JPH03145717A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH03145717A
JPH03145717A JP28413389A JP28413389A JPH03145717A JP H03145717 A JPH03145717 A JP H03145717A JP 28413389 A JP28413389 A JP 28413389A JP 28413389 A JP28413389 A JP 28413389A JP H03145717 A JPH03145717 A JP H03145717A
Authority
JP
Japan
Prior art keywords
film
amorphous
silicon
polycrystalline silicon
protective film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28413389A
Other languages
Japanese (ja)
Other versions
JP2799888B2 (en
Inventor
Kiyonari Tanaka
聖也 田中
Yoshiteru Nitta
新田 佳照
Noritoshi Yamaguchi
文紀 山口
Masatoki Tomita
賢時 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP28413389A priority Critical patent/JP2799888B2/en
Publication of JPH03145717A publication Critical patent/JPH03145717A/en
Application granted granted Critical
Publication of JP2799888B2 publication Critical patent/JP2799888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To form a semiconductor element having excellent characteristics by a method wherein, after an amorphous or polycrystalline silicon layer and a protective film are formed on an insulated substrate and a single crystal film is formed by projecting a laser beam, the surface part only of the protective film and the single crystal film is removed by etching, and a semiconductor element is formed on this part. CONSTITUTION:A base layer 2 such as a silicon oxide film, a silicon carbide film, an aluminum oxide film and the like are formed on an insulated substrate 1 consisting of quartz and the like, an amorphous or polycrystalline silicon film 3 is formed thereon, and besides, a protective film 4 such as silicon oxide, silicon nitride, silicon carbide and the like is formed thereon. Then, the silicon film 3 is single-crystallized by irradiating a laser beam. For example, plasma etching is conducted, and the surface part of the protective film 4 and the single-crystallized silicon film 3 are removed by etching.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体素子の製造方法に関し、特に非晶質又は
多結晶のシリコン膜にレーザ光を照射して単結晶化した
膜に半導体素子を形成する半導体素子の製造方法に関す
る。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device into a monocrystalline film by irradiating an amorphous or polycrystalline silicon film with a laser beam. The present invention relates to a method for manufacturing a semiconductor element.

(従来の技術) 従来から、絶縁基板上に形成した非晶質又は多結晶のシ
リコン膜にレーザ光を照射して単結晶化し、この単結晶
化した膜にトランジスタ等の半導体素子を形成すること
が提案されている。
(Prior art) Conventionally, an amorphous or polycrystalline silicon film formed on an insulating substrate is irradiated with laser light to become single crystallized, and semiconductor elements such as transistors are formed on this single crystallized film. is proposed.

例えば特公昭61−16758号公報には、絶縁基板上
に、酸化シリコン等から成る下地層、非晶質又は多結晶
のシリコン膜等から成る半導体薄膜、及び酸化シリコン
又は窒化シリコン等から成る保護膜を順次形成してレー
ザ光を照射することによりレーザ光の照射中に気相中か
ら半導体薄膜へ不純物が混入することを防いで良質の単
結晶化膜を形成することが開示されている。
For example, Japanese Patent Publication No. 61-16758 discloses that, on an insulating substrate, a base layer made of silicon oxide, etc., a semiconductor thin film made of amorphous or polycrystalline silicon film, etc., and a protective film made of silicon oxide or silicon nitride, etc. It is disclosed that a single crystallized film of good quality can be formed by sequentially forming a semiconductor thin film and irradiating it with laser light to prevent impurities from entering the semiconductor thin film from the gas phase during laser light irradiation.

ところが、この従来の半導体素子の製造方法では、非晶
質又は多結晶のシリコン膜から単結晶化膜を形成した後
に、保護膜だけをエツチング除去して半導体素子を形成
することから良好な半導体素子は得られ難いという問題
があった。
However, in this conventional semiconductor device manufacturing method, after a single crystallized film is formed from an amorphous or polycrystalline silicon film, only the protective film is etched away to form a semiconductor device, which makes it difficult to produce a good semiconductor device. The problem was that it was difficult to obtain.

