according to 1 above, wherein the corrosion-resistant conductive layer is made of a metal oxide.
4). The metal oxide contains at least one selected from tin oxide, indium oxide, a mixture of tin oxide and indium oxide, titanium oxide, zinc oxide, iridium oxide, or ruthenium oxide. The catalyst electrode as described.
5. 2. The catalyst electrode according to 1 above, wherein the corrosion-resistant conductive layer is made of a metal nitride.
6). 6. The catalyst electrode according to 5 above, wherein the metal nitride is a metal nitride selected from at least one of chromium, titanium, zirconium, vanadium, and niobium.
7). 2. The catalyst electrode according to 1 above, wherein the corrosion-resistant conductive layer is made of a metal boride.
8). 8. The catalyst electrode according to 7 above, wherein the metal boride is a boride of a metal selected from at least one of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, or tungsten.
9. 2. The catalyst electrode according to 1 above, wherein the corrosion-resistant conductive layer is made of a metal carbide.
10. 10. The catalyst electrode according to 9 above, wherein the metal carbide is a carbide of a metal selected from at least one of titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, or tungsten.
11. 11. The catalyst electrode according to any one of 3 to 10 above, wherein the electrical conductivity of the corrosion-resistant conductive layer is 1 × 10 −9 S / cm or more.
12 2. The catalyst electrode according to 1 above, wherein the catalyst compound comprises at least one selected from a transition metal, a conductive carbon material, a conductive polymer material, or an organometallic complex.
13. 13. The catalyst electrode as described in 12 above, wherein the transition metal is platinum.
14 13. The catalyst electrode as described in 12 above, wherein the conductive polymer material is at least one polymer selected from pyrrole, thiophene, aniline and derivatives thereof.
15. 13. The catalyst electrode as described in 12 above, wherein the organometallic complex is at least one selected from a porphyrin complex, a phthalocyanine complex, and derivatives thereof.
16. Dye sensitization comprising a light-transmitting semiconductor electrode containing a dye having a photosensitizing action, an electrolyte layer containing a chemical species serving as a redox pair, and a counter electrode disposed opposite to the semiconductor electrode via the electrolyte layer A dye-sensitized solar cell, wherein the counter electrode is the catalyst electrode according to any one of 1 to 15 above.

本発明によれば、耐食性を有する導電層を金属層上に形成させることで、腐食環境下においても金属を集電体として用いることができる。その結果、電極の材料および製造コストを低減することができる。また、集電体の電気抵抗値を下げることができるため、少ない触媒使用量においても電解質中に含まれる酸化還元対の酸化体の還元反応を速やかに行なうことができるようになり、さらなるコスト削減が可能となるとともに、高いエネルギー変換効率を得ることができる。さらに、変換効率を下げることなく太陽電池の大型化が図れるようになる。したがって、該還元反応を長期間に渡って高効率に安定して行なうことができる触媒電極、およびこれを備え、優れた光電変換効率を有する高耐久な大型の色素増感型太陽電池を低コストで容易に提供することができる。   According to the present invention, a metal can be used as a current collector even in a corrosive environment by forming a corrosion-resistant conductive layer on a metal layer. As a result, the electrode material and manufacturing cost can be reduced. In addition, since the electrical resistance value of the current collector can be lowered, the reduction reaction of the oxidant of the redox pair contained in the electrolyte can be performed quickly even with a small amount of catalyst used, further reducing costs. And high energy conversion efficiency can be obtained. Furthermore, the solar cell can be increased in size without reducing the conversion efficiency. Therefore, a catalyst electrode that can stably perform the reduction reaction over a long period of time with high efficiency, and a highly durable large-sized dye-sensitized solar cell having the same and having excellent photoelectric conversion efficiency can be manufactured at low cost. Can be provided easily.

以下、本発明を実施するための最良の形態について図面をもとに詳細に説明する。   The best mode for carrying out the present invention will be described below in detail with reference to the drawings.

図1は、本発明の色素増感型太陽電池の断面模式図である。透明基体2とその上に形成された透明導電膜3からなる電極基体1の表面に、多孔質金属酸化物半導体層4が形成され、さらに該多孔質金属酸化物半導体層4の表面には、増感色素層5が吸着されている。そして、電解質層6を介して、本発明の触媒電極7が対向して設置されている。   FIG. 1 is a schematic cross-sectional view of the dye-sensitized solar cell of the present invention. A porous metal oxide semiconductor layer 4 is formed on the surface of the electrode substrate 1 composed of the transparent substrate 2 and the transparent conductive film 3 formed thereon, and further on the surface of the porous metal oxide semiconductor layer 4, The sensitizing dye layer 5 is adsorbed. And the catalyst electrode 7 of this invention is installed facing through the electrolyte layer 6. FIG.

図2は、本発明における触媒電極7の断面模式図である。図2に示す触媒電極7は、金属層9上に、耐食性導電層10が形成されてなり、さらに該耐食性導電層10の表面には触媒化合物が含有されている(図中省略)。また、図3に示す触媒電極のように、金属層9は、ガラスやプラスチックなどからなる基体8上に形成されたものであっても構わない。なお、図2及び図3に示した触媒電極7において、触媒化合物が含有されている耐食性導電層10が形成された面は、図1に示した太陽電池において、電解質層6に接するよう配置されて用いられる。   FIG. 2 is a schematic cross-sectional view of the catalyst electrode 7 in the present invention. The catalyst electrode 7 shown in FIG. 2 has a corrosion-resistant conductive layer 10 formed on a metal layer 9 and further contains a catalyst compound on the surface of the corrosion-resistant conductive layer 10 (not shown). Moreover, like the catalyst electrode shown in FIG. 3, the metal layer 9 may be formed on the base body 8 made of glass, plastic, or the like. 2 and 3, the surface on which the corrosion-resistant conductive layer 10 containing the catalyst compound is formed is disposed so as to be in contact with the electrolyte layer 6 in the solar cell shown in FIG. Used.

以下、本発明の色素増感型太陽電池の各構成材料について、好適な形態を説明する。
[透明基体]
電極基体1を構成する透明基体2は、可視光を透過するものが使用でき、透明なガラスが好適に利用できる。また、ガラス表面を加工して入射光を散乱させるようにしたもの、半透明なすりガラス状のものも使用できる。また、ガラスに限らず、光を透過するものであればプラスチック板やプラスチックフィルム等も使用できる。
透明基体2の厚さは、太陽電池の形状や使用条件により異なるため特に限定はされないが、例えばガラスやプラスチックなどを用いた場合では、実使用時の耐久性を考慮して1mm〜1cm程度であり、フレキシブル性が必要とされ、プラスチックフィルムなどを使用した場合は、1μm〜1mm程度である。
Hereinafter, a suitable form is demonstrated about each structural material of the dye-sensitized solar cell of this invention.
[Transparent substrate]
As the transparent substrate 2 constituting the electrode substrate 1, one that transmits visible light can be used, and transparent glass can be suitably used. Moreover, the thing which processed the glass surface and scattered incident light, and a translucent ground glass-like thing can also be used. Moreover, not only glass but a plastic plate, a plastic film, etc. can be used if it transmits light.
The thickness of the transparent substrate 2 is not particularly limited because it varies depending on the shape and use conditions of the solar cell. For example, when glass or plastic is used, the thickness is about 1 mm to 1 cm in consideration of durability during actual use. Yes, flexibility is required, and when a plastic film or the like is used, it is about 1 μm to 1 mm.

[透明導電膜]
透明導電膜3としては、可視光を透過して、かつ導電性を有するものが使用でき、このような材料としては、例えば金属酸化物が挙げられる。特に限定はされないが、例えばフッ素をドープした酸化スズ(以下、「FTO」と略記する。)や、酸化インジウム、酸化スズと酸化インジウムの混合体(以下、「ITO」と略記する。)、酸化亜鉛などが好適に用いることができる。また、分散させるなどの処理により可視光が透過すれば、不透明な導電性材料を用いることもできる。このような材料としては炭素材料や金属が挙げられる。炭素材料としては、特に限定はされないが、例えば黒鉛(グラファイト)、カーボンブラック、グラッシーカーボン、カーボンナノチューブやフラーレンなどが挙げられる。また、金属としては、特に限定はされないが、例えば白金、金、銀、ルテニウム、銅、アルミニウム、ニッケル、コバルト、クロム、鉄、モリブデン、チタン、タンタル、およびそれらの合金などが挙げられる。したがって、透明導電膜3としては、上述の導電性材料のうち少なくとも1種類以上からなる導電材料を、透明基体2の表面に設けて形成することができる。あるいは透明基体2を構成する材料の中へ上記導電性材料を組み込んで、透明基体と透明導電膜を一体化して電極基体1とすることも可能である。
[Transparent conductive film]
As the transparent conductive film 3, a material that transmits visible light and has conductivity can be used, and examples of such a material include metal oxide. Although not particularly limited, for example, tin oxide doped with fluorine (hereinafter abbreviated as “FTO”), indium oxide, a mixture of tin oxide and indium oxide (hereinafter abbreviated as “ITO”), oxidation. Zinc or the like can be suitably used. In addition, an opaque conductive material can be used as long as visible light is transmitted through a treatment such as dispersion. Such materials include carbon materials and metals. Although it does not specifically limit as a carbon material, For example, graphite (graphite), carbon black, glassy carbon, a carbon nanotube, fullerene, etc. are mentioned. Further, the metal is not particularly limited, and examples thereof include platinum, gold, silver, ruthenium, copper, aluminum, nickel, cobalt, chromium, iron, molybdenum, titanium, tantalum, and alloys thereof. Therefore, the transparent conductive film 3 can be formed by providing a conductive material made of at least one of the above-described conductive materials on the surface of the transparent substrate 2. Alternatively, it is also possible to incorporate the conductive material into the material constituting the transparent substrate 2 and integrate the transparent substrate and the transparent conductive film into the electrode substrate 1.

