JP2011210850A - Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet - Google Patents

Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet Download PDF

Info

Publication number
JP2011210850A
JP2011210850A JP2010075526A JP2010075526A JP2011210850A JP 2011210850 A JP2011210850 A JP 2011210850A JP 2010075526 A JP2010075526 A JP 2010075526A JP 2010075526 A JP2010075526 A JP 2010075526A JP 2011210850 A JP2011210850 A JP 2011210850A
Authority
JP
Japan
Prior art keywords
alloy
mass
rare earth
sintered magnet
earth sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010075526A
Other languages
Japanese (ja)
Inventor
Atsushi Fujiwara
篤 藤原
Ryota Kunieda
良太 國枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2010075526A priority Critical patent/JP2011210850A/en
Publication of JP2011210850A publication Critical patent/JP2011210850A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a rare-earth sintered magnet which improves the grindability and the magnetic characteristics, and to provide a rare-earth sintered magnet.SOLUTION: A method of manufacturing a rare-earth sintered magnet, when a rare-earth sintered magnet having a main phase containing RTB (R represents one or more kinds of rare-earth element is manufactured, T represents one or more kinds of transition metal element containing Fe or Fe and Co, and B represents B or B and C) compound and a grain boundary phase containing lots of R; obtains the rare-earth sintered magnet by mixing an alloy powder of a first alloy containing RTB compound and an alloy powder of a second alloy containing HRTB compound (HR represents one or more kinds of a heavy rare-earth element), where a containing amount of HR is 25.0 mass% or more and 32.5 mass% or less, and a containing amount of B is 0.6 mass% or more and 1.4 mass% or less; and sinters the mixture. The rare-earth sintered magnet has a composition that R is 25.0 mass% or more and is less than 32.5 mass%, and B is 0.5 mass% or more and 1.5 mass% or less.

Description

本発明は、希土類焼結磁石の製造方法及び希土類焼結磁石に関し、特に第2合金の合金粉末の粉砕性が向上し、磁気特性に優れた希土類焼結磁石の製造方法及び希土類焼結磁石に関する。   The present invention relates to a method for producing a rare earth sintered magnet and a rare earth sintered magnet, and more particularly, to a method for producing a rare earth sintered magnet and a rare earth sintered magnet having improved magnetic properties and improved crushability of the alloy powder of the second alloy. .

R−T−B(Rは希土類元素、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)系の組成を有する希土類永久磁石は、R214Bの組成式で表されるR214B化合物を含む主相と、R214BよりRを多く含むRリッチ相を含む粒界相とを含む組織を有し、高い保磁力HcJを有するなど優れた磁気特性を発揮する永久磁石である。R−Fe−B系の希土類永久磁石は、高性能な永久磁石として、ハードディスクドライブ(Hard disk drive:HDD)のヴォイスコイルモータ(Voice Coil Motor:VCM)、電気自動車やハイブリッドカーなど特に高性能が要求されるモータなどに使用されている。 A rare earth permanent magnet having a composition of R-T-B (R represents a rare earth element, T represents one or more transition metal elements including Fe or Fe and Co, and B represents B or B and C), a major phase comprising R 2 T 14 B compound represented by the composition formula of R 2 T 14 B, have a tissue containing a grain boundary phase containing R-rich phase containing more R than R 2 T 14 B, It is a permanent magnet that exhibits excellent magnetic properties such as a high coercive force HcJ. R-Fe-B rare earth permanent magnets have high performance as high performance permanent magnets such as hard disk drive (Voice Coil Motor: VCM), electric cars and hybrid cars. Used for required motors.

例えば、R214B化合物を主相として含む第1合金と、R217相を全体の25質量%以上含む第2合金とを混合し、Dyなどの希土類元素を主相外郭部分に他の部分より高い濃度で濃縮することで、高い保磁力HcJを有する焼結磁石を効率良く製造する方法が提案されている(例えば、特許文献1参照)。 For example, a first alloy containing the R 2 T 14 B compound as a main phase and a second alloy containing 25% by mass or more of the R 2 T 17 phase as a main phase are mixed, and a rare earth element such as Dy is mixed in the outer portion of the main phase. There has been proposed a method for efficiently producing a sintered magnet having a high coercive force HcJ by concentrating at a higher concentration than other parts (see, for example, Patent Document 1).

特許第3765793号公報Japanese Patent No. 3765793

特許文献1の焼結磁石のような従来の永久磁石では、第2合金中にはBは含まれていなかったため、第2合金中にはR214B化合物は生成されず、Rリッチ相やR217相が含まれていた。第1合金と第2合金とを混合した混合粉末に水素を吸蔵させる際、第1合金に含まれるR214B化合物は水素を吸蔵しにくく、体積膨張はほとんどなかった。これに対し、第2合金中にはRリッチ相やR217相など水素を吸蔵して膨張し易い性質を有する相が多く含まれていた。第2合金は水素を吸蔵した後、水素吸蔵に起因して生じる膨張差がほとんどないと考えられるため、第2合金は粉砕性が悪く、微粉末の生産性が悪かった。 In the conventional permanent magnet such as the sintered magnet of Patent Document 1, since B is not contained in the second alloy, no R 2 T 14 B compound is generated in the second alloy, and the R-rich phase is not produced. And R 2 T 17 phase. When hydrogen was occluded in the mixed powder in which the first alloy and the second alloy were mixed, the R 2 T 14 B compound contained in the first alloy was difficult to occlude hydrogen and there was almost no volume expansion. On the other hand, the second alloy contained many phases such as R-rich phase and R 2 T 17 phase that have the property of easily absorbing hydrogen and expanding. After the second alloy occludes hydrogen, it is considered that there is almost no difference in expansion caused by the occlusion of hydrogen, so the second alloy has poor grindability and poor fine powder productivity.

第2合金の粉砕性が悪いと、第1合金と第2合金とを混合してから粉砕し希土類焼結磁石を生成する際、目的とする組成からズレが大きくなりやすくなり、目的とする組成を有する希土類焼結磁石は生成し難かったため、得られる希土類焼結磁石の磁気特性が低下する、という問題があった。   If the pulverizability of the second alloy is poor, when the first alloy and the second alloy are mixed and then pulverized to produce a rare earth sintered magnet, the deviation from the target composition tends to increase, and the target composition It was difficult to produce rare earth sintered magnets having a magnetic property, and there was a problem that the magnetic properties of the obtained rare earth sintered magnets deteriorated.

本発明は、上記に鑑みてなされたものであって、磁気特性を向上させた希土類焼結磁石の製造方法及び希土類焼結磁石を提供することを目的とする。   This invention is made in view of the above, Comprising: It aims at providing the manufacturing method and rare earth sintered magnet of the rare earth sintered magnet which improved the magnetic characteristic.

上述した課題を解決し、目的を達成するために、本発明に係る希土類焼結磁石の製造方法は、R214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物を含む主相と、前記R214B化合物よりRを多く含む粒界相とを有する希土類焼結磁石を製造するにあたり、R214B化合物及び不可避不純物を含む第1合金の合金粉末と、HR214B化合物(HRは1種類以上の重希土類元素を表す)を含み、HRの含有量が25.0質量%以上32.5質量%以下であり、Bの含有量が0.6質量%以上1.4質量%以下である第2合金の合金粉末とを混合し、混合物を得る混合物作製工程と、前記混合物を成形し、成形体を得る成形工程と、前記成形体を焼結し、焼結体を得る焼結工程と、を含み、前記主相及び前記粒界相に含まれるRを25質量%以上32.5質量%未満、Bを0.5質量%以上1.5質量%以下の組成とすることを特徴とする。 In order to solve the above-mentioned problems and achieve the object, a method for producing a rare earth sintered magnet according to the present invention is based on R 2 T 14 B (R represents one or more rare earth elements, T represents Fe or Fe and A rare earth-firing having a main phase containing a compound including one or more transition metal elements including Co, wherein B represents B or B and C, and a grain boundary phase containing more R than the R 2 T 14 B compound. In producing the magnet, the alloy powder of the first alloy containing the R 2 T 14 B compound and inevitable impurities and the HR 2 T 14 B compound (HR represents one or more kinds of heavy rare earth elements) The alloy powder of the 2nd alloy whose content is 25.0 mass% or more and 32.5 mass% or less, and whose B content is 0.6 mass% or more and 1.4 mass% or less is mixed. Obtaining a mixture preparation step, molding the mixture and obtaining a molded body, and Sintering the molded body to obtain a sintered body, and R contained in the main phase and the grain boundary phase is 25% by mass or more and less than 32.5% by mass, and B is 0.5% by mass. % Or more and 1.5% by mass or less.

