JPH04337675A - Optoelectric transducer - Google Patents

Optoelectric transducer

Info

Publication number
JPH04337675A
JPH04337675A JP3138226A JP13822691A JPH04337675A JP H04337675 A JPH04337675 A JP H04337675A JP 3138226 A JP3138226 A JP 3138226A JP 13822691 A JP13822691 A JP 13822691A JP H04337675 A JPH04337675 A JP H04337675A
Authority
JP
Japan
Prior art keywords
electrode
photoelectric conversion
conjugated polymer
layer
polymer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3138226A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kagami
好晴 鏡
Takeshi Imura
健 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP3138226A priority Critical patent/JPH04337675A/en
Publication of JPH04337675A publication Critical patent/JPH04337675A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable electrical short-circuiting of an optoelectric transducer to be eliminated, a response wavelength region to be expanded, and a photoelectric conversion efficiency to be improved by providing a solubility conjugated polymer layer and an organic pigment layer or an organic coloring matter layer between two electrodes. CONSTITUTION:This optoelectric transducer consists of five layers of a base plate 1 and a first electrode 2, a second electrode 3, a solubility conjugated polymer layer 4, an organic pigment or an organic coloring matter layer 5, and a third electrode 6. For example, chrome, gold, and aluminum deposition layers are used for the first electrode 2, the second electrode 3, and the third electrode 6, respectiviely. Polyalkylthiophene is desirable for the solubility conjugated polymer layer 4 and polyalkylyrrole, polyalkylaniline, etc., can also be used. The solubility conjugated polymer is dissolved into chloroform, tetrahydrofuran, anisole, etc., and a paint film is formed by the cast method, the spin-coat method, the water-surface development method, etc., thus eliminating the need for using a complex method such as the electrolytic polymerization method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は新規な光電変換素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel photoelectric conversion element.

【0002】0002

【従来の技術】従来、光電変換素子としては無機半導体
であるシリコンを利用したものが考案され実用化されて
いる。近年、有機材料を用いた光電変換素子の研究が行
われ研究が行われている。有機材料は材料合成、加工の
両面で太陽電池のローコスト化に寄与できる可能性を持
っている。また例えば適当な溶媒に分散あるいは溶解し
てキャストすることにより、比較的均一で大きな膜を作
ることができる。しかしながらこのような有機材料を用
いた光電変換素子は、有機材料の電導度が低いため、光
電変換効率が小さい。高い光電変換効率を有する素子の
作製方法として、2つの電極間にπー共役系高分子層及
び有機色素層を備えることにより、応答波長領域を拡大
させる方法が考案されている(例えば特開昭60ー28
278号公報)。しかしこの方法は電極間に電圧を印加
し導電性の電解重合膜を電極上に作製する方法で、作製
方法が複雑である。また、電解重合法によって得られた
薄膜の組織は必ずしもち密なものとは言えず、光電変換
素子などを作製する場合、膜厚が薄いと電気的な短絡を
生じる。
2. Description of the Related Art Conventionally, photoelectric conversion elements using silicon, which is an inorganic semiconductor, have been devised and put into practical use. In recent years, research has been conducted on photoelectric conversion elements using organic materials. Organic materials have the potential to contribute to lowering the cost of solar cells in terms of both material synthesis and processing. Furthermore, a relatively uniform and large film can be made by dispersing or dissolving it in an appropriate solvent and casting it. However, photoelectric conversion elements using such organic materials have low photoelectric conversion efficiency because the organic materials have low conductivity. As a method for manufacturing devices with high photoelectric conversion efficiency, a method has been devised to expand the response wavelength range by providing a π-conjugated polymer layer and an organic dye layer between two electrodes (for example, in Japanese Patent Application Laid-Open No. 60-28
Publication No. 278). However, in this method, a voltage is applied between the electrodes to form a conductive electrolytically polymerized film on the electrodes, and the manufacturing method is complicated. Furthermore, the structure of a thin film obtained by electrolytic polymerization is not necessarily dense, and when producing a photoelectric conversion element or the like, a thin film causes an electrical short circuit.

【0003】0003

【発明が解決しようとする課題】光電変換素子を作製す
る場合、電気的な短絡が発生するという問題点があった
。また、光の応答波長領域が狭く、光電変換効率が低い
という問題点があった。さらに共役系高分子層を用いて
光の応答波長領域を拡大しようとした場合、電解重合法
のような複雑な方法で作製しなければならないという問
題点があった。
[Problems to be Solved by the Invention] When producing photoelectric conversion elements, there is a problem in that electrical short circuits occur. Further, there was a problem that the response wavelength range of light was narrow and the photoelectric conversion efficiency was low. Furthermore, when attempting to expand the response wavelength range of light using a conjugated polymer layer, there was a problem in that it had to be manufactured using a complicated method such as electrolytic polymerization.

【0004】0004

【課題を解決するための手段】本発明者らは上記問題を
解決し、電気的な短絡が発生せず、光の応答波長領域が
拡大し、素子の作製方法が複雑でない光電変換素子の作
製法について鋭意検討した結果、下記の発明に至った。 即ち、本発明は2つの電極間に溶解性共役系高分子層及
び有機顔料層あるいは有機色素層を備えた光電変換素子
である。具体的には溶解性共役系高分子層を一方の電極
上に塗布法により作製し、その上に有機顔料または有機
色素からなる層を作製することにより、電気的な短絡の
発生しにくい光電変換素子を簡単に作製することである
。また、溶解性共役系高分子層と有機色素層を電極間に
介在させることにより応答波長域を拡大させ、光電変換
効率を向上させる方法である。
[Means for Solving the Problems] The present inventors solved the above problems and created a photoelectric conversion element that does not cause electrical short circuits, has an expanded light response wavelength range, and does not require a complicated manufacturing method. As a result of intensive study on the law, we have arrived at the following invention. That is, the present invention is a photoelectric conversion element having a soluble conjugated polymer layer and an organic pigment layer or an organic dye layer between two electrodes. Specifically, a soluble conjugated polymer layer is created by coating on one electrode, and a layer made of organic pigment or organic dye is created on top of that to achieve photoelectric conversion that is less prone to electrical short circuits. The purpose is to easily manufacture the device. Another method is to expand the response wavelength range and improve photoelectric conversion efficiency by interposing a soluble conjugated polymer layer and an organic dye layer between electrodes.

【0005】本発明に用いられる溶解性共役系高分子と
しては、ポリアルキルチオフェン類、ポリアルキルピロ
ール類、ポリアルキルアニリン類などを用いることがで
きる。ポリアルキルチオフェン類としてはポリー3ープ
ロピルチオフェン、ポリー3ーヘキシルチオフェン、ポ
リー3ーヘプチルチオフェン、ポリー3ーオクチルチオ
フェン、ポリー3ーノニルチオフェン、ポリー3ーデシ
ルチオフェン、ポリー3ードデシルチオフェン、ポリー
3ーラウリルチオフェン等、また、3ーヘキシルチオフ
ェンとチオフェン、3ーノニルチオフェンとチオフェン
、3ードデシルチオフェンとチオフェン、3ーラウリル
チオフェンとチオフェン、3ードデシルチオフェンと3
ープロピルチオフェン等の共重合体が挙げられる。
As the soluble conjugated polymer used in the present invention, polyalkylthiophenes, polyalkylpyrroles, polyalkylanilines, etc. can be used. Examples of polyalkylthiophenes include poly-3-propylthiophene, poly-3-hexylthiophene, poly-3-heptylthiophene, poly-3-octylthiophene, poly-3-nonylthiophene, poly-3-decylthiophene, poly-3-dodecylthiophene, and poly-3-dodecylthiophene. -Laurylthiophene, etc., 3-hexylthiophene and thiophene, 3-nonylthiophene and thiophene, 3-dodecylthiophene and thiophene, 3-laurylthiophene and thiophene, 3-dodecylthiophene and 3
- copolymers such as propylthiophene.

【0006】ポリアルキルピロール類としてはポリー3
ープロピルピロール、ポリー3ーヘキシルピロール、ポ
リー3ーヘプチルピロール、ポリー3ーオクチルピロー
ル、ポリー3ーノニルピロール、ポリー3ーデシルピロ
ール、ポリー3ードデシルピロール、ポリー3ーラウリ
ルピロール等、また、3ーヘキシルピロールとピロール
、3ーノニルピロールとピロール、3ードデシルピロー
ルとピロール、3ーラウリルピロールとピロール、3ー
ドデシルピロールと3ープロピルピロール等の共重合体
が挙げられる。
[0006] As polyalkylpyrroles, poly3
-propylpyrrole, poly-3-hexylpyrrole, poly-3-heptylpyrrole, poly-3-octylpyrrole, poly-3-nonylpyrrole, poly-3-decylpyrrole, poly-3-dodecylpyrrole, poly-3-laurylpyrrole, etc., and also 3-hexylpyrrole and Examples include copolymers of pyrrole, 3-nonylpyrrole and pyrrole, 3-dodecylpyrrole and pyrrole, 3-laurylpyrrole and pyrrole, and 3-dodecylpyrrole and 3-propylpyrrole.

【0007】ポリアルキルアニリン類としてはポリーN
ープロピルアニリン、ポリーNーヘキシルアニリン、ポ
リーNーヘプチルアニリン、ポリーNーオクチルアニリ
ン、ポリーNーノニルアニリン、ポリーNーデシルアニ
リン、ポリーNードデシルアニリン、ポリーNーラウリ
ルアニリン等、また、Nーヘキシルアニリンとアニリン
、Nーノニルアニリンとアニリン、Nードデシルアニリ
ンとアニリン、Nーラウリルアニリンとアニリン、Nー
ドデシルアニリンとNープロピルアニリン等の共重合体
が挙げられる。溶解性共役系高分子としてはこのような
ポリアルキルチオフェン類、ポリアルキルピロール類、
ポリアルキルアニリン類、その他溶解性共役系高分子を
使用できるが特にポリアルキルチオフェン類は分子量が
大きく膜の製膜性が良いので、好ましく用いられる。
[0007] As polyalkylanilines, polyN
-propylaniline, polyN-hexylaniline, polyN-heptylaniline, polyN-octylaniline, polyN-nonylaniline, polyN-decylaniline, polyN-dodecylaniline, polyN-laurylaniline, etc. Also, N-hexylaniline and Examples include copolymers of aniline, N-nonylaniline and aniline, N-dodecylaniline and aniline, N-laurylaniline and aniline, N-dodecylaniline and N-propylaniline, and the like. Examples of soluble conjugated polymers include polyalkylthiophenes, polyalkylpyrroles,
Although polyalkylanilines and other soluble conjugated polymers can be used, polyalkylthiophenes are particularly preferably used because they have a large molecular weight and good film forming properties.

【0008】本発明に用いられる有機顔料、有機色素と
しては、(a)金属フタロシアニン、無金属フタロシア
ニン等のフタロシアニン系化合物、(b)ナフタロシア
ニン系化合物、(c)モノアゾ、ビスアゾ、トリスアゾ
等のアゾ化合物、(d)ペリレン酸無水物、ペリレン酸
イミド等のペリレン系化合物、(e)アントラキノン誘
導体、アントアントロン誘導体、ジベンズピレンキノン
誘導体、ピラントロン誘導体、ビオラントロン誘導体、
イソビオラントロン誘導体等の多環キノン系化合物、(
f)インジゴ誘導体、チオインジゴ誘導体等のインジゴ
イド系化合物、(g)ジフェニルメタン、トリフェニル
メタン、キサンテン、アクリジン等のカルボニウム系化
合物、(h)アジン、オキサジン、チアジン等のキノン
イミン系化合物、(i)シアニン、アゾメチン等のメチ
ン系化合物、(j)キノリン系化合物、(k)ベンゾキ
ノンおよびナフトキノン系化合物、(l)ナフタルイミ
ド系化合物、(m)ビスベンゾイミダゾール誘導体等の
ペリレン系化合物等が挙げられる。
The organic pigments and organic dyes used in the present invention include (a) phthalocyanine compounds such as metal phthalocyanine and metal-free phthalocyanine, (b) naphthalocyanine compounds, and (c) azo compounds such as monoazo, bisazo, and trisazo. compounds, (d) perylene compounds such as perylene anhydride and perylene imide, (e) anthraquinone derivatives, anthanthrone derivatives, dibenzpyrenequinone derivatives, pyrantrone derivatives, violanthrone derivatives,
Polycyclic quinone compounds such as isoviolanthrone derivatives, (
f) Indigoid compounds such as indigo derivatives and thioindigo derivatives; (g) carbonium compounds such as diphenylmethane, triphenylmethane, xanthene, and acridine; (h) quinone imine compounds such as azine, oxazine, and thiazine; (i) cyanine; Examples include methine compounds such as azomethine, (j) quinoline compounds, (k) benzoquinone and naphthoquinone compounds, (l) naphthalimide compounds, and (m) perylene compounds such as bisbenzimidazole derivatives.

【0009】溶解性共役系高分子を溶解させる有機溶媒
としては、クロロホルム、テトラヒドロフラン、アニソ
ール、ヘプタン、トルエン等が利用できるが、他にこれ
ら共役系重合体を溶解することができる溶媒ならば利用
できる。
As the organic solvent for dissolving the soluble conjugated polymer, chloroform, tetrahydrofuran, anisole, heptane, toluene, etc. can be used, but any other solvent that can dissolve these conjugated polymers can be used. .

【0010】溶解性共役系高分子膜の形成方法としては
、キャスト法、スピンコート法、水面展開法等が利用で
きるがこれらに限定されない。有機顔料、有機色素から
なる膜の形成方法としては真空蒸着法、プラズマ重合法
、水面展開法、分子線エピタキシー法、電解ミセル法、
キャスト法、スピンコート法、などが用いられるがこれ
らに限定されない。電極作製方法としては、光の入射す
る側の電極にはアルミニウム、インジウム、クロム、酸
化亜鉛、硫化カドミウムなどの金属あるいは無機半導体
の半透明膜が利用できる。もう一方の電極には有機化合
物とオーミック接触する金電極、ITO板、スズ酸化物
、金属酸化物等を利用することが出来るがこれらに限定
されない。また、電子供与性物質と電子受容性物質から
なる積層構造素子を本発明の作製方法で作製した場合、
ITOなどの透明電極や金電極などの有機膜とオーミッ
ク接触することができる物質で電極を作製してもよい。
Methods for forming the soluble conjugated polymer film include, but are not limited to, a casting method, a spin coating method, a water surface spreading method, and the like. Methods for forming films made of organic pigments and dyes include vacuum evaporation, plasma polymerization, water surface development, molecular beam epitaxy, electrolytic micelle method,
Casting methods, spin coating methods, and the like may be used, but are not limited to these methods. As for the electrode manufacturing method, a translucent film of a metal such as aluminum, indium, chromium, zinc oxide, cadmium sulfide, or an inorganic semiconductor can be used for the electrode on the side where light enters. For the other electrode, a gold electrode, an ITO plate, a tin oxide, a metal oxide, etc. that make ohmic contact with the organic compound can be used, but the electrode is not limited to these. Furthermore, when a laminated structure element consisting of an electron-donating substance and an electron-accepting substance is produced by the production method of the present invention,
The electrode may be made of a material that can make ohmic contact with a transparent electrode such as ITO or an organic film such as a gold electrode.

【0011】溶解性共役系高分子層の厚さは、一般的に
1〜1000nm、好ましくは10〜100nmである
がこれらに限定されない。有機顔料層あるいは有機色素
層の厚さは、一般的に1〜2000nm、好ましくは1
0〜500nmであるがこれらに限定されない。
The thickness of the soluble conjugated polymer layer is generally 1 to 1000 nm, preferably 10 to 100 nm, but is not limited thereto. The thickness of the organic pigment layer or organic dye layer is generally 1 to 2000 nm, preferably 1
0 to 500 nm, but not limited thereto.

【0012】0012

【実施例】次に本発明を実施例により、さらに詳細に説
明するが本発明はこれらの例によってなんら限定される
ものではない。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way.

【0013】実施例1 (I)共役系重合体の作製(ポリー3ードデシルチオフ
ェンの合成) 第二塩化鉄0.04モル(6.5g)を乾燥窒素中で採
取し、クロロホルム100ml中に投入し第2塩化鉄の
クロロホルム懸濁液を得た。これに、乾燥窒素雰囲気下
で滴下ロートにより3ードデシルチオフェン0.01モ
ル(2.5g)を懸濁液中に滴下した。この懸濁液を一
昼夜攪拌した後、大量の水に投入しクロロホルムにより
抽出した。抽出液を乾燥することによりポリー3ードデ
シルチオフェンを1g得た(分子量約17万)。
Example 1 (I) Preparation of conjugated polymer (synthesis of poly-3-dodecylthiophene) 0.04 mol (6.5 g) of ferric chloride was collected in dry nitrogen and poured into 100 ml of chloroform. A suspension of ferric chloride in chloroform was obtained. To this, 0.01 mol (2.5 g) of 3-dodecylthiophene was added dropwise into the suspension using a dropping funnel under a dry nitrogen atmosphere. After stirring this suspension all day and night, it was poured into a large amount of water and extracted with chloroform. By drying the extract, 1 g of poly-3-dodecylthiophene (molecular weight: about 170,000) was obtained.

【0014】(II)薄膜及び光電変換素子の作製以下
に図面に基き詳細に説明する。図1(A)に本発明の光
電変換素子の断面図、図1(B)にその平面図を示した
。この素子は基板(1)と第1電極(2)、第2電極(
3)、溶解性共役系高分子層(4)、有機顔料または有
機色素層(5)、第3電極(6)の5層からなっている
。第1電極(2)にクロム、第2電極(3)に金、第3
電極(6)にアルミニウムの蒸着層を用いた。溶解性共
役系高分子層(4)は、ポリー3ードデシルチオフェン
(0.1g)を50mlのクロロホルムに溶解し、スピ
ンコート法により金電極上に塗布し、自然乾燥した。層
の厚さは約30nmである。有機顔料層(5)は、昇華
精製したオキソチタニウムフタロシアニンを1×10ー
5トル以下の真空中で約0.1〜0.2nm/secの
蒸着スピードで、加熱蒸発させることにより溶解性共役
系高分子層上に表1に示した各種の厚さの層を形成した
。次にこの層上にアルミニウムを1X10−5torr
以下にてマスクを介して約25nmの厚さで真空蒸着し
、アルミニウム面上に導電ペーストにてリード線を取り
付けて本発明の光電変換素子を作成した。
(II) Preparation of thin film and photoelectric conversion element A detailed explanation will be given below based on the drawings. FIG. 1(A) shows a cross-sectional view of a photoelectric conversion element of the present invention, and FIG. 1(B) shows a plan view thereof. This device consists of a substrate (1), a first electrode (2), and a second electrode (
3), a soluble conjugated polymer layer (4), an organic pigment or dye layer (5), and a third electrode (6). The first electrode (2) is chromium, the second electrode (3) is gold, the third electrode is
A vapor-deposited layer of aluminum was used for the electrode (6). The soluble conjugated polymer layer (4) was prepared by dissolving poly-3-dodecylthiophene (0.1 g) in 50 ml of chloroform, applying the solution onto the gold electrode by spin coating, and air drying. The layer thickness is approximately 30 nm. The organic pigment layer (5) is formed by heating and evaporating sublimation-purified oxotitanium phthalocyanine at a deposition speed of approximately 0.1 to 0.2 nm/sec in a vacuum of 1 x 10-5 Torr or less. Layers having various thicknesses shown in Table 1 were formed on the polymer layer. Next, apply aluminum to 1X10-5 torr on this layer.
In the following, a photoelectric conversion element of the present invention was fabricated by vacuum evaporating the film to a thickness of about 25 nm through a mask, and attaching lead wires to the aluminum surface using conductive paste.

【0015】(III)光電変換効率の測定作製した光
電変換素子各々にアルミニウム側からフイルターによっ
て赤外光をカットした1.3mW/cm2の白色光を照
射し、光電変換効率を測定した。光電変換効率の測定に
は、ポテンショスタットおよびポテンシャルスキャナー
を用い、X−Yレコーダーで記録した。測定はすべて空
気中、室温で行った。結果を表1に示した。
(III) Measurement of Photoelectric Conversion Efficiency Each of the prepared photoelectric conversion elements was irradiated with white light of 1.3 mW/cm 2 with infrared light cut off by a filter from the aluminum side, and the photoelectric conversion efficiency was measured. The photoelectric conversion efficiency was measured using a potentiostat and a potential scanner, and recorded with an X-Y recorder. All measurements were performed in air at room temperature. The results are shown in Table 1.

【0016】[0016]

【表1】[Table 1]

【0017】比較例1 (IV)薄膜及び光電変換素子の作製 以下に図面に基き詳細に説明する。図2(A)に比較例
の光電変換素子の断面図、図1(B)にその平面図を示
した。この素子は基板(1)と第1電極(2)、第2電
極(3)、有機顔料または有機色素層(4)、第3電極
(5)の4層からなっている。第1電極(2)にクロム
、第2電極(3)に金、第3電極(5)にアルミニウム
の蒸着膜を用いた。有機顔料層(5)は、昇華精製した
オキソチタニウムフタロシアニンを1×10ー5トル以
下の真空中で約0.1〜0.2nm/secの蒸着スピ
ードで、加熱蒸発させることにより金電極上に表2に示
した厚さの層を形成した。次にこの層上にアルミニウム
を1X10−5torr以下にてマスクを介して約25
nmの厚さで真空蒸着し、アルミニウム面上に導電ペー
ストにてリード線を取り付けて本発明の光電変換素子を
作製した。
Comparative Example 1 (IV) Production of thin film and photoelectric conversion element A detailed explanation will be given below based on the drawings. FIG. 2(A) shows a cross-sectional view of a photoelectric conversion element of a comparative example, and FIG. 1(B) shows a plan view thereof. This device consists of four layers: a substrate (1), a first electrode (2), a second electrode (3), an organic pigment or dye layer (4), and a third electrode (5). A vapor deposited film of chromium was used for the first electrode (2), gold was used for the second electrode (3), and aluminum was used for the third electrode (5). The organic pigment layer (5) is formed on the gold electrode by heating and evaporating sublimation-purified oxotitanium phthalocyanine at a deposition speed of about 0.1 to 0.2 nm/sec in a vacuum of 1 x 10-5 Torr or less. Layers having the thickness shown in Table 2 were formed. Next, apply aluminum on this layer through a mask at a pressure of 1×10-5 torr or less for approximately 250 mL.
A photoelectric conversion element of the present invention was fabricated by vacuum evaporating to a thickness of nm and attaching lead wires to the aluminum surface using conductive paste.

【0018】(D)光電変換効率の測定作製した比較例
の光電変換素子各々にアルミニウム側からフイルターに
よって赤外光をカットした1.3mW/cm2の白色光
を照射し、光電変換効率を測定した。光電変換効率の測
定には、ポテンショスタットおよびポテンシャルスキャ
ナーを用い、X−Yレコーダーで記録した。測定はすべ
て空気中、室温で行った。結果を表2に示した。
(D) Measurement of photoelectric conversion efficiency Each of the prepared comparative photoelectric conversion elements was irradiated with white light of 1.3 mW/cm2 with infrared light cut off by a filter from the aluminum side, and the photoelectric conversion efficiency was measured. . The photoelectric conversion efficiency was measured using a potentiostat and a potential scanner, and recorded with an X-Y recorder. All measurements were performed in air at room temperature. The results are shown in Table 2.

【0019】[0019]

【表2】     (注意)×は光電変換素子の電気的短絡のため
測定できなかったことを示す。オキソチタニウムフタロ
シアニン層の厚さが同じである表1のNo4と表2のN
o4を比較した場合、表1の方が短絡光電流及び解放端
電圧共に大きく、その結果光電変換効率も大きくなった
[Table 2] (Note) × indicates that measurement could not be performed due to an electrical short circuit of the photoelectric conversion element. No. 4 in Table 1 and N in Table 2 with the same oxotitanium phthalocyanine layer thickness
When o4 was compared, Table 1 had a higher short-circuit photocurrent and open end voltage, and as a result, the photoelectric conversion efficiency was also higher.

【0020】[0020]

【発明の効果】本発明は新規な光電変換素子で、本発明
により、光電変換素子の電気的短絡をなくすことができ
、また応答波長域が拡大し、高い光電変換効率を有する
光電変換素子を作製できる。また、本発明の素子の高分
子層は電解重合法のような複雑な方法を用いることなく
、化学重合法によって合成した有機溶媒に可溶性の高分
子を使用することにより、塗布方法にて容易に形成する
ことができる。このような光電変換素子は、太陽電池、
光センサー、電子写真感光層、各種電気素子等に利用す
ることができる。
Effects of the Invention The present invention is a novel photoelectric conversion element, which can eliminate electrical short circuits in the photoelectric conversion element, expand the response wavelength range, and have high photoelectric conversion efficiency. It can be made. In addition, the polymer layer of the device of the present invention can be easily formed by a coating method by using a polymer soluble in organic solvents synthesized by chemical polymerization method without using complicated methods such as electrolytic polymerization method. can be formed. Such photoelectric conversion elements include solar cells,
It can be used for optical sensors, electrophotographic photosensitive layers, various electric devices, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による光電変換素子の概略図[Fig. 1] Schematic diagram of a photoelectric conversion element according to the present invention

【図2】比
較例の光電変換素子の概略図
[Figure 2] Schematic diagram of a photoelectric conversion element of a comparative example

【符号の説明】[Explanation of symbols]

1  ガラス基板 2  第1電極 3  第2電極 4  溶解性共役系高分子層 5  有機顔料または有機色素層 6  第3電極 7  リード線 1 Glass substrate 2 First electrode 3 Second electrode 4 Soluble conjugated polymer layer 5 Organic pigment or organic dye layer 6 Third electrode 7 Lead wire

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  2つの電極間に溶解性共役系高分子層
及び有機顔料層あるいは有機色素層を備えた光電変換素
子。
1. A photoelectric conversion element comprising a soluble conjugated polymer layer and an organic pigment layer or an organic dye layer between two electrodes.
【請求項2】  溶解性共役系高分子層がポリアルキル
チオフェン類である請求項1記載の光電変換素子。
2. The photoelectric conversion device according to claim 1, wherein the soluble conjugated polymer layer is a polyalkylthiophene.
【請求項3】  溶解性共役系高分子層を塗布法にて作
製した請求項1または2記載の光電変換素子。
3. The photoelectric conversion element according to claim 1, wherein the soluble conjugated polymer layer is produced by a coating method.
JP3138226A 1991-05-14 1991-05-14 Optoelectric transducer Pending JPH04337675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138226A JPH04337675A (en) 1991-05-14 1991-05-14 Optoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138226A JPH04337675A (en) 1991-05-14 1991-05-14 Optoelectric transducer

Publications (1)

Publication Number Publication Date
JPH04337675A true JPH04337675A (en) 1992-11-25

Family

ID=15217042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138226A Pending JPH04337675A (en) 1991-05-14 1991-05-14 Optoelectric transducer

Country Status (1)

Country Link
JP (1) JPH04337675A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152815A (en) * 2002-10-29 2004-05-27 Mitsui Chemicals Inc Organic solar cell
JP2004319705A (en) * 2003-04-15 2004-11-11 Univ Kanazawa Organic solar cell
JP2005259436A (en) * 2004-03-10 2005-09-22 Kyushu Univ Solar cell and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004152815A (en) * 2002-10-29 2004-05-27 Mitsui Chemicals Inc Organic solar cell
JP2004319705A (en) * 2003-04-15 2004-11-11 Univ Kanazawa Organic solar cell
JP2005259436A (en) * 2004-03-10 2005-09-22 Kyushu Univ Solar cell and its manufacturing method
JP4730759B2 (en) * 2004-03-10 2011-07-20 国立大学法人九州大学 Solar cell and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6007273B2 (en) Tandem photovoltaic cell
Grant et al. Characterization of nanocrystalline and thin film TiO2 solar cells with poly (3-undecyl-2, 2′-bithiophene) as a sensitizer and hole conductor
JP5573066B2 (en) Organic photoelectric conversion element, solar cell and optical sensor array using the same
JPH06120536A (en) Photovoltaic element
US8840771B2 (en) Electrochemical method for depositing nanofibrilar poly(3,4-ethylenedioxythiophene) (PEDOT) hole extraction layer in organic solar cells
Bhongale et al. Efficient hybrid polymer/titania solar cells sensitized with carboxylated polymer dye
CN109461820A (en) Two-dimensional lead-free organic-inorganic hybrid perovskite diode photodetector and preparation method thereof
Hu et al. Ti3C2Tx MXene‐RAN van der Waals Heterostructure‐Based Flexible Transparent NIR Photodetector Array for 1024 Pixel Image Sensing Application
Thakur et al. Self-Organized large-scale integration of mesoscale-ordered heterojunctions for process-intensified photovoltaics
JP4862252B2 (en) Manufacturing method of organic solar cell
JPH04337675A (en) Optoelectric transducer
KR101046183B1 (en) Inverted organic solar cells with fullerene derivatives
CN108336231B (en) Organic photoelectric detector with wide spectral response
JPH06177410A (en) Manufacture of photovoltaic element and its manufacture
JPH04280681A (en) Thin soluble conjugated polymer film
JPH0521824A (en) Photoelectric conversion element
Lanzi et al. Synthesis of new methoxy-functionalized polythiophenes for charge transport in organic solar cells
Uyanga et al. Production and characterization of organic solar cells
Yoshino et al. BF3-assisted insolubilization switching toward bilayer π-conjugated polymer film
JPH05102506A (en) Photovoltaic element
JPH03263380A (en) Photovoltaic element
JPH05259493A (en) Organic photovoltaic device
JPH05145098A (en) Photovoltaic organic photoelectric conversion element
Choi et al. Photoconductivity and photovoltaic effect of charge‐transfer complex of poly [4‐phenyl‐2, 6‐(p‐phenoxy) quinoline] and 2, 3‐dichloro‐5, 6‐dicyano‐1, 4‐benzoquinone
JPH0521823A (en) Photovoltaic element