透明基体2上に透明導電膜3を形成する方法として、金属酸化物を使用する場合は、ゾルゲル法などの液相法や、スパッタやCVDなどの気相法、分散ペーストのコーティング
などがある。また、不透明な導電性材料を使用する場合は、粉体などを、透明なバインダーなどとともに固着させる方法が挙げられる。
透明基体と透明導電膜を一体化させるには、透明基体の成型時に導電性のフィラーとして上記導電膜材料を混合させるなどがある。
透明導電膜3の厚さは、用いる材料により導電性が異なるため特には限定されないが、一般的に使用されるFTO被膜付ガラスでは、0.01μm〜5μmであり、好ましくは0.1μm〜1μmである。また、必要とされる導電性は、使用する電極の面積により異なり、広い電極ほど低抵抗であることが求められるが、一般的に100Ω/□以下、好ましくは10Ω/□以下、より好ましくは5Ω/□以下である。
透明基体及び透明導電膜から構成される電極基体1、又は透明基体と透明導電膜とを一体化した電極基体1の厚さは、上述のように太陽電池の形状や使用条件により異なるため特に限定はされないが、一般的に1μm〜1cm程度である。
As a method for forming the transparent conductive film 3 on the transparent substrate 2, when a metal oxide is used, there are a liquid phase method such as a sol-gel method, a gas phase method such as sputtering or CVD, and a coating of a dispersion paste. Moreover, when using an opaque electroconductive material, the method of fixing powder etc. with a transparent binder etc. is mentioned.
In order to integrate the transparent substrate and the transparent conductive film, the conductive film material may be mixed as a conductive filler when the transparent substrate is molded.
The thickness of the transparent conductive film 3 is not particularly limited because the conductivity varies depending on the material to be used, but is generally 0.01 μm to 5 μm, preferably 0.1 μm to 1 μm in the FTO-coated glass. It is. Further, the required conductivity varies depending on the area of the electrode to be used, and a wider electrode is required to have a lower resistance, but is generally 100Ω / □ or less, preferably 10Ω / □ or less, more preferably 5Ω. / □ or less.
The thickness of the electrode substrate 1 composed of a transparent substrate and a transparent conductive film, or the electrode substrate 1 in which the transparent substrate and the transparent conductive film are integrated varies depending on the shape and use conditions of the solar cell as described above, and thus is particularly limited. Generally, it is about 1 μm to 1 cm.

[多孔質金属酸化物半導体]
多孔質金属酸化物半導体4としては、特に限定はされないが、酸化チタン、酸化亜鉛、酸化スズなどが挙げられ、特に二酸化チタン、さらにはアナターゼ型二酸化チタンが好適である。また、電気抵抗値を下げるため、金属酸化物の粒界は少ないことが望ましい。また、増感色素をより多く吸着させるために、多孔質になっていることが望ましい。また、増感色素の吸光量を増加させるため、使用する酸化物の粒径に幅を持たせて光を散乱させることが望ましい。
このような多孔質金属酸化物半導体は、特に限定されず既知の方法で透明導電膜3上に設けることができる。例えば、ゾルゲル法や、分散体ペーストの塗布、また、電析や電着させる方法がある。
このような半導体層の厚さは、用いる酸化物により最適値が異なるため特には限定されないが、0.1μm〜50μm、好ましくは5〜30μmである。
[Porous metal oxide semiconductor]
Examples of the porous metal oxide semiconductor 4 include, but are not limited to, titanium oxide, zinc oxide, tin oxide, and the like. Particularly, titanium dioxide and further anatase type titanium dioxide are preferable. Further, it is desirable that the metal oxide has few grain boundaries in order to reduce the electric resistance value. Moreover, in order to adsorb more sensitizing dyes, it is desirable to be porous. Further, in order to increase the light absorption amount of the sensitizing dye, it is desirable to scatter the light by making the particle diameter of the oxide to be used wide.
Such a porous metal oxide semiconductor is not particularly limited and can be provided on the transparent conductive film 3 by a known method. For example, there are a sol-gel method, dispersion paste application, electrodeposition and electrodeposition.
The thickness of such a semiconductor layer is not particularly limited because the optimum value varies depending on the oxide used, but is 0.1 μm to 50 μm, preferably 5 to 30 μm.

[増感色素]
増感色素層5としては、太陽光により励起されて前記金属酸化物半導体層4に電子注入できるものであればよく、一般的に色素増感型太陽電池に用いられている色素を用いることができるが、変換効率を向上させるためには、その吸収スペクトルが太陽光スペクトルと広波長域で重なっていて、耐光性が高いことが望ましい。特に限定はされないが、ルテニウム錯体、特にルテニウムポリピリジン系錯体が望ましく、さらに望ましいのは、Ru(L)2(X)2で表されるルテニウム錯体が望ましい。ここでLは4,4’−ジカルボキシ−2,2’−ビピリジン、もしくはその4級アンモニウム塩、およびカルボキシル基が導入されたポリピリジン系配位子であり、また、XはSCN、Cl、CNである。例えばビス(4,4’−ジカルボキシ−2,2’−ビピリジン)ジイソチオシアネートルテニウム錯体などが挙げられる。他の色素としては、ルテニウム以外の金属錯体色素、例えば鉄錯体、銅錯体などが挙げられる。さらに、シアン系色素、ポルフィリン系色素、ポリエン系色素、クマリン系色素、シアニン系色素、スクアリン酸系色素、スチリル系色素、エオシン系色素などの有機色素が挙げられる。これらの色素には、該金属酸化物半導体層への電子注入効率を向上させるため、該金属酸化物半導体層との結合基を有していることが望ましい。該結合基としては、特に限定はされないが、カルボキシル基、スルホン酸基などが望ましい。
多孔質金属酸化物半導体4へ増感色素を吸着させる方法は、特には限定されないが、多孔質金属酸化物半導体4を形成させた電極基体1ごと、色素を溶解させた溶液中に浸漬させることで簡便に吸着することができる。
多孔質金属酸化物半導体4へ吸着させる増感色素の量は、最適値が存在する。すなわち、色素が少ないと十分な増感効果が得られず十分な光電流が得られないし、逆に多すぎても色素間での電子移動反応などにより十分な光電流が得られない。このような最適値は用いる半導体と色素との組合せにより異なってくるが、半導体層に均一に色素の単分子膜が形成されることが望ましい。
[Sensitizing dye]
The sensitizing dye layer 5 is not particularly limited as long as it can be excited by sunlight and can inject electrons into the metal oxide semiconductor layer 4, and a dye generally used in dye-sensitized solar cells can be used. However, in order to improve the conversion efficiency, it is desirable that the absorption spectrum overlaps with the sunlight spectrum in a wide wavelength region and the light resistance is high. Although not particularly limited, a ruthenium complex, particularly a ruthenium polypyridine complex is desirable, and a ruthenium complex represented by Ru (L) 2 (X) 2 is more desirable. Here, L is 4,4′-dicarboxy-2,2′-bipyridine, or a quaternary ammonium salt thereof, and a polypyridine ligand into which a carboxyl group is introduced, and X is SCN, Cl, CN It is. Examples thereof include bis (4,4′-dicarboxy-2,2′-bipyridine) diisothiocyanate ruthenium complex. Examples of other dyes include metal complex dyes other than ruthenium, such as iron complexes and copper complexes. Further examples include organic dyes such as cyan dyes, porphyrin dyes, polyene dyes, coumarin dyes, cyanine dyes, squaric acid dyes, styryl dyes, and eosin dyes. These dyes preferably have a bonding group with the metal oxide semiconductor layer in order to improve the efficiency of electron injection into the metal oxide semiconductor layer. The linking group is not particularly limited, but a carboxyl group, a sulfonic acid group and the like are desirable.
The method for adsorbing the sensitizing dye to the porous metal oxide semiconductor 4 is not particularly limited, but the electrode substrate 1 on which the porous metal oxide semiconductor 4 is formed is immersed in a solution in which the dye is dissolved. Can be adsorbed easily.
There is an optimum value of the amount of the sensitizing dye to be adsorbed on the porous metal oxide semiconductor 4. That is, if the amount of the dye is small, a sufficient sensitizing effect cannot be obtained and a sufficient photocurrent cannot be obtained. Conversely, if the amount is too large, a sufficient photocurrent cannot be obtained due to an electron transfer reaction between the dyes. Although such an optimum value varies depending on the combination of the semiconductor and the dye used, it is desirable that a monomolecular film of the dye is uniformly formed on the semiconductor layer.

[電解質層]
電解質層6は、支持電解質と、酸化された増感色素を還元することのできる酸化還元対、およびそれらを溶解させる溶媒からなる。この溶媒としては、特に限定はされないが、非水性有機溶媒、常温溶融塩、水やプロトン性有機溶媒などから任意に選択でき、例えばアセトニトリルやジメチルホルムアミド、エチルメチルイミダゾリウムビストリフルオロメチルイミド、メトキシアセトニトリル、メトキシプロピオニトリル、炭酸プロピレンなどが挙げられ、中でもメトキシアセトニトリル、メトキシプロピオニトリル、炭酸プロピレンなどを好適に用いることができる。また、溶媒をゲル化して用いることもできる。
支持電解質として、リチウム塩やイミダゾリウム塩、4級アンモニウム塩などが挙げられる。
酸化還元対として、例えば、ヨウ素アニオンやポリピリジルコバルト錯体、チオシアン酸などが挙げられる。
支持電解質、酸化還元対などは、其々用いる溶媒、半導体電極および色素などにより最適な濃度が異なるため、特には限定されないが、1mmol/L〜5mol/L程度である。
電解質層にはさらに添加剤として、t−ブチルピリジン、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイド、水などを添加することができる。
[Electrolyte layer]
The electrolyte layer 6 is composed of a supporting electrolyte, a redox pair capable of reducing the oxidized sensitizing dye, and a solvent for dissolving them. The solvent is not particularly limited, and can be arbitrarily selected from non-aqueous organic solvents, room temperature molten salts, water, protic organic solvents, and the like, such as acetonitrile, dimethylformamide, ethylmethylimidazolium bistrifluoromethylimide, methoxyacetonitrile. , Methoxypropionitrile, propylene carbonate, and the like. Among them, methoxyacetonitrile, methoxypropionitrile, propylene carbonate, and the like can be preferably used. Further, the solvent can be used after gelation.
Examples of the supporting electrolyte include lithium salts, imidazolium salts, and quaternary ammonium salts.
Examples of the redox pair include iodine anion, polypyridyl cobalt complex, and thiocyanic acid.
The supporting electrolyte, the redox couple, and the like are not particularly limited because the optimum concentration differs depending on the solvent, the semiconductor electrode, the dye, and the like used, but is about 1 mmol / L to 5 mol / L.
Further, t-butylpyridine, 1,2-dimethyl-3-propylimidazolium iodide, water, and the like can be added to the electrolyte layer as additives.