即ち、非晶質又は多結晶のシリコン股上に酸化シリコン
膜や窒化シリコン膜等から成る保護膜を形成してレーザ
光を照射して単結晶化すると非晶質又は多結晶のシリコ
ン膜が溶融した際に保護膜自体の成分がシリコン膜中に
混入して、シリコン膜中に固溶したり、不純物として偏
析し、半導体素子の特性を低下させてしまうという問題
がある。
That is, when a protective film made of silicon oxide film, silicon nitride film, etc. is formed on amorphous or polycrystalline silicon and irradiated with laser light to form a single crystal, the amorphous or polycrystalline silicon film melts. In some cases, there is a problem in that components of the protective film itself mix into the silicon film and form a solid solution in the silicon film, or segregate as impurities, degrading the characteristics of the semiconductor element.

例えば、第2図に示すように、厚み5000人程度0非
晶質又は多結晶のシリコン股上に酸化シリコン等から成
る保護膜を形成してレーザ光を照射して単結晶化すると
単結晶化j摸の表面側の2000人程度1でに保護膜の
成分である酸化シリコン膜が固溶する。なぜなら、シリ
コン股上に保護膜を形成してレーザ光を照射するとシリ
コン膜が溶融したときに保護膜の成分がシリコン膜中に
拡散するが、シリコン膜は絶縁基板側から固化するため
に保護膜の成分がシリコン膜の上層側に偏析するためと
考えられる。尚、第2図はガラス基板上に、酸化シリコ
ンから成る下地層、非晶質シリコン膜、及び酸化シリコ
ンから成る保護膜を順次形成してレーザ光を照射して単
結晶化した単結晶化膜の酸素元素の含有度合をxps 
(X線光電子分光)で調べたものである。
For example, as shown in Fig. 2, if a protective film made of silicon oxide or the like is formed on amorphous or polycrystalline silicon with a thickness of about 5,000 layers, and then irradiated with laser light to form a single crystal, it becomes a single crystal. The silicon oxide film, which is a component of the protective film, dissolves into solid solution at about 2,000 layers on the surface side of the screen. This is because when a protective film is formed on the silicon crotch and irradiated with laser light, the components of the protective film will diffuse into the silicon film when it melts, but since the silicon film solidifies from the insulating substrate side, the protective film This is thought to be because the components are segregated on the upper layer side of the silicon film. Figure 2 shows a single-crystalline film in which a base layer made of silicon oxide, an amorphous silicon film, and a protective film made of silicon oxide are sequentially formed on a glass substrate and then irradiated with laser light to form a single crystal. xps
(X-ray photoelectron spectroscopy).

従って、上述のようにして単結晶化膜を形成した後に、
保護膜だけを工・シチング除去してトランジスタを形成
しても、この単結晶化膜は多量の酸素元素を含有してお
り、特性の良好なトランジスタは側底形成できないので
ある。
Therefore, after forming the single crystallized film as described above,
Even if a transistor is formed by etching and removing only the protective film, this single crystallized film contains a large amount of oxygen element, and a transistor with good characteristics cannot be formed at the bottom.

(発明の目的) 本発明は、このような従来技術の問題点に鑑みて案出さ
れたものであり、保護膜を被着した非晶質又は多結晶の
シリコン膜にレーザ光を照射して単結晶化した単結晶化
膜にも、特性の良好な半導体素子を形成することができ
る半導体素子の製造方法を提供することを目的とするも
のである。
(Object of the Invention) The present invention has been devised in view of the problems of the prior art, and involves irradiating a laser beam onto an amorphous or polycrystalline silicon film coated with a protective film. It is an object of the present invention to provide a method for manufacturing a semiconductor element that can form a semiconductor element with good characteristics even in a single crystallized film.

(問題点を解決するための手段) 本発明に係る半導体素子の製造方法によれば、絶縁基板
上に、非晶質又は多結晶のシリコン層と保護膜を形成し
てレーザ光を照射して非晶質又は多結晶のシリコン膜を
溶融・固化させることにより単結晶化膜を形成し、この
単結晶化膜に半導体4□ 素子を形成する半導体素子の形成方法において、前記非
晶質又は多結晶のシリコン膜から単結晶化膜を形成した
後、前記保護膜及び単結晶化膜の表面部分のみをエツチ
ング除去し、このエツチング除去した部位に半導体素子
を形成することを特徴とする半導体素子の製造方法が提
供され、そのことにより上記目的が達成される。
(Means for Solving the Problems) According to the method for manufacturing a semiconductor device according to the present invention, an amorphous or polycrystalline silicon layer and a protective film are formed on an insulating substrate and irradiated with laser light. In a method for forming a semiconductor element, in which a single crystallized film is formed by melting and solidifying an amorphous or polycrystalline silicon film, and a semiconductor element is formed on this single crystallized film, the amorphous or polycrystalline silicon film is melted and solidified. After a single crystallized film is formed from a crystalline silicon film, only the surface portions of the protective film and the single crystallized film are etched away, and a semiconductor element is formed in the etched portion. A manufacturing method is provided, by which the above objectives are achieved.

(実施例) 以下、本発明を添付図面に基づき詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail based on the accompanying drawings.

第1図〈■〜(e)は、本発明に係る半導体素子の製造
方法の一美hfj、例を説明するための工程を示すIA
であり、1は絶縁基板、2は下地層、3は非晶質又は多
結晶のシリコン膜、4は保護膜である。
FIG. 1 (■) to (e) show steps for explaining an example of the method for manufacturing a semiconductor device according to the present invention.
1 is an insulating substrate, 2 is a base layer, 3 is an amorphous or polycrystalline silicon film, and 4 is a protective film.

まず、絶縁基板1を用意する(第1図(a)参照〉。First, an insulating substrate 1 is prepared (see FIG. 1(a)).

この絶縁基板1は、#7059ガラス基板や石英基板で
構成される。
This insulating substrate 1 is made of a #7059 glass substrate or a quartz substrate.

前記絶縁基板1」二に、下地層2を形成する(同図((
へ)参照)。この下地層2は、レーザビームを照射した
際に、非晶質又は多結晶のシリコン膜3が基板1から汚
染されるのを防止したり、非晶質又は多結晶のシリコン
膜が溶融して固化する際の絶縁基板1とシリコン膜3と
の熱膨張率の差に起因する熱衝撃を緩和するために設け
られる。このような下地層2としては、例えば酸化シリ
コン(SiO2)、炭化シリコン(SiC)、酸化アル
ミニウム(A l 203 ’)膜などが好適に用いら
れる。
A base layer 2 is formed on the insulating substrate 1'' (see figure (()).
). This base layer 2 prevents the amorphous or polycrystalline silicon film 3 from being contaminated by the substrate 1 and prevents the amorphous or polycrystalline silicon film from melting when irradiated with a laser beam. It is provided to alleviate thermal shock caused by the difference in thermal expansion coefficient between the insulating substrate 1 and the silicon film 3 during solidification. As such a base layer 2, for example, silicon oxide (SiO2), silicon carbide (SiC), aluminum oxide (Al203') film, etc. are suitably used.

この下地層2は、厚みが0.05〜10μm程度に形成
され、酸化シリコン膜と炭化シリコン膜で形成する場合
は、例えばプラズマCVD法で形成され、酸化アルミニ
ウム膜で形成する場合は、例えばスパッタリング法で形
成される。
This base layer 2 is formed to have a thickness of about 0.05 to 10 μm, and when it is formed from a silicon oxide film and a silicon carbide film, it is formed by, for example, a plasma CVD method, and when it is formed from an aluminum oxide film, it is formed by, for example, sputtering. Formed by law.