第2合金にBが含まれていない場合、第2合金にはRリッチ相やDy2Fe17などの相が形成される。第2合金に水素を吸蔵させる際、第2合金に含まれるRリッチ相やDy2Fe17などの相は水素を吸蔵し易く、膨張し易い。そのため、第2合金に水素を吸蔵させても第2合金が水素を吸蔵して膨張し易い相だけで形成されている場合、第2合金中に水素を吸蔵させても第2合金の相の間同士での膨張差は小さく、合金はクラックを生じにくい。これに対し、本発明は、第2合金はHRとBとを含み、HR214B化合物を含む相が形成される。HR214B化合物はRリッチ相やDy2Fe17などの相と異なり水素をほとんど吸蔵せず、Rリッチ相やDy2Fe17などの相に比べて膨張し難い相である。このため、第2合金内にR214B化合物を含むことで、Rリッチ相やDy2Fe17などの相が形成される場合に比べて水素を吸蔵した際、第2合金にクラックが生じ易くなり、第2合金の粉砕性を向上させ、第2合金の微粉末の生産性を向上させることができる。第2合金にクラックが生じ易くなることで、第2合金の微粉末が更に多くなるため、第1合金の合金粉末と混合させて得られる希土類焼結磁石に含まれる成分の組成ズレを小さくすることができるので、希土類焼結磁石の磁気特性を向上させることができる。 When B is not contained in the second alloy, an R-rich phase or a phase such as Dy 2 Fe 17 is formed in the second alloy. When hydrogen is stored in the second alloy, phases such as R-rich phase and Dy 2 Fe 17 included in the second alloy easily store hydrogen and easily expand. Therefore, even if hydrogen is occluded in the second alloy and the second alloy is formed only with a phase that easily absorbs hydrogen and expands, even if hydrogen is occluded in the second alloy, the phase of the second alloy The difference in expansion between them is small, and the alloy is less likely to crack. On the other hand, in the present invention, the second alloy contains HR and B, and a phase containing the HR 2 T 14 B compound is formed. Unlike the R-rich phase and Dy 2 Fe 17 phase, the HR 2 T 14 B compound hardly absorbs hydrogen and is a phase that is less likely to expand than the R-rich phase and Dy 2 Fe 17 phase. For this reason, when the R 2 T 14 B compound is included in the second alloy, cracks are generated in the second alloy when hydrogen is occluded as compared to the case where an R-rich phase or a phase such as Dy 2 Fe 17 is formed. It becomes easy to generate | occur | produce, the grindability of a 2nd alloy can be improved, and the productivity of the fine powder of a 2nd alloy can be improved. Since the second alloy is more likely to crack, the amount of fine powder of the second alloy is further increased, so that the composition deviation of the components contained in the rare earth sintered magnet obtained by mixing with the alloy powder of the first alloy is reduced. Therefore, the magnetic properties of the rare earth sintered magnet can be improved.

本発明に係る希土類焼結磁石は、R214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物及び不可避不純物を含む第1合金の合金粉末と、HR214B化合物(HRは1種類以上の重希土類元素を表す)を含み、HRの含有量が25.0質量%以上32.5質量%以下であり、Bの含有量が0.6質量%以上1.4質量%以下である第2合金の合金粉末とを混合し、焼結することにより得られ、R214B化合物を含む主相と、前記R214B化合物よりRを多く含む粒界相とを有し、前記主相及び前記粒界相に含まれるRが25質量%以上32.5質量%未満、Bが0.5質量%以上1.5質量%以下の組成であることを特徴とする。 The rare earth sintered magnet according to the present invention is R 2 T 14 B (R represents one or more rare earth elements, T represents one or more transition metal elements including Fe or Fe and Co, and B represents B or An alloy powder of a first alloy containing a compound (representing B and C) and unavoidable impurities, and an HR 2 T 14 B compound (HR represents one or more heavy rare earth elements), and the HR content is 25.0 It is obtained by mixing and sintering the alloy powder of the second alloy having a B content of 0.6% by mass or more and 1.4% by mass or less. a major phase comprising R 2 T 14 B compound, wherein R 2 T 14 and a grain boundary phase containing a large amount of R than B compounds, R contained in the main phase and the grain boundary phase is more than 25 wt% 32 Less than 5% by mass, and B is 0.5% by mass or more and 1.5% by mass or less.

本発明は、本発明に係る希土類焼結磁石の製造方法を用いて製造される希土類焼結磁石である。第2合金はHRとBとを含み、R214B化合物を含む相が形成されている。R214B化合物はRリッチ相やDy2Fe17などの相に比べ水素吸蔵で膨張し難い相である。このため、第2合金へ水素を吸蔵させた際、第2合金にクラックが生じ易くなり、第2合金の粉砕性を向上させ、第2合金の微粉末の生産性を向上させることができる。これにより、第2合金の微粉末が更に多くなるため、第1合金の合金粉末と混合させて得られる希土類焼結磁石に含まれる成分の組成ズレを小さくすることができるので、希土類焼結磁石の磁気特性を向上させることができる。 The present invention is a rare earth sintered magnet manufactured using the method for manufacturing a rare earth sintered magnet according to the present invention. The second alloy contains HR and B, and a phase containing an R 2 T 14 B compound is formed. The R 2 T 14 B compound is a phase that is less likely to expand due to occlusion of hydrogen than the R-rich phase or the phase such as Dy 2 Fe 17 . For this reason, when hydrogen is occluded in the second alloy, cracks are likely to occur in the second alloy, the pulverization property of the second alloy can be improved, and the productivity of the fine powder of the second alloy can be improved. Thereby, since the fine powder of the second alloy further increases, the composition deviation of the components contained in the rare earth sintered magnet obtained by mixing with the alloy powder of the first alloy can be reduced. It is possible to improve the magnetic characteristics.

本発明によれば、粉砕性を向上すると共に、磁気特性を向上させた希土類焼結磁石の製造方法及び希土類焼結磁石を提供することができる。   According to the present invention, it is possible to provide a method for producing a rare earth sintered magnet and a rare earth sintered magnet having improved crushability and improved magnetic properties.

図1は、本発明の実施形態に係る希土類焼結磁石の製造方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for manufacturing a rare earth sintered magnet according to an embodiment of the present invention. 図2は、測定された保磁力HcJと残留磁束密度Brとの関係を示す図である。FIG. 2 is a diagram showing the relationship between the measured coercive force HcJ and the residual magnetic flux density Br.

以下、本発明に係る希土類焼結磁石の実施の形態(以下、実施形態という)及び実施例を図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための実施形態及び実施例により本発明が限定されるものではない。また、下記実施形態及び実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態及び実施例で開示した構成要素は適宜組み合わせても良いし、適宜選択して用いてもよい。   Hereinafter, embodiments (hereinafter referred to as embodiments) and examples of rare earth sintered magnets according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the embodiment and the Example for implementing the following invention. In addition, constituent elements in the following embodiments and examples include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range. Furthermore, the constituent elements disclosed in the following embodiments and examples may be appropriately combined or may be appropriately selected and used.

[実施形態]
<希土類焼結磁石>
希土類焼結磁石は、R−T−B系合金を用いて形成される焼結体である。希土類焼結磁石は、結晶粒の組成がR214B(RはNdを含む1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)という組成式で表されるR214B化合物を含む主相と、R214B化合物よりRを多く含む粒界相とを有する。
[Embodiment]
<Rare earth sintered magnet>
The rare earth sintered magnet is a sintered body formed using an R-T-B alloy. The rare earth sintered magnet has a crystal grain composition of R 2 T 14 B (R represents one or more rare earth elements including Nd, T represents one or more transition metal elements including Fe or Fe and Co, B represents B or B and C), and has a main phase containing an R 2 T 14 B compound represented by a composition formula, and a grain boundary phase containing more R than the R 2 T 14 B compound.

Rは、1種以上の希土類元素を表す。希土類元素とは、長周期型周期表の第3族に属するScとYとランタノイド元素とのことをいう。ランタノイド元素は、例えば、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu等を含む。希土類元素は、軽希土類及び重希土類に分類され、重希土類元素とは、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luをいい、軽希土類元素はそれ以外の希土類元素である。製造コスト及び磁気特性の観点から、RはNdを含むものであることが好ましい。   R represents one or more rare earth elements. Rare earth elements refer to Sc, Y, and lanthanoid elements belonging to Group 3 of the long-period periodic table. Lanthanoid elements include, for example, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and the like. The rare earth elements are classified into light rare earth elements and heavy rare earth elements. The heavy rare earth elements are Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, and the light rare earth elements are other rare earth elements. From the viewpoint of manufacturing cost and magnetic properties, R preferably contains Nd.