[触媒電極−基体]
触媒電極7は、金属層9及び、触媒化合物を含有した耐食性導電層10からなる。その上部に金属層9を形成できること、および電極を支持できるものであれば、基体8を用いることもできる。その材料および厚さは色素増感太陽電池の形状に応じて変更することができるため、特に限定はされない。実用性や耐久性を考え、例えばプラスチックやガラスなどが好適に利用できる。さらに、該基体は透明でも不透明でも構わないが、増感色素層への入射光量を増加させることができるため、また、場合によっては意匠性が向上できるため透明または半透明であることが望ましい。
また、該基体の形状は、触媒電極として用いる色素増感太陽電池の形状に応じて変更することができるため特には限定されず、板状としてもフィルム状で湾曲できるものでも構わない。
[Catalyst electrode-substrate]
The catalyst electrode 7 includes a metal layer 9 and a corrosion-resistant conductive layer 10 containing a catalyst compound. As long as the metal layer 9 can be formed on the upper part and the electrode can be supported, the substrate 8 can be used. Since the material and thickness can be changed according to the shape of the dye-sensitized solar cell, there is no particular limitation. Considering practicality and durability, for example, plastic or glass can be suitably used. Further, the substrate may be transparent or opaque, but it is desirable that the substrate be transparent or translucent because the amount of light incident on the sensitizing dye layer can be increased and, in some cases, the design can be improved.
Further, the shape of the substrate is not particularly limited because it can be changed according to the shape of the dye-sensitized solar cell used as the catalyst electrode, and it may be a plate or a film that can be curved.

[触媒電極−金属層]
金属層9は、集電体として機能するものである。その材料は、導電性を有する金属であれば好適に使用できるが、利便性とコスト性の面で優れた、鉄、ニッケル、クロム、モリブデン、チタン、アルミニウムの中から選ばれた少なくとも1種の金属、もしくはそれらの合金、もしくはステンレス鋼であることが望ましい。
また、その形状は触媒電極として用いる色素増感太陽電池の形状に応じて変更することができるため特には限定されず、任意の形状・厚みで形成することができる。
また、その形成方法としては特には限定されず、基体8上にスパッタする方法や、金属板や金属箔を貼り合せるなどの既存の方法を使用できる。また、図2に例示するように、基体8は省略することもできる。
また、該金属層9上に下記耐食性導電層10を形成させる前に、基体とともにプレス加工などの曲げ加工により、目的とする成型を行なうことによって、複雑な形状でも、該耐食性導電層10、および該耐食性導電層10の表面に含まれる触媒を損傷することなく、該耐食性導電層10及び触媒の効果を確実に得ることができる。
該金属層の厚みは、集電体として機能できる電導度を保持できることが求められるが、その材料により必要な膜厚は異なり、また、用いる色素増感型太陽電池の形状に応じて変更できるため特には限定されない。一般的には5nm以上が好ましく、より好ましくは1μm以上である。
[Catalyst electrode-metal layer]
The metal layer 9 functions as a current collector. The material can be suitably used as long as it is a metal having conductivity, but at least one selected from iron, nickel, chromium, molybdenum, titanium, and aluminum is excellent in terms of convenience and cost. It is desirable to be a metal, an alloy thereof, or stainless steel.
Moreover, since the shape can be changed according to the shape of the dye-sensitized solar cell used as the catalyst electrode, it is not particularly limited and can be formed in any shape and thickness.
The forming method is not particularly limited, and an existing method such as sputtering on the substrate 8 or bonding a metal plate or metal foil can be used. Further, as illustrated in FIG. 2, the base 8 can be omitted.
Further, before forming the following corrosion-resistant conductive layer 10 on the metal layer 9, the corrosion-resistant conductive layer 10, even in a complicated shape, can be obtained by performing desired molding by bending such as press working together with the substrate, and The effects of the corrosion-resistant conductive layer 10 and the catalyst can be reliably obtained without damaging the catalyst contained on the surface of the corrosion-resistant conductive layer 10.
The thickness of the metal layer is required to be able to maintain conductivity that can function as a current collector, but the required film thickness varies depending on the material and can be changed according to the shape of the dye-sensitized solar cell to be used. There is no particular limitation. In general, the thickness is preferably 5 nm or more, more preferably 1 μm or more.

[触媒電極−耐食性導電層]
耐食性導電層10としては、耐食性と導電性を有することが求められる。例えば、金属酸化物、金属窒化物、金属炭化物、金属ホウ化物などが好適に利用できる。金属酸化物としては、酸化スズ、酸化インジウム、酸化スズと酸化インジウムの混合体、酸化チタン、酸化亜鉛、酸化イリジウム、もしくは酸化ルテニウムなどが挙げられる。また、金属窒化物としては、クロムやチタンの窒化物が挙げられる。金属炭化物としては、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、もしくはタングステンのうち少なくとも1種類から選ばれる金属の炭化物が挙げられる。また、金属ホウ化物としては、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、もしくはタングステンのうち少なくとも1種類から選ばれる金属のホウ化物が挙げられる。これらは、複数の材料を組み合わせて使用しても構わない。さらに、より耐食性もしくは導電性を向上させるため、これらの材料にドーパントを添加しても構わない。また、該耐食性導電層10の厚みは、耐食性を高め、かつ金属層の高導電性を利用できるよう5nm〜50μmが望ましい。より好適には、0.01μm〜20μmであることが望ましい。また、該耐食性導電層の電気電導度が、1×10−9S/cm以上であることが望ましい。
[Catalyst electrode-Corrosion-resistant conductive layer]
The corrosion-resistant conductive layer 10 is required to have corrosion resistance and conductivity. For example, metal oxide, metal nitride, metal carbide, metal boride and the like can be suitably used. Examples of the metal oxide include tin oxide, indium oxide, a mixture of tin oxide and indium oxide, titanium oxide, zinc oxide, iridium oxide, and ruthenium oxide. Further, examples of the metal nitride include chromium and titanium nitrides. Examples of the metal carbide include a carbide of metal selected from at least one of titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten. Examples of the metal boride include a metal boride selected from at least one of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten. These may be used in combination of a plurality of materials. Furthermore, a dopant may be added to these materials in order to further improve the corrosion resistance or conductivity. The thickness of the corrosion-resistant conductive layer 10 is desirably 5 nm to 50 μm so that the corrosion resistance is enhanced and the high conductivity of the metal layer can be utilized. More preferably, the thickness is desirably 0.01 μm to 20 μm. The electrical conductivity of the corrosion-resistant conductive layer is desirably 1 × 10 −9 S / cm or more.

耐食性導電層10の形成方法としては特には限定されず既知の方法を利用できる。例えば、金属酸化物を用いる場合はゾルゲル法や電析法などが用いることができる。また、金属窒化物を用いる場合には、金属基体を窒素雰囲気下での加熱処理や、プラズマ窒化法などの既知である種々の窒化法が利用できる。金属炭化物および金属ホウ化物を用いる場合には、それぞれの粒体を金属基体に対して堆積させる、もしくは溶射した後、金属基体と圧廷する方法や、ペースト状、もしくはエマルジョン状、もしくは高分子溶液およびバインダーを含む混合物形態に処理した後に、該耐食性導電層10上へスクリーン印刷、スプレー塗布、刷毛塗りなどにより形成させる方法などが挙げられる。   The method for forming the corrosion-resistant conductive layer 10 is not particularly limited, and a known method can be used. For example, when a metal oxide is used, a sol-gel method or an electrodeposition method can be used. When metal nitride is used, various known nitriding methods such as heat treatment of the metal substrate in a nitrogen atmosphere and plasma nitriding can be used. In the case of using metal carbide and metal boride, a method of depositing or spraying the respective particles on the metal substrate and then crushing with the metal substrate, paste, emulsion, or polymer solution And a method of forming the mixture on the corrosion-resistant conductive layer 10 by screen printing, spray coating, brush coating, etc.

[触媒電極−触媒化合物]
本発明の触媒化合物は、電解質層6中に含まれる酸化還元対の酸化体を還元することができれば特に限定はされず、既知の物質が使用できるが、例えば、遷移金属、導電性高分子材料、導電性炭素材料、または有機金属錯体などを好適に用いることができる。
その形状は、用いる触媒化合物の種類により異なるため特には限定されない。上述の触媒化合物のうち少なくとも1種類以上からなる触媒材料を、耐食性導電層10の表面に設けて形成することができる。あるいは耐食性導電層10を構成する材料の中へ上記触媒材料を組み込むことも可能である。
[Catalyst electrode-catalyst compound]
The catalyst compound of the present invention is not particularly limited as long as it can reduce the oxidized form of the redox pair contained in the electrolyte layer 6, and a known substance can be used. For example, transition metals, conductive polymer materials, etc. A conductive carbon material, an organometallic complex, or the like can be preferably used.
The shape is not particularly limited because it varies depending on the type of catalyst compound used. A catalyst material composed of at least one of the above catalyst compounds can be formed on the surface of the corrosion-resistant conductive layer 10. Alternatively, the catalyst material can be incorporated into the material constituting the corrosion-resistant conductive layer 10.

遷移金属としては、白金やパラジウム、ルテニウム、ロジウムなどが好適に利用でき、それらの中でも特に白金が好適である。遷移金属の耐食性導電層への担持方法としては既知の方法により作製できる。例えば、スパッタや蒸着、電析や熱分解法などが用いることができる。   As the transition metal, platinum, palladium, ruthenium, rhodium and the like can be preferably used, and platinum is particularly preferable among them. As a method for supporting the transition metal on the corrosion-resistant conductive layer, a known method can be used. For example, sputtering, vapor deposition, electrodeposition, thermal decomposition, or the like can be used.

