JP2012156070A - Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery - Google Patents

Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery Download PDF

Info

Publication number
JP2012156070A
JP2012156070A JP2011015854A JP2011015854A JP2012156070A JP 2012156070 A JP2012156070 A JP 2012156070A JP 2011015854 A JP2011015854 A JP 2011015854A JP 2011015854 A JP2011015854 A JP 2011015854A JP 2012156070 A JP2012156070 A JP 2012156070A
Authority
JP
Japan
Prior art keywords
dye
fine particles
photocatalyst
sensitized solar
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011015854A
Other languages
Japanese (ja)
Inventor
Takeshi Sugio
剛 杉生
Tetsuya Inoue
鉄也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2011015854A priority Critical patent/JP2012156070A/en
Publication of JP2012156070A publication Critical patent/JP2012156070A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a photocatalyst film in a dye-sensitized solar battery which allows the further enhancement of the electron conductivity from a pigment to a transparent conductive film to improve the battery performance, and to provide a dye-sensitized solar battery.SOLUTION: The method for forming, in a dye-sensitized solar battery having a transparent electrode 1, a counter electrode, an electrolytic layer disposed between the electrodes, and a photocatalyst film 4 disposed on the side of the transparent electrode 1 between the electrodes, the photocatalyst film 4 comprises: forming a core layer of a core shell structure by applying a paste mixture including conductive nitride microparticles 41 to a surface of the transparent electrode 1; and forming a shell layer (porous coating film 43) of a core shell structure by coating the core layer with a paste mixture including titanium oxide microparticles and the precursor thereof, followed by burning.

Description

本発明は、色素増感太陽電池における光触媒膜の形成方法および色素増感太陽電池に関するものである。   The present invention relates to a method for forming a photocatalyst film in a dye-sensitized solar cell and a dye-sensitized solar cell.

一般に、色素増感型太陽電池は、ガラス板などの透明基板上に透明導電膜が形成されてなる透明電極と、導電性基板からなる対向電極と、これら両電極間に配置されるヨウ素系の電解質層と、上記両電極間で且つ上記透明電極の表面に配置される光触媒膜とから構成され、且つこの光触媒膜としては、酸化チタン(TiO)などの金属酸化物を形成した後、ルテニウムなどの光増感色素を吸着させたものが知られている。 In general, a dye-sensitized solar cell is composed of a transparent electrode in which a transparent conductive film is formed on a transparent substrate such as a glass plate, a counter electrode made of a conductive substrate, and an iodine-based solar electrode disposed between these electrodes. It is composed of an electrolyte layer and a photocatalyst film disposed between the electrodes and on the surface of the transparent electrode. As the photocatalyst film, after forming a metal oxide such as titanium oxide (TiO 2 ), ruthenium The thing which adsorb | sucked photosensitizing dyes, such as these, is known.

そして、上記光触媒として酸化チタンの微粒子が用いられるとともに、性能を向上させるために酸化チタンの前駆体を混合させたものがある(例えば、特許文献1参照)。   In addition, titanium oxide fine particles are used as the photocatalyst, and a titanium oxide precursor is mixed in order to improve performance (for example, see Patent Document 1).

特開2004−193321号公報JP 2004-193321 A

ところで、上記特許文献1のものによると、光触媒に用いられる酸化チタンなどの金属酸化物(半導体電極膜)と透明導電膜の電子伝導性が向上するものの、この金属酸化物自身が持つ電気抵抗により、色素から金属酸化物を介して透明導電膜への電子の受け渡しにロスが生じていた。特に、このロスは低光量時において顕著であり、十分な電池性能が得られないという問題があった。   By the way, according to the thing of the said patent document 1, although the metal oxide (semiconductor electrode film) used for a photocatalyst (semiconductor electrode film) and the electronic conductivity of a transparent conductive film improve, due to the electrical resistance which this metal oxide itself has. There was a loss in the transfer of electrons from the dye to the transparent conductive film through the metal oxide. In particular, this loss is significant when the light quantity is low, and there is a problem that sufficient battery performance cannot be obtained.

そこで、本発明は、色素から透明導電膜への電子伝導性を一層向上させ、電池性能の向上を図り得る色素増感太陽電池における光触媒膜の形成方法および色素増感太陽電池を提供することを目的とする。   Accordingly, the present invention provides a method for forming a photocatalyst film in a dye-sensitized solar cell and a dye-sensitized solar cell, which can further improve the electron conductivity from the dye to the transparent conductive film and improve the battery performance. Objective.

上記課題を解決するため、本発明の請求項1に係る色素増感太陽電池における光触媒膜の形成方法は、透明電極と、対向電極と、これら両電極間に配置される電解質層と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池における光触媒膜の形成方法であって、
炭化物の導電性微粒子および/または窒化物の導電性微粒子を含む混合物を、上記透明電極の表面に塗布してコアシェル構造のコア層を形成し、
光触媒微粒子および/または当該光触媒微粒子の前駆体を含む混合物を、上記コア層に塗布した後に焼成してコアシェル構造のシェル層を形成するものである。
In order to solve the above problems, a method for forming a photocatalyst film in a dye-sensitized solar cell according to claim 1 of the present invention includes a transparent electrode, a counter electrode, an electrolyte layer disposed between both electrodes, and both electrodes. A method for forming a photocatalytic film in a dye-sensitized solar cell comprising a photocatalytic film disposed between and on the transparent electrode side,
A mixture containing carbide conductive fine particles and / or nitride conductive fine particles is applied to the surface of the transparent electrode to form a core layer of a core-shell structure,
A mixture containing photocatalyst fine particles and / or a precursor of the photocatalyst fine particles is applied to the core layer and then baked to form a shell layer having a core-shell structure.

また、本発明の請求項2に係る色素増感太陽電池における光触媒膜の形成方法は、請求項1に記載の色素増感太陽電池における光触媒膜の形成方法であって、コア層の導電性微粒子およびシェル層の光触媒微粒子よりも、さらに粒径の大きい炭化物の導電性微粒子および/または窒化物の導電性微粒子を含む混合物を、上記シェル層に塗布して第二のコアシェル構造のコア層を形成し、
コア層の導電性微粒子およびシェル層の光触媒微粒子よりも、さらに粒径の大きい光触媒微粒子および/または当該光触媒微粒子の前駆体を含む混合物を、上記第二のコアシェル構造のコア層に塗布した後に焼成して第二のコアシェル構造のシェル層を形成するものである。
A method for forming a photocatalyst film in a dye-sensitized solar cell according to claim 2 of the present invention is the method for forming a photocatalyst film in a dye-sensitized solar cell according to claim 1, wherein the conductive fine particles in the core layer are formed. And a mixture containing carbide conductive fine particles and / or nitride conductive fine particles having a larger particle size than the photocatalyst fine particles of the shell layer is applied to the shell layer to form a core layer having a second core-shell structure. And
Baking after applying a mixture containing photocatalyst fine particles and / or a precursor of the photocatalyst fine particles having a larger particle size than the conductive fine particles of the core layer and the photocatalyst fine particles of the shell layer to the core layer of the second core-shell structure Thus, a shell layer having a second core-shell structure is formed.

さらに、本発明の請求項3に係る色素増感太陽電池における光触媒膜の形成方法は、請求項1または2に記載の色素増感太陽電池における光触媒膜の形成方法であって、光触媒微粒子および/または当該光触媒微粒子の前駆体を含む混合物に、光増感色素が混合されているものである。   Furthermore, the method for forming a photocatalyst film in a dye-sensitized solar cell according to claim 3 of the present invention is the method for forming a photocatalyst film in a dye-sensitized solar cell according to claim 1, wherein the photocatalyst fine particles and / or Alternatively, a photosensitizing dye is mixed with a mixture containing the precursor of the photocatalyst fine particles.

また、本発明の請求項4に係る色素増感太陽電池における光触媒膜の形成方法は、請求項1乃至3のいずれか一項に記載の色素増感太陽電池における光触媒膜の形成方法であって、炭化物がTiCであり、窒化物がTiNまたはTiCNであるものである。   Moreover, the formation method of the photocatalyst film in the dye-sensitized solar cell concerning Claim 4 of this invention is a formation method of the photocatalyst film in the dye-sensitized solar cell as described in any one of Claims 1 thru | or 3. The carbide is TiC and the nitride is TiN or TiCN.

また、本発明の請求項5に係る色素増感太陽電池は、透明電極と、対向電極と、これら両電極間に配置される電解質層と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池であって、
上記光触媒膜が、コアシェル構造のコア層を形成する導電性微粒子と、コアシェル構造のシェル層を形成するとともに光増感色素が吸着された光触媒微粒子とを有するものである。
Moreover, the dye-sensitized solar cell according to claim 5 of the present invention includes a transparent electrode, a counter electrode, an electrolyte layer disposed between these electrodes, and a photocatalyst disposed between both electrodes and on the transparent electrode side. A dye-sensitized solar cell comprising a film,
The photocatalyst film has conductive fine particles forming a core layer having a core-shell structure, and photocatalyst fine particles forming a shell layer having a core-shell structure and adsorbed with a photosensitizing dye.

また、本発明の請求項6に係る色素増感太陽電池は、請求項5に記載の色素増感太陽電池であって、導電性微粒子が、炭化物または窒化物であるものである。   A dye-sensitized solar cell according to claim 6 of the present invention is the dye-sensitized solar cell according to claim 5, wherein the conductive fine particles are carbide or nitride.

上記色素増感太陽電池における光触媒膜の形成方法によると、導電性微粒子が光触媒膜の電気抵抗を下げることで、光増感色素から透明電極への電子流量の減少を抑えて電子の導電性を一層向上させ、電池性能の向上を図り得る。   According to the method for forming a photocatalyst film in the dye-sensitized solar cell, the conductive fine particles lower the electric resistance of the photocatalyst film, thereby suppressing the decrease in the electron flow rate from the photosensitizing dye to the transparent electrode, thereby improving the conductivity of the electrons. The battery performance can be further improved.

本発明の実施の形態に係る色素増感太陽電池の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the dye-sensitized solar cell which concerns on embodiment of this invention. 同色素増感太陽電池における透明電極および光触媒膜を示す拡大概略図である。It is an enlarged schematic diagram which shows the transparent electrode and photocatalyst film | membrane in the same dye-sensitized solar cell.

以下、本発明の実施の形態に係る色素増感太陽電池における光触媒膜の形成方法を説明する。
まず、実施の形態に係る色素増感太陽電池の概略構成を図1に基づき説明する。
Hereinafter, a method for forming a photocatalytic film in a dye-sensitized solar cell according to an embodiment of the present invention will be described.
First, a schematic configuration of the dye-sensitized solar cell according to the embodiment will be described with reference to FIG.

この色素増感太陽電池は、図1に示すように、負極としての透明電極1と、正極としての対向電極2と、これら両電極1,2間に配置される電解質層3と、両電極1,2間で且つ透明電極1側に配置される光触媒膜(光触媒層または発電層ともいう)4とが具備されている。   As shown in FIG. 1, the dye-sensitized solar cell includes a transparent electrode 1 as a negative electrode, a counter electrode 2 as a positive electrode, an electrolyte layer 3 disposed between the electrodes 1 and 2, and both electrodes 1. , 2 and a photocatalyst film (also referred to as a photocatalyst layer or a power generation layer) 4 disposed on the transparent electrode 1 side.

上記透明電極1は、透明基板11およびこの透明基板11の表面に形成(配置)された透明導電膜12から構成されており、また対向電極2は、アルミニウム、銅、スズなどの導電性基板21から構成されている。   The transparent electrode 1 is composed of a transparent substrate 11 and a transparent conductive film 12 formed (arranged) on the surface of the transparent substrate 11, and the counter electrode 2 is a conductive substrate 21 made of aluminum, copper, tin or the like. It is composed of

上記透明基板11としては、合成樹脂板、ガラス板などが適宜使用されるが、軽量化および低価格化の点で、ポリエチレン・ナフタレート(PEN)フィルムなどの熱可塑性樹脂が好ましい。なお、ポリエチレン・ナフタレートの他に、ポリエチレン・テレフタレート、ポリエステル、ポリカーボネート、ポリオレフィンなどを使用することもできる。   As the transparent substrate 11, a synthetic resin plate, a glass plate, or the like is used as appropriate, but a thermoplastic resin such as a polyethylene naphthalate (PEN) film is preferable in terms of weight reduction and price reduction. In addition to polyethylene naphthalate, polyethylene terephthalate, polyester, polycarbonate, polyolefin and the like can also be used.

また、透明導電膜12として、好ましくは、スズ添加酸化インジウム(ITO)が使用され、この他に、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)、インジウム亜鉛酸化物(IZO)、酸化亜鉛(ZnO)などの導電性金属酸化物を含む薄膜を使用することができる。 In addition, tin-doped indium oxide (ITO) is preferably used as the transparent conductive film 12, and in addition to this, fluorine-added tin oxide (FTO), tin oxide (SnO 2 ), indium zinc oxide (IZO), oxide A thin film containing a conductive metal oxide such as zinc (ZnO) can be used.

上記電解質層3としては、例えばヨウ素系電解液が使用される。具体的には、ヨウ素、ヨウ化物イオン、ターシャリーブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されたものが用いられる。なお、電解質層3は、電解液に限られるものではなく、固体電解質であってもよい。   As the electrolyte layer 3, for example, an iodine-based electrolyte is used. Specifically, an electrolyte component such as iodine, iodide ion or tertiary butyl pyridine dissolved in an organic solvent such as ethylene carbonate or methoxyacetonitrile is used. The electrolyte layer 3 is not limited to the electrolytic solution, and may be a solid electrolyte.

上記固体電解質としては、例えば、DMPImI(ジメチルプロピルイミダゾリウムヨウ化物)が例示され、この他、LiI、NaI、KI、CsI、CaIなどの金属ヨウ化物、テトラアルキルアンモニウムヨーダイドなど4級アンモニウム化合物のヨウ素塩などのヨウ化物とIとを組み合わせたもの、LiBr、NaBr、KBr、CsBr、CaBrなどの金属臭化物、およびテトラアルキルアンモニウムブロマイドなど4級アンモニウム化合物の臭素塩などの臭化物とBrとを組み合わせたものなどを適宜使用することができる。 As the solid electrolyte, for example, is illustrated DMPImI (dimethylpropyl imidazolium iodide), but this addition, LiI, NaI, KI, CsI, metal iodide such as CaI 2, tetraalkylammonium iodide and quaternary ammonium compounds Bromide such as a combination of iodide such as iodine salt and I 2 , metal bromide such as LiBr, NaBr, KBr, CsBr and CaBr 2 , and bromide salt of quaternary ammonium compound such as tetraalkylammonium bromide and Br 2 And the like can be used as appropriate.

そして、上記光触媒膜4は、図2に示すように、多数の導電性微粒子41と、これら導電性微粒子41の表面を覆うとともに光増感色素42が吸着された酸化チタン(TiO)の多孔質被膜43とから形成されている。すなわち、上記光触媒膜4は、導電性微粒子41を含む多孔質膜(後述する)をコアとして、多孔質被膜43でコアシェル化されたものである。 As shown in FIG. 2, the photocatalyst film 4 is porous with a large number of conductive fine particles 41 and titanium oxide (TiO 2 ) covering the surfaces of the conductive fine particles 41 and adsorbing the photosensitizing dye 42. It is formed from the quality film 43. That is, the photocatalyst film 4 is formed into a core shell with a porous coating 43 with a porous film (described later) including conductive fine particles 41 as a core.

また、上記導電性微粒子41としては、窒化チタン(TiN)、炭化チタン(TiC)、炭窒化チタン(TiCN)などが用いられ、光増感色素42としては、ビピリジン構造若しくはターピリジン構造を含む配位子を有するルテニウム錯体や鉄錯体、ポルフィリン系やフタロシアニン系の金属錯体、またはエオシン、ローダミン、メロシアニン、クマリンなどの有機色素などが用いられる。   Further, as the conductive fine particles 41, titanium nitride (TiN), titanium carbide (TiC), titanium carbonitride (TiCN), or the like is used, and the photosensitizing dye 42 is a coordination containing a bipyridine structure or a terpyridine structure. A ruthenium complex or iron complex having a child, a porphyrin-based or phthalocyanine-based metal complex, or an organic dye such as eosin, rhodamine, merocyanine, or coumarin is used.

次に、本発明の要旨である光触媒膜4の製造方法、つまり形成方法について説明する。
まず、導電性微粒子41または導電性微粒子41の前駆体である金属アルコキシドを、アルコールおよび水に溶かしてペースト状の混合物となし、このペースト状の混合物を透明電極1の表面に塗布して乾燥させた後、所定温度で焼成することにより、導電性微粒子41を含む多孔質膜(コアシェル構造のコア層である)が形成される。
Next, a manufacturing method of the photocatalyst film 4 that is the gist of the present invention, that is, a forming method will be described.
First, the conductive fine particles 41 or the metal alkoxide that is a precursor of the conductive fine particles 41 is dissolved in alcohol and water to form a paste-like mixture, and this paste-like mixture is applied to the surface of the transparent electrode 1 and dried. Then, a porous film (which is a core layer having a core-shell structure) including the conductive fine particles 41 is formed by firing at a predetermined temperature.

一方、光触媒微粒子である酸化チタン微粒子を、アルコールおよび水に溶かしてよく攪拌し、ペースト状の混合物とすることで酸化チタンペーストを得る。この酸化チタンペーストを、光触媒の前駆体をプロパノールに溶かした溶液に適量混合し、上記多孔質膜の表面に塗布して乾燥させた後、所定温度で焼成することにより、光触媒微粒子を含む多孔質被膜(コアシェル構造のシェル層である)43が形成される。なお、上記の多孔質膜および多孔質被膜43は、当該多孔質膜をコアとして多孔質被膜43でコアシェル化されている。   On the other hand, titanium oxide fine particles, which are photocatalyst fine particles, are dissolved in alcohol and water and stirred well to obtain a paste-like mixture to obtain a titanium oxide paste. An appropriate amount of this titanium oxide paste is mixed in a solution of a photocatalyst precursor dissolved in propanol, coated on the surface of the porous film, dried, and then fired at a predetermined temperature to obtain a porous material containing photocatalyst fine particles. A coating (which is a shell layer having a core-shell structure) 43 is formed. The porous film and the porous coating 43 are core-shelled with the porous coating 43 with the porous membrane as a core.

この多孔質被膜43を、光増感色素42、ブタノールおよびアセトニトリルの混合液に浸漬する。これにより、多孔質被膜43の上記酸化チタン微粒子に光増感色素42が吸着されて、光触媒膜4が形成される。   This porous coating 43 is immersed in a mixed solution of photosensitizing dye 42, butanol and acetonitrile. As a result, the photosensitizing dye 42 is adsorbed on the titanium oxide fine particles of the porous coating 43 to form the photocatalytic film 4.

ここで、酸化チタンペーストと光触媒の前駆体との混合比率を変更することにより、上記多孔質被膜43の厚さを調整することができる。なお、上述の塗布の方法については、スプレー法、ディップ法、スピンコート法、ドクターブレード法などがあるが、特に制限はない。   Here, the thickness of the porous coating 43 can be adjusted by changing the mixing ratio of the titanium oxide paste and the photocatalyst precursor. In addition, although there exist a spray method, a dip method, a spin coat method, a doctor blade method etc. about the coating method mentioned above, there is no restriction | limiting in particular.

また、上記対向電極2として、アルミニウム、銅、スズなどの導電性基板21を用いるものとして説明したが、この他、アルミニウム、銅、スズなどの金属またはカーボン製のメッシュ状電極にゲル状固体電解質を保持させることにより当該対向電極を構成してもよく、また、透明基板の表面に透明導電膜を形成してもよく、さらに、透明基板の片面に且つ導電性接着剤層でもって当該透明基板を覆うように形成し、接着剤層を介して、別途形成されたブラシ状カーボンナノチューブ群を当該透明基板側に転写することで、対向電極2を構成してもよい。   Moreover, although it demonstrated as what uses the electroconductive board | substrate 21, such as aluminum, copper, and tin, as said counter electrode 2, besides this, it is a gel-like solid electrolyte to metal or carbon mesh-like electrodes, such as aluminum, copper, and tin. The counter electrode may be constituted by holding the transparent substrate, a transparent conductive film may be formed on the surface of the transparent substrate, and the transparent substrate may be formed on one side of the transparent substrate with a conductive adhesive layer. The counter electrode 2 may be configured by transferring a separately formed brush-like carbon nanotube group to the transparent substrate side through an adhesive layer.

さらに、色素増感太陽電池(光電変換素子でもある)を組み立てる場合について簡単に説明すると、表面に上述の方法により光触媒膜4が形成された透明電極1と対向電極2とを位置合わせした後、両電極1,2間を熱融着フィルムや封止材などで密封し、そして透明電極1または対向電極2に予め設けておいた孔や隙間から、液体の電解質を両電極1,2間に注入すればよい。   Furthermore, when the dye-sensitized solar cell (which is also a photoelectric conversion element) is assembled briefly, after positioning the transparent electrode 1 and the counter electrode 2 having the photocatalyst film 4 formed on the surface by the above-described method, The gap between the electrodes 1 and 2 is sealed with a heat-sealing film or a sealing material, and the liquid electrolyte is passed between the electrodes 1 and 2 through holes or gaps previously provided in the transparent electrode 1 or the counter electrode 2. Just inject.

なお、固体電解質または高粘性の電解液を用いる場合には、両電極1,2間に光触媒膜4および電解質層3が挟まれるように重ね合わせた後、その周縁部同士を加熱し接着すればよい。   In addition, when using a solid electrolyte or a highly viscous electrolyte solution, after superimposing the photocatalyst film 4 and the electrolyte layer 3 between the electrodes 1 and 2, the peripheral portions may be heated and bonded together. Good.

上述した色素増感太陽電池における光触媒膜4の形成方法によると、導電性微粒子41が光触媒膜4の電気抵抗を下げることで、光増感色素42から透明電極1への電子流量の減少を抑え、電池性能(特に電流密度とフィルファクタ)の向上を図り得る。   According to the method for forming the photocatalyst film 4 in the dye-sensitized solar cell described above, the conductive fine particles 41 reduce the electric resistance of the photocatalyst film 4, thereby suppressing the decrease in the electron flow rate from the photosensitizing dye 42 to the transparent electrode 1. Battery performance (especially current density and fill factor) can be improved.

以下、上記実施の形態をより具体的に示した複数の実施例に係る色素増感太陽電池における光触媒膜4の形成方法について説明する。なお、以下に示す各実施例においては、光増感色素42としてルテニウム錯体を用いた。   Hereinafter, a method of forming the photocatalyst film 4 in the dye-sensitized solar cell according to a plurality of examples showing the above embodiment more specifically will be described. In each example shown below, a ruthenium complex was used as the photosensitizing dye 42.

まず、実施例1に係る光触媒膜4の形成方法について説明すると、導電性微粒子41として、平均粒径が40nm(好ましくは20〜60nm)の窒化チタン微粒子を用いた。ここで、平均粒径とは、個数平均粒径を言い、FE−SEM(電界放射型走査電子顕微鏡)観察により測定した値である。この窒化チタン微粒子を、t−ブタノールおよび純水に溶かしてペースト状にし、これを透明電極1であるPEN−ITOフィルムの表面に塗布して乾燥させた後、150℃で焼成することにより多孔質膜が形成された。   First, the method for forming the photocatalyst film 4 according to Example 1 will be described. As the conductive fine particles 41, titanium nitride fine particles having an average particle diameter of 40 nm (preferably 20 to 60 nm) were used. Here, the average particle diameter refers to the number average particle diameter, and is a value measured by FE-SEM (field emission scanning electron microscope) observation. The titanium nitride fine particles are dissolved in t-butanol and pure water to form a paste, which is coated on the surface of the PEN-ITO film as the transparent electrode 1 and dried, and then fired at 150 ° C. to make it porous. A film was formed.

この多孔質膜の表面に、平均粒径が20nmの酸化チタン微粒子5.4gを、t−ブタノール23.2gおよび純水7.1gに溶かし、ペイントシェーカなどでよく攪拌して酸化チタンペーストを得た。そして、この酸化チタンペーストを、光触媒の前駆体であるチタン(IV)イソプロポキシド(TTIP)をプロパノールに溶かした溶液(0.01〜5.00wt%程度)に、適量混合した。この混合した溶液を、上記多孔質膜の表面に塗布して乾燥させた後、150℃で焼成することにより、多孔質被膜43が形成された。   On the surface of this porous film, 5.4 g of titanium oxide fine particles having an average particle diameter of 20 nm are dissolved in 23.2 g of t-butanol and 7.1 g of pure water, and stirred well with a paint shaker to obtain a titanium oxide paste. It was. Then, an appropriate amount of this titanium oxide paste was mixed with a solution (about 0.01 to 5.00 wt%) of titanium (IV) isopropoxide (TTIP), which is a precursor of the photocatalyst, in propanol. The mixed solution was applied to the surface of the porous film, dried, and then baked at 150 ° C., whereby the porous coating 43 was formed.

この多孔質被膜43を、ルテニウム色素N719(72mg)、t−ブタノール(100cc)およびアセトニトリル(100cc)の混合液に、90分間40℃で浸漬することにより、上記酸化チタン微粒子にルテニウム色素が吸着されて、光触媒膜4が形成された。   By immersing this porous film 43 in a mixed solution of ruthenium dye N719 (72 mg), t-butanol (100 cc) and acetonitrile (100 cc) at 40 ° C. for 90 minutes, the ruthenium dye is adsorbed on the titanium oxide fine particles. Thus, the photocatalytic film 4 was formed.

ここでは、光触媒の前駆体としてTTIPを用いたが、チタンテトラエトキシド、四塩化チタンまたは水酸化チタンなど、他の金属アルコキシドを用いてもよい。また、プロパノールの代わりに、t−ブタノール、エトキシエタノールまたはエタノールなどを用いてもよい。さらに、加水分解を抑制する目的として、ジエタノールアミンやアセチルアセトンなどを加えても良い。   Here, TTIP is used as a precursor of the photocatalyst, but other metal alkoxides such as titanium tetraethoxide, titanium tetrachloride, or titanium hydroxide may be used. Further, t-butanol, ethoxyethanol, ethanol or the like may be used instead of propanol. Furthermore, for the purpose of suppressing hydrolysis, diethanolamine, acetylacetone or the like may be added.

次に、実施例2に係る光触媒膜4の形成方法について説明すると、上述した実施例1での酸化チタンペーストを得る際に、酸化チタン微粒子だけでなく、ルテニウム色素もt−ブタノールおよび純水に溶かした。これにより、酸化チタン微粒子に光増感色素42が吸着されるので、多孔質被膜をルテニウム色素が含まれる混合液に浸漬する工程を省いた。これら以外については、実施例1と同様にした。このため、本実施例2では、ルテニウム色素同士、酸化チタン微粒子同士、ルテニウム色素と酸化チタン微粒子との結合が強固になった。また本実施例2では、ルテニウム色素を含む混合液に浸漬する工程を不要にし、色素増感太陽電池の作成時間を短縮できた。   Next, a method for forming the photocatalyst film 4 according to Example 2 will be described. When obtaining the titanium oxide paste in Example 1 described above, not only titanium oxide fine particles but also ruthenium dyes are converted into t-butanol and pure water. Melted. Thereby, since the photosensitizing dye 42 is adsorbed to the titanium oxide fine particles, the step of immersing the porous film in the mixed solution containing the ruthenium dye is omitted. The others were the same as in Example 1. For this reason, in this Example 2, the coupling | bonding of ruthenium pigment | dye, titanium oxide microparticles | fine-particles, a ruthenium pigment | dye, and a titanium oxide microparticle became strong. Moreover, in this Example 2, the process immersed in the liquid mixture containing a ruthenium pigment | dye became unnecessary, and the creation time of the dye-sensitized solar cell was able to be shortened.

上記実施例2により形成された光触媒膜4を用いて、有効径がφ6mmの色素増感太陽電池を作成し、AM1.5,100mW/cmの標準光源照射を行って、電池性能を計測した。この場合、計測された電流密度は9.43mA/cm、開放電圧は0.72V、フィルファクタは0.67、変換効率は4.56%、製造時において光触媒膜4での光増感度色素42の吸着に要する時間は0分であった。 Using the photocatalyst film 4 formed in Example 2 above, a dye-sensitized solar cell having an effective diameter of φ6 mm was prepared and irradiated with a standard light source of AM 1.5, 100 mW / cm 2 to measure the cell performance. . In this case, the measured current density is 9.43 mA / cm 2 , the open-circuit voltage is 0.72 V, the fill factor is 0.67, the conversion efficiency is 4.56%, and the photosensitizing dye in the photocatalyst film 4 is manufactured. The time required for adsorption of 42 was 0 minutes.

これに対して、導電性微粒子41を用いずに形成された従来の光触媒膜を用いて色素増感太陽電池を作成し、AM1.5,100mW/cmの標準光源照射を行って、電池性能を計測した。この場合、計測された電流密度は8.67mA/cm、開放電圧は0.70V、フィルファクタは0.61、変換効率は3.68%、製造時において光触媒膜での光増感色素の吸着に要する時間は90分であった。 On the other hand, a dye-sensitized solar cell was prepared using a conventional photocatalyst film formed without using the conductive fine particles 41, and a standard light source irradiation of AM 1.5, 100 mW / cm 2 was performed to obtain battery performance. Was measured. In this case, the measured current density was 8.67 mA / cm 2 , the open circuit voltage was 0.70 V, the fill factor was 0.61, the conversion efficiency was 3.68%, and the photosensitizing dye in the photocatalyst film was manufactured at the time of production. The time required for adsorption was 90 minutes.

したがって、上記実施例2で得られた光触媒膜4を用いた色素増感太陽電池は、従来の構成と比較して、全般的に電池性能が向上した。特に、電流密度およびフィルファクタについては、著しく向上した。   Therefore, the dye-sensitized solar cell using the photocatalyst film 4 obtained in Example 2 generally improved the cell performance as compared with the conventional configuration. In particular, the current density and fill factor were significantly improved.

また、上記実施例2では、色素増感太陽電池の製造において光増感色素の吸着工程が不要になったので、色素増感太陽電池の連続生産を行うことが容易となった。   In Example 2 described above, since the adsorption step of the photosensitizing dye is not necessary in the production of the dye-sensitized solar cell, it is easy to perform continuous production of the dye-sensitized solar cell.

次に、実施例3に係る光触媒膜4の形成方法について説明する。
本実施例3での光触媒膜4は、多孔質膜および多孔質被膜からなる積層体が厚さ方向に複数具備されており、透明電極1側の積層体から対向電極2側の積層体にかけて、各積層体に含まれる導電性微粒子および光触媒微粒子の粒径が漸次大きくなるものである。一例として、2つの積層体からなる光触媒膜4の形成方法について具体的に説明する。
Next, a method for forming the photocatalytic film 4 according to Example 3 will be described.
The photocatalyst film 4 in this Example 3 is provided with a plurality of laminated bodies composed of a porous film and a porous film in the thickness direction, from the laminated body on the transparent electrode 1 side to the laminated body on the counter electrode 2 side, The particle diameters of the conductive fine particles and the photocatalyst fine particles contained in each laminate gradually increase. As an example, a method for forming the photocatalyst film 4 composed of two laminated bodies will be specifically described.

すなわち、上述した実施例1での多孔質膜および多孔質被膜43の形成後、第二の多孔質膜(第二のコアシェル構造のコア層である)を、上記透明電極1側の導電性微粒子41および光触媒微粒子よりも粒径の大きい導電性微粒子を用いて、上記透明電極1側の多孔質被膜43上に形成した。次に、第二の多孔質被膜(第二のコアシェル構造のシェル層である)を、上記透明電極1側の導電性微粒子41および光触媒微粒子よりも粒径の大きい導電性微粒子を用いて、上記第二の多孔質膜上に形成した。   That is, after the formation of the porous film and the porous film 43 in Example 1 described above, the second porous film (which is the core layer of the second core-shell structure) is formed on the conductive fine particles on the transparent electrode 1 side. 41 and conductive fine particles having a larger particle size than the photocatalyst fine particles were formed on the porous coating 43 on the transparent electrode 1 side. Next, the second porous coating (which is a shell layer having a second core-shell structure) is formed using the conductive fine particles 41 on the transparent electrode 1 side and the conductive fine particles having a larger particle diameter than the photocatalyst fine particles. Formed on the second porous membrane.

さらに具体的に説明すると、上記透明電極1側の多孔質膜の導電性微粒子41である窒化チタン微粒子には、平均粒径が40nm(好ましくは20〜60nm)のものを用い、上記透明電極1側の多孔質被膜43の光触媒微粒子である酸化チタン微粒子には、平均粒径が15nm(好ましくは5〜30nm)のものを用いた。第二の多孔質膜の形成は、上記透明電極1側の多孔質膜の形成と同様であるが、窒化チタン微粒子には、平均粒径が60nm(好ましくは40〜80nm)のものを用いた。また、第二の多孔質被膜の形成は、上記透明電極1側の多孔質被膜43の形成と同様であるが、酸化チタン微粒子には、平均粒径が30nm(好ましくは20〜50nm)のものを用いた。   More specifically, the titanium nitride fine particles, which are the conductive fine particles 41 of the porous film on the transparent electrode 1 side, have an average particle diameter of 40 nm (preferably 20 to 60 nm), and the transparent electrode 1 As the titanium oxide fine particles which are the photocatalyst fine particles of the porous coating 43 on the side, those having an average particle diameter of 15 nm (preferably 5 to 30 nm) were used. The formation of the second porous film is the same as the formation of the porous film on the transparent electrode 1 side, but the titanium nitride fine particles having an average particle diameter of 60 nm (preferably 40 to 80 nm) were used. . The formation of the second porous film is the same as the formation of the porous film 43 on the transparent electrode 1 side, but the titanium oxide fine particles have an average particle diameter of 30 nm (preferably 20 to 50 nm). Was used.

したがって、上記実施例3で得られた光触媒膜4を用いた色素増感太陽電池は、粒径の小さい、つまり透過率が高い導電性粒子41および光触媒粒子を、光の入射側である透明電極1側に配置するとともに、粒径の大きい、つまり反射率が高い導電性粒子および光触媒粒子を、光の出射側である対向電極2側に配置するため、光触媒層4への光の閉じ込め効果が得られることにより、光増感色素42での電子の励起が促進されて変換効率が高まり、さらなる電池性能の向上を図り得た。   Therefore, in the dye-sensitized solar cell using the photocatalyst film 4 obtained in Example 3, the conductive particles 41 and the photocatalyst particles having a small particle diameter, that is, high transmittance, are used as the transparent electrode on the light incident side. Since the conductive particles and photocatalyst particles having a large particle size, that is, high reflectance are arranged on the side of the counter electrode 2 on the light emission side, the light confinement effect on the photocatalyst layer 4 is achieved. As a result, the excitation of electrons in the photosensitizing dye 42 was promoted, the conversion efficiency was increased, and the battery performance could be further improved.

1 透明電極
2 対向電極
3 電解質層
4 光触媒膜
12 透明導電膜
41 導電性微粒子
42 光増感色素
43 多孔質被膜
DESCRIPTION OF SYMBOLS 1 Transparent electrode 2 Counter electrode 3 Electrolyte layer 4 Photocatalyst film | membrane 12 Transparent conductive film 41 Conductive fine particle 42 Photosensitizing dye 43 Porous film

Claims (6)

透明電極と、対向電極と、これら両電極間に配置される電解質層と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池における光触媒膜の形成方法であって、
炭化物の導電性微粒子および/または窒化物の導電性微粒子を含む混合物を、上記透明電極の表面に塗布してコアシェル構造のコア層を形成し、
光触媒微粒子および/または当該光触媒微粒子の前駆体を含む混合物を、上記コア層に塗布した後に焼成してコアシェル構造のシェル層を形成することを特徴とする色素増感太陽電池における光触媒膜の形成方法。
A method for forming a photocatalyst film in a dye-sensitized solar cell comprising a transparent electrode, a counter electrode, an electrolyte layer disposed between both electrodes, and a photocatalyst film disposed between both electrodes and on the transparent electrode side There,
A mixture containing carbide conductive fine particles and / or nitride conductive fine particles is applied to the surface of the transparent electrode to form a core layer of a core-shell structure,
A method of forming a photocatalyst film in a dye-sensitized solar cell, comprising applying a photocatalyst fine particle and / or a mixture containing the precursor of the photocatalyst fine particle to the core layer and then firing to form a shell layer having a core-shell structure .
コア層の導電性微粒子およびシェル層の光触媒微粒子よりも、さらに粒径の大きい炭化物の導電性微粒子および/または窒化物の導電性微粒子を含む混合物を、上記シェル層に塗布して第二のコアシェル構造のコア層を形成し、
コア層の導電性微粒子およびシェル層の光触媒微粒子よりも、さらに粒径の大きい光触媒微粒子および/または当該光触媒微粒子の前駆体を含む混合物を、上記第二のコアシェル構造のコア層に塗布した後に焼成して第二のコアシェル構造のシェル層を形成することを特徴とする請求項1に記載の色素増感太陽電池における光触媒膜の形成方法。
A mixture containing carbide conductive fine particles and / or nitride conductive fine particles having a larger particle size than the conductive fine particles of the core layer and the photocatalyst fine particles of the shell layer is applied to the shell layer to form the second core shell. Forming a core layer of structure,
Baking after applying a mixture containing photocatalyst fine particles and / or a precursor of the photocatalyst fine particles having a larger particle size than the conductive fine particles of the core layer and the photocatalyst fine particles of the shell layer to the core layer of the second core-shell structure Then, a shell layer having a second core-shell structure is formed. The method for forming a photocatalytic film in a dye-sensitized solar cell according to claim 1.
光触媒微粒子および/または当該光触媒微粒子の前駆体を含む混合物に、光増感色素が混合されていることを特徴とする請求項1または2に記載の色素増感太陽電池における光触媒膜の形成方法。   3. The method for forming a photocatalyst film in a dye-sensitized solar cell according to claim 1, wherein a photosensitizing dye is mixed in a mixture containing the photocatalyst fine particles and / or a precursor of the photocatalyst fine particles. 炭化物がTiCであり、窒化物がTiNまたはTiCNであることを特徴とする請求項1乃至3のいずれか一項に記載の色素増感太陽電池における光触媒膜の形成方法。   The method for forming a photocatalytic film in a dye-sensitized solar cell according to any one of claims 1 to 3, wherein the carbide is TiC and the nitride is TiN or TiCN. 透明電極と、対向電極と、これら両電極間に配置される電解質層と、両電極間で且つ透明電極側に配置される光触媒膜とを具備する色素増感太陽電池であって、
上記光触媒膜が、コアシェル構造のコア層を形成する導電性微粒子と、コアシェル構造のシェル層を形成するとともに光増感色素が吸着された光触媒微粒子とを有することを特徴とする色素増感太陽電池。
A dye-sensitized solar cell comprising a transparent electrode, a counter electrode, an electrolyte layer disposed between both electrodes, and a photocatalyst film disposed between both electrodes and on the transparent electrode side,
The dye-sensitized solar cell, wherein the photocatalyst film includes conductive fine particles forming a core layer having a core-shell structure, and photocatalyst fine particles forming a shell layer having a core-shell structure and adsorbed with a photosensitizing dye. .
導電性微粒子が、炭化物または窒化物であることを特徴とする請求項5に記載の色素増感太陽電池。




The dye-sensitized solar cell according to claim 5, wherein the conductive fine particles are carbide or nitride.




JP2011015854A 2011-01-28 2011-01-28 Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery Pending JP2012156070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015854A JP2012156070A (en) 2011-01-28 2011-01-28 Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015854A JP2012156070A (en) 2011-01-28 2011-01-28 Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery

Publications (1)

Publication Number Publication Date
JP2012156070A true JP2012156070A (en) 2012-08-16

Family

ID=46837581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015854A Pending JP2012156070A (en) 2011-01-28 2011-01-28 Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery

Country Status (1)

Country Link
JP (1) JP2012156070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015077583A1 (en) * 2013-11-25 2015-05-28 E. I. Du Pont De Nemours And Company A method of manufacturing a solar cell
KR101638366B1 (en) * 2015-01-05 2016-07-11 성균관대학교산학협력단 Method of forming electron carrier for perovskite solar cell and perovskite solar cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345125A (en) * 1999-11-04 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion element
JP2002110261A (en) * 2000-10-02 2002-04-12 Catalysts & Chem Ind Co Ltd New metal oxide particles and application thereof
JP2006210341A (en) * 2005-01-24 2006-08-10 Samsung Electronics Co Ltd Photoelectrode, its manufacturing method and solar cell adopting the photoelectrode
JP2006318770A (en) * 2005-05-13 2006-11-24 Japan Carlit Co Ltd:The Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same
WO2007043533A1 (en) * 2005-10-11 2007-04-19 Kyocera Corporation Photoelectric transducer, process for producing the same, and photovoltaic apparatus
US20090211630A1 (en) * 2007-12-17 2009-08-27 Electronics And Telecomunications Research Institute Dye-sensitized solar cell and method of manufacturing the same
JP2010140654A (en) * 2008-12-09 2010-06-24 Hitachi Zosen Corp Manufacturing method of transparent conductive film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345125A (en) * 1999-11-04 2001-12-14 Hitachi Maxell Ltd Photoelectric conversion element
JP2002110261A (en) * 2000-10-02 2002-04-12 Catalysts & Chem Ind Co Ltd New metal oxide particles and application thereof
JP2006210341A (en) * 2005-01-24 2006-08-10 Samsung Electronics Co Ltd Photoelectrode, its manufacturing method and solar cell adopting the photoelectrode
JP2006318770A (en) * 2005-05-13 2006-11-24 Japan Carlit Co Ltd:The Catalyst electrode of dye-sensitized solar battery, and dye-sensitized solar battery with same
WO2007043533A1 (en) * 2005-10-11 2007-04-19 Kyocera Corporation Photoelectric transducer, process for producing the same, and photovoltaic apparatus
US20090211630A1 (en) * 2007-12-17 2009-08-27 Electronics And Telecomunications Research Institute Dye-sensitized solar cell and method of manufacturing the same
JP2010140654A (en) * 2008-12-09 2010-06-24 Hitachi Zosen Corp Manufacturing method of transparent conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015077583A1 (en) * 2013-11-25 2015-05-28 E. I. Du Pont De Nemours And Company A method of manufacturing a solar cell
US9240515B2 (en) 2013-11-25 2016-01-19 E I Du Pont De Nemours And Company Method of manufacturing a solar cell
KR101638366B1 (en) * 2015-01-05 2016-07-11 성균관대학교산학협력단 Method of forming electron carrier for perovskite solar cell and perovskite solar cell

Similar Documents

Publication Publication Date Title
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
JP2018019092A (en) Photoelectric conversion element and method for manufacturing the same
WO2013179706A1 (en) Dye-sensitized solar cell
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2012059599A (en) Carbon based electrode and electrochemical device
JP6082007B2 (en) Composition for photoelectric conversion layer and photoelectric conversion element
JP2011129526A (en) Dye-sensitized solar cell module and method of manufacturing the same
JP2006310252A (en) Transparent electrode, dye-sensitized solar cell having it and dye-sensitized solar cell module
JP2012064485A (en) Dye-sensitized photoelectric conversion device
JP5274691B1 (en) Dye-sensitized solar cell
JP5678801B2 (en) Photoelectric conversion element
JP4716636B2 (en) Compound semiconductor
JPWO2014017535A1 (en) Composition for photoelectric conversion layer and photoelectric conversion element
Chen et al. Electron transport dynamics in TiO2 films deposited on Ti foils for back-illuminated dye-sensitized solar cells
JP2011233376A (en) Buffer layer forming method in dye-sensitized solar cell
JP2012156070A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2010159340A (en) Metal complex dye and dye-sensitized solar cell using the same
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
KR101417646B1 (en) Dye sensitized solar cell and its manufacturing method
JP2011165615A (en) Photoelectric conversion element and method of manufacturing the same
JP6773859B1 (en) Electrolyte for photoelectric conversion element and photoelectric conversion element
JP2012156071A (en) Method for forming photocatalyst film in dye-sensitized solar battery, and dye-sensitized solar battery
JP2012226830A (en) Dye-sensitized solar cell, and method for manufacturing dye-sensitized solar cell
JP6173560B2 (en) Photoelectric conversion module and electronic device using the same
KR101476743B1 (en) Method for manufacturing dye sensitized solar cells and dye sensitized solar cells manufactured by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209