Tは、Fe又はFe及びCoを含む1種以上の遷移金属元素を示すものである。Tは、Fe単独であってもよく、Feの一部がCoで置換されていてもよい。Feの一部をCoに置換する場合、磁気特性を低下させることなく温度特性を向上させることができる。また、Coの含有量は、Feの含有量の20質量%以下に抑えることが望ましい。これは、Coの含有量がFeの含有量の20質量%より大きくなるようにFeの一部をCoに置換すると、磁気特性を低下させる虞がある。また、希土類焼結磁石が高価となってしまうからである。Tは、Fe、Co以外に、例えば、Al、Ga、Si、Ti、V、Cr、Mn、Ni、Cu、Zr、Nb、Mo、Hf、Ta、Wなどの元素の少なくとも1種の元素を更に含んでいてもよい。   T represents one or more transition metal elements including Fe or Fe and Co. T may be Fe alone or a part of Fe may be substituted with Co. When a part of Fe is replaced with Co, the temperature characteristics can be improved without deteriorating the magnetic characteristics. Further, the Co content is desirably suppressed to 20% by mass or less of the Fe content. This is because if a part of Fe is replaced with Co so that the Co content is larger than 20 mass% of the Fe content, the magnetic properties may be deteriorated. Moreover, it is because a rare earth sintered magnet becomes expensive. In addition to Fe and Co, T includes at least one element such as Al, Ga, Si, Ti, V, Cr, Mn, Ni, Cu, Zr, Nb, Mo, Hf, Ta, and W. Further, it may be included.

本実施形態に係る第2合金の合金粉末は、HR214B化合物(HRは1種類以上の重希土類元素を表す)を含み、HR量は25質量%以上32.5質量%以下、B量は0.6質量%以上1.4質量%以下とする。HR量が32.5質量%を超えると、微細な結晶粒を得る事ができず磁気特性が低下する。一方、HR量が25質量%未満になると、軟磁性相であるFe単相の生成量が多くなり、粉砕性及び磁気特性が低下する。 The alloy powder of the second alloy according to the present embodiment includes an HR 2 T 14 B compound (HR represents one or more kinds of heavy rare earth elements), and the HR amount is 25 mass% or more and 32.5 mass% or less, B The amount is 0.6 mass% or more and 1.4 mass% or less. When the amount of HR exceeds 32.5% by mass, fine crystal grains cannot be obtained and the magnetic properties are deteriorated. On the other hand, when the amount of HR is less than 25% by mass, the amount of Fe single phase, which is a soft magnetic phase, is increased, and the grindability and magnetic properties are deteriorated.

本実施形態に係る第2合金の合金粉末において、B量は1.4質量%を超えると、HR214B化合物(HRは1種類以上の重希土類元素を表す)以外に異相が析出し、粉砕性を低下させる。また、B量が0.6質量%未満になると、HR214B化合物量が十分で無く、粉砕性向上の効果が得られない。第2合金の合金粉末にBが含まれておらず、HR214B化合物が存在しない場合、第2合金の合金粉末にはRリッチ相やDy2Fe17などの相が形成される。第2合金に水素を吸蔵させて粉砕する際、第2合金に含まれるRリッチ相やDy2Fe17などの相は水素を吸蔵し易く、膨張し易い。そのため、第2合金が水素を吸蔵して膨張し易い相だけで形成されている場合、第2合金に水素を吸蔵させても第2合金の相の間同士での膨張差は小さく、粉末にクラックが生じ難い。これに対し、本実施形態の第2合金はHRとBとを含み、第2合金にはHR214B化合物を含む相が形成される。HR214B化合物はRリッチ相やDy2Fe17などの相と異なり水素をほとんど吸蔵せず、Rリッチ相やDy2Fe17などの相に比べて膨張し難い相である。このため、本実施形態に係る希土類焼結磁石を製造する際に第2合金がR214B化合物を含んでいることで、Rリッチ相やDy2Fe17などの相が形成される場合に比べて水素を吸蔵した際、第2合金に含まれる相同士の間の膨張差が大きくなるため、第2合金の合金粉末にクラックが生じ易くなる。これにより、第2合金の粉砕性を向上させ、第2合金の微粉末の生産性を向上させることができる。第2合金の粉砕性が向上することで、第2合金の微粉末が更に多くなるため、第1合金の合金粉末と混合させて得られる希土類焼結磁石に含まれる成分の組成のズレ量は小さくなり、本実施形態に係る希土類焼結磁石の磁気特性は向上する。 In the alloy powder of the second alloy according to this embodiment, when the amount of B exceeds 1.4% by mass, a different phase precipitates in addition to the HR 2 T 14 B compound (HR represents one or more types of heavy rare earth elements). , Reduce grindability. On the other hand, when the amount of B is less than 0.6% by mass, the amount of the HR 2 T 14 B compound is not sufficient, and the effect of improving grindability cannot be obtained. When B is not contained in the alloy powder of the second alloy and no HR 2 T 14 B compound is present, an R-rich phase or a phase such as Dy 2 Fe 17 is formed in the alloy powder of the second alloy. When the second alloy is occluded and pulverized, phases such as R-rich phase and Dy 2 Fe 17 contained in the second alloy easily absorb hydrogen and easily expand. Therefore, in the case where the second alloy is formed only with a phase that easily absorbs hydrogen and expands, the difference in expansion between the phases of the second alloy is small even if hydrogen is stored in the second alloy. Cracks are unlikely to occur. On the other hand, the second alloy of the present embodiment includes HR and B, and a phase including the HR 2 T 14 B compound is formed in the second alloy. Unlike the R-rich phase and Dy 2 Fe 17 phase, the HR 2 T 14 B compound hardly absorbs hydrogen and is a phase that is less likely to expand than the R-rich phase and Dy 2 Fe 17 phase. For this reason, when manufacturing the rare earth sintered magnet according to the present embodiment, when the second alloy contains the R 2 T 14 B compound, a phase such as an R rich phase or Dy 2 Fe 17 is formed. When hydrogen is occluded in comparison with this, the difference in expansion between phases contained in the second alloy becomes large, so that cracks are likely to occur in the alloy powder of the second alloy. Thereby, the grindability of the second alloy can be improved, and the productivity of the fine powder of the second alloy can be improved. Since the fineness of the second alloy is further increased by improving the pulverization property of the second alloy, the deviation of the composition of the components contained in the rare earth sintered magnet obtained by mixing with the alloy powder of the first alloy is The magnetic properties of the rare earth sintered magnet according to the present embodiment are improved.

次に本実施形態に係る希土類焼結磁石の化学組成について言及する。本発明におけるRの含有量は、25質量%以上32.5質量%未満であるのが好ましく、Rの含有量が25質量%未満では、R−T−B系焼結磁石の主相となるR214B化合物の生成が十分ではない。このため、軟磁性を持つα−Feなどが析出し、磁気特性が低下する虞がある。より好ましいRの量は27質量%以上32質量%以下である。 Next, the chemical composition of the rare earth sintered magnet according to this embodiment will be described. The R content in the present invention is preferably 25% by mass or more and less than 32.5% by mass, and if the R content is less than 25% by mass, it becomes the main phase of the R-T-B system sintered magnet. The formation of R 2 T 14 B compound is not sufficient. For this reason, there exists a possibility that alpha-Fe etc. which have soft magnetism may precipitate, and a magnetic characteristic may fall. The amount of R is more preferably 27% by mass or more and 32% by mass or less.

Bの含有量は、0.5質量%以上1.5質量%以下であるのが好ましい。Bの含有量が0.5質量%未満となると保磁力が低下する。また、Bの含有量が1.5質量%を超えると、残留磁束密度が低下する傾向がある。従って、より好ましいBの量は0.5質量%以上1.3質量%以下、さらに好ましいBの量は0.8質量%以上1.2質量%以下である。   The content of B is preferably 0.5% by mass or more and 1.5% by mass or less. When the B content is less than 0.5% by mass, the coercive force decreases. On the other hand, if the B content exceeds 1.5% by mass, the residual magnetic flux density tends to decrease. Therefore, the more preferable amount of B is 0.5% by mass or more and 1.3% by mass or less, and the more preferable amount of B is 0.8% by mass or more and 1.2% by mass or less.

本実施形態に係る希土類焼結磁石は、例えばプレス成形などにより目的とする所定形状に成形されて得られる。希土類焼結磁石の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、希土類焼結磁石の形状に応じて変更することができる。   The rare earth sintered magnet according to the present embodiment is obtained by being molded into a desired predetermined shape by, for example, press molding. The shape of the rare earth sintered magnet is not particularly limited, and may be changed according to the shape of the rare earth sintered magnet, for example, a flat plate shape, a columnar shape, a cross-sectional shape such as a ring shape, etc. it can.

本実施形態に係る希土類焼結磁石は、R−T−B系合金からなる希土類焼結磁石を用いているが、本実施形態はこれに限定されるものではない。例えば、R−T−B系希土類合金粉末と樹脂バインダーとを混練して希土類ボンド磁石用コンパウンド(組成物)を作製し、得られる希土類ボンド磁石用コンパウンドを所定の形状に成形した希土類ボンド磁石を希土類焼結磁石として用いてもよい。   The rare earth sintered magnet according to the present embodiment uses a rare earth sintered magnet made of an R-T-B alloy, but the present embodiment is not limited to this. For example, an R-T-B rare earth alloy powder and a resin binder are kneaded to prepare a rare earth bonded magnet compound (composition), and the resulting rare earth bonded magnet compound is molded into a predetermined shape. It may be used as a rare earth sintered magnet.

本実施形態に係る希土類焼結磁石は、磁石の製造用に用いる第2合金粉末がR214B化合物を含むことで、第2合金の合金粉末の粉砕性が向上し、第2合金の微粉末の生産性を向上させる。R214B化合物を含まない第2合金粉末を用いる場合に比べ、更に第2合金の合金粉末の微粉末は更に多くなるため、第1合金の合金粉末と混合させて得られる希土類焼結磁石に含まれる成分の組成ズレを小さくすることができ、磁気特性を向上させることができる。 In the rare earth sintered magnet according to the present embodiment, the second alloy powder used for manufacturing the magnet contains the R 2 T 14 B compound, so that the pulverizability of the alloy powder of the second alloy is improved, and the second alloy powder of the second alloy Improve the productivity of fine powder. Compared with the case where the second alloy powder not containing the R 2 T 14 B compound is used, the fine powder of the alloy powder of the second alloy further increases, so that the rare earth sintering obtained by mixing with the alloy powder of the first alloy The composition deviation of the components contained in the magnet can be reduced, and the magnetic properties can be improved.

<希土類焼結磁石の製造方法>
上述したような構成を有する本実施形態に係る希土類焼結磁石の製造方法について図面を用いて説明する。本実施の形態では、第1合金粉末は、R2Fe14B化合物及び不可避不純物を含むものである。第2合金粉末は、HR214B化合物を含むものである。第1合金粉末と第2合金粉末とを用いて本発明に係る希土類焼結磁石を製造する方法について説明する。図1は、本発明の実施形態に係る希土類焼結磁石の製造方法を示すフローチャートである。図1に示すように、本実施形態に係る希土類焼結磁石の製造方法は、以下の工程を有する。
(a)第1合金と第2合金とを準備する合金準備工程(ステップS11)
(b)第1合金と第2合金とを粉砕する粉砕工程(ステップS12)
(c)第1合金粉末と第2合金粉末とを混合する混合工程(ステップS13)
(d)混合した混合粉末を成形する成形工程(ステップS14)
(e)成形体を焼結する焼結工程(ステップS15)
(f)焼結体を時効処理する時効処理工程(ステップS16)
(g)焼結体を冷却する冷却工程(ステップS17)
<Method for producing rare earth sintered magnet>
A method for manufacturing a rare earth sintered magnet according to the present embodiment having the above-described configuration will be described with reference to the drawings. In the present embodiment, the first alloy powder contains an R 2 Fe 14 B compound and inevitable impurities. The second alloy powder contains an HR 2 T 14 B compound. A method for producing a rare earth sintered magnet according to the present invention using the first alloy powder and the second alloy powder will be described. FIG. 1 is a flowchart showing a method for manufacturing a rare earth sintered magnet according to an embodiment of the present invention. As shown in FIG. 1, the manufacturing method of the rare earth sintered magnet according to the present embodiment includes the following steps.
(A) Alloy preparation process for preparing the first alloy and the second alloy (step S11)
(B) Crushing step of crushing the first alloy and the second alloy (Step S12)
(C) Mixing step of mixing the first alloy powder and the second alloy powder (step S13)
(D) Molding process for molding the mixed powder mixture (step S14)
(E) Sintering step of sintering the compact (step S15)
(F) Aging treatment step of aging the sintered body (step S16)
(G) Cooling process for cooling the sintered body (step S17)

<合金準備工程:ステップS11>
合金準備工程(ステップS11)は、第1合金と第2合金とを準備する工程である。合金準備工程(ステップS11)では、原料金属を真空又はArガスなどの不活性ガスの不活性ガス雰囲気中で鋳造して第1合金及び第2合金を得る。本実施形態では、第2合金は、HR214B化合物を含み、HRの含有量が25.0質量%以上32.5質量%以下となり、Bの含有量が0.6質量%以上1.4質量%以下となるように調整する。原料金属としては、希土類金属あるいは希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。原料金属を鋳造する鋳造方法は、例えばインゴット鋳造法やストリップキャスト法やブックモールド法や遠心鋳造法などである。得られた原料合金は、凝固偏析がある場合は必要に応じて均質化処理を行う。原料合金の均質化処理を行う際は、真空又は不活性ガス雰囲気の下、700℃以上1500℃以下の温度で1時間以上保持して行う。これにより、希土類磁石用合金は少量形成された異相が主相やRリッチ相およびR2T17相に取り込まれて消失することで均質化される。第1合金及び第2合金が作製された後、粉砕工程(ステップS12)に移行する。
<Alloy preparation step: Step S11>
The alloy preparation step (step S11) is a step of preparing the first alloy and the second alloy. In the alloy preparation step (step S11), the raw material metal is cast in an inert gas atmosphere of an inert gas such as vacuum or Ar gas to obtain a first alloy and a second alloy. In the present embodiment, the second alloy includes the HR 2 T 14 B compound, the HR content is 25.0 mass% to 32.5 mass%, and the B content is 0.6 mass% to 1 Adjust to 4 mass% or less. As the raw material metal, rare earth metals or rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. Casting methods for casting the raw metal include, for example, an ingot casting method, a strip casting method, a book mold method, and a centrifugal casting method. The obtained raw material alloy is subjected to a homogenization treatment as necessary when there is solidification segregation. When homogenizing the raw material alloy, it is carried out by holding at a temperature of 700 ° C. or higher and 1500 ° C. or lower for 1 hour or longer in a vacuum or an inert gas atmosphere. As a result, the rare earth magnet alloy is homogenized by removing a small amount of the heterogeneous phase incorporated into the main phase, the R-rich phase, and the R 2 T 17 phase. After the first alloy and the second alloy are produced, the process proceeds to the pulverization step (step S12).

<粉砕工程:ステップS12>
粉砕工程(ステップS12)は、第1合金及び第2合金を各々粉砕する工程である。粉砕工程(ステップS12)では、第1合金及び第2合金が作製された後、これらの第1合金及び第2合金を別々に粉砕する。なお、第1合金及び第2合金は共に粉砕してもよいが、組成ズレをより小さくするには別々に粉砕することが好ましい。粉砕工程(ステップS12)は、粒径が数百μmから数mm程度になるまで粉砕する粗粉砕工程(ステップS12−1)と、粒径が数μm程度になるまで微粉砕する微粉砕工程(ステップS12−2)とがある。
<Crushing step: Step S12>
The crushing step (step S12) is a step of crushing each of the first alloy and the second alloy. In the pulverization step (step S12), after the first alloy and the second alloy are produced, the first alloy and the second alloy are separately pulverized. Although the first alloy and the second alloy may be pulverized together, it is preferable to pulverize them separately in order to reduce the composition deviation. The pulverization step (step S12) includes a coarse pulverization step (step S12-1) for pulverizing until the particle size becomes several hundred μm to several mm, and a fine pulverization step (for pulverizing until the particle size becomes about several μm (step S12-1). Step S12-2).

(粗粉砕工程:ステップS12−1)
粗粉砕工程(ステップS12−1)では、第1合金及び第2合金を各々粒径が数百μm以上数mm以下程度になるまで粗粉砕する。これにより、第1合金及び第2合金の粗粉砕粉末を得る。粗粉砕は、第1合金及び第2合金に水素を吸蔵させた後に水素を放出させ、脱水素を行なうことで第1合金及び第2合金を粗粉砕する。第2合金に含まれるRリッチ相やDy2Fe17などの相は水素を吸蔵し易く、膨張し易いが、第2合金の粗粉砕粉末に含まれるHR214B化合物はRリッチ相やDy2Fe17などの相と異なり水素をほとんど吸蔵せず、Rリッチ相やDy2Fe17などの相に比べて膨張し難い相である。第2合金がR214B化合物を含むことで、Rリッチ相やDy2Fe17などの相との間の体積の膨張差が大きくなるため、第2合金にクラックが生じ易く、第2合金の粉砕性は向上し、第2合金の微粉末の生産性を向上する。
(Coarse grinding step: Step S12-1)
In the coarse pulverization step (step S12-1), the first alloy and the second alloy are coarsely pulverized until the particle diameter is about several hundred μm or more and several mm or less. Thereby, coarsely pulverized powders of the first alloy and the second alloy are obtained. In the coarse pulverization, the first alloy and the second alloy are coarsely pulverized by allowing the first alloy and the second alloy to absorb hydrogen and then releasing the hydrogen and performing dehydrogenation. The R-rich phase contained in the second alloy and the phase such as Dy 2 Fe 17 are easy to occlude and expand hydrogen, but the HR 2 T 14 B compound contained in the coarsely pulverized powder of the second alloy contains the R-rich phase and Unlike a phase such as Dy 2 Fe 17 , it hardly absorbs hydrogen and is a phase that hardly expands compared to a phase such as an R-rich phase or Dy 2 Fe 17 . When the second alloy contains the R 2 T 14 B compound, the volume expansion difference between the R-rich phase and the phase such as Dy 2 Fe 17 becomes large, so that the second alloy is likely to crack, The grindability of the alloy is improved and the productivity of the fine powder of the second alloy is improved.

また、粗粉砕を行なう際は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行うようにしてもよいが、本発明の効果を十分に得るためには合金への水素吸蔵及び放出による粗粉砕が望ましい。   Further, when coarse pulverization is performed, a stamp mill, a jaw crusher, a brown mill, etc. may be used, and it may be performed in an inert gas atmosphere. However, in order to obtain the effects of the present invention sufficiently, Coarse grinding by hydrogen storage and release is desirable.

高い磁気特性を得るために、粉砕工程(ステップS12)から焼結工程(ステップS15)までの各工程の雰囲気は低酸素濃度とすることが好ましい。酸素含有量は、各製造工程における雰囲気の制御、原料に含有される酸素量の制御等により調節される。後述する焼結工程(ステップS15)で得られる焼結体の酸素含有量を5000ppm以下とする場合には、各工程の酸素の濃度を3000ppm以下とし、焼結体の酸素含有量を3000ppm以下とする場合には、各工程の酸素の濃度を100ppm以下とすることが好ましい。   In order to obtain high magnetic properties, it is preferable that the atmosphere of each step from the pulverization step (step S12) to the sintering step (step S15) be a low oxygen concentration. The oxygen content is adjusted by controlling the atmosphere in each manufacturing process, controlling the amount of oxygen contained in the raw material, and the like. When the oxygen content of the sintered body obtained in the sintering step (step S15) described later is 5000 ppm or less, the oxygen concentration in each step is 3000 ppm or less, and the oxygen content of the sintered body is 3000 ppm or less. In this case, the oxygen concentration in each step is preferably 100 ppm or less.

第1合金及び第2合金を粗粉砕した後、微粉砕工程(ステップS12−2)に移行する。   After roughly pulverizing the first alloy and the second alloy, the process proceeds to the fine pulverization step (step S12-2).

(微粉砕工程:ステップS12−2)
微粉砕工程(ステップS12−2)では、第1合金及び第2合金の粗粉砕粉末を粒径が数μm程度になるまで微粉砕する。これにより、第1合金及び第2合金の微粉砕粉末を得る。微粉砕は、主にジェットミルが用いられ、第1合金及び第2合金の粗粉砕粉末を平均粒径数μm程度になるまで粉砕する。ジェットミルは、高圧の不活性ガス(例えば、N2ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により第1合金及び第2合金の粗粉砕粉末を加速して第1合金及び第2合金の粗粉砕粉末同士の衝突やターゲット又は容器壁との衝突を発生させて粉砕する方法である。
(Fine grinding process: Step S12-2)
In the fine pulverization step (step S12-2), the coarsely pulverized powders of the first alloy and the second alloy are finely pulverized until the particle diameter becomes about several μm. Thus, finely pulverized powders of the first alloy and the second alloy are obtained. In the fine pulverization, a jet mill is mainly used, and the coarsely pulverized powders of the first alloy and the second alloy are pulverized until the average particle size becomes about several μm. A jet mill opens a high-pressure inert gas (for example, N 2 gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates coarsely pulverized powders of the first alloy and the second alloy. In this method, the coarsely pulverized powders of the first alloy and the second alloy are collided with each other and collided with the target or the container wall.

第1合金及び第2合金の粗粉砕粉末を微粉砕する際、ステアリン酸亜鉛、オレイン酸アミド等の粉砕助剤を添加することにより、成形時に配向性の高い微粉砕粉末を得ることができる。   When the coarsely pulverized powders of the first alloy and the second alloy are finely pulverized, a finely pulverized powder with high orientation can be obtained at the time of molding by adding a grinding aid such as zinc stearate and oleic acid amide.

第1合金粉末及び第2合金粉末とした後、混合工程(ステップS13)に移行する。   After making the first alloy powder and the second alloy powder, the process proceeds to the mixing step (step S13).

<混合工程:ステップS13>
混合工程(ステップS13)は、第1合金粉末と第2合金粉末とを混合する工程である。混合工程(ステップS13)では、第1合金粉末と第2合金粉末とを低酸素雰囲気で混合する。これにより、混合粉末が得られる。低酸素雰囲気は、例えば、N2ガス、Arガス雰囲気など不活性ガス雰囲気として形成する。第1合金粉末及び第2合金粉末の混合比率は、質量比で80対20以上97対3以下とするのが好ましく、より好ましくは質量比で90対10以上97対3以下であり、更に好ましくは質量比で95対5程度である。
<Mixing step: Step S13>
The mixing step (step S13) is a step of mixing the first alloy powder and the second alloy powder. In the mixing step (step S13), the first alloy powder and the second alloy powder are mixed in a low oxygen atmosphere. Thereby, mixed powder is obtained. The low oxygen atmosphere is formed as an inert gas atmosphere such as an N 2 gas or Ar gas atmosphere. The mixing ratio of the first alloy powder and the second alloy powder is preferably 80:20 or more and 97: 3 or less in mass ratio, more preferably 90:10 or more and 97: 3 or less in mass ratio, and still more preferably. Is about 95 to 5 in mass ratio.

また、粉砕工程(ステップS12)において、第1合金及び第2合金を一緒に粉砕する場合の混合比率も、第1合金及び第2合金を別々に粉砕する場合と同様に、第1合金粉末及び第2合金粉末の混合比率は、質量比で80対20以上97対3以下とするのが好ましく、より好ましくは質量比で90対10以上97対3以下であり、更に好ましくは質量比で95対5程度である。   Further, in the pulverization step (step S12), the mixing ratio when the first alloy and the second alloy are pulverized together is the same as in the case where the first alloy and the second alloy are separately pulverized. The mixing ratio of the second alloy powder is preferably 80 to 20 or more and 97 to 3 or less in terms of mass ratio, more preferably 90 to 10 or more and 97 to 3 or less in mass ratio, and even more preferably 95 in mass ratio. About five.

第1合金粉末と第2合金粉末とを混合した後、成形工程(ステップS14)に移行する。   After mixing the first alloy powder and the second alloy powder, the process proceeds to the forming step (step S14).

<成形工程:ステップS14>
成形工程(ステップS14)は、混合粉末を成形する工程である。成形工程(ステップS14)では、第1合金粉末及び第2合金粉末の混合粉末を、電磁石に抱かれた金型内に充填し、磁場印加によってその結晶軸を配向させた状態で磁場中成形する。これにより成形体が得られる。得られる成形体は特定方向に配向するので、より磁性の強い異方性を有する希土類焼結磁石が得られる。この磁場中成形は、1.2Tesla以上の磁場中で、0.7ton/cm2から1.5ton/cm2前後の圧力で行なうことが好ましい。印加する磁場は静磁場に限定されず、パルス状磁場とすることもできる。また、静磁場とパルス状磁場を併用することもできる。
<Molding process: Step S14>
The forming step (step S14) is a step of forming the mixed powder. In the forming step (step S14), the mixed powder of the first alloy powder and the second alloy powder is filled in a mold held by an electromagnet and formed in a magnetic field with its crystal axis oriented by applying a magnetic field. . Thereby, a molded object is obtained. Since the obtained molded body is oriented in a specific direction, a rare earth sintered magnet having stronger magnetic anisotropy can be obtained. The magnetic field molding, in a magnetic field above 1.2Tesla, it is preferably performed from 0.7ton / cm 2 at a pressure of 1.5 ton / cm 2 before and after. The magnetic field to be applied is not limited to a static magnetic field, and may be a pulsed magnetic field. A static magnetic field and a pulsed magnetic field can also be used in combination.

成形体は例えばプレス成形などにより目的とする所定形状に成形する。混合粉末を成形して得られる成形体の形状は特に限定されるものではなく、用いる金型の形状に応じて、例えば平板状、柱状、断面形状がリング状等、希土類焼結磁石の形状に応じて変更することができる。   The molded body is formed into a desired predetermined shape by, for example, press molding. The shape of the molded body obtained by molding the mixed powder is not particularly limited. Depending on the shape of the mold to be used, the shape of the rare earth sintered magnet, for example, a flat plate shape, a column shape, a cross-sectional shape is a ring shape, etc. It can be changed accordingly.

また、第1合金粉末及び第2合金粉末の混合粉末を目的とする所定の形状に成形する際、磁場を印加して成形して得られる成形体を一定方向に配向させるようにしてもよい。これにより、希土類焼結磁石が特定方向に配向するので、より磁性の強い異方性希土類焼結磁石が得られる。   Further, when the mixed powder of the first alloy powder and the second alloy powder is formed into a predetermined shape, a formed body obtained by forming by applying a magnetic field may be oriented in a certain direction. Thereby, since the rare earth sintered magnet is oriented in a specific direction, an anisotropic rare earth sintered magnet having stronger magnetism can be obtained.

混合粉末を成形した後、焼結工程(ステップS15)に移行する。   After forming the mixed powder, the process proceeds to the sintering step (step S15).

<焼結工程:ステップS15>
焼結工程(ステップS15)は、成形体を焼結する工程である。磁場中で成形した後、得られた成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、例えば1000℃以上1200℃以下で1時間以上10時間以下焼結する。これにより、焼結体が得られる。成形体を焼結した後、時効処理工程(ステップS16)に移行する。
<Sintering process: Step S15>
A sintering process (step S15) is a process of sintering a molded object. After shaping in a magnetic field, the resulting shaped body is sintered in a vacuum or an inert gas atmosphere. The sintering temperature needs to be adjusted according to various conditions such as composition, pulverization method, difference in particle size and particle size distribution, and for example, sintering is performed at 1000 ° C. to 1200 ° C. for 1 hour to 10 hours. Thereby, a sintered compact is obtained. After sintering the molded body, the process proceeds to an aging treatment step (step S16).

<時効処理工程:ステップS16>
時効処理工程(ステップS16)は、焼結体を時効処理する工程である。時効処理工程(ステップS16)では、焼成後、得られた焼結体を焼成時よりも低い温度で保持することなどによって、焼結体に時効処理を施す。時効処理は、例えば、700℃から900℃の温度で1時間から3時間、更に500℃から700℃の温度で1時間から3時間加熱する2段階加熱や、600℃付近の温度で1時間から3時間加熱する1段階加熱等、時効処理を施す回数に応じて適宜処理条件を調整する。このような時効処理によって、焼結体の磁気特性を向上させることができる。
<Aging process: Step S16>
The aging treatment step (step S16) is a step of aging treatment of the sintered body. In the aging treatment step (step S16), after calcination, the sinter is subjected to aging treatment by, for example, holding the obtained sintered body at a temperature lower than that during firing. The aging treatment is, for example, two-stage heating in which the temperature is 700 ° C. to 900 ° C. for 1 hour to 3 hours, and further 500 ° C. to 700 ° C. for 1 hour to 3 hours, or the temperature near 600 ° C. The treatment conditions are appropriately adjusted according to the number of times of aging treatment such as one-step heating for 3 hours. Such an aging treatment can improve the magnetic properties of the sintered body.

<冷却工程:ステップS17>
冷却工程(ステップS17)では、焼結体に時効処理を施した後、焼結体はArガスで加圧した状態で急冷を行う。これにより、本実施形態に係る希土類焼結磁石を得ることができる。冷却速度は、特に限定されるものではなく、30℃/min以上とするのが好ましい。冷却後、研磨を行なって角取りを行ない、希土類焼結磁石を所望のサイズに切断し、表面を平滑化することで、所定形状の希土類焼結磁石とすることができる。さらに、希土類焼結磁石は希土類焼結磁石の表面にNiめっきを施すなど表面処理して耐蝕性を向上させるようにしてもよい。
<Cooling process: Step S17>
In the cooling step (step S17), after the aging treatment is performed on the sintered body, the sintered body is rapidly cooled while being pressurized with Ar gas. Thereby, the rare earth sintered magnet which concerns on this embodiment can be obtained. The cooling rate is not particularly limited, and is preferably 30 ° C./min or more. After cooling, polishing and chamfering are performed, the rare earth sintered magnet is cut into a desired size, and the surface is smoothed to obtain a rare earth sintered magnet having a predetermined shape. Further, the rare earth sintered magnet may be subjected to a surface treatment such as Ni plating on the surface of the rare earth sintered magnet to improve the corrosion resistance.

以上のように、得られる本実施形態に係る希土類焼結磁石は、HR214B化合物を含む第2合金を用いて製造される。第2合金がHR214B化合物を含むことで、第2合金が水素を吸蔵した際、第2合金に含まれる相同士の間の膨張差を利用することにより第2合金にクラックが生じ易くなるため、第2合金の粉砕性が向上して第1合金との混合粉末を微粉砕したときに組成ズレが少なく均質な第2合金粉末が得られる。この結果、本実施形態に係る希土類焼結磁石は目的とする所定の組成からズレ量を小さくすることができ、磁気特性を向上させることができる。従って、本発明の実施形態に係る希土類焼結磁石の製造方法を用いれば、高い磁気特性を有する希土類焼結磁石を更に効率良く製造することができる。 As described above, the obtained rare earth sintered magnet according to the present embodiment is manufactured using the second alloy containing the HR 2 T 14 B compound. When the second alloy contains the HR 2 T 14 B compound, when the second alloy occludes hydrogen, cracks occur in the second alloy by utilizing the difference in expansion between the phases contained in the second alloy. Therefore, the pulverizability of the second alloy is improved, and when the mixed powder with the first alloy is finely pulverized, a homogeneous second alloy powder with little composition deviation can be obtained. As a result, the rare earth sintered magnet according to the present embodiment can reduce the amount of deviation from the intended predetermined composition, and can improve the magnetic characteristics. Therefore, if the method for producing a rare earth sintered magnet according to the embodiment of the present invention is used, a rare earth sintered magnet having high magnetic properties can be produced more efficiently.

希土類焼結磁石に含有されるCの量は、製造工程で用いられる粉砕助剤の種類及び添加量等により調節する。さらに、希土類焼結磁石に含有されるNの量は、原料合金の種類及び量や、原料合金を窒素雰囲気で粉砕する場合の粉砕条件等により調節する。   The amount of C contained in the rare earth sintered magnet is adjusted by the type and amount of grinding aid used in the production process. Further, the amount of N contained in the rare earth sintered magnet is adjusted by the type and amount of the raw material alloy, the pulverizing conditions when the raw material alloy is pulverized in a nitrogen atmosphere, and the like.

第1合金及び第2合金の粉砕は、第1合金及び第2合金に水素を吸蔵させた後、水素を放出させて粗粉砕するようにしているが、本実施形態はこれに限定されるものではない。例えば、いわゆる水素化分解・脱水素再結合(HDDR:Hydrogenation Decomposition Desorption Recombination)法を用いて第1合金及び第2合金を粉砕して第1合金粉末と第2合金粉末を得るようにしてもよい。HDDR法は、水素中で原料(出発合金)を加熱することにより、原料を水素化・分解(HD:Hydrogenation Decomposition)し、その後、脱水素・再結合(DR:Desorption Recombination)させることにより、結晶を微細化させる方法である。   In the pulverization of the first alloy and the second alloy, hydrogen is occluded in the first alloy and the second alloy, and then the hydrogen is released and coarsely pulverized. However, this embodiment is limited to this. is not. For example, the first alloy powder and the second alloy powder may be obtained by pulverizing the first alloy and the second alloy by using a so-called hydrocracking and dehydrogenation recombination (HDDR) method. . In the HDDR method, a raw material (starting alloy) is heated in hydrogen to hydrogenate and decompose the raw material (HD), and then dehydrogenate and recombine (DR) to produce crystals. This is a method for making the size fine.

以上、本発明の好適な実施形態について説明したが、本発明はこれに制限されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形、種々の組み合わせが可能であり、永久磁石以外についても同様に適用することができる。   As mentioned above, although preferred embodiment of this invention was described, this invention is not restrict | limited to this. The present invention can be variously modified and variously combined without departing from the gist of the present invention, and can be similarly applied to components other than permanent magnets.

本発明の内容を実施例及び比較例を用いて以下に詳細に説明するが、本発明は以下の実施例に限定されるものではない。   The content of the present invention will be described in detail below using examples and comparative examples, but the present invention is not limited to the following examples.

<実施例1>
ストリップキャスト法により表1に示す組成を有する第1合金及び第2合金を作製し、表1に示す混合比に配合した。
<Example 1>
A first alloy and a second alloy having the composition shown in Table 1 were produced by the strip casting method, and blended in the mixing ratio shown in Table 1.

第1合金及び第2合金からなる混合合金に室温で水素吸蔵処理を施した後、不活性ガス雰囲気中で600℃で1時間、脱水素処理を行って第1合金及び第2合金を粗粉砕した。尚、粗粉砕して焼結させるまでの工程においては、酸素濃度を4000ppm以下の雰囲気として行なった。粗粉砕された混合合金に、粉砕助剤としてオレイン酸アミドを0.1wt%添加し、ジェットミルにて微粉砕を行って平均粒径が4.0μm程度の合金粉末を得た。得られた合金粉末を、印加磁場が1.5Tesla、成形圧力が1.2ton/cm2として磁場中で成形し、成形体を得た。得られた成形体は、真空中において1030℃で4時間保持して焼成し、焼結体を得た。その後、焼結体に不活性ガス雰囲気中で時効処理を行って熱処理を行なった。時効処理は2段階で行った。850℃で1時間保持した後、540℃で2時間保持して行った。不活性ガス雰囲気中で焼結後の時効処理の1段目までの降温過程(1040〜800℃)における冷却速度は50℃/minとした。時効処理の1段目から2段目の時効処理まで降温過程(800〜550℃)の冷却速度を50℃/minとした。これにより希土類焼結磁石を得た。 The mixed alloy consisting of the first alloy and the second alloy is subjected to hydrogen storage treatment at room temperature and then dehydrogenated in an inert gas atmosphere at 600 ° C. for 1 hour to coarsely pulverize the first alloy and the second alloy. did. In the process from coarse pulverization to sintering, the oxygen concentration was 4000 ppm or less. 0.1 wt% of oleic acid amide was added to the coarsely pulverized mixed alloy as a pulverization aid, and finely pulverized with a jet mill to obtain an alloy powder having an average particle size of about 4.0 μm. The obtained alloy powder was molded in a magnetic field with an applied magnetic field of 1.5 Tesla and a molding pressure of 1.2 ton / cm 2 to obtain a molded body. The obtained molded body was fired by holding at 1030 ° C. for 4 hours in a vacuum to obtain a sintered body. Thereafter, the sintered body was subjected to an aging treatment in an inert gas atmosphere to perform a heat treatment. The aging treatment was performed in two stages. After holding at 850 ° C. for 1 hour, it was held at 540 ° C. for 2 hours. The cooling rate in the temperature lowering process (1040 to 800 ° C.) up to the first stage of the aging treatment after sintering in an inert gas atmosphere was 50 ° C./min. The cooling rate of the temperature lowering process (800 to 550 ° C.) from the first stage to the second stage of the aging treatment was set to 50 ° C./min. Thereby, a rare earth sintered magnet was obtained.

<実施例2から4、比較例1から4>
実施例2から4と比較例1から4は、実施例1に用いた第1合金及び第2合金の組成比を変えた第1合金及び第2合金を用いたこと以外は、実施例1と同様にして行なって、希土類焼結磁石を得た。第1合金及び第2合金の組成比と配合比と希土類焼結磁石の組成比を表1に示す。
<Examples 2 to 4 and Comparative Examples 1 to 4>
Examples 2 to 4 and Comparative Examples 1 to 4 are the same as Example 1 except that the first alloy and the second alloy having different composition ratios of the first alloy and the second alloy used in Example 1 were used. In the same manner, a rare earth sintered magnet was obtained. Table 1 shows the composition ratio and blending ratio of the first alloy and the second alloy and the composition ratio of the rare earth sintered magnet.

Figure 2011210850
Figure 2011210850

[粉砕回収効率]
合金粉末を粉砕機に投入した投入質量と粉砕機で粉砕して排出された吐出質量を計算し、粉砕回収効率を求めた。
[Crush recovery efficiency]
The input mass charged into the pulverizer and the discharge mass discharged after being pulverized by the pulverizer were calculated to determine the pulverization recovery efficiency.

[合金粉末中の重希土類元素の量]
粉砕前後で合金粉末の組成を蛍光X線分析装置(XRF)を用いて測定した。分析された組成結果から合金粉末中に含まれる重希土類元素の量を算出した。測定結果より粉砕前後での合金粉末中に含まれる重希土類元素の量から粉砕前後での合金粉末中に含まれる重希土類元素の組成の組成ズレを算出した。
[Amount of heavy rare earth element in alloy powder]
The composition of the alloy powder was measured using a fluorescent X-ray analyzer (XRF) before and after grinding. The amount of heavy rare earth element contained in the alloy powder was calculated from the analyzed composition result. From the measurement results, the compositional deviation of the composition of the heavy rare earth element contained in the alloy powder before and after grinding was calculated from the amount of the heavy rare earth element contained in the alloy powder before and after grinding.

Figure 2011210850
Figure 2011210850

[磁気特性]
磁気特性として、残留磁束密度Brと保磁力HcJとを測定した。得られた希土類焼結磁石をB−Hトレーサーを用いて磁気特性を測定すると共に、焼結体の平均結晶粒径を求めた。測定結果を表3に示す。また、測定された保磁力HcJと残留磁束密度Brとの関係を図2に示す。
[Magnetic properties]
As magnetic characteristics, residual magnetic flux density Br and coercive force HcJ were measured. The obtained rare earth sintered magnet was measured for magnetic properties using a BH tracer, and the average crystal grain size of the sintered body was determined. Table 3 shows the measurement results. The relationship between the measured coercive force HcJ and the residual magnetic flux density Br is shown in FIG.

[平均結晶粒径]
平均結晶粒径は、焼結体断面の偏光顕微鏡像から画像解析により各結晶粒の面積を求め、その円相当径の平均値とした。測定結果を表3に示す。
[Average crystal grain size]
For the average crystal grain size, the area of each crystal grain was determined by image analysis from a polarizing microscope image of the cross section of the sintered body, and the average value of the equivalent circle diameter was used. Table 3 shows the measurement results.

Figure 2011210850
Figure 2011210850

表2に示すように、実施例1から4では、何れも粉砕回収効率は93.0%以上であり、粉砕前後での合金粉末中に含まれる重希土類元素の組成のズレも0.1以下であった。これに対し、比較例1から4では、粉砕回収効率は90.0%以下のものもあり、粉砕前後での混合粉末中に含まれる重希土類元素の組成のズレも0.10以上であった。よって、本発明に係る希土類焼結磁石の粒界相系合金を用いれば、重希土類元素の粉砕回収効率はほとんど低下せず、粉砕前後での混合粉末中に含まれる重希土類元素の組成のズレも少なくなることが確認された。   As shown in Table 2, in each of Examples 1 to 4, the pulverization recovery efficiency is 93.0% or more, and the deviation of the composition of heavy rare earth elements contained in the alloy powder before and after pulverization is 0.1 or less. Met. On the other hand, in Comparative Examples 1 to 4, the pulverization recovery efficiency was 90.0% or less, and the deviation of the composition of heavy rare earth elements contained in the mixed powder before and after pulverization was 0.10 or more. . Therefore, if the grain boundary phase alloy of the rare earth sintered magnet according to the present invention is used, the pulverization and recovery efficiency of heavy rare earth elements is hardly lowered, and the composition of the heavy rare earth elements contained in the mixed powder before and after pulverization is shifted. It was confirmed that the number was also reduced.

また、表3に示すように、実施例1から4では、残留磁束密度Brは何れも1310mT以下であり、保磁力HcJも1860kA/m以上であった。これに対し、比較例1から4では、残留磁束密度Brは何れも1310mT以上であり、保磁力HcJもほとんどが1830kA/m以下であった。よって、本発明に係る希土類焼結磁石の粒界相系合金を用いれば、従来より磁気特性を向上させることができることが確認された。   Further, as shown in Table 3, in Examples 1 to 4, the residual magnetic flux density Br was 1310 mT or less, and the coercive force HcJ was 1860 kA / m or more. On the other hand, in Comparative Examples 1 to 4, the residual magnetic flux density Br was 1310 mT or more and the coercive force HcJ was almost 1830 kA / m or less. Therefore, it was confirmed that the magnetic properties can be improved as compared with the conventional case when the grain boundary phase alloy of the rare earth sintered magnet according to the present invention is used.

従って、本実施形態に係る希土類焼結磁石によれば、粉砕性を向上させることができると共に、合金粉末の組成ズレを小さくすることができるため磁気特性を向上させることができることが判明した。   Therefore, according to the rare earth sintered magnet according to the present embodiment, it has been found that the pulverization can be improved and the composition deviation of the alloy powder can be reduced, so that the magnetic characteristics can be improved.

以上のように、本発明に係る希土類焼結磁石の製造方法及び希土類焼結磁石は、粉砕性を向上すると共に、磁気特性を向上させるので、永久磁石として好適に用いることができる。   As described above, the method for producing a rare earth sintered magnet and the rare earth sintered magnet according to the present invention can be suitably used as a permanent magnet because it improves pulverizability and magnetic characteristics.

Claims (2)

214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物を含む主相と、前記R214B化合物よりRを多く含む粒界相とを有する希土類焼結磁石を製造するにあたり、
214B化合物及び不可避不純物を含む第1合金の合金粉末と、HR214B化合物(HRは1種類以上の重希土類元素を表す)を含み、HRの含有量が25.0質量%以上32.5質量%以下であり、Bの含有量が0.6質量%以上1.4質量%以下である第2合金の合金粉末とを混合し、混合物を得る混合物作製工程と、
前記混合物を成形し、成形体を得る成形工程と、
前記成形体を焼結し、焼結体を得る焼結工程と、
を含み、
前記主相及び前記粒界相に含まれるRを25質量%以上32.5質量%未満、Bを0.5質量%以上1.5質量%以下の組成とすることを特徴とする希土類焼結磁石の製造方法。
R 2 T 14 B (R represents one or more rare earth elements, T represents one or more transition metal elements including Fe or Fe and Co, and B represents B or B and C). In manufacturing a rare earth sintered magnet having a phase and a grain boundary phase containing more R than the R 2 T 14 B compound,
The alloy powder of the first alloy containing the R 2 T 14 B compound and inevitable impurities, and the HR 2 T 14 B compound (HR represents one or more kinds of heavy rare earth elements), and the HR content is 25.0 mass % To 32.5% by mass and a mixture production step of mixing a second alloy alloy powder having a B content of 0.6% by mass to 1.4% by mass to obtain a mixture;
A molding step of molding the mixture to obtain a molded body,
Sintering the molded body to obtain a sintered body,
Including
Rare earth sintering characterized in that R contained in the main phase and the grain boundary phase has a composition of 25% by mass or more and less than 32.5% by mass, and B is 0.5% by mass or more and 1.5% by mass or less. Magnet manufacturing method.
214B(Rは1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表し、BはB又はB及びCを表す)化合物及び不可避不純物を含む第1合金の合金粉末と、HR214B化合物(HRは1種類以上の重希土類元素を表す)を含み、HRの含有量が25.0質量%以上32.5質量%以下であり、Bの含有量が0.6質量%以上1.4質量%以下である第2合金の合金粉末とを混合し、焼結することにより得られ、
214B化合物を含む主相と、前記R214B化合物よりRを多く含む粒界相とを有し、
前記主相及び前記粒界相に含まれるRが25質量%以上32.5質量%未満、Bが0.5質量%以上1.5質量%以下の組成であることを特徴とする希土類焼結磁石。
R 2 T 14 B (R represents one or more rare earth elements, T represents one or more transition metal elements including Fe or Fe and Co, and B represents B or B and C) and inevitable impurities And an HR 2 T 14 B compound (HR represents one or more heavy rare earth elements), and the HR content is 25.0% by mass or more and 32.5% by mass or less. Yes, obtained by mixing and sintering the alloy powder of the second alloy having a B content of 0.6 mass% or more and 1.4 mass% or less,
Comprises a main phase containing R 2 T 14 B compound, and a grain boundary phase containing a large amount of R than the R 2 T 14 B compound,
Rare earth sintering characterized in that R contained in the main phase and the grain boundary phase has a composition of 25% by mass or more and less than 32.5% by mass, and B is 0.5% by mass or more and 1.5% by mass or less. magnet.
JP2010075526A 2010-03-29 2010-03-29 Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet Pending JP2011210850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010075526A JP2011210850A (en) 2010-03-29 2010-03-29 Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010075526A JP2011210850A (en) 2010-03-29 2010-03-29 Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet

Publications (1)

Publication Number Publication Date
JP2011210850A true JP2011210850A (en) 2011-10-20

Family

ID=44941617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010075526A Pending JP2011210850A (en) 2010-03-29 2010-03-29 Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet

Country Status (1)

Country Link
JP (1) JP2011210850A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537684A (en) * 2013-11-07 2014-01-29 湖南航天工业总公司 Production method for samarium cobalt alloy powder
JP2016522318A (en) * 2013-04-12 2016-07-28 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck GmbH Method for producing oxygen-poor valve metal sintered body with high surface area

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0521218A (en) * 1991-07-12 1993-01-29 Shin Etsu Chem Co Ltd Production of rare-earth permanent magnet
JPH06207204A (en) * 1991-06-04 1994-07-26 Shin Etsu Chem Co Ltd Production of rare earth permanent magnet
JP2000188213A (en) * 1998-10-14 2000-07-04 Hitachi Metals Ltd R-t-b sintered permanent magnet
JP2001217112A (en) * 2000-01-31 2001-08-10 Hitachi Metals Ltd R-t-b sintered magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207204A (en) * 1991-06-04 1994-07-26 Shin Etsu Chem Co Ltd Production of rare earth permanent magnet
JPH0521218A (en) * 1991-07-12 1993-01-29 Shin Etsu Chem Co Ltd Production of rare-earth permanent magnet
JP2000188213A (en) * 1998-10-14 2000-07-04 Hitachi Metals Ltd R-t-b sintered permanent magnet
JP2001217112A (en) * 2000-01-31 2001-08-10 Hitachi Metals Ltd R-t-b sintered magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522318A (en) * 2013-04-12 2016-07-28 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツングH.C. Starck GmbH Method for producing oxygen-poor valve metal sintered body with high surface area
CN103537684A (en) * 2013-11-07 2014-01-29 湖南航天工业总公司 Production method for samarium cobalt alloy powder

Similar Documents

Publication Publication Date Title
JP6156375B2 (en) Sintered magnet
JP5303738B2 (en) Rare earth sintered magnet
JP6729446B2 (en) R-T-B system permanent magnet
JP6733576B2 (en) R-T-B system permanent magnet
JP6572550B2 (en) R-T-B sintered magnet
JP6733577B2 (en) R-T-B system permanent magnet
JP6274214B2 (en) R-T-B system sintered magnet and rotating machine
WO2010113371A1 (en) Alloy material for r-t-b-type rare-earth permanent magnet, process for production of r-t-b-type rare-earth permanent magnet, and motor
JP4543940B2 (en) Method for producing RTB-based sintered magnet
JP6399307B2 (en) R-T-B sintered magnet
JP4821128B2 (en) R-Fe-B rare earth permanent magnet
JP4900085B2 (en) Rare earth magnet manufacturing method
JP2011222966A (en) Rare-earth magnetic alloy and manufacturing method of the same
JP2011210823A (en) Method of manufacturing rare earth sintered magnet, and rare earth sintered magnet
JP2011210850A (en) Method of manufacturing rare-earth sintered magnet, and the rare-earth sintered magnet
JP4556727B2 (en) Manufacturing method of rare earth sintered magnet
JP2004303909A (en) Rare earth permanent magnet and manufacturing method thereof
JP2002299110A (en) Method of manufacturing rare-earth element permanent magnet
JP2007250605A (en) Method for manufacturing r-t-b-based rare-earth permanent magnet
JP2006258616A (en) Method of evaluating orientation degree, rare-earth sintered magnet and its manufacturing method
JP2018060997A (en) Method for manufacturing r-t-b based sintered magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP4076080B2 (en) Rare earth permanent magnet manufacturing method
JP2006274344A (en) Production method of r-t-b system sintered magnet
JP6413302B2 (en) R-T-B system anisotropic magnetic powder and anisotropic bonded magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121114

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311