導電性高分子のモノマーとして、ピロール、アニリン、チオフェン、およびそれらの誘導体の中から、少なくとも1種類以上のモノマーを重合してなる導電性高分子重合体を触媒化合物として使用することができる。このとき、導電性高分子は未ドープ状態でも構わないが、導電性や耐久性を向上させるため、ドーパントを添加することができる。導電性高分子の耐食性導電層への担持方法としては、既知の方法を用いることができる。例えば、前記耐食性導電層を形成させた金属層基体を、前記モノマーを含有する溶液中に浸漬して電気化学的に重合する方法や、Fe(III)イオンや過硫酸アンモニウムなどの酸化剤と前記モノマーを含む溶液とを、該耐食性導電層10上で反応させる化学重合法、導電性高分子を溶融状態もしくは溶解させた溶液から成膜する方法、また、導電性高分子の粒体をペースト状、もしくはエマルジョン状、もしくは高分子溶液およびバインダーを含む混合物形態に処理した後に、該耐食性導電層10上へスクリーン印刷、スプレー塗布、刷毛塗りなどにより形成させる方法などが挙げられる。   As a conductive polymer monomer, a conductive polymer polymer obtained by polymerizing at least one monomer from pyrrole, aniline, thiophene, and derivatives thereof can be used as a catalyst compound. At this time, the conductive polymer may be in an undoped state, but a dopant can be added in order to improve conductivity and durability. As a method for supporting the conductive polymer on the corrosion-resistant conductive layer, a known method can be used. For example, a method of electrochemical polymerization by immersing a metal layer substrate on which the corrosion-resistant conductive layer is formed in a solution containing the monomer, an oxidizing agent such as Fe (III) ion or ammonium persulfate, and the monomer A method of forming a film from a solution in which the conductive polymer is melted or dissolved, a paste containing the polymer particles of the conductive polymer, Alternatively, there may be mentioned a method of forming an emulsion or a mixture containing a polymer solution and a binder and then forming the mixture on the corrosion-resistant conductive layer 10 by screen printing, spray coating, brush coating, or the like.

導電性炭素材料としては既知の炭素材料を使用することができるが、カーボンナノチューブやカーボンブラック、活性炭などが望ましい。炭素材料の耐食性導電層への担持方法としては、フッ素系のバインダーなどを用いたペーストを塗布・乾燥する方法など、既知の方法を用いることができる。   A known carbon material can be used as the conductive carbon material, but carbon nanotubes, carbon black, activated carbon, and the like are preferable. As a method for supporting the carbon material on the corrosion-resistant conductive layer, a known method such as a method of applying and drying a paste using a fluorine-based binder or the like can be used.

有機金属錯体としては、N、O、S、Pなど、中心金属イオンに配位しやすい原子を含む配位子を有した錯体が利用できる。例えば、ポルフィリン錯体やフタロシアニン錯体が好適に利用できる。該金属錯体の耐食性導電層への担持方法としては、既知の方法を用いることができる。例えば、該有機金属錯体をペースト状、もしくはエマルジョン状、もしくは高分子溶液およびバインダーを含む混合物形態に処理した後に、該耐食性導電層10上へスクリーン印刷、スプレー塗布、刷毛塗りなどにより形成させる方法や、単に該有機金属錯体を溶解させた溶液から成膜する方法などが挙げられる。   As the organometallic complex, a complex having a ligand containing an atom that easily coordinates to a central metal ion such as N, O, S, or P can be used. For example, a porphyrin complex or a phthalocyanine complex can be suitably used. As a method for supporting the metal complex on the corrosion-resistant conductive layer, a known method can be used. For example, a method of forming the organometallic complex in a paste form, an emulsion form, or a mixture form containing a polymer solution and a binder, followed by screen printing, spray coating, brushing, etc. on the corrosion-resistant conductive layer 10 And a method of forming a film from a solution in which the organometallic complex is dissolved.

[触媒電極]
該触媒電極表面の形状としては、酸化還元対の酸化体を効率よく還元できるように、表面積が大きいことが好ましい。特に、触媒電極の投影面積の2倍以上であることが好ましい。該触媒電極表面を増大させる方法としては特に限定はされないが、例として以下(1)〜(3)に記載したいずれか、もしくはこれらの組み合わせる方法などが挙げられる。 (1)触媒自身の表面積を拡大
(2)耐食性導電層の表面積を拡大させ、触媒電極表面積を拡大させる
(3)基体または、金属層の表面積を拡大させ、触媒電極表面積を拡大させる
[Catalyst electrode]
The shape of the surface of the catalyst electrode is preferably large so that the oxidized form of the redox couple can be efficiently reduced. In particular, it is preferably at least twice the projected area of the catalyst electrode. The method for increasing the surface of the catalyst electrode is not particularly limited, and examples thereof include any of the methods described in (1) to (3) below, or a combination thereof. (1) Enlarging the surface area of the catalyst itself (2) Enlarging the surface area of the corrosion-resistant conductive layer and enlarging the surface area of the catalyst electrode (3) Enlarging the surface area of the substrate or metal layer and enlarging the surface area of the catalyst electrode

前記(1)の方法としては、例えば、触媒として導電性高分子を用いる場合は重合過程において多孔質化する方法が、また、触媒として遷移金属や導電性炭素材料、有機金属錯体をペースト状などの形状で該耐食性導電層10上に形成させる場合に、ペーストを多孔質状に形成させることで前記触媒層を多孔質化することができる。   As the method of (1), for example, when a conductive polymer is used as a catalyst, a method of making it porous in the polymerization process is used, and a transition metal, a conductive carbon material, or an organometallic complex is pasted as a catalyst. The catalyst layer can be made porous by forming the paste in a porous state when forming it on the corrosion-resistant conductive layer 10 in the shape of

前記(2)の方法としては、例えば、該耐食性導電層10をゾルゲル法にて形成する際に多孔質化させる方法や、予め該耐食性導電層10を形成させた後に、酸などで処理することによっても多孔質化することができる。ただし、該耐食性導電層10は金属層9を保護しているため、金属層9との界面は該耐食性導電層が緻密に形成されていることが必要であり、多孔質化するのはあくまで触媒層側の該耐食性導電層である。   Examples of the method (2) include, for example, a method of making the corrosion-resistant conductive layer 10 porous when the sol-gel method is formed, or a treatment with an acid after the corrosion-resistant conductive layer 10 is formed in advance. Can also be made porous. However, since the corrosion-resistant conductive layer 10 protects the metal layer 9, it is necessary that the corrosion-resistant conductive layer is densely formed at the interface with the metal layer 9, and the catalyst is only made porous. This is the corrosion-resistant conductive layer on the layer side.

前記(3)の方法としては、例えば電導度が低下しないように、もしくは、求められる電導度を満たすようにした上で、酸で処理するなどの方法により多孔質化することができる。   As the method (3), for example, the conductivity can be made porous by a method such as treatment with an acid so that the electrical conductivity does not decrease or the electrical conductivity required is satisfied.

以上説明したような各構成要素材料を準備した後、従来公知の方法で金属酸化物半導体電極と触媒電極とを電解質を介して対向させるように組み上げ、色素増感型太陽電池を完成させる。   After preparing each constituent material as described above, the dye-sensitized solar cell is completed by assembling the metal oxide semiconductor electrode and the catalyst electrode so as to face each other through an electrolyte by a conventionally known method.

以下、本発明を実施例に基づいて、より詳細に説明するが、本発明はこれらによりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited at all by these.

実施例1
[多孔質金属酸化物半導体]
FTOガラス(日本板ガラス製25mm×50mm)の表面に二酸化チタンペースト(Soralonix社製)をバーコーターで塗布し、乾燥後450℃で30分焼成してそのまま室温となるまで放置し、10μmの厚さの多孔質酸化チタン半導体電極を形成した。さらに、得られた半導体電極の酸化チタン投影面積が25mmになるよう、半導体層を研削した。
Example 1
[Porous metal oxide semiconductor]
Titanium dioxide paste (Soralonix) is applied to the surface of FTO glass (Japanese plate glass 25 mm × 50 mm) with a bar coater, dried at 450 ° C. for 30 minutes and allowed to stand at room temperature, and the thickness is 10 μm. A porous titanium oxide semiconductor electrode was formed. Further, the semiconductor layer was ground so that the obtained semiconductor electrode had a titanium oxide projected area of 25 mm 2 .

[増感色素の吸着]
増感色素として、一般にN3dyeと呼ばれるビス(4,4’−ジカルボキシ−2,2’−ビピリジン)ジイソチオシアネートルテニウム錯体を使用した。一旦150℃まで加熱した前記多孔質酸化チタン半導体電極を色素濃度0.5mmol/Lのエタノール溶液中に浸漬し、遮光下1晩静置した。その後エタノールにて余分な色素を洗浄してから風乾することで太陽電池の半導体電極を作製した。
[Adsorption of sensitizing dye]
As a sensitizing dye, a bis (4,4′-dicarboxy-2,2′-bipyridine) diisothiocyanate ruthenium complex generally called N3dye was used. The porous titanium oxide semiconductor electrode once heated to 150 ° C. was immersed in an ethanol solution having a pigment concentration of 0.5 mmol / L, and left standing under light shielding overnight. Thereafter, excess pigment was washed with ethanol and then air-dried to produce a semiconductor electrode of a solar cell.

[触媒電極の作製]
基体及び金属層としてステンレス304を用いた。有機溶媒中で超音波洗浄した基体を、塩化亜鉛 5mmol/Lと塩化カリウム 0.1mol/Lとを含む水溶液中に浸漬し、酸素バブリングしながら対極を亜鉛板として電気化学的に還元することで金属基体表面に酸化亜鉛膜を形成させた。該酸化亜鉛膜の膜厚は1〜2μmであり、表面SEM観察の結果、下部はクラックのない均質な状態で、上部は柱状の酸化構造をしていることが確認された。
[Production of catalyst electrode]
Stainless steel 304 was used as the substrate and the metal layer. A substrate ultrasonically cleaned in an organic solvent is immersed in an aqueous solution containing 5 mmol / L of zinc chloride and 0.1 mol / L of potassium chloride, and electrochemically reduced using the counter electrode as a zinc plate while bubbling oxygen. A zinc oxide film was formed on the surface of the metal substrate. The film thickness of the zinc oxide film was 1 to 2 μm, and as a result of surface SEM observation, it was confirmed that the lower part had a homogeneous state without cracks and the upper part had a columnar oxide structure.

さらに、得られた酸化亜鉛膜付金属基体に、氷浴させておいた、3,4-エチレンジオキシチオフェンとイミダゾールおよびFe(III)p−トルエンスルホン酸とを含むn−ブタノール溶液を塗布したのち、空気中120℃で乾燥させることで、ポリエチレンジオキシチオフェン膜を作製し、触媒電極を得た。   Further, an n-butanol solution containing 3,4-ethylenedioxythiophene, imidazole and Fe (III) p-toluenesulfonic acid, which had been subjected to an ice bath, was applied to the obtained metal substrate with a zinc oxide film. After that, by drying at 120 ° C. in the air, a polyethylene dioxythiophene film was produced to obtain a catalyst electrode.

[太陽電池セルの組み立て]
前記のように作製した半導体電極と触媒電極を対向するよう設置し、電解質を毛管現象にて両電極間に含浸させた。電解質としては、溶媒をメトキシアセトニル、還元剤としてヨウ化リチウム、酸化剤としてヨウ素、添加剤としてt−ブチルピリジン、1,2−ジメチル−3−プロピルイミダゾリウムアイオダイドを含む溶液を用いた。
[Assembly of solar cells]
The semiconductor electrode prepared as described above and the catalyst electrode were placed so as to face each other, and an electrolyte was impregnated between both electrodes by capillary action. As the electrolyte, a solution containing methoxyacetonyl as a solvent, lithium iodide as a reducing agent, iodine as an oxidizing agent, t-butylpyridine as an additive, and 1,2-dimethyl-3-propylimidazolium iodide was used.

[太陽電池セルの光電変換特性の測定]
前記の太陽電池セルについて、光量100mW/cmの擬似太陽光を照射して開路電圧(以下、「Voc」と略記する。)、短絡電流密度(以下、「Jsc」と略記する。)、形状因子(以下、「FF」と略記する。)、および光電変換効率を評価したところ、以下の結果を得た。なお、「Voc」、「Jsc」、「FF」及び光電変換効率の各測定値については、より大きい値が太陽電池セルの性能として好ましいことを表す。
[Measurement of photoelectric conversion characteristics of solar cells]
The solar battery cell is irradiated with pseudo-sunlight with a light amount of 100 mW / cm 2 to open circuit voltage (hereinafter abbreviated as “Voc”), short-circuit current density (hereinafter abbreviated as “Jsc”), and shape. When the factors (hereinafter abbreviated as “FF”) and photoelectric conversion efficiency were evaluated, the following results were obtained. In addition, about each measured value of "Voc", "Jsc", "FF", and photoelectric conversion efficiency, it represents that a larger value is preferable as a performance of a photovoltaic cell.

[太陽電池の耐久性試験]
前記の触媒電極の耐食性導電層及び触媒層を形成しない金属基体裏面を、シリコン樹脂にて耐食処理を施した上で、適当な容器中に満たしたヨウ素0.1mol/Lおよびヨウ化リチウム0.05mol/Lを含むアセトニトリル溶液中に浸漬し、該容器を密封して室温・暗所に放置した。一定時間毎に該ヨウ素溶液から取り出し、アセトニトリルで洗浄・風乾した後に前記手法にて短絡電流密度値の変化率を測定した。
[Durability test of solar cells]
The corrosion resistant conductive layer of the catalyst electrode and the back surface of the metal substrate on which the catalyst layer is not formed are subjected to a corrosion resistance treatment with a silicon resin, and 0.1 mol / L of iodine and lithium iodide of 0. The container was immersed in an acetonitrile solution containing 05 mol / L, and the container was sealed and left at room temperature in the dark. After taking out from the iodine solution at regular intervals, washing with acetonitrile and air-drying, the change rate of the short-circuit current density value was measured by the above method.

[実施例1の測定結果]
開放電圧(Voc):0.69V
短絡電流密度(Jsc):11.0mA/cm
形状因子(FF):79%
光電変換効率:6.0%
500時間後の短絡電流密度値変化率 : 88%
1000時間後の短絡電流密度値変化率:85%
[Measurement results of Example 1]
Open-circuit voltage (Voc): 0.69V
Short circuit current density (Jsc): 11.0 mA / cm 2
Form factor (FF): 79%
Photoelectric conversion efficiency: 6.0%
Change rate of short-circuit current density after 500 hours: 88%
Change rate of short-circuit current density after 1000 hours: 85%

実施例2
ベンゼンに、チタン−n−ブトキシド含有ブタノール水溶液を添加した混合溶液を加熱還流し、適宜チタン−n−ブトキシド含有ブタノール水溶液を添加・濃縮を繰り返して酸化チタン前駆体溶液を得た。
Example 2
A mixed solution in which a titanium-n-butoxide-containing butanol aqueous solution was added to benzene was heated to reflux, and a titanium-n-butoxide-containing butanol aqueous solution was appropriately added and concentrated to obtain a titanium oxide precursor solution.

得られた酸化チタン前駆体溶液中に、平均粒径1μmアルミナで研磨したチタン基体を浸漬、引き上げて空気中で風乾させた後、空気中、500℃で焼成することで、酸化チタン薄膜電極を得た。得られた薄膜層の厚さは、約1.2μmであった。表面SEM観察を行なったところ、クラックのない均質な薄膜であることが確認された。   A titanium substrate polished with alumina having an average particle diameter of 1 μm is immersed in the obtained titanium oxide precursor solution, air-dried in air, and then baked in air at 500 ° C., whereby a titanium oxide thin film electrode is obtained. Obtained. The thickness of the obtained thin film layer was about 1.2 μm. When surface SEM observation was performed, it was confirmed that it was a homogeneous thin film without a crack.

得られた酸化チタン薄膜付きチタン基板表面に、活性炭(武田薬品製KP222)とアセチレンブラックを、フッ素系バインダー(呉羽化学製KFポリマー#1120)とともに混練し、N−メチル−2−ピロリドンを適量添加しながら導電性炭素ペーストを調製した。得られたペーストを、前記酸化チタン薄膜付きチタン基板上に塗布し、120℃で1時間乾燥させることで、触媒電極を得た。得られた触媒電極について表面SEM観察を行なったところ、多孔質のカーボン触媒層が形成されていることを確認された。   The obtained titanium substrate with titanium oxide thin film is kneaded with activated carbon (KP222 manufactured by Takeda Pharmaceutical) and acetylene black together with a fluorine-based binder (KF polymer # 1120 manufactured by Kureha Chemical), and an appropriate amount of N-methyl-2-pyrrolidone is added. Then, a conductive carbon paste was prepared. The obtained paste was applied on the titanium substrate with the titanium oxide thin film and dried at 120 ° C. for 1 hour to obtain a catalyst electrode. When surface SEM observation was performed about the obtained catalyst electrode, it was confirmed that the porous carbon catalyst layer is formed.

得られた触媒電極を、触媒電極の作製方法以外は実施例1と同様に太陽電池セルを作製し、評価した。   A solar battery cell was produced and evaluated for the obtained catalyst electrode in the same manner as in Example 1 except for the production method of the catalyst electrode.

[実施例2の測定結果]
開放電圧(Voc):0.62V
短絡電流密度(Jsc):10.2mA/cm
形状因子(FF):80%
光電変換効率:5.1%
500時間後短絡電流密度変化率:105%
1000時間後短絡電流密度変化率:98%
[Measurement results of Example 2]
Open circuit voltage (Voc): 0.62V
Short circuit current density (Jsc): 10.2 mA / cm 2
Form factor (FF): 80%
Photoelectric conversion efficiency: 5.1%
Change rate of short-circuit current density after 500 hours: 105%
Change rate of short-circuit current density after 1000 hours: 98%

実施例3
金属基体としてチタン基体を用い、多孔質となるよう塩酸処理を施した後、十分に水洗してから100℃で乾燥させた。該塩酸処理済み金属基体を表面SEM観察したところ、多孔質となっていることを確認した。
Example 3
A titanium substrate was used as the metal substrate, treated with hydrochloric acid so as to be porous, then washed thoroughly with water and dried at 100 ° C. When the surface of the metal substrate treated with hydrochloric acid was observed by SEM, it was confirmed to be porous.

実施例2においてチタン−n−ブトキシドに替わりルテニウム−n−ブトキシドを用いた以外は、実施例2と同様にして、酸化ルテニウム前駆体溶液を得た。   A ruthenium oxide precursor solution was obtained in the same manner as in Example 2, except that ruthenium-n-butoxide was used instead of titanium-n-butoxide in Example 2.

塩酸処理済みの金属基体に、得られた酸化ルテニウム前駆体溶液をスピンコート法にて塗布、さらに実施例2と同様にして約1.4μmの酸化ルテニウム薄膜付き金属基体を得た。得られた薄膜の表面SEM写真図は、下地の金属基体の多孔質を反映し、同様の多孔質となっていることを確認した。   The obtained ruthenium oxide precursor solution was applied to a metal substrate that had been treated with hydrochloric acid by spin coating, and a metal substrate with a ruthenium oxide thin film of about 1.4 μm was obtained in the same manner as in Example 2. The surface SEM photograph of the obtained thin film reflected the porosity of the underlying metal substrate and confirmed that it had the same porosity.

得られた酸化ルテニウム薄膜付き電極基体を電極として、[Pt(NH]Cl・nHOを含有する硫酸水溶液中で白金の析出担持を行ない、触媒電極を得た。得られた該触媒電極表面の白金粒子の粒径は5〜10nmであった。 Using the obtained electrode substrate with a ruthenium oxide thin film as an electrode, platinum was deposited and supported in a sulfuric acid aqueous solution containing [Pt (NH 3 ) 4 ] Cl 2 · nH 2 O to obtain a catalyst electrode. The particle diameter of the platinum particles on the surface of the catalyst electrode thus obtained was 5 to 10 nm.

得られた触媒電極を、触媒電極の作製方法以外は実施例1と同様に太陽電池セルを作製し、評価した。   A solar battery cell was produced and evaluated for the obtained catalyst electrode in the same manner as in Example 1 except for the production method of the catalyst electrode.

[実施例3の測定結果]
開放電圧(Voc):0.73V
短絡電流密度(Jsc):9.5mA/cm
形状因子(FF):72%
光電変換効率:5.0%
500時間後短絡電流密度変化率:105%
1000時間後短絡電流密度変化率:98%
[Measurement results of Example 3]
Open-circuit voltage (Voc): 0.73V
Short circuit current density (Jsc): 9.5 mA / cm 2
Form factor (FF): 72%
Photoelectric conversion efficiency: 5.0%
Change rate of short-circuit current density after 500 hours: 105%
Change rate of short-circuit current density after 1000 hours: 98%

実施例4
触媒電極の作製方法において、金属基体および前処理まで実施例1と同様に作製した。
インジウム酸化物前駆原料溶液は、プロポキシインジウムを含む2−プロパノール水溶液を加熱還流して得られた有機インジウム化合物錯体溶液を濃縮し、トルエンで希釈して調製した。また、錫酸化物前駆原料溶液は酢酸と酢酸錫を含むトルエン溶液を加熱還流させた後に、トルエンで希釈して調製した。さらに該インジウム酸化物前駆原料溶液と該錫酸化物前駆原料溶液の混合溶液を加熱還流させ、ITO前駆体原料溶液を得た。
Example 4
In the production method of the catalyst electrode, the metal substrate and the pretreatment were produced in the same manner as in Example 1.
The indium oxide precursor raw material solution was prepared by concentrating an organic indium compound complex solution obtained by heating and refluxing a 2-propanol aqueous solution containing propoxy indium and diluting with toluene. The tin oxide precursor raw material solution was prepared by heating and refluxing a toluene solution containing acetic acid and tin acetate and then diluting with toluene. Furthermore, the mixed solution of the indium oxide precursor raw material solution and the tin oxide precursor raw material solution was heated to reflux to obtain an ITO precursor raw material solution.

前記ITO前駆体液を塗布した金属基体を400℃で焼成したところ、透明な薄膜が形成された。得られた薄膜の膜厚は0.7μmであった。   When the metal substrate coated with the ITO precursor liquid was baked at 400 ° C., a transparent thin film was formed. The film thickness of the obtained thin film was 0.7 μm.

得られた薄膜を、X線回折装置を用いて分析したところ、X線回折パターン図により、インジウム酸化物に錫酸化物が固溶した、いわゆるITOであることが確認された。また、ITO膜の表面SEM観察の結果、クラックのない均質な薄膜が形成されていることも確認した。   When the obtained thin film was analyzed using an X-ray diffractometer, it was confirmed by X-ray diffraction pattern that it was so-called ITO in which tin oxide was dissolved in indium oxide. Further, as a result of surface SEM observation of the ITO film, it was confirmed that a homogeneous thin film without cracks was formed.

得られた耐食性導電層付き金属基体を、アニリン0.1mol/Lを含む硫酸水溶液中に浸漬し、電気化学的に酸化することで、ITO表面にポリアニリン膜を形成させた。このポリアニリン膜付FTOガラスを、純水で洗浄し空気中100℃で乾燥後、5,10,15,20−テトラフェニルポルフィリン白金錯体を溶解させたジクロロメタン溶液に浸漬させてから、空気中100℃にて乾燥させることにより触媒電極を得た。   The obtained metal substrate with a corrosion-resistant conductive layer was immersed in an aqueous sulfuric acid solution containing 0.1 mol / L of aniline and electrochemically oxidized to form a polyaniline film on the ITO surface. This FTO glass with a polyaniline film was washed with pure water and dried at 100 ° C. in air, and then immersed in a dichloromethane solution in which 5,10,15,20-tetraphenylporphyrin platinum complex was dissolved, and then at 100 ° C. in air. The catalyst electrode was obtained by drying with.

得られた触媒電極を表面SEM観察したところ、ポリアニリン膜が多孔質状体となっていることを確認した。   When the obtained catalyst electrode was observed by surface SEM, it was confirmed that the polyaniline film was a porous body.

触媒電極の作製方法、および半導体電極の面積を10cm×10cmとした以外は実施例1と同様に太陽電池セルを作製し、評価した。   A solar battery cell was produced and evaluated in the same manner as in Example 1 except that the method for producing the catalyst electrode and the area of the semiconductor electrode were 10 cm × 10 cm.

[実施例4の測定結果]
開放電圧(Voc):0.74V
短絡電流密度(Jsc):11.8mA/cm
形状因子(FF):81%
光電変換効率:7.1%
500時間後短絡電流密度変化率:105%
1000時間後短絡電流密度変化率:98%
[Measurement results of Example 4]
Open-circuit voltage (Voc): 0.74V
Short circuit current density (Jsc): 11.8 mA / cm 2
Form factor (FF): 81%
Photoelectric conversion efficiency: 7.1%
Change rate of short-circuit current density after 500 hours: 105%
Change rate of short-circuit current density after 1000 hours: 98%

実施例5
触媒電極の作製方法において、チタン被覆されたステンレスを基体と金属層を一体化した金属基体として用いた。該金属基体を窒素雰囲気下700℃にて5時間加熱し、表面に窒化膜を形成させた。得られた耐食性導電層付き金属基体は、実施例1と同様にして触媒層を形成させて触媒電極を得た。
Example 5
In the production method of the catalyst electrode, titanium-coated stainless steel was used as a metal substrate in which the substrate and the metal layer were integrated. The metal substrate was heated at 700 ° C. in a nitrogen atmosphere for 5 hours to form a nitride film on the surface. The obtained metal base with a corrosion-resistant conductive layer was formed in the same manner as in Example 1 to obtain a catalyst electrode.

得られた触媒電極を、触媒電極の作製方法以外は実施例1と同様に太陽電池セルを作製し、評価したところ、実施例1と同様の結果が得られた。   When the obtained catalyst electrode was produced and evaluated in the same manner as in Example 1 except for the method for producing the catalyst electrode, the same result as in Example 1 was obtained.

[実施例5の測定結果]
開放電圧(Voc):0.67V
短絡電流密度(Jsc):11.6mA/cm
形状因子(FF):83%
光電変換効率:6.5%
500時間後の短絡電流密度値変化率 : 110%
1000時間後の短絡電流密度値変化率:104%
[Measurement results of Example 5]
Open circuit voltage (Voc): 0.67V
Short circuit current density (Jsc): 11.6 mA / cm 2
Form factor (FF): 83%
Photoelectric conversion efficiency: 6.5%
Change rate of short-circuit current density value after 500 hours: 110%
Change rate of short-circuit current density value after 1000 hours: 104%

実施例6
触媒電極の作製方法において、ポリイミド箔を基体、チタン箔を金属層として用い、両者を接着して使用した。該金属基体上に、ポリアミック酸溶液中にホウ化チタン粒子を添加して調製したスラリーをバーコーターにて塗布した後、380℃にて2時間加熱処理を行ない、耐食性導電層を形成した。
Example 6
In the method for producing the catalyst electrode, a polyimide foil was used as a base and a titanium foil was used as a metal layer, and both were adhered and used. A slurry prepared by adding titanium boride particles in a polyamic acid solution was applied onto the metal substrate with a bar coater, and then heat-treated at 380 ° C. for 2 hours to form a corrosion-resistant conductive layer.

ポリ(3,4−エチレンジオキシチオフェン)粒子を、p−トルエンスルホン酸をドーパントとして化学重合法により作製した。得られたポリ(3,4−エチレンジオキシチオフェン)粒子をフッ素系バインダー(呉羽化学製KFポリマー#1120)とともに混練し、N−メチル−2−ピロリドンを適量添加しながらペーストを調整した。さらに、得られたペーストを前記耐食性導電層上にスキージ印刷したのち、120℃で1時間乾燥させることで、触媒電極を得た。   Poly (3,4-ethylenedioxythiophene) particles were prepared by chemical polymerization using p-toluenesulfonic acid as a dopant. The obtained poly (3,4-ethylenedioxythiophene) particles were kneaded together with a fluorine-based binder (KF Polymer # 1120 manufactured by Kureha Chemical), and a paste was prepared while adding an appropriate amount of N-methyl-2-pyrrolidone. Further, the obtained paste was squeegee-printed on the corrosion-resistant conductive layer, and then dried at 120 ° C. for 1 hour to obtain a catalyst electrode.

得られた触媒電極を、触媒電極の作製方法、および半導体電極面積を10cm×10cmとした以外は実施例1と同様に太陽電池セルを作製し、評価したところ、実施例1と同様の結果が得られた。   When the obtained catalyst electrode was produced and evaluated in the same manner as in Example 1 except that the method for producing the catalyst electrode and the area of the semiconductor electrode were changed to 10 cm × 10 cm, the same results as in Example 1 were obtained. Obtained.

[実施例6の測定結果]
開放電圧(Voc):0.60V
短絡電流密度(Jsc):9.8mA/cm
形状因子(FF):73%
光電変換効率:4.3%
500時間後の短絡電流密度値変化率 : 92%
1000時間後の短絡電流密度値変化率:95%
[Measurement results of Example 6]
Open circuit voltage (Voc): 0.60V
Short circuit current density (Jsc): 9.8 mA / cm 2
Form factor (FF): 73%
Photoelectric conversion efficiency: 4.3%
Change rate of short-circuit current density value after 500 hours: 92%
Change rate of short-circuit current density after 1000 hours: 95%

実施例7
触媒電極の作製方法において、ポリエチレンナフタレート(PEN)フィルムを基体、チタン箔を金属層として用い、両者を接着して使用した。該金属層上に、溶媒に溶解させた低分子量ポリエステルと炭化タングステン粒子と硬化剤を添加して調製したスラリーをバーコーターにて塗布した後、150℃にて15分加熱処理を行ない、耐食性導電層を得た。
Example 7
In the production method of the catalyst electrode, a polyethylene naphthalate (PEN) film was used as a base and a titanium foil was used as a metal layer, and both were adhered and used. A slurry prepared by adding a low molecular weight polyester dissolved in a solvent, tungsten carbide particles, and a curing agent onto the metal layer is applied with a bar coater, and then subjected to a heat treatment at 150 ° C. for 15 minutes to provide a corrosion-resistant conductive material. A layer was obtained.

前記耐食性導電層上に、実施例2と同様にして触媒層を形成させた。   A catalyst layer was formed on the corrosion-resistant conductive layer in the same manner as in Example 2.

得られた触媒電極を、触媒電極の作製方法および半導体電極面積を10cm×10cmとした以外は実施例1と同様に太陽電池セルを作製し、評価した。   A solar battery cell was produced and evaluated for the obtained catalyst electrode in the same manner as in Example 1 except that the production method of the catalyst electrode and the area of the semiconductor electrode were 10 cm × 10 cm.

[実施例7の測定結果]
開放電圧(Voc):0.62V
短絡電流密度(Jsc):9.1mA/cm
形状因子(FF):78%
光電変換効率:4.4%
500時間後の短絡電流密度値変化率 : 82%
1000時間後の短絡電流密度値変化率:85%
[Measurement results of Example 7]
Open circuit voltage (Voc): 0.62V
Short circuit current density (Jsc): 9.1 mA / cm 2
Form factor (FF): 78%
Photoelectric conversion efficiency: 4.4%
Short-circuit current density value change rate after 500 hours: 82%
Change rate of short-circuit current density after 1000 hours: 85%

比較例1
触媒電極の作製方法のうち、耐食性導電層10である酸化亜鉛層を形成させないこと以外は実施例1と同様に太陽電池セルを作製し、評価した。
Comparative Example 1
A solar battery cell was prepared and evaluated in the same manner as in Example 1 except that the zinc oxide layer as the corrosion-resistant conductive layer 10 was not formed among the methods for preparing the catalyst electrode.

[比較例1の測定結果]
開放電圧(Voc):0.60V
短絡電流密度(Jsc):12.2mA/cm
形状因子(FF):60%
光電変換効率:4.4%
500時間後短絡電流密度変化率:63%
1000時間後短絡電流密度変化率:27%
[Measurement results of Comparative Example 1]
Open circuit voltage (Voc): 0.60V
Short circuit current density (Jsc): 12.2 mA / cm 2
Form factor (FF): 60%
Photoelectric conversion efficiency: 4.4%
Short-circuit current density change rate after 500 hours: 63%
Change rate of short-circuit current density after 1000 hours: 27%

比較例2
触媒電極の作製方法以外は実施例4と同様に太陽電池セルを作製し、評価した。触媒電極において、金属基体の替わりにFTOガラスを用いた。有機溶媒中及び水溶液中で超音波洗浄し、120℃で乾燥させた電極基板を電極として、[Pt(NH]Cl・nHOを含有する硫酸水溶液中で白金の析出担持を行ない、触媒電極を得た。得られた該触媒電極表面の白金粒子の粒径は200nm〜300nmであった。
Comparative Example 2
Except for the method for producing the catalyst electrode, solar cells were produced and evaluated in the same manner as in Example 4. In the catalyst electrode, FTO glass was used instead of the metal substrate. Using an electrode substrate that has been ultrasonically cleaned in an organic solvent and an aqueous solution and dried at 120 ° C. as an electrode, platinum is deposited and supported in a sulfuric acid aqueous solution containing [Pt (NH 3 ) 4 ] Cl 2 · nH 2 O. Then, a catalyst electrode was obtained. The particle diameter of the platinum particles on the surface of the catalyst electrode thus obtained was 200 nm to 300 nm.

[比較例2の測定結果]
開放電圧(Voc):0.58V
短絡電流密度(Jsc):10.9mA/cm
形状因子(FF):22%
光電変換効率:1.4%
[Measurement results of Comparative Example 2]
Open circuit voltage (Voc): 0.58V
Short circuit current density (Jsc): 10.9 mA / cm 2
Form factor (FF): 22%
Photoelectric conversion efficiency: 1.4%

以上の結果から、本発明の触媒電極を備えた色素増感型太陽電池が優れた性能を有していることを示している。   From the above results, it is shown that the dye-sensitized solar cell provided with the catalyst electrode of the present invention has excellent performance.

本発明の触媒電極の用途は色素増感型太陽電池の対極として好ましく使用されるが、色素増感型太陽電池の対極以外の電極としても使用できる。例えば、有機合成用の電極、電気化学デバイスに用いる電極としても好適に利用可能である。   The catalyst electrode of the present invention is preferably used as a counter electrode of a dye-sensitized solar cell, but can also be used as an electrode other than the counter electrode of a dye-sensitized solar cell. For example, it can be suitably used as an electrode for organic synthesis and an electrode used in an electrochemical device.

本発明の色素増感型太陽電池の構成を示す断面模式図。The cross-sectional schematic diagram which shows the structure of the dye-sensitized solar cell of this invention. 本発明の触媒電極の構成を示す断面模式図の一例。An example of the cross-sectional schematic diagram which shows the structure of the catalyst electrode of this invention. 本発明の触媒電極の構成を示す断面模式図の一例。An example of the cross-sectional schematic diagram which shows the structure of the catalyst electrode of this invention.

符号の説明Explanation of symbols

1 電極基体
2 透明基体
3 透明導電膜
4 多孔質金属酸化物半導体層
5 増感色素層
6 電解質層
7 触媒電極
8 電極基体
9 金属層
10 耐食性導電層
DESCRIPTION OF SYMBOLS 1 Electrode base 2 Transparent base 3 Transparent conductive film 4 Porous metal oxide semiconductor layer 5 Sensitizing dye layer 6 Electrolyte layer 7 Catalyst electrode 8 Electrode base 9 Metal layer 10 Corrosion-resistant conductive layer

Claims (16)

光増感作用を有する色素を含む光透過性の半導体電極と、酸化還元対となる化学種を含む電解質層とを有する色素増感型太陽電池において、前記電解質層を介して前記半導体電極に対向配置される触媒電極であって、
該触媒電極が、金属層及び該金属層上に形成された耐食性導電層を少なくとも含み、
該耐食性導電層に、触媒化合物を含有していることを特徴とする触媒電極。
In a dye-sensitized solar cell having a light-transmitting semiconductor electrode containing a dye having a photosensitizing action and an electrolyte layer containing a chemical species serving as a redox pair, the semiconductor electrode faces the semiconductor electrode through the electrolyte layer. A catalyst electrode disposed,
The catalyst electrode includes at least a metal layer and a corrosion-resistant conductive layer formed on the metal layer,
A catalyst electrode comprising a catalyst compound in the corrosion-resistant conductive layer.
前記金属層が、鉄、ニッケル、クロム、モリブデン、チタン、アルミニウムの中から選ばれた少なくとも1種の金属、もしくはそれらの合金、もしくはステンレス鋼からなることを特徴とする請求項1に記載の触媒電極。 The catalyst according to claim 1, wherein the metal layer is made of at least one metal selected from iron, nickel, chromium, molybdenum, titanium, and aluminum, or an alloy thereof, or stainless steel. electrode. 前記耐食性導電層が、金属酸化物からなることを特徴とする請求項1に記載の触媒電極。 The catalyst electrode according to claim 1, wherein the corrosion-resistant conductive layer is made of a metal oxide. 前記金属酸化物が、酸化スズ、酸化インジウム、酸化スズと酸化インジウムの混合体、酸化チタン、酸化亜鉛、酸化イリジウム、もしくは酸化ルテニウムの中から選ばれた少なくとも1種類を含有していることを特徴とする請求項3に記載の触媒電極。 The metal oxide contains at least one selected from tin oxide, indium oxide, a mixture of tin oxide and indium oxide, titanium oxide, zinc oxide, iridium oxide, or ruthenium oxide. The catalyst electrode according to claim 3. 前記耐食性導電層が、金属窒化物からなることを特徴とする請求項1に記載の触媒電極。 The catalyst electrode according to claim 1, wherein the corrosion-resistant conductive layer is made of a metal nitride. 前記金属窒化物が、クロム、チタン、ジルコニウム、バナジウム、ニオブのうち少なくとも1種類から選ばれた金属の窒化物であることを特徴とする請求項5に記載の触媒電極。 6. The catalyst electrode according to claim 5, wherein the metal nitride is a metal nitride selected from at least one of chromium, titanium, zirconium, vanadium, and niobium. 前記耐食性導電層が、金属ホウ化物からなることを特徴とする請求項1に記載の触媒電極。 The catalyst electrode according to claim 1, wherein the corrosion-resistant conductive layer is made of a metal boride. 前記金属ホウ化物が、チタン、ジルコニウム、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、もしくはタングステンのうち少なくとも1種類から選ばれた金属のホウ化物であることを特徴とする請求項7に記載の触媒電極。 8. The metal boride according to claim 7, wherein the metal boride is a boride of a metal selected from at least one of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, and tungsten. Catalytic electrode. 前記耐食性導電層が、金属炭化物からなることを特徴とする請求項1に記載の触媒電極。 The catalyst electrode according to claim 1, wherein the corrosion-resistant conductive layer is made of a metal carbide. 前記金属炭化物が、チタン、ジルコニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、もしくはタングステンのうち少なくとも1種類から選ばれた金属の炭化物であることを特徴とする請求項9に記載の触媒電極。 The catalyst electrode according to claim 9, wherein the metal carbide is a carbide of metal selected from at least one of titanium, zirconium, vanadium, niobium, tantalum, chromium, molybdenum, or tungsten. 前記耐食性導電層の電気電導度が、1×10−9S/cm以上であることを特徴とする請求項3から請求項10のいずれか一項に記載の触媒電極。 11. The catalyst electrode according to claim 3, wherein the electrical conductivity of the corrosion-resistant conductive layer is 1 × 10 −9 S / cm or more. 前記触媒化合物が、遷移金属、導電性炭素材料、導電性高分子材料、もしくは、有機金属錯体の中から選ばれた少なくとも1種からなることを特徴とする請求項1に記載の触媒電極。 2. The catalyst electrode according to claim 1, wherein the catalyst compound comprises at least one selected from a transition metal, a conductive carbon material, a conductive polymer material, or an organometallic complex. 前記遷移金属が白金であることを特徴とする請求項12に記載の触媒電極。 The catalyst electrode according to claim 12, wherein the transition metal is platinum. 前記導電性高分子材料が、ピロール、チオフェン、アニリンおよびそれらの誘導体の中から選ばれる少なくとも1種類の重合体であることを特徴とする請求項12に記載の触媒電極。 The catalyst electrode according to claim 12, wherein the conductive polymer material is at least one polymer selected from pyrrole, thiophene, aniline, and derivatives thereof. 前記有機金属錯体が、ポルフィリン錯体、フタロシアニン錯体およびそれらの誘導体の中から選ばれた少なくとも1種類であることを特徴とする請求項12に記載の触媒電極。 The catalyst electrode according to claim 12, wherein the organometallic complex is at least one selected from a porphyrin complex, a phthalocyanine complex, and derivatives thereof. 光増感作用を有する色素を含む光透過性の半導体電極と、酸化還元対となる化学種を少なくとも含む電解質層と、前記電解質層を介して前記半導体電極に対向配置される対極とを有する色素増感型太陽電池であって、
該対極が、請求項1から請求項15のいずれか一項に記載の触媒電極であることを特徴とする色素増感型太陽電池。
A dye having a light-transmitting semiconductor electrode containing a dye having a photosensitizing action, an electrolyte layer containing at least a chemical species serving as a redox pair, and a counter electrode disposed opposite to the semiconductor electrode via the electrolyte layer A sensitized solar cell,
The dye-sensitized solar cell, wherein the counter electrode is the catalyst electrode according to any one of claims 1 to 15.
JP2005140481A 2005-05-13 2005-05-13 Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same Expired - Fee Related JP4911556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140481A JP4911556B2 (en) 2005-05-13 2005-05-13 Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140481A JP4911556B2 (en) 2005-05-13 2005-05-13 Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same

Publications (2)

Publication Number Publication Date
JP2006318770A true JP2006318770A (en) 2006-11-24
JP4911556B2 JP4911556B2 (en) 2012-04-04

Family

ID=37539254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140481A Expired - Fee Related JP4911556B2 (en) 2005-05-13 2005-05-13 Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same

Country Status (1)

Country Link
JP (1) JP4911556B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134273A (en) * 2005-11-14 2007-05-31 Fujikura Ltd Counter electrode, manufacturing method of the same, photoelectric conversion element, and manufacturing method of the same
WO2009041269A1 (en) * 2007-09-26 2009-04-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
WO2009133689A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
WO2009133688A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
WO2010041732A1 (en) * 2008-10-10 2010-04-15 日新製鋼株式会社 Dye-sensitized solar cells
CN101770870A (en) * 2010-03-24 2010-07-07 大连理工大学 Low-cost counter electrode for dye-sensitized solar battery
WO2012014414A1 (en) 2010-07-27 2012-02-02 島根県 Method for preventing catalyst release from dye-sensitized solar cell and from catalytic electrodes
JP2012156071A (en) * 2011-01-28 2012-08-16 Hitachi Zosen Corp Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2012156070A (en) * 2011-01-28 2012-08-16 Hitachi Zosen Corp Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2012212539A (en) * 2011-03-31 2012-11-01 Hitachi Zosen Corp Method for manufacturing counter electrode of dye-sensitized solar cell, and dye-sensitized solar cell
WO2013035207A1 (en) * 2011-09-05 2013-03-14 Nec Corporation Graphene counter electrode for dye sensitized solar cell
KR101380552B1 (en) * 2011-11-15 2014-04-03 현대하이스코 주식회사 Dye-sensitized solar cell using the substrate having functional coating layer
JP2014238969A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Solar battery
JP2015170613A (en) * 2014-03-04 2015-09-28 積水化学工業株式会社 Electrode base and dye-sensitized solar battery
KR20160061291A (en) * 2016-05-12 2016-05-31 주식회사 포스코 Metal substrate for flexible dye-sensitized solar cell and flexible dye-sensitized solar cell using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100196A1 (en) * 2003-05-05 2004-11-18 Sustainable Technologies International Pty Ltd Photoelectrochemical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100196A1 (en) * 2003-05-05 2004-11-18 Sustainable Technologies International Pty Ltd Photoelectrochemical device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134273A (en) * 2005-11-14 2007-05-31 Fujikura Ltd Counter electrode, manufacturing method of the same, photoelectric conversion element, and manufacturing method of the same
US8377504B2 (en) 2007-09-26 2013-02-19 Dai-Ichi Kogyo Seiyaku Co., Ltd. Method for producing electroconductive polymer electrode, and dye-sensitized solar cell equipped with the same
WO2009041269A1 (en) * 2007-09-26 2009-04-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
EP2192650A1 (en) * 2007-09-26 2010-06-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
JP5215314B2 (en) * 2007-09-26 2013-06-19 第一工業製薬株式会社 Method for producing conductive polymer electrode and dye-sensitized solar cell provided with the same
EP2192650A4 (en) * 2007-09-26 2011-07-06 Dai Ichi Kogyo Seiyaku Co Ltd Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
WO2009133689A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
WO2009133688A1 (en) * 2008-04-28 2009-11-05 株式会社フジクラ Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2009289736A (en) * 2008-04-28 2009-12-10 Fujikura Ltd Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
JP2009289735A (en) * 2008-04-28 2009-12-10 Fujikura Ltd Manufacturing method for photoelectric conversion element, photoelectric conversion element manufactured thereby, manufacturing method for photoelectric conversion element module, and photoelectric conversion element module manufactured thereby
AU2009241138B2 (en) * 2008-04-28 2012-02-02 Fujikura Ltd. Manufacturing method for photoelectric transducer, photoelectric transducer manufactured thereby, manufacturing method for photoelectric transducer module, and photoelectric transducer module manufactured thereby
AU2009303186B2 (en) * 2008-10-10 2014-01-23 Nisshin Steel Co., Ltd. Dye-sensitized solar cells
WO2010041732A1 (en) * 2008-10-10 2010-04-15 日新製鋼株式会社 Dye-sensitized solar cells
CN101770870A (en) * 2010-03-24 2010-07-07 大连理工大学 Low-cost counter electrode for dye-sensitized solar battery
WO2012014414A1 (en) 2010-07-27 2012-02-02 島根県 Method for preventing catalyst release from dye-sensitized solar cell and from catalytic electrodes
US8993880B2 (en) 2010-07-27 2015-03-31 Shimane Prefectural Government Dye-sensitized solar cell and method for preventing elution of catalyst from catalyst electrode
US9183992B2 (en) 2010-07-27 2015-11-10 Shimane Prefectural Government Dye-sensitized solar cell and method for preventing elution of catalyst from catalyst electrode
US9214287B2 (en) 2010-07-27 2015-12-15 Shimane Perfectual Government Dye-sensitized solar cell and method for preventing elution of catalyst from catalyst electrode
JP2012156071A (en) * 2011-01-28 2012-08-16 Hitachi Zosen Corp Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2012156070A (en) * 2011-01-28 2012-08-16 Hitachi Zosen Corp Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2012212539A (en) * 2011-03-31 2012-11-01 Hitachi Zosen Corp Method for manufacturing counter electrode of dye-sensitized solar cell, and dye-sensitized solar cell
WO2013035207A1 (en) * 2011-09-05 2013-03-14 Nec Corporation Graphene counter electrode for dye sensitized solar cell
KR101380552B1 (en) * 2011-11-15 2014-04-03 현대하이스코 주식회사 Dye-sensitized solar cell using the substrate having functional coating layer
JP2014238969A (en) * 2013-06-07 2014-12-18 シャープ株式会社 Solar battery
JP2015170613A (en) * 2014-03-04 2015-09-28 積水化学工業株式会社 Electrode base and dye-sensitized solar battery
KR20160061291A (en) * 2016-05-12 2016-05-31 주식회사 포스코 Metal substrate for flexible dye-sensitized solar cell and flexible dye-sensitized solar cell using the same
KR101714971B1 (en) * 2016-05-12 2017-03-10 주식회사 포스코 Metal substrate for flexible dye-sensitized solar cell and flexible dye-sensitized solar cell using the same

Also Published As

Publication number Publication date
JP4911556B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4911556B2 (en) Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR101177188B1 (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
JP5308661B2 (en) Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
JP4915785B2 (en) Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
JP5204317B2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
KR20080006735A (en) Photovoltaic cell using catalyst supporting carbon nanotube and method for producing the same
KR20070056581A (en) Electrode for a solar cell, manufacturing method thereof and a solar cell comprising the same
Huang et al. Solution-processed relatively pure MoS2 nanoparticles in-situ grown on graphite paper as an efficient FTO-free counter electrode for dye-sensitized solar cells
JPWO2005078853A1 (en) Dye-sensitized solar cell
JP2007317446A (en) Dye-sensitized solar cell
JP5088863B2 (en) Counter electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same
JP4895361B2 (en) Electrolyte-catalyst composite electrode for dye-sensitized solar cell, method for producing the same, and dye-sensitized solar cell provided with the same
KR101726127B1 (en) Counter electrode with block copolymer for dye sensitized solar cell and dye sensitized solar cell comprising the same
Gurung et al. A simple cost-effective approach to enhance performance of bifacial dye-sensitized solar cells
JP5006573B2 (en) Dye-sensitized solar cell
JP4777592B2 (en) Counter electrode and dye-sensitized solar cell having the same
JP2006202562A (en) Catalyst electrode, and dye-sensitized solar cell with it
JP2012028200A (en) Counter electrode for photoelectric conversion device and method of manufacturing the same, and photoelectric conversion device
Kang et al. Electrochemically synthesized mesoscopic nickel oxide films as photocathodes for dye-sensitized solar cells
JP4341197B2 (en) Photoelectric conversion element and manufacturing method thereof
JP4938288B2 (en) Dye-sensitized solar cell
JP5355645B2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP5701633B2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same
JP2006318771A (en) Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same
JP6315796B2 (en) Electrolyte for dye-sensitized solar cell and dye-sensitized solar cell using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120112

R150 Certificate of patent or registration of utility model

Ref document number: 4911556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees