JP2006258616A - Method of evaluating orientation degree, rare-earth sintered magnet and its manufacturing method - Google Patents

Method of evaluating orientation degree, rare-earth sintered magnet and its manufacturing method Download PDF

Info

Publication number
JP2006258616A
JP2006258616A JP2005076732A JP2005076732A JP2006258616A JP 2006258616 A JP2006258616 A JP 2006258616A JP 2005076732 A JP2005076732 A JP 2005076732A JP 2005076732 A JP2005076732 A JP 2005076732A JP 2006258616 A JP2006258616 A JP 2006258616A
Authority
JP
Japan
Prior art keywords
rare earth
orientation
sintered magnet
degree
earth sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005076732A
Other languages
Japanese (ja)
Inventor
Tokuji Sakamoto
篤司 坂本
Eiji Kato
英治 加藤
Koichi Nishizawa
剛一 西澤
Tsutomu Ishizaka
力 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005076732A priority Critical patent/JP2006258616A/en
Publication of JP2006258616A publication Critical patent/JP2006258616A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of evaluating an orientation degree capable of accurately evaluating the orientation degree in a macroscopic region, and to achieve a rare-earth sintered magnet whose whole orientation degree is high and which is excellent in magnetization characteristic or the like. <P>SOLUTION: A molding obtained by compressively molding rare-earth alloy powder or its sintered compact is equally divided into odd number of pieces, and X-ray diffraction processes are applied on the divided pieces of the center section and the outermost section, and then orientation degrees of respective divided pieces are calculated by using a Lotgering method, thereby evaluating variations in the orientation degrees. When calculating them, vector compensation is applied on X-ray diffraction intensity of each diffraction peak. In the rare-earth sintered magnet, the difference of calculated orientation degree subjected to the vector compensation between the divided piece of the center section and the divided piece of the outermost section is 1.5% or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、希土類合金粉末を圧縮成形した成形体や焼結体(希土類焼結磁石)の配向度を的確に評価するための配向度評価方法に関するものであり、さらには、前記評価方法に基づいて規定された希土類焼結磁石及びその製造方法に関する。   The present invention relates to an orientation degree evaluation method for accurately evaluating the degree of orientation of a compact or sintered body (rare earth sintered magnet) obtained by compression molding rare earth alloy powder, and further, based on the evaluation method. The present invention relates to a rare earth sintered magnet and its manufacturing method.

希土類焼結磁石、例えばNd−Fe−B系焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であること等の利点を有することから、近年、その需要は益々拡大する傾向にある。   Rare earth sintered magnets, for example, Nd-Fe-B based sintered magnets have advantages such as excellent magnetic properties, Nd as a main component is abundant in resources, and is relatively inexpensive. In recent years, the demand has been increasing.

希土類焼結磁石の製造方法としては、粉末冶金法が知られており、低コストでの製造が可能なことから、広く用いられている。粉末冶金法では、先ず、原料合金インゴットを粗粉砕及び微粉砕し、粒径が数μm程度の希土類合金粉末を得る。このようにして得られた希土類合金粉末を配向磁界を印加した状態で圧縮成形し、希土類合金粉末が所定の方向に配向された成形体を得る。その後、前記成形体を真空中、又は不活性ガス雰囲気中で焼結し、さらに時効処理を行う。   As a method for producing a rare earth sintered magnet, a powder metallurgy method is known and widely used because it can be produced at low cost. In the powder metallurgy method, first, a raw material alloy ingot is roughly pulverized and finely pulverized to obtain a rare earth alloy powder having a particle size of about several μm. The rare earth alloy powder thus obtained is compression-molded with an orientation magnetic field applied to obtain a molded body in which the rare earth alloy powder is oriented in a predetermined direction. Thereafter, the compact is sintered in vacuum or in an inert gas atmosphere, and further subjected to an aging treatment.

前述の希土類焼結磁石においては、希土類合金粉末の配向度が特性に大きな影響を及ぼすことが知られており、希土類焼結磁石の製造に際しては、前記配向度をできる限り高くすることが望まれる。このような観点から、希土類焼結磁石の配向度を改善するための技術が種々提案されている(例えば、特許文献1や特許文献2等を参照)。   In the rare earth sintered magnet described above, it is known that the degree of orientation of the rare earth alloy powder has a great effect on the characteristics, and it is desired to make the degree of orientation as high as possible when manufacturing the rare earth sintered magnet. . From such a viewpoint, various techniques for improving the degree of orientation of the rare earth sintered magnet have been proposed (see, for example, Patent Document 1 and Patent Document 2).

例えば、特許文献1では、配向度を向上させるためには、初期配向(成形時の配向)が重要であり、磁気凝集を抑制する添加剤、例えば鉱物油を加え、0.15〜0.5ton/cmで成形することにより、磁石の配向度を向上させることが提案されている。そして、X線回折(Cuターゲットを使用)した時、RFe14B金属間化合物における(006)面と(105)面とのX線回折強度比:I(006)/I(105)が1.2以上であり、24℃で測定した残留磁束密度Brと飽和磁化Msとの比で定義する配向度(Br/Ms)が95%以上であり且つ最大エネルギー積(BH)maxが48.7MGOe以上である希土類焼結磁石が開示されている。 For example, in Patent Document 1, in order to improve the degree of orientation, initial orientation (orientation at the time of molding) is important, and an additive that suppresses magnetic aggregation, such as mineral oil, is added, and 0.15 to 0.5 ton. It has been proposed to improve the degree of orientation of the magnet by molding at / cm 3 . When X-ray diffraction (using a Cu target) is performed, the X-ray diffraction intensity ratio between the (006) plane and the (105) plane in the R 2 Fe 14 B intermetallic compound: I (006) / I (105) is The orientation degree (Br / Ms) defined by the ratio of the residual magnetic flux density Br measured at 24 ° C. and the saturation magnetization Ms is 95% or more, and the maximum energy product (BH) max is 48. A rare earth sintered magnet of 7 MGOe or more is disclosed.

一方、特許文献2においては、キャビティ空間を構成する面部分の飽和磁化とキャビティへの充填密度を規定することで、配向度を改善することが提案されている。具体的には、異方性焼結磁石製造の成形工程において、ダイス、上パンチおよび下パンチからなる金型部材の少なくともキャビティ空間を構成する面部分を、飽和磁化4πIsが500〜12000ガウスの磁性を有し、かつ、前記飽和磁化4πIsの値をMp、成形される永久磁石粉末の印加磁場での磁化の値をMm、密度をDm、永久磁石粉末のキャビティへの充填密度をDc、加圧が進行して配向磁場による永久磁石粉末の回転が生じなくなる時の成形密度をDrとした時に、0.7×Mm×Dc/Dm<Mp<1.3×Mm×Dr/Dmなる関係を満足する磁性を有する金属材料として、前記ダイス、上パンチおよび下パンチからなる金型のキャビティ内に永久磁石を供給し、該永久磁石粉末の容易磁化方向を配向させるための磁場を印加し、更に圧縮を行うことが開示されている。
特許第3209380号公報 特許第3526493号公報
On the other hand, in Patent Document 2, it is proposed to improve the degree of orientation by defining the saturation magnetization of the surface portion constituting the cavity space and the packing density in the cavity. Specifically, in the molding process of manufacturing an anisotropic sintered magnet, at least the surface portion of the die member composed of a die, an upper punch, and a lower punch has a saturation magnetization 4πIs of 500 to 12,000 Gauss. And the saturation magnetization 4πIs value is Mp, the magnetization value of the molded permanent magnet powder is Mm, the density is Dm, the filling density into the cavity of the permanent magnet powder is Dc, and pressurization Satisfying the relationship of 0.7 × Mm × Dc / Dm <Mp <1.3 × Mm × Dr / Dm, where Dr is the molding density when rotation of the permanent magnet powder due to the orientation magnetic field does not occur due to the progress of As a metal material having magnetism, a permanent magnet is supplied into a cavity of a die composed of the die, upper punch, and lower punch, and a magnetic field is applied to orient the easy magnetization direction of the permanent magnet powder. And, it is disclosed that further compresses.
Japanese Patent No. 3209380 Japanese Patent No. 3526493

しかしながら、これら特許文献記載の技術では、部分的な配向度を評価しているにすぎず、例えば希土類焼結磁石全体の配向度の分布等については何ら考慮されていない。その結果、希土類焼結磁石全体で見たときに、必ずしも十分な特性を有する希土類焼結磁石が実現されているとは限らない。   However, in the techniques described in these patent documents, only a partial orientation degree is evaluated, and for example, no consideration is given to the orientation degree distribution of the entire rare earth sintered magnet. As a result, a rare earth sintered magnet having sufficient characteristics is not always realized when viewed as a whole of the rare earth sintered magnet.

本発明は、このような従来の実情に鑑みて提案されたものであり、先ず第1に、希土類合金粉末を成形した成形体や、これを焼結して得られる希土類焼結磁石について、マクロな領域での配向度を的確に評価し得る配向度評価方法を提供することを目的とする。また、第2に、前記配向度評価方法に基づいて的確に選定することで、例えば薄型形状である場合等においても、全体の配向度が高く、着磁特性等に優れた希土類焼結磁石を提供することを目的とする。さらに、第3に、部分的に配向度が良くなるのではなく、全体の配向度を上げることができ、マクロな領域で配向度が高い希土類焼結磁石を得ることができ、さらには効率的に原料を利用することが可能な希土類焼結磁石の製造方法を提供することを目的とする。   The present invention has been proposed in view of such a conventional situation, and firstly, regarding a molded body obtained by molding a rare earth alloy powder and a rare earth sintered magnet obtained by sintering the molded body, It is an object of the present invention to provide an orientation degree evaluation method capable of accurately evaluating the orientation degree in a proper region. Secondly, a rare earth sintered magnet having a high overall orientation degree and excellent magnetizing characteristics, for example, even in the case of a thin shape, can be selected by appropriately selecting based on the orientation degree evaluation method. The purpose is to provide. Third, the degree of orientation is not partially improved, but the overall degree of orientation can be increased, and a rare earth sintered magnet having a high degree of orientation can be obtained in a macro region, and more efficiently. Another object of the present invention is to provide a method for producing a rare earth sintered magnet capable of using raw materials.

前述の目的を達成するために、本発明の配向度評価方法は、希土類合金粉末が圧縮成形された成形体またはその焼結体を奇数個に等分割し、中央部分の分割片と最外部の分割片についてX線回折を行った後、ロットゲーリング法により各分割片の配向度を算出して配向度のばらつきを評価することを特徴とする。   In order to achieve the above-mentioned object, the orientation degree evaluation method of the present invention is to equally divide a molded body in which a rare earth alloy powder is compression-molded or a sintered body thereof into odd-numbered parts, and to divide the central piece and the outermost part. After performing X-ray diffraction on the divided pieces, the degree of orientation of each divided piece is calculated by the Lotgering method to evaluate the variation in the degree of orientation.

また、本発明の希土類焼結磁石は、希土類合金粉末の焼結体からなる希土類焼結磁石であって、奇数個に等分割された分割片のうち、中央部分の分割片と最外部の分割片において、各回折ピークのX線回折強度をベクトル補正した後、ロットゲーリング法により算出される配向度の差が1.5%以下であることを特徴とする。   The rare earth sintered magnet of the present invention is a rare earth sintered magnet made of a sintered body of rare earth alloy powder, and among the divided pieces equally divided into an odd number, the divided piece in the central portion and the outermost divided piece The piece is characterized in that, after vector correction of the X-ray diffraction intensity of each diffraction peak, the difference in orientation degree calculated by the Lotgering method is 1.5% or less.

さらに、本発明の希土類焼結磁石の製造方法は、希土類合金粉末を圧縮成形して所定の形状の成形体とし、当該成形体を焼結して希土類焼結磁石とするに際し、前記成形の際に所定の方向に配向磁界を印加するとともに、当該配向磁界方向における両端部分を切除することを特徴とする。   Furthermore, the method for producing a rare earth sintered magnet according to the present invention includes compression molding of rare earth alloy powder to form a molded body having a predetermined shape, and sintering the molded body to form a rare earth sintered magnet. An orientation magnetic field is applied in a predetermined direction, and both end portions in the orientation magnetic field direction are cut off.

X線回折により希土類焼結磁石を評価することは、例えば特許文献1等においても行われている。ただし、前記特許文献1記載の発明では、RFe14B金属間化合物における(006)面と(105)面とのX線回折強度比を求めることで評価を行っており、いずれかの測定点において、いわばミクロな領域での配向度を見ているにすぎない。 Evaluation of rare earth sintered magnets by X-ray diffraction is also performed, for example, in Patent Document 1. However, in the invention described in Patent Document 1, evaluation is performed by determining the X-ray diffraction intensity ratio between the (006) plane and the (105) plane in the R 2 Fe 14 B intermetallic compound, and any measurement is performed. In that respect, it is merely looking at the degree of orientation in a microscopic region.

本発明の配向度評価方法においては、奇数分割した分割片のうち、中央部分の分割片と最外部の分割片のそれぞれについてロッドゲーリング法により配向度を算出し、これを比較している。したがって、成形体や焼結体(希土類焼結磁石)のマクロな領域、すなわち成形体や焼結体の全体における配向度の分布が把握され、その良否が判断される。   In the orientation degree evaluation method of the present invention, the degree of orientation is calculated by the rod-gering method for each of the odd-numbered divided pieces, the central piece and the outermost divided piece, and these are compared. Therefore, the distribution of the degree of orientation in the macro region of the compact or sintered body (rare earth sintered magnet), that is, the entire compact or sintered body is grasped, and its quality is judged.

なお、前記ロットゲーリング法により配向度を算出するに際しては、各回折ピークのX線回折強度についてベクトル補正を行うことで、精度が飛躍的に高まる。ロッドゲーリング法における計算では、配向方向、すなわち(00l)反射の成分のみが積算され、これとは異なる方向のX線回折強度については、これとは垂直方向、すなわち(hk0)反射の成分と判断される。したがって、実際の配向度に比べて算出される配向度はかなり小さな値となる。これに対して、各回折ピークのX線回折強度についてベクトル補正を行い、(00l)反射とは異なるX線回折強度について、(00l)反射の成分とこれとは直交する(hk0)反射の成分に分離し、分離された(00l)反射の成分を加算すれば、実際の配向度に即した正確な評価が行われることになる。これを規定したのが本発明の請求項2記載の発明であり、前記配向度評価方法において、各回折ピークのX線回折強度についてベクトル補正を行い、補正値に基づいて前記ロットゲーリング法により各分割片の配向度を算出して配向度のばらつきを評価することを特徴とする。   When calculating the degree of orientation by the Lotgering method, the accuracy is dramatically increased by performing vector correction on the X-ray diffraction intensity of each diffraction peak. In the calculation in the rod-gering method, only the orientation direction, that is, (001) reflection component is integrated, and the X-ray diffraction intensity in a direction different from this is determined to be the vertical direction, that is, (hk0) reflection component. Is done. Therefore, the degree of orientation calculated compared to the actual degree of orientation is a considerably small value. On the other hand, vector correction is performed on the X-ray diffraction intensity of each diffraction peak, and for the X-ray diffraction intensity different from (001) reflection, the (00l) reflection component and the (hk0) reflection component orthogonal thereto. If the separated (00l) reflection components are added to each other, accurate evaluation in accordance with the actual degree of orientation can be performed. This is defined in the invention according to claim 2 of the present invention. In the orientation degree evaluation method, vector correction is performed on the X-ray diffraction intensity of each diffraction peak, and each of the Lotgering methods is performed based on the correction value. The variation of the orientation degree is evaluated by calculating the orientation degree of the divided pieces.

一方、前記のように、中央部分の分割片と最外部の分割片についてロッドゲーリング法により配向度を算出し、これを比較することで、希土類焼結磁石全体の配向度の分布が把握される。したがって、前記配向度の分布に基づいて希土類焼結磁石を選択することで、確実に着磁が良好な希土類焼結磁石が実現される。本発明の希土類焼結磁石は、このような観点に基づいて選別されたものであり、特に、前記の通り、ベクトル補正されたX線回折強度に基づいてロットゲーリング法により算出される配向度の差が1.5%以下であることにより、例えば薄型形状の希土類焼結磁石において、残留磁束密度Brのばらつきが100G以下程度に抑えられる。また、配向度のばらつきが小さいため着磁が良好となり、これにより素材(希土類合金粉末)の持つ高特性が十分に活かされる。   On the other hand, as described above, the degree of orientation is calculated by the rod-gering method for the split piece in the central portion and the outermost split piece, and the distribution of the orientation degree of the entire rare earth sintered magnet is grasped by comparing this. . Therefore, by selecting a rare earth sintered magnet based on the distribution of the degree of orientation, a rare earth sintered magnet with excellent magnetization can be realized. The rare earth sintered magnet of the present invention is selected based on such a viewpoint. In particular, as described above, the degree of orientation calculated by the Lotgering method based on the vector-corrected X-ray diffraction intensity is used. When the difference is 1.5% or less, for example, in a rare-earth sintered magnet having a thin shape, variation in residual magnetic flux density Br is suppressed to about 100 G or less. Moreover, since the variation in the degree of orientation is small, the magnetization is good, and thereby the high characteristics of the material (rare earth alloy powder) are fully utilized.

前記のような配向度の分布に優れ、例えば中央部と外周部とで配向度の差が1.5%以下というような小さな値となる希土類焼結磁石は、ただ単に希土類合金粉末を配向磁界を印加しながら磁場中成形しても得ることは難しい。そこで、本発明の製造方法では、前記の通り、所定の方向に配向磁界を印加して形成した成形体、あるいはこれを焼結した焼結体において、配向磁界方向における両端部分を切除する。   For example, rare earth sintered magnets having excellent orientation degree distribution as described above, such as a difference in orientation degree of 1.5% or less between the central portion and the outer peripheral portion, can be obtained by simply using rare earth alloy powders in the orientation magnetic field. It is difficult to obtain even by molding in a magnetic field while applying. Therefore, in the production method of the present invention, as described above, both end portions in the orientation magnetic field direction are cut off in a molded body formed by applying an orientation magnetic field in a predetermined direction or a sintered body obtained by sintering the same.

例えば、特許文献2には、金型部材を磁性金属材料で構成することにより、成形体内部の磁束方向の乱れを解消し、磁束の方向を平行にすることが開示されている。しかしながら、前記方法で可能な限り磁束の方向を平行にしたとしても、成形体へ磁束が入る部分、あるいは成形体から磁束が出る部分においては、必ず異材料の界面が存在するため、磁束の乱れを完全に解消することは難しい。   For example, Patent Document 2 discloses that a mold member is made of a magnetic metal material, thereby eliminating disturbance in the direction of magnetic flux inside the molded body and making the direction of magnetic flux parallel. However, even if the direction of the magnetic flux is made parallel as much as possible by the above method, there is always an interface of different materials in the part where the magnetic flux enters the molded body or the part where the magnetic flux comes out of the molded body. Is difficult to completely eliminate.

本発明では、この界面部分に相当する配向磁界方向における両端部分を切除しているので、配向度の僅かな低下も排除され、前記ベクトル補正されたX線回折強度に基づいてロットゲーリング法により算出される配向度の差が1.5%以下であるような、配向度の差が極めて小さく、全体の配向度が良好な希土類焼結磁石が製造される。なお、切除した成形体、あるいは焼結体は、粉砕して原料である希土類合金粉末に混入すれば再利用でき、無駄に原料を消費することがなく、原料の効率的な利用も実現される。   In the present invention, since both end portions in the orientation magnetic field direction corresponding to the interface portion are cut off, a slight decrease in the degree of orientation is also eliminated, and calculation is performed by the Lotgering method based on the vector-corrected X-ray diffraction intensity. A rare earth sintered magnet having a very small difference in orientation and a good overall orientation is produced, such that the difference in orientation is 1.5% or less. Note that the cut molded body or sintered body can be reused if pulverized and mixed with the rare earth alloy powder, which is a raw material, so that the raw material is not consumed wastefully and efficient use of the raw material is realized. .

本発明の配向度評価方法によれば、希土類合金粉末を成形した成形体や、これを焼結して得られる希土類焼結磁石について、マクロな領域、例えば薄型形状の成形体や希土類焼結磁石の全体の配向度分布を的確に評価することが可能である。   According to the method for evaluating the degree of orientation of the present invention, a molded body obtained by molding a rare earth alloy powder and a rare earth sintered magnet obtained by sintering the molded body are in a macro region, for example, a thin molded body or a rare earth sintered magnet. It is possible to accurately evaluate the entire orientation degree distribution.

一方、本発明の希土類焼結磁石は、前記配向度評価方法に基づいて厳しく選別されたものであり、例えば薄型形状である場合等においても全体の配向度が高いので、着磁特性に優れ希土類合金粉末の持つ高特性を十分に活かした希土類焼結磁石を実現することが可能である。   On the other hand, the rare earth sintered magnet of the present invention is strictly selected based on the above-mentioned orientation degree evaluation method. For example, even in the case of a thin shape, the whole orientation degree is high, so that the rare earth sintered magnet has excellent magnetizing characteristics. It is possible to realize a rare earth sintered magnet that takes full advantage of the high properties of the alloy powder.

さらに、本発明の希土類焼結磁石の製造方法によれば、異材料の界面に起因する配向磁界の乱れが生ずる端部を切除するようにしているので、配向度が全体に亘って向上された希土類焼結磁石を得ることができる。また、切除した成形体や焼結体については、これを再利用することにより、効率的に原料を利用することが可能である。   Furthermore, according to the method of manufacturing a rare earth sintered magnet of the present invention, since the end portion where the disturbance of the orientation magnetic field due to the interface of the different materials occurs is removed, the degree of orientation is improved over the whole. A rare earth sintered magnet can be obtained. Moreover, about the cut-out molded object and sintered body, it is possible to utilize a raw material efficiently by reusing this.

以下、本発明を適用した配向度評価方法、希土類焼結磁石及びその製造方法について、詳細に説明する。   Hereinafter, an orientation degree evaluation method, a rare earth sintered magnet and a manufacturing method thereof to which the present invention is applied will be described in detail.

本発明の配向度評価方法は、希土類合金粉末を圧縮成形することにより形成される成形体や、これを焼結することにより得られる希土類焼結磁石に適用される。例えば、成形体に適用することで、無駄な焼結を抑えることができ、また基準を満たさない成形体は、容易に再利用可能である。また、希土類焼結磁石に適用することで、厳密な品質管理が可能になる。   The orientation degree evaluation method of the present invention is applied to a compact formed by compression molding rare earth alloy powder and a rare earth sintered magnet obtained by sintering the compact. For example, by applying to a molded body, useless sintering can be suppressed, and a molded body that does not satisfy the standard can be easily reused. Moreover, strict quality control becomes possible by applying to rare earth sintered magnets.

評価対象となる成形体や希土類焼結磁石の形状は任意であるが、例えば薄型形状や長尺形状等、成形体や希土類焼結磁石の厚さに対して、長辺の寸法の大きな形状に適用することで、効果が大きい。前記薄型形状や長尺形状の場合、中央部分と最外部で配向度が異なる傾向にあるからである。図1は、薄型の矩形平板形状の成形体(焼結体)を模式的に示すものであり、具体的には、前記厚さをc、長辺の長さをaとしたときに、a/c≧10であるような形状の場合に、本発明の配向度評価方法に適用することが好ましい。   The shape of the molded object or rare earth sintered magnet to be evaluated is arbitrary. For example, the shape of the long side is larger than the thickness of the molded object or rare earth sintered magnet, such as a thin shape or a long shape. Applying it has a great effect. This is because in the case of the thin shape or the long shape, the degree of orientation tends to be different between the central portion and the outermost portion. FIG. 1 schematically shows a thin rectangular plate-shaped molded body (sintered body). Specifically, when the thickness is c and the length of the long side is a, a When the shape is such that / c ≧ 10, it is preferably applied to the orientation degree evaluation method of the present invention.

配向度の測定は、試料(前記成形体や希土類焼結磁石)を奇数個に分割し、その中央部分の分割片と最外部の分割片に対して行う。分割する数は、試料の大きさに応じて決めればよく、最低でも3分割である。図1に示すような矩形平板形状の場合、縦横それぞれ3分割、合計9分割とし、各分割片1〜9のうち、中央部分の分割片5と、最外部の分割片(1,3,7,9のいずれか1以上)について測定を行う。分割方法としては、これに限らず、縦横それぞれ3分割以上、例えばそれぞれ5分割、合計25分割としたり、それぞれ7分割、合計49分割等とすることも可能である。また、いずれの場合にも、中央部分の分割片と最外部(外周角部)の分割片の1つについて測定を行い、これらを比較すればよい。なお、最外部の分割片については、最低1つ測定すればよいのであって、それ以上測定することを妨げるものではない。例えば、中央部の分割片と比較のために、4隅の分割片について測定してもよい。さらに、例えば長尺状の成形体や希土類焼結磁石の場合、必ずしも縦横それぞれについて分割しなくてもよく、例えば長辺方向に等分割して、中央部分の分割片と端部の分割片について測定を行えばよい。   The degree of orientation is measured by dividing the sample (the compact or the rare earth sintered magnet) into an odd number and dividing the central portion and the outermost portion. The number to be divided may be determined according to the size of the sample, and is at least three. In the case of a rectangular flat plate shape as shown in FIG. 1, each of the divided pieces 1 to 9 is divided into three parts in the vertical and horizontal directions, and the divided piece 5 in the central portion and the outermost divided pieces (1, 3, 7). , 9 or more). The dividing method is not limited to this, and it is also possible to set the vertical and horizontal divisions to 3 or more, for example, 5 divisions and 25 divisions in total, 7 divisions and 49 divisions, respectively. In any case, the measurement may be performed on one of the split piece at the central portion and the split piece at the outermost portion (outer peripheral corner), and these may be compared. In addition, about the outermost division | segmentation piece, what is necessary is just to measure at least 1 and does not prevent further measurement. For example, the measurement may be performed on four corner pieces for comparison with the middle piece. Further, for example, in the case of a long shaped body or a rare earth sintered magnet, it is not always necessary to divide each longitudinally and laterally, for example, equally divided in the long side direction, about the divided piece of the central portion and the divided piece of the end portion Measurement may be performed.

配向度を測定するには、先ず、各分割片の表面を鏡面研磨した後、X線回折を行い、得られた回折ピークを基にロットゲーリング法により配向度を算出する。ロットゲーリング法では、(00l)反射の成分のX線回折強度I(00l)と(hk0)反射の成分のX線回折強度I(hk0)に基づいて、下記数1により配向度fcを算出することができる。   In order to measure the degree of orientation, first, the surface of each divided piece is mirror-polished, then X-ray diffraction is performed, and the degree of orientation is calculated by the Lotgering method based on the obtained diffraction peak. In the Lotgering method, based on the X-ray diffraction intensity I (00l) of the (00l) reflection component and the X-ray diffraction intensity I (hk0) of the (hk0) reflection component, the degree of orientation fc is calculated by the following equation (1). be able to.

Figure 2006258616
Figure 2006258616

前記ロットゲーリング法により配向度を算出する場合、配向方向、すなわち(00l)反射の成分のみが積算され、これから少しでも外れる回折ピークについては、これとは垂直方向、すなわち(hk0)反射の成分と判断され、前記数1において、分子側からは除外される。したがって、実際の配向度に比べて算出される配向度はかなり小さな値となる。これを回避し、実際に即した配向度を算出するためには、回折ピークに対してベクトル補正を行うことが好ましい。   When the degree of orientation is calculated by the Lotgering method, only the orientation direction, that is, (001) reflection component is integrated, and a diffraction peak that deviates even slightly from this is perpendicular to this, that is, (hk0) reflection component. It is judged and excluded from the molecular side in the formula 1. Therefore, the degree of orientation calculated compared to the actual degree of orientation is a considerably small value. In order to avoid this and calculate the degree of orientation according to the actual condition, it is preferable to perform vector correction on the diffraction peak.

ベクトル補正は、実際に即した配向度の算出を可能とするものであり、(00l)反射とは異なる回折ピークについて、(00l)反射の成分とこれとは直交する(hk0)反射の成分に分離し、分離された(00l)方向の成分を前記数1において分子側に加算する。ある結晶面の面方位が(00l)面とは異なる場合、当該面方位に対応する回折ピークに対してその傾き角θに基づいてcosθを乗じ、(00l)反射の成分を算出する。そして、前記数1において、この値を(00l)反射の成分として分子側に積算し、前記配向度fcを求める。   Vector correction makes it possible to calculate the degree of orientation in line with actuality. For a diffraction peak different from (00l) reflection, the (00l) reflection component is orthogonal to the (hk0) reflection component. The separated components in the (00l) direction are added to the numerator side in Equation 1. When the plane orientation of a crystal plane is different from the (00l) plane, the diffraction peak corresponding to the plane orientation is multiplied by cos θ based on the tilt angle θ to calculate the (00l) reflection component. In Equation 1, this value is integrated on the molecular side as a component of (00l) reflection, and the degree of orientation fc is obtained.

例えば、図2に示すX線回折チャートにおいて、矢印で示す回折ピークは(105)面の回折ピークである。この回折ピークは、比較的大きく、(00l)面に近い配向を有するにもかかわらず、通常のロットゲーリング法では垂直成分として計算される。これに対して、ベクトル補正する場合には、(00l)面と(105)面のなす傾き角を表1から求め(15.5度)、ロットゲーリング法による配向度の算出に際して、前記回折強度にcos15.5°を乗じて分子に加える。   For example, in the X-ray diffraction chart shown in FIG. 2, a diffraction peak indicated by an arrow is a diffraction peak on the (105) plane. Although this diffraction peak is relatively large and has an orientation close to the (001) plane, it is calculated as a vertical component in the normal Lotgering method. On the other hand, in the case of vector correction, the inclination angle formed by the (00l) plane and the (105) plane is obtained from Table 1 (15.5 degrees), and the diffraction intensity is calculated when calculating the orientation degree by the Lotgering method. Is multiplied by cos 15.5 ° and added to the molecule.

表1は、(00l)面と観察された他の面との傾き角θを示すものである。前記傾き角θは、NdFeB系の希土類焼結磁石の場合、NdFe14Bの格子定数と結晶構造[例えば、Herbst, J et al. Phys. Rev.B: Condens. Matter, 29 4176 (1984)]から求められる面と面とのなす角度を計算することで求めることができる。 Table 1 shows the inclination angle θ between the (00l) plane and other observed planes. In the case of an NdFeB-based rare earth sintered magnet, the inclination angle θ is determined by the lattice constant and crystal structure of Nd 2 Fe 14 B [eg, Herbst, J et al. Phys. Rev. B: Condens. Matter, 29 4176 (1984 )] Can be obtained by calculating the angle formed between the surfaces.

Figure 2006258616
Figure 2006258616

この表1に記載される傾き角θに基づいて各回折ピークのX線回折強度について前記ベクトル補正を行い、この補正された結果に基づいてロットゲーリング法により配向度を算出することで、実際の配向度に即した正確な評価が行われることになる。   The vector correction is performed on the X-ray diffraction intensity of each diffraction peak based on the tilt angle θ described in Table 1, and the degree of orientation is calculated by the Lotgering method based on the corrected result. Accurate evaluation according to the degree of orientation is performed.

以上により各分割片の配向度を測定し、これを比較することで、試料(成形体や希土類焼結磁石)の配向度の面内分布を把握することができる。したがって、前記配向度の面内分布に基づいて成形体や希土類焼結磁石を厳しく選別することで、確実に特性に優れ、また特性のばらつきの少ない成形体や希土類焼結磁石を実現することができるものと考えられる。そこで、以下においては、前記配向度評価方法の希土類焼結磁石への適用について説明する。   The in-plane distribution of the orientation degree of the sample (molded body or rare earth sintered magnet) can be grasped by measuring the orientation degree of each divided piece as described above and comparing them. Therefore, by strictly selecting compacts and rare earth sintered magnets based on the in-plane distribution of the degree of orientation, it is possible to reliably realize compacts and rare earth sintered magnets with excellent characteristics and little variation in characteristics. It is considered possible. Therefore, in the following, application of the orientation degree evaluation method to a rare earth sintered magnet will be described.

先ず、希土類焼結磁石について説明すると、本発明で言う希土類焼結磁石は、希土類元素、遷移金属元素及びホウ素を主成分とするものである。磁石組成は、目的に応じて任意に選択すればよい。例えば、R−T−B(Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である。TはFe又はFe及びCoを必須とする遷移金属元素の1種又は2種以上である。Bはホウ素である。)系希土類焼結磁石とする場合、磁気特性に優れた希土類焼結磁石を得るためには、焼結後の磁石組成において、希土類元素Rが20〜40質量%、ホウ素Bが0.5〜4.5質量%、残部が遷移金属元素Tとなるような配合組成とすることが好ましい。ここで、Rは、希土類元素、すなわちY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる1種、又は2種以上である。中でも、Ndは、資源的に豊富で比較的安価であることから、主成分をNdとすることが好ましい。また、DyやTbの含有は異方性磁界を増加させるため、保磁力Hcjを向上させる上で有効である。   First, the rare earth sintered magnet will be described. The rare earth sintered magnet referred to in the present invention is mainly composed of a rare earth element, a transition metal element, and boron. What is necessary is just to select a magnet composition arbitrarily according to the objective. For example, R-T-B (R is a concept including one or more rare earth elements, where the rare earth element includes Y. T is one or two of transition metal elements essentially including Fe or Fe and Co. More than seeds. B is boron.) When a rare earth sintered magnet having excellent magnetic properties is obtained, a rare earth element R is 20 to 20 in the magnet composition after sintering. It is preferable that the composition be 40 mass%, boron B is 0.5 to 4.5 mass%, and the balance is the transition metal element T. Here, R is a rare earth element, that is, one or more selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. Especially, since Nd is abundant in resources and relatively inexpensive, the main component is preferably Nd. Further, the inclusion of Dy and Tb is effective in improving the coercive force Hcj because it increases the anisotropic magnetic field.

また、添加元素Mを加えて、R−T−B−M系希土類焼結磁石とすることも可能である。この場合、添加元素Mとしては、Al、Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、V、Zr、Ti、Mo、Bi、Ga等を挙げることができ、これらの1種又は2種以上を選択して添加することができる。これら添加元素Mの添加量は、残留磁束密度等の磁気特性を考慮して、3質量%以下とすることが好ましい。添加元素Mの添加量が多すぎると、磁気特性が劣化するおそれがある。   Further, an additive element M can be added to form an R-T-B-M rare earth sintered magnet. In this case, examples of the additive element M include Al, Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W, V, Zr, Ti, Mo, Bi, and Ga. A seed | species or 2 or more types can be selected and added. The addition amount of these additive elements M is preferably 3% by mass or less in consideration of magnetic characteristics such as residual magnetic flux density. If the amount of additive element M added is too large, the magnetic properties may be deteriorated.

勿論、これら組成に限らず、希土類焼結磁石として従来公知の組成全般に適用可能であることは言うまでもない。   Of course, it is needless to say that the present invention is not limited to these compositions, and can be applied to all known compositions as rare earth sintered magnets.

次に、前述の希土類焼結磁石の製造方法について説明すると、希土類焼結磁石を製造するには、粉末冶金法が採用される。粉末冶金法による製造プロセスは、基本的には、合金化工程、粗粉砕工程、微粉砕工程、磁場中成形工程、焼結・時効工程、加工工程、及び表面処理工程とにより構成される。なお、酸化防止のために、焼結後までの各工程は、ほとんどの工程を真空中、又は不活性ガス雰囲気中(窒素雰囲気中、Ar雰囲気中等)で行う。   Next, the manufacturing method of the above-mentioned rare earth sintered magnet will be described. To manufacture the rare earth sintered magnet, a powder metallurgy method is adopted. The manufacturing process by the powder metallurgy method basically includes an alloying step, a coarse pulverization step, a fine pulverization step, a magnetic field forming step, a sintering / aging step, a processing step, and a surface treatment step. In order to prevent oxidation, most of the steps after sintering are performed in a vacuum or in an inert gas atmosphere (in a nitrogen atmosphere, an Ar atmosphere, etc.).

合金化工程では、原料となる金属、又は合金を磁石組成に応じて配合し、真空又は不活性ガス、例えばAr雰囲気中で溶解し、鋳造することにより合金化する。鋳造法としては、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を連続的に鋳造するストリップキャスト法(連続鋳造法)が生産性等の観点から好適であるが、本発明はそれに限ったものではない。原料金属(合金)としては、純希土類元素、希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。   In the alloying process, a metal or alloy as a raw material is blended according to the magnet composition, melted in a vacuum or an inert gas, for example, Ar atmosphere, and cast into an alloy. As a casting method, a strip casting method (continuous casting method) in which molten high-temperature liquid metal is supplied onto a rotating roll and an alloy thin plate is continuously cast is preferable from the viewpoint of productivity and the like. It is not limited to that. As the raw material metal (alloy), pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used.

合金はほぼ最終磁石組成である単一の合金を用いても、最終磁石組成になるように、組成の異なる複数種類の合金を混合してもよいも良い。混合は合金・原料粗粉・原料微粉のどの工程でもよいが、混合性から合金での混合が望ましい。   A single alloy having an almost final magnet composition may be used as the alloy, or a plurality of types of alloys having different compositions may be mixed so that the final magnet composition is obtained. Mixing may be performed in any process of alloy, raw material coarse powder, and raw material fine powder, but mixing with an alloy is desirable from the viewpoint of mixing properties.

粗粉砕工程では、先に鋳造した原料合金の薄板、又はインゴット等を、粒径数百μm程度になるまで粉砕する。粉砕手段としては、スタンプミル、ジョークラッシャー、ブラウンミル等を用いることができる。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行うことが効果的である。   In the coarse pulverization step, the previously cast raw alloy thin plate, ingot, or the like is pulverized until the particle size is about several hundred μm. As the pulverizing means, a stamp mill, a jaw crusher, a brown mill, or the like can be used. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen.

前記粗粉砕工程は、複数の粉砕手段を組み合わせた複数工程により構成することも可能である。例えば、粗粉砕工程を、水素粉砕工程と機械的粗粉砕工程の2工程とすることが可能である。水素粉砕工程は、鋳造した原料合金に水素を吸蔵させ、相によって水素吸蔵量が異なることを利用して、自己崩壊的に粉砕する工程である。これにより、粒径数mm程度の大きさに粉砕することができる。機械的粗粉砕工程は、先にも述べたようなブラウンミル等の機械的手法を利用して粉砕する工程であり、前記水素粉砕工程により数mm程度の大きさに粉砕された原料合金粉を、粒径数百μm程度になるまで粉砕する。水素粉砕工程を行う場合、機械的粗粉砕工程は省略することも可能である。   The coarse pulverization step can be constituted by a plurality of steps in which a plurality of pulverization means are combined. For example, the coarse pulverization step can be made into two steps, a hydrogen pulverization step and a mechanical coarse pulverization step. The hydrogen pulverization step is a step in which hydrogen is occluded in the cast raw material alloy and pulverized in a self-destructive manner utilizing the fact that the hydrogen occlusion amount varies depending on the phase. Thereby, it can grind | pulverize to the magnitude | size about particle size several mm. The mechanical coarse pulverization step is a step of pulverizing using a mechanical method such as a brown mill as described above. The raw alloy powder pulverized to a size of about several millimeters by the hydrogen pulverization step is used. Then, pulverize until the particle size is about several hundred μm. When performing the hydrogen pulverization step, the mechanical coarse pulverization step may be omitted.

前述の粗粉砕工程が終了した後、通常、粗粉砕した原料合金粉に粉砕助剤を添加する。粉砕助剤としては、例えば脂肪酸系化合物等を使用することができるが、特に、脂肪酸アミドを粉砕助剤として用いることで、良好な磁気特性を有する希土類焼結磁石を得ることができる。粉砕助剤の添加量としては、0.03〜0.4質量%とすることが好ましい。この範囲内で粉砕助剤を添加した場合、焼結後の残留炭素の量を低減することができ、希土類焼結磁石の磁気特性を向上させる上で有効である。   After the coarse pulverization step is completed, a pulverization aid is usually added to the coarsely pulverized raw material alloy powder. As the grinding aid, for example, a fatty acid compound or the like can be used. In particular, by using a fatty acid amide as the grinding aid, a rare earth sintered magnet having good magnetic properties can be obtained. The addition amount of the grinding aid is preferably 0.03 to 0.4% by mass. When the grinding aid is added within this range, the amount of residual carbon after sintering can be reduced, which is effective in improving the magnetic properties of the rare earth sintered magnet.

粗粉砕工程の後、微粉砕工程を行うが、この微粉砕工程は、例えばジェットミルを使用して行われる。微粉砕の際の条件は、用いる気流式粉砕機に応じて適宜設定すればよく、原料合金粉を平均粒径が1〜10μm程度、例えば3〜6μmとなるまで微粉砕する。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粉体の粒子を加速し、粉体の粒子同士の衝突や、ターゲット又は容器壁との衝突を発生させて粉砕する方法である。ジェットミルは、一般的に、流動層を利用するジェットミル、渦流を利用するジェットミル、衝突板を用いるジェットミル等に分類される。   After the coarse pulverization step, a fine pulverization step is performed. This fine pulverization step is performed using, for example, a jet mill. The conditions for fine pulverization may be appropriately set according to the airflow pulverizer to be used, and the raw material alloy powder is finely pulverized until the average particle size becomes about 1 to 10 μm, for example, 3 to 6 μm. A jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, accelerates powder particles by this high-speed gas flow, and collides powder particles with each other. Or it is a method of generating a collision with a target or a container wall and crushing. Jet mills are generally classified into jet mills that use fluidized beds, jet mills that use vortex flow, jet mills that use impingement plates, and the like.

微粉砕工程の後、磁場中成形工程において、原料合金微粉(希土類合金粉)を磁場中にて成形する。具体的には、微粉砕工程にて得られた原料合金微粉を電磁石を配置した金型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。磁場中成形は、縦磁場成形、横磁場成形のいずれであってもよい。この磁場中成形は、例えば800〜1500kA/mの磁場中で、30〜300MPa前後の圧力で行えばよい。   After the pulverization step, the raw material alloy fine powder (rare earth alloy powder) is formed in the magnetic field in the magnetic field forming step. Specifically, the raw material alloy fine powder obtained in the fine pulverization step is filled in a mold in which an electromagnet is arranged, and is molded in a magnetic field in a state where crystal axes are oriented by applying a magnetic field. Forming in the magnetic field may be either longitudinal magnetic field shaping or transverse magnetic field shaping. The forming in the magnetic field may be performed at a pressure of about 30 to 300 MPa in a magnetic field of 800 to 1500 kA / m, for example.

次に焼結・時効工程において、焼結及び時効処理を実施する。すなわち、原料合金微粉を磁場中成形後、成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、例えば1000〜1150℃で5時間程度焼結すればよく、焼結後、急冷することが好ましい。焼結後、得られた焼結体に時効処理を施すことが好ましい。この時効処理は、得られる希土類焼結磁石の保磁力Hcjを制御する上で重要な工程であり、例えば不活性ガス雰囲気中又は真空中で時効処理を施す。時効処理としては、2段時効処理が好ましく、1段目の時効処理工程では、800℃前後の温度で1〜3時間保持する。次いで、室温〜200℃の範囲内にまで急冷する第1急冷工程を設ける。2段目の時効処理工程では、550℃前後の温度で1〜3時間保持する。次いで、室温まで急冷する第2急冷工程を設ける。600℃近傍の熱処理で保磁力Hcjが大きく増加するため、時効処理を一段で行う場合には、600℃近傍の時効処理を施すとよい。   Next, in the sintering / aging process, sintering and aging treatment are performed. That is, after forming the raw material alloy fine powder in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. The sintering temperature needs to be adjusted according to various conditions such as composition, pulverization method, difference in particle size and particle size distribution, etc. For example, sintering may be performed at 1000 to 1150 ° C. for about 5 hours, and rapid cooling after sintering. Is preferred. After sintering, the obtained sintered body is preferably subjected to aging treatment. This aging treatment is an important step in controlling the coercive force Hcj of the obtained rare earth sintered magnet. For example, the aging treatment is performed in an inert gas atmosphere or in a vacuum. As the aging treatment, a two-stage aging treatment is preferable, and in the first aging treatment step, the temperature is maintained at a temperature of about 800 ° C. for 1 to 3 hours. Next, a first quenching step is provided for quenching to room temperature to 200 ° C. In the second stage aging treatment step, the temperature is maintained at about 550 ° C. for 1 to 3 hours. Next, a second quenching step for quenching to room temperature is provided. Since the coercive force Hcj is greatly increased by heat treatment at around 600 ° C., when aging treatment is performed in a single stage, it is advisable to perform aging treatment at around 600 ° C.

前記焼結・時効工程の後、加工工程及び表面処理工程を行う。加工工程は、所望の形状に機械的に成形する工程である。表面処理工程は、得られた希土類焼結磁石の酸化を抑えるために行う工程であり、例えばメッキ被膜や樹脂被膜を希土類焼結磁石の表面に形成する。   After the sintering / aging step, a processing step and a surface treatment step are performed. The processing step is a step of mechanically forming into a desired shape. A surface treatment process is a process performed in order to suppress the oxidation of the obtained rare earth sintered magnet, for example, forms a plating film and a resin film on the surface of a rare earth sintered magnet.

以上が希土類焼結磁石の製造工程であるが、本発明では、前記成形工程後、あるいは前記焼結・時効工程後、得られた成形体や焼結体について、配向磁界方向における両端部分を切除して、配向度の面内分布が小さい部分のみを製品として使用する。配向磁界方向における両端部分は、配向度の面内分布が大きく、この部分を切除することで、成形体や焼結体の配向度の差を極めて小さな値とすることができる。なお、前記両端部分を切除するにあたっては、通常は、端部から2mm程度の領域を切除すればよいが、前記配向度の測定を行って、中央部と外周部分で配向度の差が所定の値以下となることが確認されるまで切除するようにしてもよい。   The above is the manufacturing process of the rare earth sintered magnet. In the present invention, after the molding step or after the sintering / aging step, both end portions in the orientation magnetic field direction of the obtained molded body and sintered body are cut off. Only the portion where the in-plane distribution of the degree of orientation is small is used as a product. Both end portions in the orientation magnetic field direction have a large in-plane distribution of the degree of orientation, and by cutting this portion, the difference in the degree of orientation of the compact or sintered body can be made extremely small. It should be noted that when the both end portions are excised, it is usually sufficient to excise an area of about 2 mm from the end portion. However, by measuring the orientation degree, a difference in orientation degree between the central portion and the outer peripheral portion is predetermined. You may make it excise until it becomes confirmed that it becomes below a value.

切除した両端部分は、前述の粗粉砕工程等に加えることで、再利用することが可能である。例えば、成形体の段階で切除した場合には、そのまま再利用してもほとんど問題がない。焼結体とした後、切除した場合にも、表面処理工程前であればほとんど問題なく、粉砕して原料に少量加えるようにすれば、特性的に問題となることはない。切除した両端部分を再利用することで、原料を無駄に消費することがなくなり、原料コストの削減が可能である。   The excised both end portions can be reused by adding to the above-described coarse pulverization step or the like. For example, when excised at the stage of the molded body, there is almost no problem even if it is reused as it is. Even when the sintered body is cut and then cut off, there is almost no problem as long as it is before the surface treatment step, and if it is crushed and added to the raw material in a small amount, there will be no problem in terms of characteristics. By reusing the excised ends, the raw material is not wasted and the raw material cost can be reduced.

以上により両端部分を切除して作製される希土類焼結磁石は、例えば薄型形状(長辺aと厚さcの比率a/cが10以上)であった場合にも、面内での配向度の分布が小さい。具体的には、奇数個に等分割された分割片のうち、中央部分の分割片と最外部の分割片において、ベクトル補正されたX線回折強度に基づいてロットゲーリング法により算出される配向度の差が1.5%以下である。   The rare earth sintered magnet produced by cutting off both end portions as described above, for example, even when it has a thin shape (the ratio a / c of the long side a to the thickness c is 10 or more), the degree of orientation in the plane The distribution of is small. Specifically, the degree of orientation calculated by the Lotgering method based on the vector-corrected X-ray diffraction intensity in the middle part and the outermost part among the oddly divided pieces. Is less than 1.5%.

前記のように配向度の差が1.5%であれば、磁石全体において着磁が良好なものとなり、素材(希土類合金粉末)の持つ高い性能を十分に活かすことができ、高性能な希土類焼結磁石を実現することができる。そして、係る希土類焼結磁石は、例えばモータ等に用いた場合に優れた特性を発揮し、モータの高性能化を実現することが可能である。   If the degree of orientation difference is 1.5% as described above, the magnetization of the entire magnet will be good, and the high performance of the material (rare earth alloy powder) can be fully utilized. A sintered magnet can be realized. The rare earth sintered magnet exhibits excellent characteristics when used in, for example, a motor or the like, and can realize high performance of the motor.

次に、本発明の具体的な実施例について、実験結果を基に説明する。   Next, specific examples of the present invention will be described based on experimental results.

実施例
原料合金の組成は、Nd19.5質量%、Pr5.4質量%、Dy5.1質量%、Co2.0質量%、Al0.01質量%、Cu0.13質量%、B1.0質量%、残部Feとした。前記組成となるように原料となる金属あるいは合金を配合し、ストリップキャスト法により原料合金薄板を溶解、鋳造した。
The composition of the example raw material alloy was Nd 19.5 mass%, Pr 5.4 mass%, Dy 5.1 mass%, Co 2.0 mass%, Al 0.01 mass%, Cu 0.13 mass%, B 1.0 mass%, The balance was Fe. A raw material metal or alloy was blended so as to have the above composition, and a raw material alloy thin plate was melted and cast by a strip casting method.

次に、得られた原料合金粗粉を粉砕工程に供した。すなわち、得られた原料合金薄板を水素粉砕した後、ブラウンミルにて機械的粗粉砕を行い、原料合金粗粉を得た。この原料合金粗粉に粉砕助剤となる有機物としてステアリン酸亜鉛を0.10質量%添加し、ジェットミルを使用して高圧窒素ガス雰囲気中で平均粒径(D50)=4.6μmとなるように微粉砕を行い、希土類合金粉末とした。   Next, the obtained raw material alloy coarse powder was subjected to a pulverization step. That is, after the obtained raw material alloy thin plate was hydrogen pulverized, mechanical coarse pulverization was performed with a brown mill to obtain raw material alloy coarse powder. To this raw material alloy coarse powder, 0.10% by mass of zinc stearate as an organic substance serving as a grinding aid is added, and an average particle diameter (D50) = 4.6 μm is obtained in a high-pressure nitrogen gas atmosphere using a jet mill. Were pulverized into rare earth alloy powders.

得られた希土類合金粉末を59.7mm×33.9mm×63.8mmの形状に成形した。成形に際しては、磁性材料により形成された金型を用い、所定の配向磁界を印加しながら成形を行った。得られた成形体に対して焼結及び時効を施した後、内周スライサーを用いて切断し、47.0mm×24.0mm×2.0mmの薄型形状の焼結体(希土類焼結磁石)を17枚得た。なお、前記切断に際しては、焼結体の配向磁界方向における両端部分を1mmずつ切除した。切除した焼結体は、前記粉砕工程に戻し、原料合金粗粉に加えることで再利用した。   The obtained rare earth alloy powder was molded into a shape of 59.7 mm × 33.9 mm × 63.8 mm. In molding, a mold made of a magnetic material was used, and molding was performed while applying a predetermined orientation magnetic field. After sintering and aging the obtained molded body, it was cut using an inner slicer, and a 47.0 mm × 24.0 mm × 2.0 mm thin sintered body (rare earth sintered magnet) 17 sheets were obtained. At the time of the cutting, both end portions in the orientation magnetic field direction of the sintered body were cut by 1 mm. The cut sintered body was returned to the pulverization step and reused by adding to the raw material alloy coarse powder.

比較例
成形の際の金型を非磁性金型とし、焼結及び時効後、焼結体の両端部を切除せずに内周スライサーを用いてした他は、実施例と同様に薄型形状の希土類焼結磁石を得た。本比較例の場合、焼結体の両端部分を切除していないため、47.0mm×24.0mm×2.0mmの薄型形状の焼結体(希土類焼結磁石)を18枚得た。
The mold used in the comparative example was a non-magnetic mold, and after sintering and aging, the inner peripheral slicer was used without cutting off both ends of the sintered body. A rare earth sintered magnet was obtained. In the case of this comparative example, since both end portions of the sintered body were not cut, 18 thin sintered bodies (rare earth sintered magnets) of 47.0 mm × 24.0 mm × 2.0 mm were obtained.

配向度評価
前記実施例及び比較例で得られた希土類焼結磁石について、X線回折測定を行い、配向度を算出した。測定対象としては、実施例及び比較例において、内周スラーサーで切断した焼結体のうち最端部の焼結体を選び、これについて配向度の評価を行った。また、希土類焼結磁石は、図1に示すように縦横3分割、合計9分割し、中央部分の分割片5と外周角部の分割片1について配向度の算出を行った。
Evaluation of degree of orientation The rare earth sintered magnets obtained in the examples and comparative examples were subjected to X-ray diffraction measurement to calculate the degree of orientation. As an object to be measured, in the examples and comparative examples, the sintered body at the outermost part was selected from the sintered bodies cut with the inner circumferential slacer, and the degree of orientation was evaluated. Further, as shown in FIG. 1, the rare earth sintered magnet was divided into 3 parts in length and breadth, a total of 9 parts, and the degree of orientation was calculated for the divided piece 5 at the central portion and the divided piece 1 at the outer peripheral corner.

X線回折測定に際しては、各分割片における磁場配向方向の表面を研磨紙で鏡面研磨し、その後、3%硝酸エタノール溶液で3分間のエッチングを行った。X線回折測定は、Cu管球を用い、出力1.8kWにてθ−2θ法にて行った。得られた計測値からロットゲーリング法により配向度を算出し、さらに各回折ピークのX線回折強度をベクトル補正し、補正値に基づいてロットゲーリング法により配向度を算出した。   In the X-ray diffraction measurement, the surface of each divided piece in the magnetic field orientation direction was mirror-polished with abrasive paper, and then etched with a 3% nitric acid ethanol solution for 3 minutes. X-ray diffraction measurement was performed by a θ-2θ method using a Cu tube and an output of 1.8 kW. The orientation degree was calculated from the obtained measurement value by the Lotgering method, the X-ray diffraction intensity of each diffraction peak was vector-corrected, and the orientation degree was calculated by the Lotgering method based on the correction value.

表2に実施例の希土類焼結磁石における算出結果を、表3に比較例の希土類焼結磁石における算出結果を示す。なお、表中の測定位置について、点1は外周角部の分割片1についての算出結果であり、点5は中央部分の分割片5についての算出結果である。   Table 2 shows the calculation results for the rare earth sintered magnet of the example, and Table 3 shows the calculation results for the rare earth sintered magnet of the comparative example. For the measurement position in the table, point 1 is the calculation result for the segment piece 1 at the outer peripheral corner, and point 5 is the calculation result for the segment piece 5 at the central portion.

Figure 2006258616
Figure 2006258616

Figure 2006258616
Figure 2006258616

表2から明らかなように、実施例の希土類焼結磁石は、ベクトル補正の有無にかかわらず配向度の差が極めて小さく、特にベクトル補正した場合には、配向度の差が1.5%以下となっている。これに対して、比較例の希土類焼結磁石の場合には、ベクトル補正無しでは配向度の差が1.5%以下であるが、ベクトル補正有りの場合には配向度の差が1.5%を超えている。このことから、比較例の希土類焼結磁石では、実効的な配向度の低下が見られ、これが磁石性能の低下に繋がるものと推測される。実際、着磁磁界を変えてフラックス量を測定したところ、実施例の希土類焼結磁石においてフラックスの立ち上がりが早いことが確認された。したがって、配向度の算出に際しては、ベクトル補正を行うことで、より実際の性能に即した評価が可能であることがわかる。   As is apparent from Table 2, the rare earth sintered magnets of the examples have a very small difference in orientation degree regardless of whether or not vector correction is performed. Especially when the vector correction is performed, the difference in orientation degree is 1.5% or less. It has become. On the other hand, in the case of the rare earth sintered magnet of the comparative example, the difference in orientation degree is 1.5% or less without vector correction, but the difference in orientation degree is 1.5% with vector correction. % Is over. From this, in the rare earth sintered magnet of the comparative example, a decrease in the effective orientation degree is observed, and this is presumed to lead to a decrease in the magnet performance. Actually, when the amount of flux was measured by changing the magnetizing magnetic field, it was confirmed that the rise of the flux was quick in the rare earth sintered magnet of the example. Therefore, it can be seen that the evaluation based on the actual performance can be performed by performing vector correction when calculating the degree of orientation.

また、図3は、配向度と残留磁束密度の関係を示すものであり、(a)はベクトル補正無しの場合、(b)はベクトル補正有りの場合である。ベクトル補正を行うことで、配向度と残留磁束密度Brにおいて、良好な相関が取れている。   FIG. 3 shows the relationship between the degree of orientation and the residual magnetic flux density. (A) shows the case without vector correction, and (b) shows the case with vector correction. By performing vector correction, there is a good correlation between the degree of orientation and the residual magnetic flux density Br.

薄型形状の試料の分割例を示す模式図である。It is a schematic diagram which shows the example of a division | segmentation of a thin-shaped sample. NdFeB系希土類焼結磁石のX線回折チャートの一例を示す図である。It is a figure which shows an example of the X-ray-diffraction chart of a NdFeB type rare earth sintered magnet. 配向度と残留磁束密度の関係を示す特性図であり、(a)はベクトル補正無しの場合、(b)はベクトル補正有りの場合である。It is a characteristic view which shows the relationship between an orientation degree and a residual magnetic flux density, (a) is a case without vector correction, (b) is a case with vector correction.

Claims (13)

希土類合金粉末が圧縮成形された成形体またはその焼結体を奇数個に等分割し、中央部分の分割片と最外部の分割片についてX線回折を行った後、
ロットゲーリング法により各分割片の配向度を算出して配向度のばらつきを評価することを特徴とする配向度評価方法。
After the molded body in which the rare earth alloy powder is compression-molded or its sintered body is equally divided into an odd number, and after performing X-ray diffraction on the central part and the outermost part,
An orientation degree evaluation method characterized in that the degree of orientation of each divided piece is calculated by the Lotgering method to evaluate the variation in orientation degree.
各回折ピークのX線回折強度についてベクトル補正を行い、補正値に基づいて前記ロットゲーリング法により各分割片の配向度を算出して配向度のばらつきを評価することを特徴とする請求項1記載の配向度評価方法。   2. The variation in orientation degree is evaluated by performing vector correction on the X-ray diffraction intensity of each diffraction peak and calculating the degree of orientation of each divided piece by the Lotgering method based on the correction value. Orientation degree evaluation method. 前記成形体または焼結体は、長辺aと厚さcの比率a/cが10以上の薄型形状を有することを特徴とする請求項1または2記載の配向度評価方法。   The orientation degree evaluation method according to claim 1 or 2, wherein the molded body or the sintered body has a thin shape in which a ratio a / c of a long side a to a thickness c is 10 or more. 前記成形体または焼結体を縦横3分割、合計9分割し、中央の分割片と角部の分割片の少なくとも1つについて、前記配向度を比較することを特徴とする請求項3記載の配向度評価方法。   The orientation according to claim 3, wherein the molded body or the sintered body is divided into 9 parts in a total of 9 parts in length and breadth, and the degree of orientation is compared with respect to at least one of a central piece and a corner piece. Degree evaluation method. 希土類合金粉末の焼結体からなる希土類焼結磁石であって、
奇数個に等分割された分割片のうち、中央部分の分割片と最外部の分割片において、各回折ピークのX線回折強度をベクトル補正した後、ロットゲーリング法により算出される配向度の差が1.5%以下であることを特徴とする希土類焼結磁石。
A rare earth sintered magnet comprising a sintered body of rare earth alloy powder,
Among the odd-numbered pieces, the difference in orientation calculated by the Lotgering method after vector correction of the X-ray diffraction intensity of each diffraction peak in the central piece and the outermost piece. Rare earth sintered magnet, characterized in that is 1.5% or less.
長辺aと厚さcの比率a/cが10以上の薄型形状を有することを特徴とする請求項5記載の希土類焼結磁石。   6. The rare earth sintered magnet according to claim 5, wherein the ratio a / c between the long side a and the thickness c is 10 or more. 縦横3分割、合計9分割し、中央の分割片と外周角部の分割片の少なくとも1つについて、前記配向度の差が1.5%以下であることを特徴とする請求項5または6記載の希土類焼結磁石。   7. The vertical and horizontal divisions, a total of 9 divisions, and the difference in the degree of orientation is 1.5% or less for at least one of the central division piece and the division piece at the outer peripheral corner. Rare earth sintered magnet. 前記希土類合金粉末は、R(Rは希土類元素の1種又は2種以上である。)、T(TはFe又はFe、Coを必須とする1種又は2種以上の遷移金属元素である。)及びBを含むことを特徴とする請求項5から7のいずれか1項記載の希土類焼結磁石。   The rare earth alloy powder is R (R is one or more of rare earth elements), T (T is one or more transition metal elements essential for Fe, Fe, or Co). ) And B. The rare earth sintered magnet according to claim 5, wherein the rare earth sintered magnet is included. 希土類合金粉末を圧縮成形して所定の形状の成形体とし、当該成形体を焼結して希土類焼結磁石とするに際し、
前記成形の際に所定の方向に配向磁界を印加するとともに、当該配向磁界方向における両端部分を切除することを特徴とする希土類焼結磁石の製造方法。
When a rare earth alloy powder is compression-molded into a molded body having a predetermined shape, and the molded body is sintered into a rare-earth sintered magnet,
A method for producing a rare earth sintered magnet, wherein an orientation magnetic field is applied in a predetermined direction during the molding, and both end portions in the orientation magnetic field direction are excised.
前記両端部分は、端部から2mm以上切除することを特徴とする請求項9記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 9, wherein the both end portions are cut out by 2 mm or more from the end portions. 前記両端部分は、成形体の段階で切除することを特徴とする請求項9または10記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 9 or 10, wherein the both end portions are excised at the stage of a molded body. 前記両端部分は、焼結体にした後に切除することを特徴とする請求項9または10記載の希土類焼結磁石の製造方法。   The method of manufacturing a rare earth sintered magnet according to claim 9 or 10, wherein the both end portions are cut after being formed into a sintered body. 切除した前記両端部分は、粉砕して再利用することを特徴とする請求項9から12のいずれか1項記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 9 to 12, wherein the cut off both end portions are crushed and reused.
JP2005076732A 2005-03-17 2005-03-17 Method of evaluating orientation degree, rare-earth sintered magnet and its manufacturing method Withdrawn JP2006258616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076732A JP2006258616A (en) 2005-03-17 2005-03-17 Method of evaluating orientation degree, rare-earth sintered magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076732A JP2006258616A (en) 2005-03-17 2005-03-17 Method of evaluating orientation degree, rare-earth sintered magnet and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006258616A true JP2006258616A (en) 2006-09-28

Family

ID=37098045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076732A Withdrawn JP2006258616A (en) 2005-03-17 2005-03-17 Method of evaluating orientation degree, rare-earth sintered magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006258616A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008099A (en) * 2008-06-24 2010-01-14 National Institute Of Advanced Industrial & Technology Optical measuring instrument of liquid or molten material and optical measuring method
WO2015121916A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Permanent magnet, permanent magnet manufacturing method, spm motor, and spm motor manufacturing method
WO2015121917A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Ring magnet for spm motor, production method for ring magnet for spm motor, spm motor, and production method for spm motor
WO2021039379A1 (en) 2019-08-30 2021-03-04 国立研究開発法人産業技術総合研究所 Orientation distribution calculation method, orientation distribution analysis device, and orientation distribution analysis program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008099A (en) * 2008-06-24 2010-01-14 National Institute Of Advanced Industrial & Technology Optical measuring instrument of liquid or molten material and optical measuring method
WO2015121916A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Permanent magnet, permanent magnet manufacturing method, spm motor, and spm motor manufacturing method
WO2015121917A1 (en) * 2014-02-12 2015-08-20 日東電工株式会社 Ring magnet for spm motor, production method for ring magnet for spm motor, spm motor, and production method for spm motor
JPWO2015121916A1 (en) * 2014-02-12 2017-03-30 日東電工株式会社 Permanent magnet, method for manufacturing permanent magnet, SPM motor, and method for manufacturing SPM motor
US20170170695A1 (en) * 2014-02-12 2017-06-15 Nitto Denko Corporation Ring magnet for spm motor, production method for ring magnet for spm motor, spm motor, and production method for spm motor
WO2021039379A1 (en) 2019-08-30 2021-03-04 国立研究開発法人産業技術総合研究所 Orientation distribution calculation method, orientation distribution analysis device, and orientation distribution analysis program
EP4024036A4 (en) * 2019-08-30 2023-09-13 National Institute Of Advanced Industrial Science and Technology Orientation distribution calculation method, orientation distribution analysis device, and orientation distribution analysis program
US11921061B2 (en) 2019-08-30 2024-03-05 National Institute Of Advanced Industrial Science And Technology Orientation degree distribution calculation method, orientation degree distribution analyzer, and orientation degree distribution analysis program

Similar Documents

Publication Publication Date Title
JP6504044B2 (en) Rare earth permanent magnet
JP6536816B2 (en) RTB based sintered magnet and motor
CN105047343A (en) Permanent magnet and motor
JP2016152246A (en) Rare earth based permanent magnet
WO2013080605A1 (en) Rare-earth sintered magnet
WO2007063969A1 (en) Rare earth sintered magnet and method for producing same
US9548149B2 (en) Rare earth based magnet
JP2006258616A (en) Method of evaluating orientation degree, rare-earth sintered magnet and its manufacturing method
JP6691666B2 (en) Method for manufacturing RTB magnet
JP6511844B2 (en) RTB based sintered magnet
JP4868182B2 (en) Sm-R-T-B (-M) sintered magnet
JP6919788B2 (en) Rare earth sintered magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2016207679A (en) R-t-b series sintered magnet
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2004303909A (en) Rare earth permanent magnet and manufacturing method thereof
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP7408921B2 (en) RTB series permanent magnet
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP2011210850A (en) Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet
JP6255977B2 (en) Rare earth magnets
JP2002285276A (en) R-t-b-c based sintered magnet and production method therefor
JP7256483B2 (en) RTB permanent magnet and manufacturing method thereof
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP4506973B2 (en) Method for producing rare earth sintered magnet, method for grinding raw alloy powder for sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090518