JPH0521824A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPH0521824A
JPH0521824A JP3198572A JP19857291A JPH0521824A JP H0521824 A JPH0521824 A JP H0521824A JP 3198572 A JP3198572 A JP 3198572A JP 19857291 A JP19857291 A JP 19857291A JP H0521824 A JPH0521824 A JP H0521824A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
poly
electrode
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3198572A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kagami
好晴 鏡
Hirokazu Tsukahara
宏和 束原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP3198572A priority Critical patent/JPH0521824A/en
Publication of JPH0521824A publication Critical patent/JPH0521824A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Epoxy Resins (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To offer an organic photoelectric conversion element having a high fill factor, causing no deterioration of the element due to oxidation of an electrode and having high photoelectric conversion efficiency by eliminating an electric short-circuit of the photoelectric conversion element. CONSTITUTION:An entitled photoelectric conversion element can be obtained by interposing a conjugate group polymer layer 4 and an electron-acceptable compound layer 5 between two electrodes 3 and 6, concretely by making a soluble conjugate group polymer layer 4 on the electrodes by an application method followed by forming the electron-acceptable compound layer 5 on this layer, further laminating the electrode 6 thereon. Polyalkyl thiophene, polyalkyl pyrrole and polyalkyl aniline can be used as the soluble conjugate group polymer layer 4. A perylene group pigment or the like is used as the electron-acceptable compound layer 5. The soluble conjugate group polymer layer 4 can be easily formed by an application method without using a complicated method such as an electrolytic polymerization method while being able to make the organic photoelectric conversion element having a large fill factor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は共役系重合体と電子受容
性化合物を2つの電極間に形成させることによる新規な
光電変換素子に関するものである。このような光電変換
素子は、例えば、太陽電池、光センサー、電子写真感光
層等に利用することができる。
FIELD OF THE INVENTION The present invention relates to a novel photoelectric conversion device by forming a conjugated polymer and an electron-accepting compound between two electrodes. Such a photoelectric conversion element can be used in, for example, a solar cell, an optical sensor, an electrophotographic photosensitive layer, or the like.

【0002】[0002]

【従来の技術】従来、無機半導体を利用した光電変換素
子を作製する試みは多くなされ、一部実用化されてい
る。しかしながら無機半導体を用いた太陽電池の作製費
は高く、安価な光電変換素子を作製する方法が望まれて
いた。安価な光電変換素子を作製する試みとして、有機
半導体を用いる光電変換素子を作製する試みがなされて
いる。有機の光電変換素子としては現在のところ一般的
に次のように分類することができる。p型の有機半導体
と仕事関数の小さい金属を接合させることにより作製し
たショットキー型光電変換素子、n型の無機半導体とp
型の有機半導体を接合させることにより作製したヘテロ
接合型光電変換素子、p型の有機半導体と電子受容性有
機化合物からなるヘテロ接合型光電変換素子などであ
る。ショットキー型光電変換素子については数多くの論
文や総説(例えば、D.L.Morel,Appl.P
hys.Lett.,32,495(1978).南
信次 繊維と工業、繊維学会誌 458(1983)、
有機電子材料(応用物理学会編、斉藤、雀部、筒井共
著、オーム社)96ページ(1990年発行))に報告
されている。一般にショットキー接合を形成させるには
仕事関数の小さいアルミニウムや銀などの金属を使用し
なければならず、金属の酸化による素子の劣化などの欠
点を有する。また作製した光電変換素子のフイルファク
ターが小さく効率の良い太陽電池を作製するには現在の
ところ不向きである。
2. Description of the Related Art Conventionally, many attempts have been made to manufacture a photoelectric conversion element using an inorganic semiconductor, and some of them have been put into practical use. However, the cost of manufacturing a solar cell using an inorganic semiconductor is high, and a method for manufacturing an inexpensive photoelectric conversion element has been desired. As an attempt to produce an inexpensive photoelectric conversion element, an attempt to produce a photoelectric conversion element using an organic semiconductor has been made. At present, organic photoelectric conversion elements can be generally classified as follows. A Schottky photoelectric conversion element manufactured by joining a p-type organic semiconductor and a metal having a low work function, an n-type inorganic semiconductor, and a p-type
A heterojunction photoelectric conversion element manufactured by joining a p-type organic semiconductor, a heterojunction photoelectric conversion element including a p-type organic semiconductor and an electron-accepting organic compound, and the like. A number of papers and review articles (for example, DL Morel, Appl. P.
hys. Lett. 32, 495 (1978). South
Shinji Textile and Industry, Journal of the Textile Society of Japan 458 (1983),
Organic electronic materials (edited by Japan Society of Applied Physics, Saito, Sparrow, and Tsutsui, Ohmsha, Ltd., page 96 (issued in 1990)). Generally, in order to form a Schottky junction, it is necessary to use a metal such as aluminum or silver having a small work function, and there are drawbacks such as deterioration of the element due to oxidation of the metal. Moreover, it is unsuitable at present for producing a solar cell with a small fill factor and high efficiency of the produced photoelectric conversion element.

【0003】n型の無機半導体とp型の有機半導体を接
合させることにより作製したヘテロ接合型光電変換素子
は、ショットキー型と比較するとフィルファクターの向
上は見られたが、十分な効率のよい太陽電池を作製する
ことはできていない。p型の有機半導体と電子受容性有
機化合物からなる光電変換素子については、C.W.T
ang,Appl.Phys.Lett.,48,18
3(1986)や特開昭62ー4871号公報、また斉
藤ら、日本化学会誌、No.9、962(1990)に
報告されている。この光電変換素子は模擬太陽光あるい
はそれに近い強度の光にて,シリコン太陽電池と同様な
大きなフィルファクターと約1%の光電変換効率を示
す。しかしこれらの素子は超薄膜のため電気的な短絡の
発生する確率が高く、また真空中で2つの有機化合物を
蒸着しなければならず,光電変換素子を作製するのが複
雑であった。
The heterojunction type photoelectric conversion element produced by joining an n-type inorganic semiconductor and a p-type organic semiconductor has an improved fill factor as compared with the Schottky type, but is sufficiently efficient. It has not been possible to make solar cells. Regarding the photoelectric conversion element composed of a p-type organic semiconductor and an electron-accepting organic compound, C.I. W. T
ang, Appl. Phys. Lett. , 48, 18
3 (1986), JP-A-62-4871, Saito et al., The Chemical Society of Japan, No. 9, 962 (1990). This photoelectric conversion element shows a large fill factor similar to a silicon solar cell and a photoelectric conversion efficiency of about 1% under simulated sunlight or light having an intensity close to that of simulated sunlight. However, since these devices are ultra-thin films, there is a high probability that an electrical short circuit will occur, and two organic compounds must be vapor-deposited in a vacuum, making it difficult to manufacture a photoelectric conversion device.

【0004】また近年、導電性高分子の研究が盛んに行
われるようになり、電解重合法で作製したポリー3ーメ
チルチオフェンとアルミニウムの接合によるショットキ
ー型光電変換素子なども報告されている(S.Glen
isら ThinSolid Films,111,9
3(1984))。しかし、大きなフイルファクターと
高い光電変換効率を有する光電変換素子は作製されてい
ない。また、ヘテロ接合素子として、小門らは(高分子
論文集、Vol.47、No11、903ページ、19
90年)結晶シリコンとポリー3ーメチルチオフェンの
ヘテロ接合を作製しているが、フィルファクターが小さ
く、経時変化が激しい。また、上原らは(高分子論文
集、Vol.47、No11、909ページ、1990
年)ポリー3ーメチルチオフェンとフェノサフラニンの
ヘテロ接合を作製し、光電変換素子の作製を行っている
が大きなフイルフェクターを有する素子は作製出来てい
ない。
Further, in recent years, research on conductive polymers has been actively conducted, and a Schottky type photoelectric conversion element produced by joining poly-3-methylthiophene produced by electrolytic polymerization and aluminum has been reported ( S. Glen
is et al Thin Solid Films, 111, 9
3 (1984)). However, a photoelectric conversion element having a large fill factor and high photoelectric conversion efficiency has not been produced. As a heterojunction device, Komon et al. (Polymer Papers, Vol. 47, No. 11, 903, page 19,
(1990) A heterojunction of crystalline silicon and poly-3-methylthiophene is produced, but the fill factor is small and the change over time is severe. Uehara et al. (Polymer Thesis Collection, Vol. 47, No 11, 909, 1990)
(Year) A heterojunction of poly-3-methylthiophene and phenosafranine was prepared and a photoelectric conversion device was prepared, but a device having a large filfector could not be prepared.

【0005】従来、ポリチオフェン、ポリアニリン、ポ
リピロールなどの共役系高分子化合物がたとえば電解重
合などの方法で合成され、これらの共役系の重合体は各
種用途に利用することが期待できるが一般に溶剤に不溶
であるため、芳香環に置換基を導入することで溶剤に可
溶化することが行われている(例えば、吉野ら、「導電
性高分子の基礎と応用」、アイピーシー、1988)。
しかし、これら共役系高分子化合物と電子受容性化合物
を用いた光電変換素子は報告されていない。
Conventionally, conjugated polymer compounds such as polythiophene, polyaniline and polypyrrole have been synthesized by a method such as electrolytic polymerization. These conjugated polymers can be expected to be used in various applications, but they are generally insoluble in solvents. Therefore, it is solubilized in a solvent by introducing a substituent into the aromatic ring (for example, Yoshino et al., "Basics and Applications of Conducting Polymers", IPC, 1988).
However, no photoelectric conversion device using these conjugated polymer compounds and electron-accepting compounds has been reported.

【0006】[0006]

【発明が解決しようとする課題】ショットキー接合型光
電変換素子は(1)フイルファクターが小さい、(2)
電極の酸化により素子が劣化する、などの欠点がある。
また、ヘテロ接合型の光電変換素子の場合、フィルファ
クターは大きくなるが、作製時に電気的な短絡が生じや
すく安定した光電変換素子は作製できない。また、2つ
の有機化合物を真空中で別々に蒸着しなければならず作
製法が複雑であった。そこで、フィルファクターが大き
く、作製時に電気的な短絡の生じ難い変換効率のよい光
電変換素子が望まれていた。
The Schottky junction type photoelectric conversion element has (1) a small fill factor, (2)
There are drawbacks such as deterioration of the element due to oxidation of the electrodes.
Further, in the case of a heterojunction type photoelectric conversion element, the fill factor becomes large, but an electrical short circuit easily occurs during the production, and a stable photoelectric conversion element cannot be produced. Further, the two organic compounds have to be vapor-deposited separately in a vacuum, and the manufacturing method is complicated. Therefore, there has been a demand for a photoelectric conversion element having a large fill factor and a high conversion efficiency in which an electrical short circuit is unlikely to occur during manufacture.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記問題を
解決し、フィルファクターが大きく、電極の酸化による
素子の劣化がなく、電気的な短絡が生じ難くく、作製法
が複雑でなく、光電変換効率の高い光電変換素子の作製
について鋭意検討した結果、下記の発明に至った。本発
明は、共役系重合体層と電子受容性有機化合物層とを2
つの電極間に積層した光電変換素子であって、該共役系
重合体が一般式化1で表されるモノマー成分を含有する
ことを特徴とし、ヘテロ接合を形成したことを特徴とす
る光電変換素子である。化1においてXはイオウ原子、
セレン原子、窒素原子、または酸素原子のいずれかの原
子であり、Xが窒素原子の場合には水素原子、アルキル
基(またはアリール基の置換基を有する。R1及びR2
水素原子、ハロゲン原子、アルキル基、アリール基、ア
ルコキシ基、またはアミノ基から選ばれる置換基であ
り、R1とR2とが結合して環を形成していてもよい。
SUMMARY OF THE INVENTION The present inventors have solved the above problems and have a large fill factor, no deterioration of the element due to electrode oxidation, less likely to cause an electrical short circuit, and no complicated manufacturing method. As a result of earnestly studying the production of a photoelectric conversion element having high photoelectric conversion efficiency, the following invention has been achieved. The present invention comprises a conjugated polymer layer and an electron-accepting organic compound layer.
A photoelectric conversion element laminated between two electrodes, characterized in that the conjugated polymer contains a monomer component represented by the general formula 1, wherein a heterojunction is formed. Is. In Chemical formula 1, X is a sulfur atom,
A selenium atom, a nitrogen atom, or an oxygen atom, and when X is a nitrogen atom, it has a hydrogen atom, an alkyl group (or a substituent of an aryl group. R 1 and R 2 are hydrogen atoms, halogens It is a substituent selected from an atom, an alkyl group, an aryl group, an alkoxy group, or an amino group, and R1 and R2 may combine to form a ring.

【0008】以下、本発明の光電変換素子について添付
図面に従い説明する。図1は本発明の光電変換素子の断
面図と平面図である。1は基板、2は導電層(第1電
極)、3は導電層(第2電極)、4は共役系重合体層、
5は電子受容性有機化合物層、6は導電層(第3電極)
を各々表す。1は本発明光電変換素子の支持体となる基
板で、スライドガラス、石英板、プラスチックフイル
ム、透明な合成樹脂板等を用いることができる。導電層
である2としては、アルミニウム、鉛、亜鉛、タンタ
ル、ニッケル、チタン、コバルト、ニオブ、銅、金、
銀、白金、パラジウム等の半透明の金属や酸化スズ、イ
ンジウム及び/またはスズの金属酸化物等が使用でき
る。導電層の作製には通常、真空蒸着法、スパッタリン
グ法、プラズマCVD法、プラズマ重合法、電解重合
法、塗布法などにより行われるがこの限りではない。ま
た、異種物質を積層してもかまわない。
The photoelectric conversion element of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view and a plan view of a photoelectric conversion element of the present invention. 1 is a substrate, 2 is a conductive layer (first electrode), 3 is a conductive layer (second electrode), 4 is a conjugated polymer layer,
5 is an electron-accepting organic compound layer, 6 is a conductive layer (third electrode)
Respectively. Reference numeral 1 denotes a substrate that serves as a support for the photoelectric conversion device of the present invention, and a slide glass, a quartz plate, a plastic film, a transparent synthetic resin plate or the like can be used. As the conductive layer 2, aluminum, lead, zinc, tantalum, nickel, titanium, cobalt, niobium, copper, gold,
A semi-transparent metal such as silver, platinum or palladium, a metal oxide of tin oxide, indium and / or tin, or the like can be used. The production of the conductive layer is usually performed by a vacuum deposition method, a sputtering method, a plasma CVD method, a plasma polymerization method, an electrolytic polymerization method, a coating method, etc., but is not limited thereto. Further, different kinds of materials may be laminated.

【0009】4は共役系重合体層で一般式化1で示され
るモノマー成分を含む重合体である。式中、Xはイオウ
原子、セレン原子、窒素原子、または酸素原子のいずれ
かの原子であり、Xが窒素原子の場合には水素原子、又
はアルキル基(例えばメチル基、エチル基等)、アリー
ル基(例えばフェニル基等)のいずれかの置換基を有す
る。R1及びR2は水素原子、ハロゲン原子、アルキル基
(例えばヘキシル基、ドデシル基等)、アリール基(例
えばフェニル基等)、アルコキシ基(例えばメトキシ
基、エトキシ基等)またはアミノ基から選ばれる置換基
であり、R1とR2とが結合して、環(例えば5〜7員
環)を形成していてもよい。
Reference numeral 4 denotes a conjugated polymer layer, which is a polymer containing a monomer component represented by the general formula 1. In the formula, X is a sulfur atom, a selenium atom, a nitrogen atom, or an oxygen atom, and when X is a nitrogen atom, a hydrogen atom, or an alkyl group (eg, methyl group, ethyl group, etc.), aryl It has one of the substituents of a group (for example, a phenyl group, etc.). R1 and R2 are substituents selected from hydrogen atom, halogen atom, alkyl group (eg hexyl group, dodecyl group etc.), aryl group (eg phenyl group etc.), alkoxy group (eg methoxy group, ethoxy group etc.) or amino group. And R1 and R2 may combine to form a ring (for example, a 5- to 7-membered ring).

【0010】共役系重合体層の形成には、スピンコート
法、キャスト法、水面展開法、真空蒸着法等が用いられ
るが、スピンコート法が好ましい。共役系重合体層の膜
厚は1nmから0.1mm、好ましくは10nm〜50
0nmがよい。また、共役系重合体はドーピングするこ
とによってエネルギーレベルを変えることができるた
め、以下のようなドーパントを共役系重合体層にドーピ
ングしてもよい。ドーピング可能なドーパントとして
は、塩素、臭素、ヨウ素、ICl、ICl3、IBr、
PF3、AsF3、SbF3、AgClO4、AgBF4
BF3、BCl3、BBr2、FSO2OOSO2F、H2
4、HClO4、(NO2)(SbF6)、(NO2
(BF4)、SO3、HNO3、FSO3H、CF3SO3
等、また高分子電解質(例えばポリスチレンスルホン酸
塩、ポリー1ーアクリルアミドー2ーメチルー1ープロ
パンスルホン酸(PAMPS)、ポリビニルスルホン酸
ナトリウム等)、スルホン化金属フタロシアニン、フタ
ロシアニンーカルボン酸誘導体等が挙げられる。
For forming the conjugated polymer layer, a spin coating method, a casting method, a water surface spreading method, a vacuum vapor deposition method and the like are used, but the spin coating method is preferable. The thickness of the conjugated polymer layer is 1 nm to 0.1 mm, preferably 10 nm to 50
0 nm is good. Further, since the energy level of the conjugated polymer can be changed by doping, the following dopant may be added to the conjugated polymer layer. Dopable dopants include chlorine, bromine, iodine, ICl, ICl 3 , IBr,
PF 3 , AsF 3 , SbF 3 , AgClO 4 , AgBF 4 ,
BF 3 , BCl 3 , BBr 2 , FSO 2 OOSO 2 F, H 2 S
O 4 , HClO 4 , (NO 2 ) (SbF 6 ), (NO 2 )
(BF 4 ), SO 3 , HNO 3 , FSO 3 H, CF 3 SO 3 H
In addition, polyelectrolytes (for example, polystyrene sulfonate, poly-1-acrylamido-2-methyl-1-propanesulfonic acid (PAMPS), sodium polyvinylsulfonate, etc.), sulfonated metal phthalocyanine, phthalocyanine-carboxylic acid derivative and the like can be mentioned. .

【0011】ドーピングの方法は、ドーパントの種類に
よって各種方法を使用することができる。例えば2層の
導電性層からなる基板を電極として、この電極をドーパ
ント原子を含む塩を溶解した溶液中に入れ、対電極との
間に電流を流すことによりドーピングすることができ
る。また、気体や蒸気圧の高い化合物を共役系重合体に
触れさせることでドーピングをすることができる。ドー
プ後は素子の電気特性が不安定になりがちであるが、熱
処理、プラズマ処理などにて安定化させることができ
る。
As the doping method, various methods can be used depending on the kind of the dopant. For example, it is possible to dope by using a substrate composed of two conductive layers as an electrode, putting this electrode in a solution in which a salt containing a dopant atom is dissolved, and passing an electric current between the electrode and the counter electrode. Moreover, doping can be performed by bringing a conjugated polymer into contact with a compound having a high gas or vapor pressure. After doping, the electric characteristics of the device tend to be unstable, but it can be stabilized by heat treatment, plasma treatment, or the like.

【0012】本発明の共役系高分子の具体例としては以
下の化合物が挙げられるが、これらに限定されない。本
発明の共役系高分子の具体例としてポリアルキルチオフ
ェン類、ポリアルキルピロール類、及びポリアルキルア
ニリン類を挙げることができる。ポリアルキルチオフェ
ン類としては、ポリー3ーメチルチオフェン、ポリー
3,4ージメチルチオフェン、ポリー3ーエチルチオフ
ェン、ポリー3,4ージエチルチオフェン、ポリ−3−
プロピルチオフェン、ポリー3,4ープロピルチオフェ
ン、ポリー3ーブチルチオフェン、ポリー3、4ーブチ
ルポリチオフェン、ポリー3ーペンチルチオフェン、ポ
リ−3−ヘキシルチオフェン、ポリ−3−ヘプチルチオ
フェン、ポリ−3−オクチルチオフェン、ポリ−3−ノ
ニルチオフェン、ポリ−3−デシルチオフェン、ポリ−
3−ドデシルチオフェン、ポリ−3−ラウリルチオフェ
ン等、あるいはこれらのポリマーのモノマー成分の任意
の組合せからなる共重合体あるいは多元重合体が挙げら
れる。
Specific examples of the conjugated polymer of the present invention include, but are not limited to, the following compounds. Specific examples of the conjugated polymer of the present invention include polyalkylthiophenes, polyalkylpyrroles, and polyalkylanilines. As the polyalkylthiophenes, poly-3-methylthiophene, poly-3,4-dimethylthiophene, poly-3-ethylthiophene, poly-3,4-diethylthiophene, poly-3-
Propylthiophene, poly-3,4-propylthiophene, poly-3-butylthiophene, poly-3,4-butylpolythiophene, poly-3-pentylthiophene, poly-3-hexylthiophene, poly-3-heptylthiophene, poly-3-octyl Thiophene, poly-3-nonylthiophene, poly-3-decylthiophene, poly-
Examples thereof include 3-dodecylthiophene, poly-3-laurylthiophene, and the like, or a copolymer or multi-polymer made of any combination of monomer components of these polymers.

【0013】ポリアルキルピロール類としては、ポリピ
ロール、ポリー3ーメチルピロール、ポリー3、4ージ
メチルピロール、ポリー3ーエチルピロール、ポリー
3、4ージエチルピロール、ポリ−3−プロピルピロー
ル、ポリ−3−ヘキシルピロール、ポリ−3−ヘプチル
ピロール、ポリ−3−オクチルピロール、ポリ−3−ノ
ニルピロール、ポリ−3−デシルピロール、ポリ−3−
ドデシルピロール、ポリ−3−ラウリルピロール等、あ
るいはこれらのポリマーのモノマー成分の任意の組合せ
からなる共重合体あるいは多元重合体が挙げられる。
The polyalkylpyrroles include polypyrrole, poly-3-methylpyrrole, poly-3,4-dimethylpyrrole, poly-3-ethylpyrrole, poly-3,4-diethylpyrrole, poly-3-propylpyrrole, poly-3-hexylpyrrole, Poly-3-heptylpyrrole, poly-3-octylpyrrole, poly-3-nonylpyrrole, poly-3-decylpyrrole, poly-3-
Examples thereof include dodecylpyrrole, poly-3-laurylpyrrole, and the like, and copolymers or multipolymers composed of any combination of monomer components of these polymers.

【0014】ポリアルキルアニリン類としてはポリ−N
−プロピルアニリン、ポリ−N−ヘキシルアニリン、ポ
リ−N−ヘプチルアニリン、ポリ−N−オクチルアニリ
ン、ポリ−N−ノニルアニリン、ポリ−N−デシルアニ
リン、ポリ−N−ドデシルアニリン、ポリ−N−ラウリ
ルアニリン等、あるいはこれらのポリマーのモノマー成
分の任意の組合せからなる共重合体あるいは多元重合体
が挙げられる。溶解性共役系高分子としてはこのような
ポリアルキルチオフェン類、ポリアルキルピロール類、
ポリアルキルアニリン類、その他溶解性共役系高分子を
使用できるが特にポリアルキルチオフェン類は分子量が
大きく膜の製膜性が良いので好ましく用いられる。
As the polyalkylanilines, poly-N
-Propylaniline, poly-N-hexylaniline, poly-N-heptylaniline, poly-N-octylaniline, poly-N-nonylaniline, poly-N-decylaniline, poly-N-dodecylaniline, poly-N- Examples thereof include laurylaniline and the like, or copolymers or multi-polymers composed of any combination of monomer components of these polymers. Examples of soluble conjugated polymers include polyalkylthiophenes, polyalkylpyrroles,
Although polyalkylanilines and other soluble conjugated polymers can be used, polyalkylthiophenes are particularly preferably used because of their large molecular weight and good film-forming property.

【0015】このような共役系重合体の薄膜の形成法と
しては次のようなものが挙げられる。(1)化学酸化重
合により重合物を合成し、その重合物が有機溶媒に可溶
ならば、スピンコート法、水面展開法、キャスト法等に
より薄膜を形成する方法。(2)化学酸化重合により重
合物を合成し、その重合物が有機溶媒に可溶でないなら
ば、適当な樹脂(例えば、アクリル樹脂、メタクリル樹
脂、塩化ビニル樹脂、酢酸ビニル樹脂、エポキシ樹脂、
ウレタン樹脂、ポリエステル樹脂、フェノール樹脂、ア
ルキド樹脂、ポリカーボネート樹脂、シリコン樹脂、メ
ラニン樹脂、ポリビニルホルマール樹脂、ポリビニルブ
チラール樹脂、ポリビニルアルコール樹脂、塩化ビニル
ー酢酸ビニル共重合体、塩化ビニルー酢酸ビニルー無水
マレイン酸共重合体、塩化ビニリデンーアクリロニトリ
ル共重合体、スチレンーブタジエン共重合体等の高分子
材料、エチルセルロース、カルボキシメチルセルロース
等のセルロース類が挙げられ、それぞれ単独あるいは数
種類組み合わせて用いることができる)に分散して、ス
ピンコート法やキャスト法により薄膜を形成する方法。
(3)導電性基板上に重合触媒を含有した樹脂薄膜を形
成し、これを、共役系重合体になりえるモノマー成分の
溶液、または蒸気にさらす方法。(4)電解酸化重合に
より電極上に直接薄膜を作製する方法。
The method for forming such a conjugated polymer thin film includes the following. (1) A method in which a polymer is synthesized by chemical oxidative polymerization, and if the polymer is soluble in an organic solvent, a thin film is formed by a spin coating method, a water surface spreading method, a casting method or the like. (2) If a polymer is synthesized by chemical oxidative polymerization and the polymer is not soluble in an organic solvent, a suitable resin (for example, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, epoxy resin,
Urethane resin, polyester resin, phenol resin, alkyd resin, polycarbonate resin, silicone resin, melanin resin, polyvinyl formal resin, polyvinyl butyral resin, polyvinyl alcohol resin, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer Polymer, vinylidene chloride-acrylonitrile copolymer, polymer material such as styrene-butadiene copolymer, ethyl cellulose, celluloses such as carboxymethyl cellulose, each of which can be used alone or in combination of several kinds), A method of forming a thin film by spin coating or casting.
(3) A method of forming a resin thin film containing a polymerization catalyst on a conductive substrate and exposing the resin thin film to a solution of a monomer component that can be a conjugated polymer or steam. (4) A method of directly forming a thin film on an electrode by electrolytic oxidation polymerization.

【0016】5は電子受容性有機化合物からなる薄膜で
ある。電子受容性有機化合物の具体例を挙げるとアミノ
基及びその誘導体を置換基とするペリレン酸無水物、ペ
リレン酸イミド等のペリレン系化合物、アンサンスロン
系化合物、アゾ系化合物等があるが、この限りではな
い。膜の作製法としては、真空蒸着法、プラズマCVD
法、プラズマ重合法、スピンコート法、水面展開法等が
利用できるがこの限りではない。膜厚は5nm〜0.1
mm、が好ましく、より好ましくは10nm〜1000
nmである。
Reference numeral 5 is a thin film made of an electron-accepting organic compound. Specific examples of the electron-accepting organic compound include perylene anhydrides having an amino group and a derivative thereof as a substituent, perylene compounds such as perylene imide, ansanthrone compounds, and azo compounds. is not. As a method for forming the film, vacuum deposition method, plasma CVD
Method, plasma polymerization method, spin coating method, water surface spreading method, etc. can be used, but not limited thereto. Film thickness is 5nm-0.1
mm, more preferably 10 nm to 1000
nm.

【0017】6は5の電子受容性有機化合物とオーミッ
ク接触する導電性物質がよい。例えば、アルミニウム、
銀等である。なおこれらの構造は用途に応じていろいろ
と応用変化させることができる。
6 is preferably a conductive substance which makes ohmic contact with the electron-accepting organic compound of 5. For example, aluminum,
It is silver or the like. It should be noted that these structures can be variously applied and changed according to the application.

【0018】[0018]

【実施例】次に本発明を実施例により、さらに詳細に説
明するが本発明はこれらの例によってなんら限定される
ものではない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1〜5 (A)共役系重合体の作製(ポリ−3−ドデシルチオフ
ェンの合成) 第二塩化鉄0.04モル(6.5g)を乾燥窒素中で採
取し、これをクロロホルム100mlに投入して、第2
塩化鉄のクロロホルム懸濁液を得た。この懸濁液中に乾
燥窒素雰囲気化で、滴下ロートにより3−ドデシルチオ
フェン0.01モル(2.5g)を滴下した。この懸濁
液を一昼夜攪拌した後、大量の水に投入しクロロホルム
により抽出した。抽出液を乾燥することによりポリ−3
−ドデシルチオフェンを2.0g得た。
Examples 1 to 5 (A) Preparation of Conjugated Polymer (Synthesis of Poly-3-dodecylthiophene) 0.04 mol (6.5 g) of ferric chloride was sampled in dry nitrogen. Pour into 100 ml of chloroform and add
A chloroform suspension of iron chloride was obtained. Into this suspension, 0.01 mol (2.5 g) of 3-dodecylthiophene was added dropwise with a dropping funnel under a dry nitrogen atmosphere. The suspension was stirred overnight, poured into a large amount of water, and extracted with chloroform. By drying the extract, poly-3
-2.0 g of dodecylthiophene was obtained.

【0020】(B)薄膜及び光電変換素子の作製 以下に図面に基き詳細に説明する。図1(A)に光電変
換素子の断面図、図1(B)にその平面図を示した。ガ
ラス基板(1)、第1電極(2)、第2電極(3)、共
役系重合体層(4)、電子受容性化合物層(5)、第3
電極(6)の5層からなっている。第1電極(2)にク
ロム、第2電極(3)に金、第3電極(6)にアルミニ
ウムを用いた。共役系重合体層(4)は、ポリー3ード
デシルチオフェン0.1gを50mlのクロロホルムに
溶解し、スピンコート法により導電性電極上に作製し、
自然乾燥する。膜厚は約30nmである。電子受容性化
合物として表1に示した5種の化合物を用い、電子受容
性化合物層(5)は、1x10-5torr以下にて真空蒸着
することにより作製した。膜厚は約100nmである。
この薄膜上に、マスクを介してアルミニウムを1x10
-5torr以下にて約25nmの膜厚で真空蒸着し、アルミ
ニウム面上に導電ペーストにてリード線を取り付けて本
発明の光電変換素子を作製した。
(B) Fabrication of Thin Film and Photoelectric Conversion Element A detailed description will be given below with reference to the drawings. A cross-sectional view of the photoelectric conversion element is shown in FIG. 1A and a plan view thereof is shown in FIG. Glass substrate (1), first electrode (2), second electrode (3), conjugated polymer layer (4), electron-accepting compound layer (5), third
It consists of 5 layers of electrodes (6). Chromium was used for the first electrode (2), gold was used for the second electrode (3), and aluminum was used for the third electrode (6). The conjugated polymer layer (4) was prepared by dissolving 0.1 g of poly-3dodecylthiophene in 50 ml of chloroform and spin-coating it on a conductive electrode.
Allow to air dry. The film thickness is about 30 nm. The electron-accepting compound was prepared by vacuum-depositing the electron-accepting compound layer (5) at 1 × 10 −5 torr or less using 5 kinds of compounds shown in Table 1. The film thickness is about 100 nm.
1x10 aluminum on this thin film through a mask
Vacuum deposition was performed at a film thickness of about 25 nm at -5 torr or less, and a lead wire was attached to the aluminum surface with a conductive paste to prepare a photoelectric conversion element of the present invention.

【0021】(C)光電変換効率の測定 作製した光電変換素子に第3電極(6)側からフイルタ
ーによって赤外光をカットした0.1mW/cm2の白色光を
照射し、光電変換効率を測定した。光電変換効率の測定
には、ポテンショスタットおよびポテンシャルスキャナ
ーを用い、X−Yレコーダーで記録した。測定はすべて
空気中、室温で行った。結果を表1に示した。
(C) Measurement of photoelectric conversion efficiency The manufactured photoelectric conversion element was irradiated with white light of 0.1 mW / cm 2 obtained by cutting infrared light from the third electrode (6) side with a filter to improve photoelectric conversion efficiency. It was measured. The photoelectric conversion efficiency was measured by using a potentiostat and a potential scanner and recorded by an XY recorder. All measurements were performed in air at room temperature. The results are shown in Table 1.

【0022】(D)整流性の測定 (C)と同様に作製した光電変換素子を暗状態下で暗状
態下で電流電圧特性を測定した。その結果、素子はすべ
て遮光状態において、金電極に正電圧を印加したとき順
方向となる整流性が見られた。±2Vでの整流比を表1
の中にまとめた。印加電圧の範囲は±2Vである。
(D) Measurement of Rectification Property The photoelectric conversion element produced in the same manner as in (C) was measured for current-voltage characteristics under dark conditions. As a result, in the light-shielded state, all the elements showed a rectifying property in the forward direction when a positive voltage was applied to the gold electrode. Table 1 shows the rectification ratio at ± 2V
Summarized in. The range of applied voltage is ± 2V.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【化2】 [Chemical 2]

【0025】[0025]

【化3】 [Chemical 3]

【0026】[0026]

【化4】 [Chemical 4]

【0027】[0027]

【化5】 [Chemical 5]

【0028】[0028]

【化6】 [Chemical 6]

【0029】[0029]

【比較例】ショットキー型有機光電変換素子を作成し比
較例とした。以下に図面に基づき詳細に説明する。図2
(A)に光電変換素子の断面図、図2(B)にその平面
図を示した。基板(1)と第1電極(2)、第2電極
(3)、銅フタロシアニン膜(8)、第3電極(6)の
4層からなっている。第1電極(2)にクロム、第2電
極(3)に金、第3電極(6)にアルミニウムの蒸着膜
を用い、アルミニウム側から、白色光を照射した。銅フ
タロシアニン層は真空蒸着法により作成した。光電変換
効率は実施例と同様に測定した。短絡光電流10nA/cm2
解放端電圧1.3V、フィルファクター0.25、変換効率0.05
%であった。
[Comparative Example] A Schottky type organic photoelectric conversion element was prepared as a comparative example. The details will be described below with reference to the drawings. Figure 2
A sectional view of the photoelectric conversion element is shown in (A), and a plan view thereof is shown in FIG. 2 (B). It is composed of a substrate (1), four layers of a first electrode (2), a second electrode (3), a copper phthalocyanine film (8) and a third electrode (6). White light was irradiated from the aluminum side using a vapor deposition film of chromium for the first electrode (2), gold for the second electrode (3), and aluminum for the third electrode (6). The copper phthalocyanine layer was formed by the vacuum evaporation method. The photoelectric conversion efficiency was measured as in the example. Short-circuit photocurrent 10 nA / cm 2 ,
Open end voltage 1.3V, fill factor 0.25, conversion efficiency 0.05
%Met.

【0030】[0030]

【発明の効果】本発明は共役系重合体層と電子受容性化
合物層を2つの電極間に形成させることによる新規な光
電変換素子に関するものである。この光電変換素子は、
短絡する確率が従来の作製法より減少し、また安定した
ヘテロ接合を形成し、大きなフィルファクターと大きな
短絡光電流を示し、高い光電変換効率を示す。これらは
太陽電池、光センサー、電子写真感光体、光記録材料、
印刷刷版等に利用することができる。
The present invention relates to a novel photoelectric conversion device by forming a conjugated polymer layer and an electron-accepting compound layer between two electrodes. This photoelectric conversion element
The probability of short-circuiting is lower than that of conventional fabrication methods, a stable heterojunction is formed, a large fill factor and a large short-circuit photocurrent are exhibited, and high photoelectric conversion efficiency is exhibited. These are solar cells, optical sensors, electrophotographic photoreceptors, optical recording materials,
It can be used for printing plates.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光電変換素子の概略図。FIG. 1 is a schematic view of a photoelectric conversion element according to the present invention.

【図2】比較例としての光電変換素子の概略図FIG. 2 is a schematic diagram of a photoelectric conversion element as a comparative example.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 第1電極 3 第2電極 4 共役系重合体層 5 電子受容性化合物層 6 第3電極 7 リード線 8 銅フタロシアニン層 1 glass substrate 2 First electrode 3 Second electrode 4 Conjugated polymer layer 5 Electron-accepting compound layer 6 Third electrode 7 lead wire 8 Copper phthalocyanine layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 共役系重合体層と電子受容性有機化合物
層とを2つの電極間に積層した光電変換素子であって、
該共役系重合体が下記一般式化1で示されるモノマー成
分を含むことを特徴とする光電変換素子。 【化1】 (化1中Xはイオウ原子、セレン原子、窒素原子、また
は酸素原子のいずれかの原子であり、Xが窒素原子の場
合には水素原子、アルキル基またはアリール基の置換基
を有する。R1及びR2は水素原子、ハロゲン原子、アル
キル基、アリール基、アルコキシ基またはアミノ基から
選ばれる置換基であり、R1とR2とが結合して環を形成
していてもよい。)
1. A photoelectric conversion device comprising a conjugated polymer layer and an electron-accepting organic compound layer laminated between two electrodes,
A photoelectric conversion device, wherein the conjugated polymer contains a monomer component represented by the following general formula 1. [Chemical 1] (Wherein X is a sulfur atom, a selenium atom, a nitrogen atom or an oxygen atom, and when X is a nitrogen atom, it has a hydrogen atom, a substituent of an alkyl group or an aryl group. R 1 And R 2 is a substituent selected from a hydrogen atom, a halogen atom, an alkyl group, an aryl group, an alkoxy group or an amino group, and R 1 and R 2 may combine to form a ring.)
【請求項2】 化1におけるR1、R2がアルキル鎖であ
ることを特徴とする請求項1記載の光電変換素子。
2. The photoelectric conversion device according to claim 1 , wherein R 1 and R 2 in Chemical formula 1 are alkyl chains.
【請求項3】 共役系重合体がポリアルキルチオフェン
類である請求項1記載の光電変換素子。
3. The photoelectric conversion device according to claim 1, wherein the conjugated polymer is a polyalkylthiophene.
【請求項4】 共役系重合体層が塗布法にて作製された
ものであることを特徴とする請求項1記載の光電変換素
子。
4. The photoelectric conversion element according to claim 1, wherein the conjugated polymer layer is produced by a coating method.
JP3198572A 1991-07-12 1991-07-12 Photoelectric conversion element Pending JPH0521824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3198572A JPH0521824A (en) 1991-07-12 1991-07-12 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3198572A JPH0521824A (en) 1991-07-12 1991-07-12 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH0521824A true JPH0521824A (en) 1993-01-29

Family

ID=16393415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3198572A Pending JPH0521824A (en) 1991-07-12 1991-07-12 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0521824A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828184A1 (en) * 1996-09-04 1998-03-11 Eastman Kodak Company Imaging element containing an electrically conductive polymer blend
EP0831365A1 (en) * 1996-09-19 1998-03-25 Eastman Kodak Company Imaging element containing an electrically-conductive polymer blend
WO2002005354A1 (en) * 2000-07-06 2002-01-17 Mitsubishi Chemical Corporation Solid photo-electric converting element, process for producing the same, solar cell employing solid photo-electric converting element, and power supply
WO2002052654A1 (en) * 2000-12-26 2002-07-04 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Solar cell
JP2005223038A (en) * 2004-02-04 2005-08-18 Shin Etsu Polymer Co Ltd Optoelectric transducer and its manufacturing method
US7932347B2 (en) * 2005-09-08 2011-04-26 Sumitomo Chemical Company, Limited Polymer comprising unit comprising fluorocyclopentane ring fused with aromatic ring and organic thin film and organic thin film element both comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828184A1 (en) * 1996-09-04 1998-03-11 Eastman Kodak Company Imaging element containing an electrically conductive polymer blend
EP0831365A1 (en) * 1996-09-19 1998-03-25 Eastman Kodak Company Imaging element containing an electrically-conductive polymer blend
WO2002005354A1 (en) * 2000-07-06 2002-01-17 Mitsubishi Chemical Corporation Solid photo-electric converting element, process for producing the same, solar cell employing solid photo-electric converting element, and power supply
WO2002052654A1 (en) * 2000-12-26 2002-07-04 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Solar cell
JP2005223038A (en) * 2004-02-04 2005-08-18 Shin Etsu Polymer Co Ltd Optoelectric transducer and its manufacturing method
US7932347B2 (en) * 2005-09-08 2011-04-26 Sumitomo Chemical Company, Limited Polymer comprising unit comprising fluorocyclopentane ring fused with aromatic ring and organic thin film and organic thin film element both comprising the same

Similar Documents

Publication Publication Date Title
JP6007273B2 (en) Tandem photovoltaic cell
EP2009064B1 (en) Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
Wang et al. A new thermal-stable truxene-based hole-transporting material for perovskite solar cells
JP2000106223A (en) Photoelectric conversion element
JPH11265738A (en) Photo semiconductor electrode and photocell using it
JP2000106224A (en) Photoelectric conversion element and photo electrochemical cell
US20110259425A1 (en) Organic thin film solar cell
US5201961A (en) Photovoltaic device containing organic material layers and having high conversion efficiency
Hu et al. Ti3C2Tx MXene‐RAN van der Waals Heterostructure‐Based Flexible Transparent NIR Photodetector Array for 1024 Pixel Image Sensing Application
US20110088747A1 (en) Photovoltaic device
JPH0521824A (en) Photoelectric conversion element
KR101046183B1 (en) Inverted organic solar cells with fullerene derivatives
CN108336231B (en) Organic photoelectric detector with wide spectral response
JP5005467B2 (en) Method for manufacturing photoelectric conversion element
JPWO2003077323A1 (en) Photoelectric conversion element
US11387413B2 (en) Polymer, organic solar cell comprising polymer, perovskite solar cell comprising polymer
Imoto et al. Merocyanine Dye-Sensitization of Polythiophene in a Conjugated Polymer/TiO2 p–n Hetero-Junction Solar Cell
Gowrishankar et al. High-efficiency, Cd-free copper–indium–gallium–diselenide/polymer hybrid solar cells
JPH07106613A (en) Organic n-type semiconductor and organic solar cell
JP2947593B2 (en) Stacked organic solar cells
KR20180131112A (en) Polymer solar cell having cathode buffer layer including novel small molecular electrolytes
Shirota et al. Fabrication and performance of photovoltaic devices using organic materials
Choi et al. Photoconductivity and photovoltaic effect of charge‐transfer complex of poly [4‐phenyl‐2, 6‐(p‐phenoxy) quinoline] and 2, 3‐dichloro‐5, 6‐dicyano‐1, 4‐benzoquinone
KR102046602B1 (en) Optoelectronic device
KR101799929B1 (en) polymerized polymer from monomer of particular ratio and manufacturing method thereof and organic semiconductor device comprising the polymer