前記下地層2上に、非晶質又は多結晶のシリコン膜3を
形成する(同図(c)参照〉。下地層2」−に、非晶質
シリコン膜を形成する場合は、プラズマCVl)法で形
成され、多結晶シリコン膜を形成する場合は、減圧CV
D法で形成される。この非晶質又は多結晶のシリコンW
A3を形成すると同時に、ドナー又はアクセプターとな
る不純物を含有させておくとよい。即ち、非晶質又は多
結晶の半導体6□ 膜を形成する際にドナー成分を含有させておくと、後述
するトランジスタを形成する場合に不純物の拡散工程を
省略することができ、工程を著しく簡略化することがで
きる。このように非晶質又は多結晶のシリコン膜3を形
成すると同時に、ドナー又はアクセプターとなる不純物
を含有させるためには、B2Hr、/SiHガスを用い
て非晶質又は多結晶のシリコン膜を形成することにより
p型半導体層を形成するか、またP H:+ / S 
iHaガスを用いて非晶質又は多結晶のシリコン膜を形
成することによりn型半導体層を形成すればよい。なお
、この非晶質又は多結晶のシリコン膜3は、厚み0.0
5〜2μm程度に形成される。
An amorphous or polycrystalline silicon film 3 is formed on the base layer 2 (see figure (c)). When an amorphous silicon film is formed on the base layer 2, plasma CVl) is applied. When forming a polycrystalline silicon film, low pressure CV
Formed by method D. This amorphous or polycrystalline silicon W
It is preferable to contain an impurity that becomes a donor or acceptor at the same time as A3 is formed. In other words, if a donor component is included when forming an amorphous or polycrystalline semiconductor 6□ film, the impurity diffusion step can be omitted when forming a transistor, which will be described later, and the process can be significantly simplified. can be converted into In this way, in order to form an amorphous or polycrystalline silicon film 3 and at the same time contain impurities that will serve as donors or acceptors, an amorphous or polycrystalline silicon film is formed using B2Hr, /SiH gas. A p-type semiconductor layer is formed by
The n-type semiconductor layer may be formed by forming an amorphous or polycrystalline silicon film using iHa gas. Note that this amorphous or polycrystalline silicon film 3 has a thickness of 0.0
It is formed to have a thickness of about 5 to 2 μm.

この非晶質又は多結晶のシリコン膜3上に、保護膜4を
形成する(同図(C)参照)、この保護膜4は、非晶質
又は多結晶のシリコン膜3を溶融・固化させて単結晶化
する際に、気相中からシリコン膜3に不純物が混入する
のを防止したり、シリコン膜3の表面が平坦度を維持で
きるようにするために設ける。この保護膜4は、酸化シ
リコン、窒化シリコン、炭化シリコン等で厚み100人
〜lOμm程度に形成される。この保護膜4を酸化シリ
コン、窒化シリコン、炭化シリコンで形成する場合は、
いずれも従来周知のプラズマCVD法で形成する。
A protective film 4 is formed on this amorphous or polycrystalline silicon film 3 (see figure (C)). This protective film 4 is formed by melting and solidifying the amorphous or polycrystalline silicon film 3. This layer is provided to prevent impurities from entering the silicon film 3 from the gas phase and to maintain the flatness of the surface of the silicon film 3 during single crystallization. This protective film 4 is formed of silicon oxide, silicon nitride, silicon carbide, etc. to a thickness of about 100 μm to 10 μm. When this protective film 4 is formed of silicon oxide, silicon nitride, or silicon carbide,
Both are formed by the conventionally well-known plasma CVD method.

次に、前記保護膜4側から、若しくは絶縁基板1側から
レーザ光を照射して非晶質又は多結晶のシリコン膜3を
単結晶化する(同図■参照)。非晶質又は多結晶のシリ
コン膜3を単結晶化するには、0.1〜20Wの出力の
連続波アルゴンレーザを走査速度0−5〜20cm/s
ecで照射して非晶質又は多結晶のシリコン膜3を溶融
・固化させて単結晶化する。
Next, the amorphous or polycrystalline silicon film 3 is made into a single crystal by irradiating laser light from the protective film 4 side or from the insulating substrate 1 side (see (2) in the same figure). To make the amorphous or polycrystalline silicon film 3 into a single crystal, use a continuous wave argon laser with an output of 0.1 to 20 W at a scanning speed of 0 to 20 cm/s.
The amorphous or polycrystalline silicon film 3 is melted and solidified by ec irradiation to form a single crystal.

次に、前記保護膜4及び単結晶化したシリコン膜3′の
表面部分をエツチング除去する(同図(→参照)、この
エツチングは、1〜10%のフッ硝酸溶液(HNO3+
HF)中に数秒〜数分程度浸漬することにより行ったり
、プラズマエツチングすることにより行う、尚、単結晶
化した膜の表面部分の除去量は、単結晶化時の条件によ
っても異なるが、通常500〜3000λ程度除去すれ
ばよい。
Next, the surface portions of the protective film 4 and the single-crystal silicon film 3' are removed by etching (see the same figure (→)).
HF) for several seconds to several minutes, or by plasma etching.The amount of surface portion of the single crystallized film to be removed varies depending on the conditions at the time of single crystallization, but is usually It is sufficient to remove about 500 to 3000λ.

次に、上述のようにして形成した単結晶化膜3゜にトラ
ンジスタを形成する。この単結晶化膜3′は予めドナー
又はアクセプターとなる不純物を含有していることから
、トランジスタを形成するに際しては、この単結晶化膜
3′上に逆導電型不純物をイオン注入法や熱拡散法によ
って拡散させるだけでよいが、低温工程で半導体素子を
形成するには、単結晶化膜3′上にプラズマCVD法で
非晶質又は微結晶のシリコン膜を堆積するのが好適であ
る。この場合も不純物を含有したシランガスで形成する
ことができ、不純物の拡散工程を省略することができる
Next, a transistor is formed on the single crystallized film 3° formed as described above. Since this single-crystalline film 3' contains impurities that serve as donors or acceptors in advance, when forming a transistor, impurities of opposite conductivity are added onto this single-crystalline film 3' by ion implantation or thermal diffusion. However, in order to form a semiconductor element in a low-temperature process, it is preferable to deposit an amorphous or microcrystalline silicon film on the single crystallized film 3' by a plasma CVD method. In this case as well, it can be formed using silane gas containing impurities, and the step of diffusing impurities can be omitted.

このように単結晶化膜の表面側をエツチング除去してn
チャンネルMO3)ランジスタを形成すると112cm
2/V・Sと極めて移動度の速い電界効果型トランジス
タを得ることができ、従来の保護膜だけを除去した単結
晶化膜にトランジスタを形成した場合の7cm2/V・
Sに比べて約16倍の移動度を有するl〜ランジスタを
形成することができる。
In this way, the surface side of the single crystallized film is etched away and n
Channel MO3) 112cm when transistor is formed
It is possible to obtain a field-effect transistor with an extremely high mobility of 2/V・S, and the mobility is 7 cm2/V・S when a transistor is formed on a single crystal film with only the conventional protective film removed.
It is possible to form an l~ transistor having a mobility about 16 times that of S.

(発明の効果) 以上のように、本発明に係る半導体素子の製造方法によ
れば、非晶質又は多結晶のシリコン膜から単結晶化膜を
形成して、保護膜及び単結晶化膜の表面部分をエツチン
グ除去し、このエツチング除去した部位の単結晶化膜に
半導体素子を形成することから、この単結晶化膜には単
結晶化時に表面側に偏析した保護膜からの汚染物質をほ
とんど含有しておらず、もって頗る高特性の半導体素子
を形成することができる。
(Effects of the Invention) As described above, according to the method for manufacturing a semiconductor device according to the present invention, a single crystallized film is formed from an amorphous or polycrystalline silicon film, and a protective film and a single crystallized film are formed. Since the surface portion is removed by etching and a semiconductor element is formed on the single crystallized film in the etched portion, this single crystallized film contains almost no contaminants from the protective film that segregated on the surface side during single crystallization. It is possible to form a semiconductor element with extremely high characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(0は本発明に係る半導体素子の製造方
法の製造工程を示す図、第2図は単結晶化膜中の酸素元
素の混入状態を示す図である。 1、絶縁基板    2、下地層 3、シリコン膜   3゛、単結晶化膜4、保護膜 0 第 1 図 第2図 表面側 4「−−5ooo入 基板側 エツチング時間(min。 )
FIGS. 1(a) to (0) are diagrams showing the manufacturing process of the method for manufacturing a semiconductor device according to the present invention, and FIG. 2 is a diagram showing the state of mixing of oxygen elements in a single crystallized film. 1. Insulation Substrate 2, base layer 3, silicon film 3゛, single crystallized film 4, protective film 0 Figure 1 Figure 2 Figure 2 Surface side 4''--5ooo Etching time on substrate side (min.)

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上に、非晶質又は多結晶のシリコン膜と保護
膜を形成してレーザ光を照射して非晶質又は多結晶のシ
リコン膜を溶融・固化させることにより単結晶化膜を形
成し、この単結晶化膜に半導体素子を形成する半導体素
子の製造方法において、前記非晶質又は多結晶のシリコ
ン膜から単結晶化膜を形成した後、前記保護膜及び単結
晶化膜の表面部分をエッチング除去し、このエッチング
除去した部位に半導体素子を形成することを特徴とする
半導体素子の製造方法。
A monocrystalline film is formed by forming an amorphous or polycrystalline silicon film and a protective film on an insulating substrate and irradiating the film with laser light to melt and solidify the amorphous or polycrystalline silicon film. In this method of manufacturing a semiconductor device in which a semiconductor element is formed on a single crystallized film, after forming a single crystallized film from the amorphous or polycrystalline silicon film, the surface portion of the protective film and the single crystallized film is 1. A method for manufacturing a semiconductor device, comprising: etching away the removed portion, and forming a semiconductor device in the etched away portion.
JP28413389A 1989-10-31 1989-10-31 Method for manufacturing semiconductor device Expired - Fee Related JP2799888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28413389A JP2799888B2 (en) 1989-10-31 1989-10-31 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28413389A JP2799888B2 (en) 1989-10-31 1989-10-31 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH03145717A true JPH03145717A (en) 1991-06-20
JP2799888B2 JP2799888B2 (en) 1998-09-21

Family

ID=17674596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28413389A Expired - Fee Related JP2799888B2 (en) 1989-10-31 1989-10-31 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2799888B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195792A (en) * 1998-12-25 2000-07-14 Fujitsu Ltd Manufacture of semiconductor device
JP2003178979A (en) * 2001-08-30 2003-06-27 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2006261180A (en) * 2005-03-15 2006-09-28 Hitachi Cable Ltd Method of manufacturing thin-film semiconductor device
JP2007059601A (en) * 2005-08-24 2007-03-08 Sharp Corp Manufacturing method of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195792A (en) * 1998-12-25 2000-07-14 Fujitsu Ltd Manufacture of semiconductor device
JP2003178979A (en) * 2001-08-30 2003-06-27 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
JP2006261180A (en) * 2005-03-15 2006-09-28 Hitachi Cable Ltd Method of manufacturing thin-film semiconductor device
JP4729953B2 (en) * 2005-03-15 2011-07-20 日立電線株式会社 Method for manufacturing thin film semiconductor device
JP2007059601A (en) * 2005-08-24 2007-03-08 Sharp Corp Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP2799888B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
EP0141506A2 (en) Method for producing a semiconductor structure
JPH0454370B2 (en)
JPH03145717A (en) Manufacture of semiconductor element
JPH0343769B2 (en)
JP2731236B2 (en) Method of manufacturing semiconductor device having thin film crystal layer
JPH0411722A (en) Forming method of semiconductor crystallized film
JP2010251523A (en) Method of manufacturing partial soi wafer
JPH09266214A (en) Silicon wafer
JP2817613B2 (en) Method for forming crystalline silicon film
JP2838155B2 (en) Method for manufacturing thin film transistor
JPH0969526A (en) Production of semiconductor device
JPS5983993A (en) Growth of semiconductor layer of single crystal
JPH0236052B2 (en)
JPH07106246A (en) Formation of polycrystalline silicon thin film
JPS5919312A (en) Manufacture of semiconductor device
JP2699329B2 (en) Method of forming single crystal thin film
JPH03109718A (en) Manufacture of single crystalline semiconductor thin film
JPH03284831A (en) Forming method for semiconductor thin-film
JPH0324736A (en) Forming method of semiconductor thin film
JPH0388323A (en) Manufacture of single crystal semiconductor thin film
JPS62247518A (en) Manufacture of semiconductor device
JPH05152180A (en) Semiconductor device and its manufacture
JP2699347B2 (en) Semiconductor substrate manufacturing method
JPS5928326A (en) Preparation of member for three-dimensional integrated circuit
JPS58112333A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees