JP2006261180A - Method of manufacturing thin-film semiconductor device - Google Patents

Method of manufacturing thin-film semiconductor device Download PDF

Info

Publication number
JP2006261180A
JP2006261180A JP2005072588A JP2005072588A JP2006261180A JP 2006261180 A JP2006261180 A JP 2006261180A JP 2005072588 A JP2005072588 A JP 2005072588A JP 2005072588 A JP2005072588 A JP 2005072588A JP 2006261180 A JP2006261180 A JP 2006261180A
Authority
JP
Japan
Prior art keywords
thin film
silicon thin
film
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005072588A
Other languages
Japanese (ja)
Other versions
JP4729953B2 (en
Inventor
Shinichi Muramatsu
信一 村松
Fumito Oka
史人 岡
Katsumi Nomura
克己 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2005072588A priority Critical patent/JP4729953B2/en
Publication of JP2006261180A publication Critical patent/JP2006261180A/en
Application granted granted Critical
Publication of JP4729953B2 publication Critical patent/JP4729953B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a thin-film semiconductor device which allows manufacturing of an electronic circuit device with improved performance by forming a polycrystalline silicon thin film having a dramatically larger grain diameter than the one manufactured by the conventional method. <P>SOLUTION: An amorphous silicon thin film 04a, 11a is formed in a desired thickness or above on a heterogeneous substrate 01, 09, and then continuous wave laser light 06, 13 is irradiated, scanning over the amorphous silicon thin film, to turn the amorphous silicon thin film into a polycrystalline silicon thin film 04b, 11b. Then, the polycrystalline silicon thin film is thinned to a desired thickness to form a polycrystalline silicon thin film 04b', 11b'. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、薄膜太陽電池、TFT(Thin Film Transistor;薄膜トランジスタ)用基板等の半導体素子基板や半導体素子(以下、これらを薄膜半導体装置と総称する)を製造する方法に関する。   The present invention relates to a method of manufacturing a semiconductor element substrate such as a thin film solar cell, a TFT (Thin Film Transistor) substrate, or a semiconductor element (hereinafter collectively referred to as a thin film semiconductor device).

近年、非導電性の異種基板、例えばガラス基板などの上に結晶シリコン薄膜を形成する研究が盛んに行なわれている。この異種基板上に形成した結晶シリコン薄膜の用途は広く、TFT、薄膜太陽電池などに用いることができる。   In recent years, research on forming a crystalline silicon thin film on a non-conductive heterogeneous substrate such as a glass substrate has been actively conducted. The crystalline silicon thin film formed on this heterogeneous substrate can be used widely for TFTs, thin film solar cells and the like.

薄膜太陽電池は、安価な基板上に低温プロセスで良好な結晶性をもつ結晶シリコン薄膜を形成し、これを光電変換装置に用いて、低コスト化と高性能化を図るものである。この結晶シリコン薄膜を太陽電池に用いることによって、非晶質シリコンからなる太陽電池で問題となっている光劣化が観測されず、さらに非晶質シリコンからなる太陽電池では感度のない、長波長光をも電気的エネルギーに変換することができる。この技術は太陽電池のみならず、光センサなどの光電変換素子への応用も可能であると期待されている。   A thin-film solar cell is formed by forming a crystalline silicon thin film having good crystallinity on an inexpensive substrate by a low-temperature process, and using this for a photoelectric conversion device, thereby reducing cost and improving performance. By using this crystalline silicon thin film for a solar cell, long-wavelength light that is not sensitive to solar cells made of amorphous silicon is not observed. Can also be converted into electrical energy. This technology is expected to be applicable not only to solar cells but also to photoelectric conversion elements such as optical sensors.

この結晶シリコン薄膜からなる太陽電池には、一般的にプラズマCVD法によって直接、結晶シリコン薄膜を堆積させる手法が用いられている。この手法によって、基板上に低温で結晶シリコン薄膜を形成できることが知られており、低コスト化に有効であるとされている。   A solar cell made of this crystalline silicon thin film generally uses a technique of directly depositing a crystalline silicon thin film by a plasma CVD method. It is known that a crystalline silicon thin film can be formed on a substrate at a low temperature by this method, and is said to be effective for cost reduction.

このプラズマCVD法においては、形成条件を、水素でシラン系原料ガスを15倍程度以上に希釈し、プラズマ反応室内における圧力を1Pa〜1000Pa、基板温度を150℃〜550℃、望ましくは400℃以下の範囲内とすることにより成膜する。これによって、結晶シリコン薄膜が基板上に形成される。しかし、この方法では結晶粒径の大きな多結晶シリコン薄膜を形成することは困難であった。また、発電機能の根幹を担うi層は、素子構造最適化のためにドーピングを行なうと品質が急激に低下する。これらのことから、太陽電池としては低コスト化に有利なシングルセルで10%を大きく上回る効率を達成することは困難であった。   In this plasma CVD method, the formation conditions are such that the silane source gas is diluted about 15 times or more with hydrogen, the pressure in the plasma reaction chamber is 1 Pa to 1000 Pa, the substrate temperature is 150 ° C. to 550 ° C., preferably 400 ° C. or less. By forming the film thickness within the range, the film is formed. Thereby, a crystalline silicon thin film is formed on the substrate. However, this method has made it difficult to form a polycrystalline silicon thin film having a large crystal grain size. In addition, the quality of the i layer, which is the basis of the power generation function, is drastically lowered when doping is performed to optimize the device structure. For these reasons, it has been difficult for a solar cell to achieve an efficiency greatly exceeding 10% with a single cell advantageous for cost reduction.

一方、レーザの走査によって結晶シリコンを形成する試みも種々検討されており、連続波レーザを用いる方法が特開平2001−351863号公報(特許文献1)に開示されている。この方法は異種基板上に非晶質シリコンを形成し、帯状の連続光源を走査することで多結晶シリコンに熔融・結晶化するもので、走査方向に長い結晶粒を成長させることを可能としている。   On the other hand, various attempts to form crystalline silicon by laser scanning have been studied, and a method using a continuous wave laser is disclosed in JP-A-2001-351863 (Patent Document 1). This method forms amorphous silicon on a heterogeneous substrate, and melts and crystallizes into polycrystalline silicon by scanning a strip-like continuous light source, making it possible to grow long crystal grains in the scanning direction. .

この連続波レーザを用いて結晶化を行なう場合、Nd:YAGやNd:YVO4等の固体レーザを用いることが試みられている。これら固体レーザを用いることで、ランニングコストを大幅に低下させると同時に品質の高い多結晶シリコンを形成することが可能となった。
特開平2001−351863号公報
When crystallization is performed using this continuous wave laser, it has been attempted to use a solid-state laser such as Nd: YAG or Nd: YVO 4 . By using these solid-state lasers, it has become possible to significantly reduce running costs and at the same time form high-quality polycrystalline silicon.
JP 2001-351863 A

しかしながら、連続波レーザを用いた場合でも、多結晶シリコン薄膜の結晶粒サイズは幅1〜2μm、長さ10μm程度であった。結晶粒のサイズはその位置に作製される素子の電気的特性を決定する重要な要素であり、さらに大きなサイズの結晶粒を形成することが望まれていた。   However, even when a continuous wave laser is used, the crystal grain size of the polycrystalline silicon thin film is about 1 to 2 μm in width and about 10 μm in length. The size of the crystal grain is an important factor for determining the electrical characteristics of the device manufactured at that position, and it has been desired to form a crystal grain having a larger size.

つまり、上記のような多結晶シリコン薄膜上に、さらに電気特性の向上した素子による回路を作製するためには、さらに結晶粒の大粒径化を進める必要があった。   That is, in order to fabricate a circuit using an element with further improved electrical characteristics on the polycrystalline silicon thin film as described above, it is necessary to further increase the crystal grain size.

そこで、本発明の目的は、上記課題を解決し、従来方法に比べ格段に粒径の大きな多結晶シリコン薄膜を形成して、性能の向上した電子回路装置を構成できる薄膜半導体装置の製造方法を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing a thin film semiconductor device that can solve the above-described problems and can form a polycrystalline silicon thin film having a significantly larger particle size than conventional methods to constitute an electronic circuit device with improved performance. It is to provide.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る薄膜半導体装置の製造方法は、異種基板上にシリコン薄膜を所望の膜厚以上に形成し、連続波レーザ光を照射し走査を行なうことによって該シリコン薄膜を結晶化し、その後、結晶化したシリコン薄膜を所望の膜厚まで薄くすることを特徴とする。   The method of manufacturing a thin film semiconductor device according to the invention of claim 1 is characterized in that a silicon thin film is formed on a heterogeneous substrate to have a desired thickness or more, and the silicon thin film is crystallized by irradiating continuous wave laser light and scanning. Thereafter, the crystallized silicon thin film is thinned to a desired film thickness.

請求項2の発明は、請求項1に記載の薄膜半導体装置の製造方法において、上記異種基板上に形成するシリコン薄膜の膜厚が、上記所望の膜厚の2倍以上であることを特徴とする。   According to a second aspect of the present invention, in the method of manufacturing a thin film semiconductor device according to the first aspect, a film thickness of the silicon thin film formed on the heterogeneous substrate is at least twice the desired film thickness. To do.

請求項3の発明は、請求項1に記載の薄膜半導体装置の製造方法において、上記異種基板上に形成するシリコン薄膜の膜厚が、上記所望の膜厚以上であり、且つ500nm以上であることを特徴とする。   According to a third aspect of the present invention, in the method for manufacturing a thin film semiconductor device according to the first aspect, the thickness of the silicon thin film formed on the heterogeneous substrate is not less than the desired thickness and not less than 500 nm. It is characterized by.

請求項4の発明は、請求項1から3のいずれかに記載の薄膜半導体装置の製造方法において、上記連続波レーザ光の波長が400nm以上600nm以下であることを特徴とする。   According to a fourth aspect of the present invention, in the method of manufacturing a thin film semiconductor device according to any one of the first to third aspects, the wavelength of the continuous wave laser beam is 400 nm or more and 600 nm or less.

請求項5の発明は、請求項1から4のいずれかに記載の薄膜半導体装置の製造方法において、上記結晶化したシリコン薄膜を所望の膜厚まで薄くする前に、結晶化したシリコン薄膜の上にさらに薄膜層を形成し、その上で所望の膜厚まで薄くすることを特徴とする。   According to a fifth aspect of the present invention, there is provided a method of manufacturing a thin film semiconductor device according to any one of the first to fourth aspects, wherein the crystallized silicon thin film is formed on the crystallized silicon thin film before the crystallized silicon thin film is thinned to a desired thickness. Further, a thin film layer is further formed, and the film is further thinned to a desired film thickness.

請求項6の発明は、請求項5に記載の薄膜半導体装置の製造方法において、上記薄膜層を構成する材料は、ホトレジスト、半導体材料、無機絶縁材料、金属材料、有機材料、のいずれかであることを特徴とする。   The invention of claim 6 is the method of manufacturing a thin film semiconductor device according to claim 5, wherein the material constituting the thin film layer is any one of a photoresist, a semiconductor material, an inorganic insulating material, a metal material, and an organic material. It is characterized by that.

<発明の要点>
本発明は、結晶化する膜厚が厚いほど結晶粒の平均サイズが大きくなるという新たな知見に基づき、所望の膜厚より厚い膜で結晶化を行う。その後、所望の膜厚に薄くして用いるものである。また、厚膜化に従い表面の凹凸が著しくなる不都合を解消するため、結晶化後に平坦化の工程を付加しても良い。
<Key points of the invention>
The present invention performs crystallization with a film thicker than a desired film thickness based on the new finding that the average crystal grain size increases as the film thickness to be crystallized increases. Thereafter, the desired film thickness is reduced. Further, a planarization step may be added after crystallization in order to eliminate the disadvantage that the unevenness of the surface becomes remarkable as the film thickness increases.

以下、本発明の骨子を詳述する。   Hereinafter, the gist of the present invention will be described in detail.

図3に連続波レーザによる結晶化の後、平均結晶粒面積のシリコン薄膜の膜厚への依存性を示す。明らかに膜厚が増加するほど結晶粒は大きくなる。特に、膜厚0.5μmから1μmでの結晶粒径の増加は顕著である。結晶粒が大きくなるほどシリコン薄膜の電気特性、移動度やドーピング効率など向上することが知られている。しかし、素子に応じて最適な膜厚は決まっており、いくらでも厚くできるものではない。たとえば、TFTでは50nm程度とかなり薄いことが要請されている。したがって、上記の知見を素子作製に適用するためには、厚く成膜して、結晶化後に薄くすることが有効であることを見出した。   FIG. 3 shows the dependence of the average crystal grain area on the thickness of the silicon thin film after crystallization by a continuous wave laser. Obviously, as the film thickness increases, the crystal grains become larger. In particular, the increase in crystal grain size is remarkable when the film thickness is 0.5 μm to 1 μm. It is known that the electrical characteristics, mobility, doping efficiency, etc. of the silicon thin film are improved as the crystal grains become larger. However, the optimum film thickness is determined according to the element and cannot be increased as much as possible. For example, TFTs are required to be as thin as about 50 nm. Therefore, in order to apply the above knowledge to device fabrication, it has been found that it is effective to form a thick film and thin it after crystallization.

しかしながら、連続波レーザ光の走査による結晶化においては、溶融結晶化後の表面は平坦ではなく、走査方向に対して直角の向きに断面を取ると結晶面に凹凸が生じた。この表面プロファイルを図4に示す。図中で、左右の平坦な部分はレーザによる結晶化がされなかった部分である。特に、膜厚を増すほど、あるいは粒径が大きくなるほど凹凸は顕著になった。膜厚を薄くする際に凸部ほど除去されやすいため、そのまま薄くしても使用できたが、性能向上、特性の均一化のためには、さらに適当な薄膜を堆積して平坦化を行った後に薄くすることが有効であった。   However, in crystallization by scanning with a continuous wave laser beam, the surface after melt crystallization is not flat, and unevenness occurs in the crystal plane when a cross section is taken in a direction perpendicular to the scanning direction. This surface profile is shown in FIG. In the figure, the left and right flat portions are portions that were not crystallized by laser. In particular, the unevenness became more prominent as the film thickness increased or the particle diameter increased. When the film thickness is reduced, the convex part is easily removed, so it could be used as it was, but in order to improve the performance and make the characteristics uniform, a more appropriate thin film was deposited and planarized. It was effective to make it thinner later.

次に、具体的に本発明の構成と効果の関係について述べる。   Next, the relationship between the configuration and effects of the present invention will be specifically described.

請求項1の発明に係る製造方法では、異種基板上にシリコン薄膜を所望の膜厚以上に形成するので、結晶粒の平均サイズが大きいシリコン薄膜を得ることができる。また、これを連続波レーザ光を照射し走査を行なうことによって該シリコン薄膜を結晶化し、これにより生じた表面の凹凸を、その後、所望の膜厚まで該シリコン薄膜を薄くする平坦化処理により除去するので、従来方法に比べ格段に粒径の大きな多結晶シリコン薄膜を形成して、性能の向上した電子回路装置を構成することができる。   In the manufacturing method according to the first aspect of the present invention, since the silicon thin film is formed on the heterogeneous substrate to have a desired film thickness or more, a silicon thin film having a large average grain size can be obtained. In addition, the silicon thin film is crystallized by irradiating and scanning with continuous wave laser light, and the resulting surface irregularities are removed by a flattening process to thin the silicon thin film to a desired thickness. Therefore, it is possible to form an electronic circuit device with improved performance by forming a polycrystalline silicon thin film having a significantly larger particle size than the conventional method.

本発明の製造方法において、上記異種基板上に形成するシリコン薄膜の膜厚は、所望の膜厚の2倍以上であることが望ましい(請求項2)。これにより平坦化処理を容易にして、粒径の大きな良質な多結晶シリコン薄膜を残すことができるからである。所望の膜厚の最小限は図3に示すように500nmであるため、異種基板上に形成するシリコン薄膜の膜厚は、所望の膜厚以上であり、且つ500nm以上とする(請求項3)。従って、例えば、所望の膜厚が1μm、1.5μm、2μmなどの場合、その2倍以上の2μm、3μm、4μmなどとするが好ましい。   In the manufacturing method of the present invention, the film thickness of the silicon thin film formed on the heterogeneous substrate is preferably at least twice the desired film thickness. This is because the planarization process is facilitated, and a high-quality polycrystalline silicon thin film having a large grain size can be left. Since the minimum desired film thickness is 500 nm as shown in FIG. 3, the film thickness of the silicon thin film formed on the heterogeneous substrate is not less than the desired film thickness and not less than 500 nm. . Therefore, for example, when the desired film thickness is 1 μm, 1.5 μm, 2 μm, etc., it is preferable to set the thickness to 2 μm, 3 μm, 4 μm, etc., which is twice or more.

連続波レーザ光の波長としては、非晶質シリコン薄膜、あるいは結晶シリコン薄膜が吸収できる波長400nm〜900nmのうち、下地材料への熱的ダメージを低減することのできる400nmから600nmが適切である(請求項4)。   The wavelength of the continuous wave laser beam is suitably 400 nm to 600 nm, which can reduce thermal damage to the underlying material, among wavelengths 400 nm to 900 nm that can be absorbed by the amorphous silicon thin film or the crystalline silicon thin film ( Claim 4).

請求項5の発明に係る製造方法では、上記結晶化したシリコン薄膜を所望の膜厚まで薄くする前に、結晶化したシリコン薄膜の上にさらに薄膜層を形成し、その上で所望の膜厚まで薄くする。これによれば、膜厚を増して粒径を大きくし、これにより表面の凹凸が顕著になっている場合でも、その上にさらに適当な薄膜層を堆積して平坦化を行うので、所望の平坦な薄膜を得ることができる。
この薄膜層を構成する材料としては、ホトレジスト、半導体材料、無機絶縁材料、金属材料、有機材料、のいずれかも用いることができる(請求項6)。
In the manufacturing method according to the invention of claim 5, before the crystallized silicon thin film is thinned to a desired film thickness, a thin film layer is further formed on the crystallized silicon thin film, and the desired film thickness is formed thereon. Until thin. According to this, even when the film thickness is increased by increasing the film thickness, and the surface irregularities are conspicuous, an appropriate thin film layer is further deposited thereon to perform planarization. A flat thin film can be obtained.
As a material constituting the thin film layer, any one of a photoresist, a semiconductor material, an inorganic insulating material, a metal material, and an organic material can be used.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

本発明の製造方法によれば、異種基板上にシリコン薄膜を所望の膜厚以上に形成するので、結晶粒の平均サイズが大きいシリコン薄膜を得ることができ、また、これを連続波レーザ光を照射し走査を行なうことによって該シリコン薄膜を結晶化し、これにより生じた表面の凹凸を、その後、所望の膜厚まで該シリコン薄膜を薄くすることにより除去するので、従来方法に比べ、格段に粒径の大きな多結晶シリコン薄膜を形成して、性能の向上した電子回路装置を構成することができる。   According to the manufacturing method of the present invention, since a silicon thin film is formed on a different substrate with a desired thickness or more, a silicon thin film having a large average size of crystal grains can be obtained. The silicon thin film is crystallized by irradiating and scanning, and the resulting surface irregularities are removed by thinning the silicon thin film to a desired film thickness. An electronic circuit device with improved performance can be formed by forming a polycrystalline silicon thin film having a large diameter.

本発明の製造方法の他の特徴によれば、上記結晶化したシリコン薄膜を所望の膜厚まで薄くする前に、結晶化したシリコン薄膜の上にさらに薄膜層を形成し、その上で所望の膜厚まで薄くする。これによれば、膜厚を増して粒径を大きくし、これにより表面の凹凸が顕著になっている場合でも、さらに適当な薄膜層を堆積して平坦化を行うので、所望の平坦な薄膜を得ることができる。   According to another feature of the manufacturing method of the present invention, before the crystallized silicon thin film is thinned to a desired thickness, a thin film layer is further formed on the crystallized silicon thin film, and a desired layer is formed thereon. Reduce the film thickness. According to this, even if the film thickness is increased to increase the particle size, and even when the surface irregularities are conspicuous, an appropriate thin film layer is further deposited and flattened. Can be obtained.

以下、本発明の実施の形態を実施例を中心に説明する。なお、以下の実施例は本発明の一例を示すものであり、本発明はこれらに限定されるものではない。   Hereinafter, embodiments of the present invention will be described focusing on examples. In addition, the following Examples show an example of this invention and this invention is not limited to these.

図1は本発明の実施例1における、薄膜半導体装置の作成過程を模式的に示したもので、(a)は所望の膜厚以上の非晶質シリコン薄膜をレーザ光の照射により結晶化する工程を示す図、(b)は得られた多結晶シリコン薄膜をエッチングにより薄くする工程を示す図、(c)は電極を形成する工程を示す図である。本実施例では、光電変換素子に適用した例を示す。   FIG. 1 schematically shows a manufacturing process of a thin film semiconductor device in Example 1 of the present invention. FIG. 1 (a) shows crystallization of an amorphous silicon thin film having a desired thickness or more by laser irradiation. The figure which shows a process, (b) is a figure which shows the process of thinning the obtained polycrystalline silicon thin film by an etching, (c) is a figure which shows the process of forming an electrode. In this embodiment, an example applied to a photoelectric conversion element is shown.

図1(a)において、異種基板01として30cm×40cmの長方形のガラス基板を用意し、拡散防止層02としてSiN膜を200nm形成した。拡散防止層02を形成した基板上に高融点金属層03を100nmの膜厚に形成した。その上に、触媒CVD法を用いて非晶質シリコン薄膜04aを3μm形成した。この3μmという非晶質シリコン薄膜04aの膜厚は、本実施例における所望の膜厚2μmに対し、これよりも厚い値としたものである。この非晶質シリコン薄膜04aの形成条件はSiH4:100ccm、PH4:0.01ccmを含むH2の混合ガスを用い、基板温度450℃で形成した。この条件では、n型のドーパントを含んだ非晶質シリコン薄膜が形成される。 In FIG. 1A, a rectangular glass substrate of 30 cm × 40 cm was prepared as the heterogeneous substrate 01, and a 200 nm SiN film was formed as the diffusion preventing layer 02. A refractory metal layer 03 was formed to a thickness of 100 nm on the substrate on which the diffusion prevention layer 02 was formed. On top of that, 3 μm of an amorphous silicon thin film 04a was formed by catalytic CVD. The film thickness of the amorphous silicon thin film 04a of 3 μm is a value thicker than the desired film thickness of 2 μm in this embodiment. The amorphous silicon thin film 04a was formed at a substrate temperature of 450 ° C. using a mixed gas of H 2 containing SiH 4 : 100 ccm and PH 4 : 0.01 ccm. Under this condition, an amorphous silicon thin film containing an n-type dopant is formed.

次に、YVO4の第二高調波による532nmの固体レーザ光源05から、レーザ光06を光照射し、異種基板(ガラス基板)01を相対的にX方向に走査して非晶質シリコン薄膜04aを結晶化させた。その結果、多結晶シリコン薄膜04bが形成された。このレーザ光06の照射によって、膜厚3μmの非晶質シリコン薄膜04aは全て融解し結晶化した。融解して結晶化したシリコン薄膜は走査方向にラテラル成長した大粒径の多結晶シリコン薄膜04bとなった。 Next, a laser beam 06 is irradiated from a 532 nm solid-state laser light source 05 based on the second harmonic of YVO 4 , and a heterogeneous substrate (glass substrate) 01 is relatively scanned in the X direction so that the amorphous silicon thin film 04a. Crystallized. As a result, a polycrystalline silicon thin film 04b was formed. By irradiation with this laser beam 06, the amorphous silicon thin film 04a having a thickness of 3 μm was completely melted and crystallized. The silicon thin film melted and crystallized became a polycrystalline silicon thin film 04b having a large grain size laterally grown in the scanning direction.

ここで、高融点金属層03は例えばタングステンやモリブデンから成る光吸収層であり、これにより照射エネルギー密度を低くして、より広い面積を一括で結晶化可能とするものである。また、拡散防止層02を設ける理由は、融解時に高融点金属層03から成る光吸収層が瞬間的に2000℃近い温度となり、非晶質シリコン薄膜04aに不純物が混入することがあるので、これを抑制するためである。   Here, the refractory metal layer 03 is a light absorption layer made of, for example, tungsten or molybdenum, and thereby lowers the irradiation energy density so that a wider area can be crystallized in a lump. The reason why the diffusion prevention layer 02 is provided is that the light absorption layer composed of the refractory metal layer 03 instantaneously becomes a temperature close to 2000 ° C. during melting, and impurities may be mixed into the amorphous silicon thin film 04a. It is for suppressing.

次に図1(b)に示すように、上記のように所望の膜厚以上(3μm)で形成し、連続波レーザ光を照射し走査して得た多結晶シリコン薄膜04bを、その後所望の膜厚(2μm)まで薄くし、膜厚2μmの多結晶シリコン薄膜04b’とする。   Next, as shown in FIG. 1 (b), a polycrystalline silicon thin film 04b formed by scanning with a continuous wave laser beam formed with a desired film thickness (3 μm) or more as described above is then obtained. The film is thinned to a film thickness (2 μm) to obtain a polycrystalline silicon thin film 04b ′ having a film thickness of 2 μm.

この実施例では、アルゴン(Ar)ガスを導入しながら、スパッタエッチング法により1μmの多結晶シリコン薄膜04bをエッチングした。この工程ではレーザ走査ラインの境界部に生じた突起部はエッチングされやすく凹凸が緩和された多結晶シリコン薄膜04b’が得られた。   In this example, the 1 μm thick polycrystalline silicon thin film 04b was etched by sputter etching while introducing argon (Ar) gas. In this step, a polycrystalline silicon thin film 04b 'in which protrusions formed at the boundary of the laser scanning line were easily etched and the unevenness was relaxed was obtained.

結晶粒の平均サイズを評価したところ、膜厚2μmで結晶化した場合には平均結晶粒面積は500μm2であったが、上記のように膜厚3μmで結晶化し、エッチングで2μmに薄くした場合には平均結晶粒面積は700μm2以上であった。 When the average size of crystal grains was evaluated, when crystallized at a film thickness of 2 μm, the average crystal grain area was 500 μm 2 , but when crystallized at a film thickness of 3 μm and thinned to 2 μm by etching as described above The average grain area was 700 μm 2 or more.

次いで、図1(c)に示すように、この膜厚2μmの多結晶シリコン薄膜04b’の上に、プラズマCVD法を用いてp型非晶質シリコン薄膜07を50nm形成した。この形成条件はSiH4:50ccm、B26:0.1ccmを含むH2の混合ガスを用い、基板温度300℃で形成した。 Next, as shown in FIG. 1C, a p-type amorphous silicon thin film 07 having a thickness of 50 nm was formed on the 2 μm-thick polycrystalline silicon thin film 04b ′ by plasma CVD. This formation was performed using a mixed gas of H 2 containing SiH 4 : 50 ccm and B 2 H 6 : 0.1 ccm at a substrate temperature of 300 ° C.

さらにスパッタ法によりITO膜からなる透明電極08を70nm形成した。   Further, a transparent electrode 08 made of an ITO film was formed to a thickness of 70 nm by sputtering.

上記により作製した光電変換素子について、その接合特性を調べた。その結果、上記スパッタエッチングを行わない場合のショート確率が15%であったのに対して、スパッタエッチングを行った場合には5%以下となり、大きな改善が見られた。   About the photoelectric conversion element produced by the above, the junction characteristic was investigated. As a result, the short-circuit probability when the sputter etching was not performed was 15%, but when the sputter etching was performed, it was 5% or less, which was a significant improvement.

本実施例では1つの素子の作製を行う場合について示したが、周知のマスク蒸着法や、レーザ加工技術により、下地電極と透明電極を直列につないだ集積型構造として作成する場合に適用できることはいうまでもない。   In this embodiment, the case of manufacturing one element is shown. However, it can be applied to a case where an integrated structure in which a base electrode and a transparent electrode are connected in series by a known mask vapor deposition method or a laser processing technique. Needless to say.

上記拡散防止層02は、SiN膜の他にも、SiO2膜、ZnO膜、SnO2膜、ITO膜、TiO2膜、SiON膜など、あるいはそれらの積層膜を用いることが有効であった。その膜厚も1μm以上望ましくは4μmまで厚くすることで耐熱性は大きく改善された。 For the diffusion prevention layer 02, it was effective to use a SiO 2 film, a ZnO film, a SnO 2 film, an ITO film, a TiO 2 film, a SiON film, or a laminated film thereof in addition to the SiN film. The heat resistance is greatly improved by increasing the film thickness to 1 μm or more, preferably 4 μm.

また、高融点金属層03としては、タンタル(Ta)、モリブデン(Mo)、タングステン(W)、クロム(Cr)など、融点が1500℃を超える金属あるいはその合金が有効であった。しかし、高融点金属でなくても、その上にさらに導電性のZnO膜、SnO2膜、ITO膜、TiO2膜などを100nm程度の膜厚に形成すれば結晶化は可能であった。 As the refractory metal layer 03, a metal having a melting point exceeding 1500 ° C., such as tantalum (Ta), molybdenum (Mo), tungsten (W), chromium (Cr), or an alloy thereof was effective. However, even if it is not a refractory metal, crystallization was possible if a conductive ZnO film, SnO 2 film, ITO film, TiO 2 film or the like was further formed thereon with a thickness of about 100 nm.

本実施例では、TFTの作製に用いた例を示す。   In this embodiment, an example used for manufacturing a TFT will be described.

図2において、異種基板09として30cm×40cmの長方形のガラス基板を用意し、拡散防止層10としてSiO2膜(50nm)/SiN膜(50nm)を形成した。その上に、リモートプラズマCVD法を用いて非晶質シリコン薄膜11aを、所望の膜厚以上である500nm形成した。この形成条件はSiH4:20ccmを含むArの混合ガスを用い、基板温度400℃で形成した。この条件では、i型の(アンドープ)非晶質シリコン薄膜11aが形成される。 In FIG. 2, a 30 cm × 40 cm rectangular glass substrate was prepared as the heterogeneous substrate 09, and a SiO 2 film (50 nm) / SiN film (50 nm) was formed as the diffusion preventing layer 10. On top of that, an amorphous silicon thin film 11a having a thickness of 500 nm or more was formed using a remote plasma CVD method. This formation was performed using a mixed gas of Ar containing SiH 4 : 20 ccm at a substrate temperature of 400 ° C. Under this condition, an i-type (undoped) amorphous silicon thin film 11a is formed.

次にソース、ドレインを形成するために非晶質シリコン薄膜11a中にリンをイオン注入法で導入した。   Next, phosphorus was introduced into the amorphous silicon thin film 11a by ion implantation to form a source and a drain.

その後、532nmの固体レーザ光源12からレーザ光13を光照射し、X方向に相対的に走査して結晶化させた。その結果、多結晶シリコン薄膜11bが形成された。固体レーザにはNd:YVO4の第二高調波を用いた。なお、このレーザには連続波を用いた。このレーザ光13の照射によって、非晶質シリコン薄膜11aは走査方向にラテラル成長した大粒径の多結晶シリコン薄膜11bとなった。 Thereafter, the laser beam 13 was irradiated from the 532 nm solid-state laser light source 12, and the crystal was crystallized by scanning relatively in the X direction. As a result, a polycrystalline silicon thin film 11b was formed. A second harmonic of Nd: YVO 4 was used for the solid-state laser. A continuous wave was used for this laser. By irradiation with this laser beam 13, the amorphous silicon thin film 11a became a polycrystalline silicon thin film 11b having a large particle diameter laterally grown in the scanning direction.

上記のようにシリコン薄膜を結晶化した後、本実施例では、次のように、さらに薄膜層を形成した後に薄くする。   After crystallizing the silicon thin film as described above, in this embodiment, the thin film layer is further formed and then thinned as follows.

すなわち、上記薄膜層としてホトレジスト膜(図示せず)を塗布し、熱処理により膜厚0.5μmに形成しスパッタリングによりエッチングして、所望の膜厚の50nmのシリコン薄膜を残した。これにより非常に大粒径のシリコン薄膜が形成された。   That is, a photoresist film (not shown) was applied as the thin film layer, formed to a film thickness of 0.5 μm by heat treatment, and etched by sputtering to leave a 50 nm silicon thin film having a desired film thickness. As a result, a silicon thin film having a very large particle diameter was formed.

さらに、ソース・ドレイン間にゲート絶縁膜を形成し、さらにその上にゲート電極を形成してTFT構造を完成した。   Further, a gate insulating film was formed between the source and the drain, and a gate electrode was further formed thereon to complete the TFT structure.

上記実施例では、非晶質シリコン薄膜04a、11aの成膜方法として触媒CVD法、リモートプラズマCVD法を用いた。しかし、シリコン薄膜の成膜方法としては、他の方法、例えば減圧熱CVD法、スパッタ法などのいずれであっても良い。ドーピングもリン(P)を用いたn型について示したが、本発明の方法はp型に対しても同様に使用できる。また、膜中に他の元素、水素、酸素、窒素、さらに、炭素やゲルマニウムなどが入った合金膜であっても良い。さらにニッケル(Ni)、クロム(Cr)などのシリコンの結晶化において触媒作用を持つ元素が混入されていることで、より結晶化が促進される。さらに、シリコン薄膜としては非晶質シリコン薄膜に限られるものではなく、微結晶シリコン薄膜、多結晶シリコン薄膜あるいはそれらを混合したもの等でも良い。むしろ処理すべき膜厚が厚い場合には、吸収係数が小さくなる結晶成分の多い膜が望ましい。   In the above embodiment, the catalytic CVD method and the remote plasma CVD method are used as the method for forming the amorphous silicon thin films 04a and 11a. However, as a method for forming the silicon thin film, any other method such as a low pressure thermal CVD method or a sputtering method may be used. Although doping is also shown for n-type using phosphorus (P), the method of the present invention can be used for p-type as well. Alternatively, an alloy film containing other elements, hydrogen, oxygen, nitrogen, carbon, germanium, or the like may be used. Furthermore, crystallization is further promoted by mixing elements having a catalytic action in crystallization of silicon such as nickel (Ni) and chromium (Cr). Furthermore, the silicon thin film is not limited to an amorphous silicon thin film, but may be a microcrystalline silicon thin film, a polycrystalline silicon thin film, or a mixture thereof. Rather, when the film thickness to be processed is thick, a film having a large crystal component with a small absorption coefficient is desirable.

レーザ光源05、12としては、必要な強度を有する連続波光源であればよい。たとえば、気体レーザ、半導体レーザも使用できる。波長としては、非晶質シリコン薄膜、あるいは結晶シリコン薄膜が吸収できる波長である必要がある。具体的には400nmから900nmを用いることができるが、下地材料への熱的ダメージを低減するには400nmから600nmが適切であった。この波長範囲であり、且つ十分な光強度が得られるならば、レーザ光は基本波でも、あるいは第二、第三高調波のような高調波でもよい。   The laser light sources 05 and 12 may be continuous wave light sources having a required intensity. For example, a gas laser or a semiconductor laser can be used. The wavelength needs to be a wavelength that can be absorbed by the amorphous silicon thin film or the crystalline silicon thin film. Specifically, 400 nm to 900 nm can be used, but 400 nm to 600 nm is appropriate for reducing thermal damage to the base material. The laser beam may be a fundamental wave or a harmonic such as the second and third harmonics as long as it is within this wavelength range and sufficient light intensity can be obtained.

レーザ結晶化は全面ではなく必要な部分のみであってよい。走査範囲の縮小と処理時間の短縮にメリットがある。   Laser crystallization may be performed only on necessary portions, not on the entire surface. There are advantages in reducing the scanning range and shortening the processing time.

また、結晶化後に形成する薄膜層の材料としては、上記実施例ではホトレジストを用いたが、他の材料、例えばシリコン、炭素などの半導体材料や、SiO2、SiN、Al23などの絶縁材料や、アルミニウム(Al)、銅(Cu)などの金属材料や、熱硬化性レジストなどの有機材料を用いることができる。その薄膜層の成膜方法としては、塗布法以外にも、CVD法、スパッタ法、蒸着法、スプレー法など通常の成膜法を用いることができる。もちろん、実施例中で示したように塗布法で形成するような平坦化効果のある材料と成膜方法の採用が望ましい。すなわち、実施例で示したようなホトレジストなどレジスト材料をスピナーにより塗布乾燥するような方法が特に好ましいことは言うまでもない。また、この薄膜層を薄くする方法としては、シリコンとその上の薄膜をともに除去できる手段であればいずれでもよい。プラズマエッチング、イオンエッチング、のような気相エッチングでも、あるいはウエットエッチングでもよいし、メカノケミカルエッチングや機械的な研磨法も使用できる。 Moreover, as the material of the thin film layer formed after crystallization, photoresist is used in the above embodiment, but other materials such as semiconductor materials such as silicon and carbon, and insulating materials such as SiO 2 , SiN, and Al 2 O 3 are used. A material, a metal material such as aluminum (Al) or copper (Cu), or an organic material such as a thermosetting resist can be used. As a method for forming the thin film layer, in addition to the coating method, a normal film forming method such as a CVD method, a sputtering method, a vapor deposition method, or a spray method can be used. Of course, as shown in the embodiments, it is desirable to use a material having a flattening effect and a film forming method that are formed by a coating method. That is, it is needless to say that a method of applying and drying a resist material such as a photoresist by a spinner as shown in the embodiments is particularly preferable. As a method of thinning the thin film layer, any means can be used as long as it can remove both silicon and the thin film thereon. Gas phase etching such as plasma etching or ion etching, or wet etching may be used, and mechanochemical etching or mechanical polishing may be used.

また結晶化後の薄膜層の薄膜形成及びその後のエッチング等による薄膜化を、部分的に行うことも有効である。たとえばSiO2で形成した薄膜の必要部分のみを除去して高品質なシリコン薄膜とすることは、その後の素子形成が容易になるだけでなく、他の領域においてはSiO2膜が保護膜として機能するメリットがある。 It is also effective to partially perform thin film formation of the thin film layer after crystallization and subsequent thinning by etching or the like. For example it is removed only necessary portions of the thin film formed of SiO 2 and high-quality silicon thin film, not only the subsequent device formation is facilitated, features SiO 2 film as a protective film in other regions There is merit to do.

本発明の実施例1における、結晶シリコン系半導体装置の作成過程を模式的に示したもので、(a)は所望の膜厚以上の非晶質シリコン薄膜を形成し、これをレーザ光照射により結晶化する工程を示す図、(b)は得られた多結晶シリコン薄膜をエッチングにより薄膜化する工程を示す図、(c)は電極を形成する工程を示す図である。FIG. 1 schematically shows a process for producing a crystalline silicon-based semiconductor device in Example 1 of the present invention. (A) shows forming an amorphous silicon thin film having a desired thickness or more by laser beam irradiation. The figure which shows the process of crystallizing, (b) is a figure which shows the process of thinning the obtained polycrystalline silicon thin film by an etching, (c) is a figure which shows the process of forming an electrode. 本発明の実施例2における、結晶シリコン系半導体装置の作製前半を示す模式図である。It is a schematic diagram which shows the production first half of the crystalline silicon type semiconductor device in Example 2 of this invention. 連続波レーザによる結晶化後の平均結晶粒面積のシリコン薄膜の膜厚への依存性を示す図である。It is a figure which shows the dependence to the film thickness of the silicon thin film of the average crystal grain area after crystallization by a continuous wave laser. 結晶化後のレーザ走査面に直交する向きに断面を取ったシリコン薄膜の表面プロファイルである。It is the surface profile of the silicon thin film which took the cross section in the direction orthogonal to the laser scanning surface after crystallization.

符号の説明Explanation of symbols

01、09 異種基板
02、10 拡散防止層
03 高融点金属層
04a、11a 非晶質シリコン薄膜
04b、11b 多結晶シリコン薄膜
04b’ 多結晶シリコン薄膜
05、12 固体レーザ光源
06、13 レーザ光
07 p型非晶質シリコン薄膜
08 透明電極
01, 09 Dissimilar substrate 02, 10 Diffusion prevention layer 03 High melting point metal layer 04a, 11a Amorphous silicon thin film 04b, 11b Polycrystalline silicon thin film 04b 'Polycrystalline silicon thin film 05, 12 Solid-state laser light source 06, 13 Laser light 07 p Type amorphous silicon thin film 08 transparent electrode

Claims (6)

異種基板上にシリコン薄膜を所望の膜厚以上に形成し、連続波レーザ光を照射し走査を行なうことによって該シリコン薄膜を結晶化し、その後、結晶化したシリコン薄膜を所望の膜厚まで薄くすることを特徴とする薄膜半導体装置の製造方法。   A silicon thin film is formed on a heterogeneous substrate to have a desired thickness or more, and the silicon thin film is crystallized by irradiating and scanning with a continuous wave laser beam, and then the crystallized silicon thin film is thinned to a desired thickness. A method for manufacturing a thin film semiconductor device. 請求項1に記載の薄膜半導体装置の製造方法において、
上記異種基板上に形成するシリコン薄膜の膜厚が、上記所望の膜厚の2倍以上であることを特徴とする薄膜半導体装置の製造方法。
In the manufacturing method of the thin film semiconductor device according to claim 1,
A method of manufacturing a thin film semiconductor device, wherein a film thickness of a silicon thin film formed on the heterogeneous substrate is at least twice the desired film thickness.
請求項1に記載の薄膜半導体装置の製造方法において、
上記異種基板上に形成するシリコン薄膜の膜厚が、上記所望の膜厚以上であり、且つ500nm以上であることを特徴とする薄膜半導体装置の製造方法。
In the manufacturing method of the thin film semiconductor device according to claim 1,
A method of manufacturing a thin film semiconductor device, wherein a thickness of a silicon thin film formed on the heterogeneous substrate is not less than the desired thickness and not less than 500 nm.
請求項1から3のいずれかに記載の薄膜半導体装置の製造方法において、
上記連続波レーザ光の波長が400nm以上600nm以下であることを特徴とする薄膜半導体装置の製造方法。
In the manufacturing method of the thin film semiconductor device in any one of Claim 1 to 3,
A method of manufacturing a thin film semiconductor device, wherein the wavelength of the continuous wave laser beam is 400 nm or more and 600 nm or less.
請求項1から4のいずれかに記載の薄膜半導体装置の製造方法において、
上記結晶化したシリコン薄膜を所望の膜厚まで薄くする前に、結晶化したシリコン薄膜の上にさらに薄膜層を形成し、その上で所望の膜厚まで薄くすることを特徴とする薄膜半導体装置の製造方法。
In the manufacturing method of the thin film semiconductor device according to claim 1,
Before thinning the crystallized silicon thin film to a desired film thickness, a thin film layer is further formed on the crystallized silicon thin film, and then the thin film semiconductor device is thinned to the desired film thickness. Manufacturing method.
請求項5に記載の薄膜半導体装置の製造方法において、
上記薄膜層を構成する材料は、ホトレジスト、半導体材料、無機絶縁材料、金属材料、有機材料、のいずれかであることを特徴とする薄膜半導体装置の製造方法。
In the manufacturing method of the thin film semiconductor device according to claim 5,
A method for manufacturing a thin film semiconductor device, wherein the material constituting the thin film layer is any one of a photoresist, a semiconductor material, an inorganic insulating material, a metal material, and an organic material.
JP2005072588A 2005-03-15 2005-03-15 Method for manufacturing thin film semiconductor device Expired - Fee Related JP4729953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005072588A JP4729953B2 (en) 2005-03-15 2005-03-15 Method for manufacturing thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005072588A JP4729953B2 (en) 2005-03-15 2005-03-15 Method for manufacturing thin film semiconductor device

Publications (2)

Publication Number Publication Date
JP2006261180A true JP2006261180A (en) 2006-09-28
JP4729953B2 JP4729953B2 (en) 2011-07-20

Family

ID=37100132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005072588A Expired - Fee Related JP4729953B2 (en) 2005-03-15 2005-03-15 Method for manufacturing thin film semiconductor device

Country Status (1)

Country Link
JP (1) JP4729953B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064819A (en) * 2007-09-04 2009-03-26 Hitachi Displays Ltd Liquid crystal display device
WO2014178203A1 (en) * 2013-05-02 2014-11-06 株式会社 東芝 Three-dimensional semiconductor device and production method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920383B2 (en) 2014-03-03 2016-05-18 トヨタ自動車株式会社 Method for manufacturing semiconductor device and semiconductor device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145717A (en) * 1989-10-31 1991-06-20 Kyocera Corp Manufacture of semiconductor element
JPH06163588A (en) * 1992-11-18 1994-06-10 Casio Comput Co Ltd Manufacture of thin-film transistor
JPH10106951A (en) * 1996-09-27 1998-04-24 Sharp Corp Semiconductor thin film, semiconductor device and manufacture of semiconductor thin film
JPH10261799A (en) * 1997-03-18 1998-09-29 Sony Corp Manufacture of semiconductor substrate and manufacture of semiconductor device
JPH11284196A (en) * 1998-03-27 1999-10-15 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JPH11288882A (en) * 1999-02-12 1999-10-19 Sony Corp Manufacture of polycrystalline semiconductor and manufacture of liquid crystal display device
JP2000357798A (en) * 1998-06-30 2000-12-26 Matsushita Electric Ind Co Ltd Thin-film transistor and its manufacture
JP2003203924A (en) * 2001-10-31 2003-07-18 Semiconductor Energy Lab Co Ltd Method for manufacturing field effect transistor
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03145717A (en) * 1989-10-31 1991-06-20 Kyocera Corp Manufacture of semiconductor element
JPH06163588A (en) * 1992-11-18 1994-06-10 Casio Comput Co Ltd Manufacture of thin-film transistor
JPH10106951A (en) * 1996-09-27 1998-04-24 Sharp Corp Semiconductor thin film, semiconductor device and manufacture of semiconductor thin film
JPH10261799A (en) * 1997-03-18 1998-09-29 Sony Corp Manufacture of semiconductor substrate and manufacture of semiconductor device
JPH11284196A (en) * 1998-03-27 1999-10-15 Semiconductor Energy Lab Co Ltd Manufacture of semiconductor device
JP2000357798A (en) * 1998-06-30 2000-12-26 Matsushita Electric Ind Co Ltd Thin-film transistor and its manufacture
JPH11288882A (en) * 1999-02-12 1999-10-19 Sony Corp Manufacture of polycrystalline semiconductor and manufacture of liquid crystal display device
JP2003203924A (en) * 2001-10-31 2003-07-18 Semiconductor Energy Lab Co Ltd Method for manufacturing field effect transistor
JP2003224070A (en) * 2001-11-26 2003-08-08 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064819A (en) * 2007-09-04 2009-03-26 Hitachi Displays Ltd Liquid crystal display device
WO2014178203A1 (en) * 2013-05-02 2014-11-06 株式会社 東芝 Three-dimensional semiconductor device and production method therefor

Also Published As

Publication number Publication date
JP4729953B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4814307B2 (en) Method for producing photovoltaic cells based on thin film silicon
TW515101B (en) Method for fabrication of field-effect transistor
KR101512785B1 (en) Method for manufacturing photoelectric conversion device
US5584941A (en) Solar cell and production process therefor
JP5508535B2 (en) Semiconductor thin film forming method, semiconductor device, semiconductor device manufacturing method, substrate, and thin film substrate
JPH03244136A (en) Manufacture of thin-film transistor
TW509968B (en) Method of forming polycrystalline semiconductor film
JP4729953B2 (en) Method for manufacturing thin film semiconductor device
US8704083B2 (en) Photoelectric conversion device and fabrication method thereof
JPS60202931A (en) Manufacture of semiconductor device
US8003423B2 (en) Method for manufacturing a poly-crystal silicon photovoltaic device using horizontal metal induced crystallization
JP2004342909A (en) Method of manufacturing crystal silicon-based thin film solar cell and solar cell formed using the same
JP2001156026A (en) Semiconductor elements and manufacturing method therefor
JP2006093212A (en) Method of forming polycrystal layer, semiconductor device, and its manufacturing method
JP2009021525A (en) Manufacturing method of polycrystalline silicon thin film, polycrystalline silicon thin film substrate and polycrystalline silicon thin film type solar battery
JP4586585B2 (en) Method for manufacturing thin film semiconductor device
JPH07326769A (en) Plane display use thin film transistor
JPH10226598A (en) Transparent conductive titanium oxide film and its production
WO2011161901A1 (en) Method for forming polycrystalline silicon thin film, polycrystalline silicon thin film substrate, silicon thin film solar cell, and silicon thin film transistor device
JP2001168363A (en) Method of manufacturing solar battery
JPH0282655A (en) Manufacture of photovolatic device
JP4534585B2 (en) Thin film semiconductor substrate and manufacturing method thereof
JPH10214790A (en) Production of thin silicon based semiconductor
JPH0562899A (en) Formation of semiconductor thin film
JP2001332494A (en) Semiconductor element and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees