JP2006253630A - ウェハ保持体およびそれを搭載したウェハプローバ - Google Patents

ウェハ保持体およびそれを搭載したウェハプローバ Download PDF

Info

Publication number
JP2006253630A
JP2006253630A JP2005227335A JP2005227335A JP2006253630A JP 2006253630 A JP2006253630 A JP 2006253630A JP 2005227335 A JP2005227335 A JP 2005227335A JP 2005227335 A JP2005227335 A JP 2005227335A JP 2006253630 A JP2006253630 A JP 2006253630A
Authority
JP
Japan
Prior art keywords
chuck top
support
wafer
preferable
wafer holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005227335A
Other languages
English (en)
Other versions
JP4155288B2 (ja
Inventor
Teruhito Nishi
輝人 西
Katsuhiro Itakura
克裕 板倉
Masuhiro Natsuhara
益宏 夏原
Tomoyuki Awazu
知之 粟津
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005227335A priority Critical patent/JP4155288B2/ja
Priority to US11/498,276 priority patent/US20070082313A1/en
Priority to TW095128735A priority patent/TW200725776A/zh
Publication of JP2006253630A publication Critical patent/JP2006253630A/ja
Application granted granted Critical
Publication of JP4155288B2 publication Critical patent/JP4155288B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】 高い荷重を加えても変形が小さく、断熱効果を高めることにより、位置精度の向上や、均熱性の向上、更にはチップの急速な昇温と冷却ができるウェハ保持体およびそれを搭載したウェハプローバ装置を提供する。
【解決手段】 本発明のウェハ保持体は、表面にチャックトップ導体層を有するチャックトップと、該チャックトップを支持する支持体とからなり、前記チャックトップと支持体との間の空隙部に、支持部材を有することを特徴とする。前記支持部材は、前記支持体に対し、同心円状に配置されているか、あるいは前記支持体のほぼ中央に配置されていることが好ましく、同心円状に配置された支持部材とほぼ中央に配置された支持部材の両方を備えることがより好ましい。
【選択図】 図1

Description

本発明は、ウェハ載置面に半導体ウェハを載置し、プローブカードをウェハに押し当ててウェハの電気的特性を検査するためのウェハプローバに使用されるウェハ保持体およびヒータユニット、それらを搭載したウェハプローバに関するものである。
従来、半導体の検査工程では、被処理物である半導体基板(ウェハ)に対して加熱処理が行われてきた。すなわち、ウェハを通常の使用温度よりも高温に加熱して、不良になる可能性のある半導体チップを加速的に不良化させて取り除き、出荷後の不良の発生を予防するバーンインが行われてきた。バーンイン工程では、半導体ウェハに半導体回路を形成した後、個々のチップに切断する前に、ウェハを加熱しながら各チップの電気的な性能を測定して、不良品を取り除いている。このバーンイン工程において、スループットの向上のために、プロセス時間の短縮が強く求められている。
このようなバーンイン工程では、ウェハを加熱するためのヒータを内蔵したチャックトップが用いられている。従来のチャックトップは、ウェハの裏面全面をグランド電極に接触させる必要があるので、金属製のものが用いられていた。測定時には、ヒータを内蔵した金属製のチャックトップの上に、回路を形成したウェハを載置し、チップの電気的特性を測定する。そしてチャックトップを搭載したウェハ保持体を、駆動系により所定の位置まで移動させ、通電用の電極ピンを多数備えたプローブカードと呼ばれる測定子に、ウェハを数十kgfから数百kgfの力で押さえつけるという動作を繰り返す。このため、チャックトップが薄いと変形してしまい、ウェハとプローブピンとの間に接触不良が発生することがある。そのため、チャックトップ及びウェハ保持体の剛性を保つ目的で、厚さ15mm以上の厚い金属板を用いる必要があり、ヒータの昇降温に長時間を要し、スループット向上の大きな障害となっていた。
また、バーンイン工程では、チップに電気を流して電気的特性を測定するが、近年のチップの高出力化に伴い、電気的特性の測定時に、チップが大きく発熱し、場合によっては、チップが自己発熱によって、破壊することがあるので、測定後には、急速に冷却することが求められる。また、測定中は、できるだけ均熱であることが求められている。そこで、金属の材質を、熱伝導率が403W/mKと高い銅(Cu)が用いられていた。
そこで、特許文献1では、厚い金属板の代わりに、薄くても剛性が高く、変形しにくいセラミックス基板の表面に薄い金属層を形成することにより、変形しにくくかつ熱容量が小さいウェハプローバが提案されている。この文献によれば、チャックトップの剛性が高いので接触不良を起こすことがなく、熱容量が小さいので、短時間で昇温及び降温が可能であるとされている。そして、ウェハプローバを設置するための支持台として、アルミニウム合金やステンレスなどを使用することができるとされている。
しかし、特許文献1に記載されているようにウェハプローバをその最外周のみで支持すると、プローバ自体がプロービング時の荷重により変形し、プローブカードのピンがウェハに均一に接触できなくなり、検査ができなくなる、あるいは最悪、ウェハが破損するという問題点があった。また、ウェハを所定の温度、すなわち100〜200℃程度の温度に加熱した際、その熱が駆動系に伝わり、駆動系の金属部品類が熱膨張し、これにより精度が損なわれるという問題点があった。
特開2001−033484号公報
本発明は、上記問題点を解決するためになされたものである。すなわち、本発明は、高い荷重を加えても変形が小さく、断熱効果を高めることにより、位置精度の向上や、均熱性の向上、更にはチップの急速な昇温と冷却ができるウェハ保持体およびそれを搭載したウェハプローバ装置を提供することを目的とする。
本発明のウェハ保持体は、表面にチャックトップ導体層を有するチャックトップと、該チャックトップを支持する支持体とからなり、前記チャックトップと支持体との間の空隙部に、支持部材を有することを特徴とする。
前記支持部材は、前記支持体に対し、同心円状に配置されているか、あるいは前記支持体のほぼ中央に配置されていることが好ましく、同心円状に配置された支持部材とほぼ中央に配置された支持部材の両方を備えることがより好ましい。
前記支持部材は、パイプ形状であることが好ましい。また、前記支持部材の熱膨張係数と、前記支持体の熱膨張係数がほぼ等しいことが好ましい。更に、前記支持部材のヤング率は、100GPa以上であることが好ましい。
このようなウェハ保持体を備えたウェハプローバ用のヒータユニットは、および該ヒータユニットを備えたウェハプローバは、高剛性であり、断熱効果を高めることにより、位置精度を向上や、均熱性の向上、更にはチップの急速な昇温と冷却ができる。
本発明によれば、ウェハを載置・固定するチャックトップと、前記チャックトップを支持する支持体を有するウェハ保持体において、前記チャックトップと支持体の間の空隙に、支持部材を備えるので、高い荷重を加えても変形が小さく、断熱効果を高めたウェハ保持体を提供することができる。
本発明の実施の形態を、図1を参照して説明する。図1は、本発明の実施形態の一例である。本発明のウェハプローバ用ウェハ保持体1は、チャックトップ導体層3を有するチャックトップ2と、該チャックトップを支持する支持体4とからなり、チャックトップと支持体との間の空隙部5に支持部材50を設置する。さらに、支持体はウェハ保持体全体を移動させるための駆動系(図示せず)に搭載されている。
前記支持部材のチャックトップ側の面と、支持体のチャックトップとの接触面は、ほぼ同一面に存在する。このような支持部材を設置することにより、プロービング時の高い荷重によるチャックトップの変形(たわみ量)を低減することができる。
支持部材の設置位置は、図2に示すように、支持体の中央付近にすれば、チャックトップ中央部のたわみ量を減少させることができる。また、図3に示すように、同心円状にすれば、局所的なたわみを減少させることができる。さらに、図4に示すように中央付近と同心円状にすれば、たわみ量を減少させる効果がさらに高くなる。
支持部材の形状は、パイプ形状であってもよい。また、図5に示すように、柱状の支持部材50とパイプ形状の支持部材51とを組み合わせてもよい。パイプ形状の方が熱伝達量を少なくすることができるので、支持体の温度上昇を抑えることができる。
以上のように、チャックトップの変形量は、プロービング時にチャックトップに加えられる荷重に比例し、且つ支持部材間の距離が広くなればなるほど大きくなる。この為、上記のように支持部材を空隙部へ挿入することで、支持部材間の距離を小さくし、チャックトップの変形量を抑えることが可能となる。また支持部材の形状として、円柱状や円筒形状は一例であり、多角形の柱状体や筒状体であっても同様の効果を有することは言うまでもない。
支持部材は、支持体と別部材とすることによって、支持体と支持部材間に界面が存在するので、チャックトップで発生した熱が、支持体に伝わりにくくなり、支持体下部の温度上昇を抑えることができる。
本発明において、支持部材と支持体の熱膨張量が、チャックトップの使用温度範囲内において、ほぼ等しいことが好ましい。すなわち、支持部材と支持体の熱膨張係数がほぼ等しいことが好ましい。例えば、支持部材の熱膨張量の方が大きい場合、チャックトップ上面が凸形状になり、プローピング時のウェハのがたつきの原因となる。逆に指示部材の熱膨張量の方が小さい場合、プロービング時の支持効果が少なくなる。支持部材と支持体の材料の熱膨張係数を同一にすることが好ましく、更には同一の材質を用いることが望ましい。支持部材と支持体の熱膨張係数の差は、目安として3×10−6/℃以下が特に好ましい。
支持部材のヤング率は100GPa以上とするのが好ましい。支持体自身の変形を小さくできるため、チャックトップの変形をさらに抑制することができる。ヤング率が100GPa未満の材料を用いると、プロービング時に支持部材が変形し、撓み量低減の効果が少なくなる。具体的な支持部材の材料としては、アルミナ、ムライト、ムライトとアルミナの複合体、SiとSiCの複合体(Si−SiC)、AlN、Si、SiC、ステンレス、AlとSiCの複合体(Al−SiC)などが挙げられる。更に本発明の目的の一つであるチャックトップから支持体への熱伝達を極力抑える為には、これらの内、熱伝導率が低いムライト、ムライト−アルミナ複合体が特に好ましい。
チャックトップは、発熱体を備えることが好ましい。半導体の検査工程においては、ウェハの加熱を必要としない場合もあるが、近年では100〜200℃程度までの加熱を必要とする場合の方が多いからである。このためもしチャックトップを加熱する加熱体の熱を支持体に伝わることを防止することができなければ、ウェハプローバ支持体下部に備わる、駆動系に熱が伝わり、各部品の熱膨張差により、機械精度にズレを生じ、チャックトップ上面(ウエハ載置面)の平面度、平行度を著しく劣化させる原因となる。しかし、本構造は断熱構造であることから平面度平行度を著しく劣化させることはない。さらに、中空構造であることから、円柱形状の支持体に比べ軽量化が図れる。
発熱体は、抵抗発熱体をマイカなどの絶縁体で挟み込んだものが構造として簡便であるので好ましい。抵抗発熱体は、金属材料を使用することができる。例えば、ニッケルやステンレス、銀、タングステン、モリブデン、クロムおよびこれらの金属の合金の、例えば金属箔を用いることができる。これらの金属の中では、ステンレスあるいはニクロムが好ましい。ステンレスあるいはニクロムは、発熱体の形状に加工する時、エッチングなどの手法により、抵抗発熱体回路パターンを比較的に精度良く形成することができる。また、安価であり、耐酸化性を有するので、使用温度が高温であっても長期間の使用に耐えることができるので好ましい。発熱体を挟み込む絶縁体としては、耐熱性を有する絶縁体であれば特に制約はない。例えばマイカや、シリコン樹脂、エポキシ樹脂、フェノール樹脂などを用いることができる。絶縁体が樹脂である場合、絶縁体の熱伝導率を高める目的で、樹脂中にフィラーを分散させることができる。フィラーの材質としては、樹脂との反応性無ければ特に制約はなく、例えば窒化硼素や、窒化アルミニウム、アルミナ、シリカなどの物質を上げることができる。発熱体は、チャックトップにネジ止め等の機械的手法で固定することができる。
発熱体を形成する手法としては、上記以外に、例えばウェハ載置面の反対側の面に、溶射やスクリーン印刷等の手法によって絶縁層を形成し、その上にスクリーン印刷あるいは蒸着等の手法によって、導体層を所定のパターンに形成し発熱体とする、といった方法がある。
発熱体によりチャックトップを加熱し、例えば200℃で検査する際、支持体底面の温度は100℃以下であることが好ましい。100℃を超えると、ウェハ保持体の駆動系の熱膨張が原因で、接触不良が発生する。また、200℃で検査した後、室温で検査を行う場合、冷却に時間を要するためスループットの悪化につながる。
支持体のヤング率は200GPa以上とするのが好ましい。支持体自身の変形を小さくできるため、チャックトップの変形をさらに抑制することができる。また、より好ましいヤング率は300GPa以上である。300GPa以上のヤング率を有する材料を用いれば、支持体の変形も大幅に低減することができるため、支持体をより小型化、軽量化できるため特に好ましい。
支持体の熱伝導率は40W/mK以下とするのが好ましい。チャックトップから支持体を通じて、ウェハ保持体の駆動系に伝わる熱量がさらに低減し、駆動系の温度上昇を効果的に防止できるからである。近年ではプロービング時の温度として150℃という高温が要求されるため、支持体の熱伝導率は10W/mK以下であることが特に好ましい。またより好ましい熱伝導率は5W/mK以下である。この程度の熱伝導率になると、支持体から駆動系への熱の伝達量が大幅に低下するためである。
上記のような平面度、形状への加工が可能であり、かつ物性として上記のようなヤング率、熱伝導率を有する材質としては、加工性、コストを考慮すると、ムライト、アルミナもしくはムライト−アルミナ複合材料であることが好ましい。ムライトは熱伝導率が小さく断熱効果が大きい点が、アルミナはヤング率が大きく、剛性が高い点で好ましい。ムライト−アルミナ複合体は熱伝導率がアルミナより小さく且つヤング率がムライトより大きく、総合的に好ましい。
支持体の円筒部分の肉厚は20mm以下であることが好ましい。20mmを超えると、チャックトップから支持体を通じて、ウェハ保持体の駆動系に伝わる熱量が増加するため、好ましくない。また、肉厚が1mm未満になると、支持体自身がプローブカードの荷重により変形、破損するため好ましくない。
また支持体の円筒部分の高さは10mm以上であることが好ましい。10mm未満であると、チャックトップから支持体を通じて、ウェハ保持体の駆動系に伝わる熱量が増加するため、好ましくない。
支持体の円筒部分には、発熱体に給電するための電極線あるいは電磁シールドの電極線を、挿通するための貫通孔が形成されていることが、電極線の取り回しが簡単になり好ましい。この場合、貫通孔の形成位置としては、円筒部分の内周面に近いことが、円筒部分の強度低下を最低限に抑制できるため好ましい。
支持体の底部の厚みは、10mm以上であることが好ましい。支持体底部の厚みが10mm未満であると、支持体自身がプローブカードの荷重により変形、破損するため好ましくない。好ましくは、35mm以下である。35mm以下であれば小型化でき好適である。また、支持体の円筒部と底部を一体ではなく分離した構造とすることも可能である。この場合、分離された円筒部と底部は互いに界面を有するため、この界面が熱抵抗層となり、チャックトップから支持体に伝わる熱がこの界面で一端遮断されるため、底部の温度が上昇しにくくなるため好ましい。
チャックトップを支持する支持体の支持面には断熱構造を有することが好ましい。この断熱構造としては、支持体に切り欠き溝を形成し、チャックトップと支持体の接触面積を小さくすることで断熱構造を形成することができる。チャックトップに切り欠き溝を形成し、断熱構造を形成することも可能である。この場合、チャックトップのヤング率が250GPa以上有していることが必要である。すなわち、チャックトップにはプローブカードの圧力が加わるため、切り欠きが存在すると、ヤング率が小さい材料である場合には、その変形量がどうしても大きくなり、変形量が大きくなると、ウェハの破損や、チャックトップ自身の破損につながることがある。しかし、支持体に切り欠きを形成すれば上記のような問題は発生しないため、好ましい。切り欠きの形状としては、同心円状の溝を形成したものや、放射線状に溝を形成したもの、あるいは、突起を多数形成したものなど、形状には特に制約はない。但し、いずれの形状においても対称な形状にする必要がある。形状が対称でない場合は、チャックトップに掛かる圧力を均一に分散することができなくなり、チャックトップの変形や、破損に影響するため好ましくない。
また、断熱構造の形態として、チャックトップと支持体の間に、複数の柱状部材を設置することが好ましい。配置は同心円状に均等あるいはそれに類似した配置で8個以上あることが好ましい。特に近年ではウェハの大きさが8〜12インチと大型化しているため、これよりも少ない数量では、柱状部材間の距離が長くなり、プローブカードのピンをチャックトップに載置されているウェハに押し当てた際、柱状部材間で撓みが発生しやすくなるため、好ましくない。一体型である場合に比べ、チャックトップとの接触面積が同一の場合、チャックトップと柱状部材、柱状部材と支持体間と界面を2つ形成することができるため、その界面が熱抵抗層となり、熱抵抗層を2倍に増加できるため、チャックトップで発生した熱を効果的に断熱することが可能となる。この柱状部材の形状としては円柱状であっても良いし、三角柱、四角柱、パイプ形状さらにはどのような多角形であっても良く、その形状に対しては特に制約はない。いずれにしろ、このように柱状部材を挿入することによってチャックトップから支持体への熱を遮断することができる。
前記断熱構造に使用する柱状部材の材質としては熱伝導率が30W/mK以下であることが好ましい。これよりも熱伝導率が高い場合、断熱効果が低下するため、好ましくない。柱状部材の材質としてはSi、ムライト、ムライト−アルミナ複合体、ステアタイト、コージライト、ステンレス、ガラス(繊維)、ポリイミドやエポキシ、フェノールなどの耐熱樹脂やこれらの複合体を使用することができる。
支持体とチャックトップの接触面は、支持体及びチャックトップ双方において表面粗さがRa0.1μm以上であることが好ましい。Ra0.1μm以上とすることにより、支持体とチャックトップの接触面における熱抵抗が増加するため、ウェハ保持体の駆動系に伝わる熱量を低減できる。この表面粗さの上限は特にはない。表面粗さをRa0.1μm以上にするための手法としては、研磨加工や、サンドブラスト等による処理を行うと良い。
また、支持体とチャックトップの接触面以外にも、支持体底面と駆動系の接触面、支持体底部と円管部分あるいは柱状体とを分離可能とした場合の支持体底部と円管部分あるいは柱状体との接触面、及び円管部分と複数の柱状体を組み合わせて使用した場合の円管部分と複数の柱状体との接触面に関しても、同様に表面粗さをRa0.1μm以上とすれば、熱抵抗が増加してウェハ保持体の駆動系に伝わる熱量を低減でき、好ましい。熱抵抗の増加による駆動系に伝わる熱量の低減は、発熱体への電力供給量の低減にもつながる。
前記支持体の円筒部分の外周部と支持体のチャックトップとの接触面、または前記支持体の円筒部分の外周部と柱状部材のチャックトップとの接触面、との直角度は、測定長100mmに換算して、10mm以下であることが好ましい。例えば、直角度が10mmを超えると、チャックトップから加わった圧力が支持体の円筒部分に加わる際に、円筒部分自身の変形が発生しやすくなるため好ましくない。
支持体の表面には、金属層が形成されていることが好ましい。チャックトップを加熱するための発熱体、プローバの駆動部、さらには周囲の機器等からから発生する電場や電磁波が、ウェハの検査時にノイズとなり、影響を及ぼすことがあるが、支持体に金属層を形成すれば、この電磁波を遮断(シールド)することができるため好ましい。金属層を形成する方法としては、特に制約はない。例えば、銀や金、ニッケル、銅などの金属粉末にガラスフリットを添加した導体ペーストをはけなどで塗布して焼き付けても良い。
またアルミニウムやニッケルなどの金属を溶射により形成してもよい。また、表面にメッキで金属層を形成することも可能である。さらに、これらの手法を組み合わせることも可能である。すなわち、導体ペーストを焼き付けた後、ニッケルなどの金属をメッキしても良いし、溶射後にメッキを形成しても良い。これらの手法のうち、特にメッキは密着強度が強く、信頼性が高いため好ましい。また溶射は比較的低コストで金属膜を形成することができるため好ましい。
また、別の手法としては、支持体の側面に円管形状の導体を取り付けることも可能である。使用する材質については、導体であれば特に制約は無い。例えば、ステンレスや、ニッケル、アルミニウムなどの金属箔または金属板を支持体の外径よりも大きい寸法で円管形状に成形し、これを支持体の側面に取り付けることができる。また支持体の底面部分に、金属箔あるいは金属板を取り付けてもよく、側面に取り付けた金属箔又は金属板と接続することでより、電磁波を遮断する効果を高めることができる。また、支持体内部の空隙を利用し、金属箔あるいは金属板を空隙内に取り付けても良く、側面及び底面に取り付けた金属箔又は金属板と接続することにより、電磁波を遮断する効果を高めることができる。このような手法を採用することによって、メッキや導体ペーストを塗布する場合に比較して、安価に電磁波を遮断することができるため好ましい。金属箔および金属板と支持体の固定方法に関しては特に制約はないが、例えば金属ネジを用いて、金属箔及び金属板を支持体に取り付けることができる。また底面部と側面部の金属箔または金属板を、予め一体化した上で支持体に固定してもよい。
またチャックトップを加熱する発熱体とチャックトップとの間にも、電磁波を遮断するための電磁シールド層が形成されていることが好ましい。この電磁シールド層の形成には、前記の支持体表面に金属層を形成する手法を用いることができ、例えば金属箔を発熱体とチャックトップとの間に挿入することができる。使用する金属箔の材質に特に制約はなく、ステンレスやニッケル、あるいはアルミニウムなどを用いることができる。
また、前記電磁シールド層とチャックトップとの間には、絶縁層を備えることが好ましい。この絶縁層には、発熱体等で発生した電磁波や電場などのウェハの検査に影響を与えるノイズを遮断する役割がある。このノイズは特にウェハの高周波特性を測定する場合に顕著に影響するものであり、通常の電気特性の測定には本ノイズは大きな影響を与えない。すなわち、発熱体で発生するノイズは前記電磁シールド層により、かなりの部分は遮断されるが、チャックトップが絶縁体である場合にはチャックトップのウェハ載置面に形成されたチャックトップ導体層と電磁シールド層との間、もしくはチャックトップが導体である場合には、チャックトップ自身と発熱体との間に、電気回路上コンデンサが形成され、このコンデンサがウェハの検査時にノイズとして影響することがある。この影響を低減するために、電磁シールド層とチャックトップとの間に絶縁層を形成することができる。
更に、チャックトップと電磁シールド層との間に、絶縁層を介してガード電極層を備えることが好ましい。該ガード電極層は、前記支持体に形成される金属層と接続することで、ウェハの高周波特性を測定するときに影響するノイズをさらに低減することができる。すなわち、本発明においては、発熱体を含む支持体全体を導体で覆うことで、高周波におけるウェハ特性測定時のノイズの影響を小さくすることができる。更に、ガード電極層を前記支持体に設けた金属層に接続することにより、ノイズの影響をさらに小さくすることができる。
このとき、前記絶縁層の抵抗値は10Ω以上であることが好ましい。抵抗値が10Ω未満の場合、発熱体からの影響によって、チャックトップ導体層に向かって微小な電流が流れ、これがプロービング時のノイズとなり、プロービングに影響を及ぼすため好ましくない。絶縁層の抵抗値を10Ω以上とすれば、上記微小電流をプロービングに影響のない程度に低減することができるため好ましい。特に最近ではウェハに形成される回路パターンも微細化が進んでいるため、上記のようなノイズをできるだけ低減する必要があり、絶縁層の抵抗値を1010Ω以上とすることで、更に信頼性を高めることができる。
また前記絶縁層の誘電率は10以下であることが好ましい。絶縁層の誘電率が10を超えると、絶縁層を挟み込む電磁シールド層、ガード電極層とチャックトップに電荷が蓄えられやすくなり、これがノイズ発生の原因となるため好ましくない。特に最近では、上記のようにウェハ回路の微細化が進展していることから、ノイズを低減しておく必要があり、誘電率は4以下、更には2以下とすることが特に好ましい。誘電率を小さくすることで、絶縁抵抗値や静電容量を確保するために必要な絶縁層の厚みを薄くすることができ、絶縁層による熱抵抗を小さくできるため好ましい。
さらにチャックトップが絶縁体の場合は、チャックトップ導体層とガード電極層との間、及びチャックトップ導体層と電磁シールド層との間、チャックトップが導体である場合には、チャックトップ自身とガード電極層との間、チャックトップ自身と電磁シールド層との間の静電容量は5000pF以下であることがこのましい。5000pFを超える静電容量を有する場合、絶縁層のコンデンサとしての影響が大きくなり、プロービング時にノイズとして影響することがあるため好ましくない。特に1000pF以下の静電容量であれば、微細な回路であってもノイズの影響を受けずに検査ができ、好ましい。
以上述べてきたように、絶縁層の抵抗値、誘電率、静電容量を上記の範囲内に制御することで、検査時のノイズを大幅に低減することができる。
絶縁層の厚みとしては、0.2mm以上が好ましい。装置の小型化や、発熱体からチャックトップの熱伝導を良好に保つためには、絶縁層の厚みが薄い方がよいが、厚みが0.2mm未満になると、絶縁層自体の欠陥や、耐久性の問題が発生するため好ましくない。1mm以上の厚みを有しておれば、耐久性の問題も無く、また発熱体からの熱の伝導も良好であるため、好ましい。厚みの上限に関しては、10mm以下であることが好ましい。10mmを超える厚みを有する場合、ノイズに関しては、遮断する効果が高いものの、発熱体で発生した熱が、チャックトップ、及びウェハに伝導するまでに時間がかかるため、加熱温度の制御が困難となり好ましくない。検査条件にもよるが5mm以下であれば、比較的容易に温度制御が可能となるため、好ましい。
また絶縁層の熱伝導率については、上記のように発熱体からの良好な熱伝導を実現するためには0.5W/mK以上であることが特に好ましい。また1W/mK以上であれば、さらに熱の伝達が良好となるため、好ましい。
絶縁層の具体的な材料として、上記特性を満たし、検査時の温度に耐えるだけの耐熱性を有しておればよく、セラミックスや樹脂などを上げることができる。これらの内、樹脂としては、例えばシリコン樹脂や、この樹脂中にフィラーを分散したものを、セラミックスとしてはアルミナ等を好ましく用いることができる。樹脂中に分散するフィラーは、樹脂の熱伝導を高める役割があり、材質としては、樹脂との反応性無ければよく、例えば窒化硼素や、窒化アルミニウム、アルミナ、シリカなどの物質を挙げることができる。
また本絶縁層の形成領域は、前記電磁シールド層や、ガード電極、加熱体の形成領域と同等以上であることが好ましい。形成領域が小さい場合には、絶縁層で覆われていない部分からノイズの侵入が発生することがあるため好ましくない。
上記絶縁層について、以下に実例を示す。まず材質として、窒化硼素を分散させたシリコン樹脂を用いる。この材料の熱伝導率は5W/mK程度であり、また誘電率は2である。前記電磁シールド層とチャックトップとの間に窒化硼素分散シリコン樹脂を絶縁層として挟み込む場合、12インチウェハ対応のチャックトップであれば、例えば直径300mmに形成することができる。このとき、絶縁層の厚みを0.25mmとすれば、静電容量は5000pFとすることができる。更に厚みを1.25mm以上とすれば静電容量は1000pFとすることができる。この材料の体積抵抗率は、9×1015Ω・cmであるため、抵抗値は、直径300mmの場合、厚み0.8mm以上とすれば抵抗値を1×1012Ω以上にすることができる。したがって、厚みを1.25mm以上とすれば静電容量が充分に低く、抵抗値が充分に高い絶縁層が得られる。
チャックトップの反りが30μm以上であると、検査時のプローブカードの針が片あたりを起こし、接触不良が発生するため好ましくない。また、チャックトップ導体層の表面と支持体の底部裏面との平行度が30μm以上であっても同様に接触不良を生じ、好ましくない。前記反り及び平行度は、室温時だけでなく、一般に検査が行われる温度範囲である−70℃から200℃に亘って、30μm未満であることが好ましい。
チャックトップのウェハ載置面に形成されるチャックトップ導体層には、グランド電極としての役割以外に、発熱体からの電磁ノイズの遮断、腐食性のガス、酸、アルカリの薬液、有機溶剤、水などからチャックトップを保護する、といった役割がある。
チャックトップ導体層の形成方法には、導体ペーストをスクリーン印刷によって塗布した後焼成する方法、あるいは蒸着やスパッタ等の手法、あるいは溶射やメッキ等の手法が挙げられる。これらのうちでも、特に溶射法とメッキ法が好ましい。これらの手法においては、導体層を形成する際に、熱処理を伴わないため、チャックトップに熱処理による反りが発生することなく、かつ安価に導体層を形成することができる。
チャックトップ上に溶射膜を形成し、その上にさらにメッキ膜を形成する方法は特に好ましい。溶射される材料(アルミニウム、ニッケル等)は、溶射時に若干の酸化物や窒化物あるいは酸窒化物を形成し、これらの化合物がチャックトップ表面と反応することにより、強固に密着することができる。しかし、溶射膜は上記化合物が含まれるため、膜の導電率が低い。これに対してメッキは、ほぼ純粋な金属膜が形成されるため、導電性に優れた導体層を形成することができるが、チャックトップ表面との密着強度は溶射膜ほど高くはない。また、溶射膜とメッキ膜の間は、両者とも金属が主成分であるため良好な密着強度を有している。したがって、下地として溶射膜を形成し、その上にメッキ膜を形成すれば、高い密着強度と高い導電率を兼ね備えたチャックトップ導体層を形成できる。
チャックトップ導体層の表面粗さはRaで0.5μm以下であることが好ましい。面粗さが0.5μmを超えると、発熱量の大きな素子を検査する際、素子自身から発生する熱をチャックトップから放熱することができず素子熱破壊してしまうことがある。面粗さはRaで0.02μm以下であるとより効率よく放熱できるため好ましい。
チャックトップの厚みは8mm以上であることが好ましい。厚みが8mm未満であると検査時に荷重をかけた際、チャックトップの変形が大きくなり、接触不良が発生し、さらにはウェハの破損を招くこともある。チャックトップの厚みが10mm以上であれば、さらに接触不良の確率を低減できて好ましい。
チャックトップのヤング率は250GPa以上であることが好ましい。ヤング率が250GPa未満であると、検査時に荷重をかけた際、チャックトップの変形が大きくなり、接触不良が発生し、さらにはウェハの破損を招くこともある。チャックトップのヤング率は250GPa以上が好ましく、さらには300GPa以上であれば、更に接触不良の確率を低減できて好ましい。
またチャックトップの熱伝導率は15W/mK以上であることが好ましい。15W/mK未満である場合、チャックトップ上に載置するウェハの温度の均一性が悪化し好ましくない。熱伝導率が15W/mK以上であれば、検査に支障の無い程度の均熱性を得ることができる。170W/mK以上であればウェハの均熱性はさらに向上し好ましい。
上記のようなヤング率、熱伝導率を有する材料として、種々のセラミックスおよび金属−セラミックス複合材料が挙げられる。金属−セラミックス複合材料としては、比較的熱伝導率が高く、ウェハを加熱した際に均熱性が得られやすいアルミニウムと炭化ケイ素との複合材料(Al−SiC)、又はシリコンと炭化ケイ素との複合材料(Si−SiC)のいずれかであることが好ましい。これらのうち、Si−SiCは、170W/mK〜220W/mKという高い熱伝導率を有するとともにヤング率が高いため、特に好ましい。
またこれらの複合材料は導電性を有するため、発熱体を形成する手法としては、例えばウェハ載置面の反対側の面に、溶射やスクリーン印刷等の手法によって絶縁層を形成し、その上に導体層をスクリーン印刷し、あるいは蒸着等の手法によって導体層を所定のパターンに形成し、発熱体とすることができる。
また、ステンレスやニッケル、銀、モリブデン、タングステン、クロム及びこれらの合金などの金属箔を、エッチングにより所定の発熱体パターンを形成し発熱体とすることができる。この手法においては、チャックトップとの絶縁を、上記と同様の手法によって形成することもできるが、例えば絶縁性のシートをチャックトップと発熱体との間に挿入することができる。この場合、上記の手法に比べ、非常に安価に、しかも容易に絶縁層を形成することができるため好ましい。この場合に使用できる樹脂としては、耐熱性という観点からマイカシートや、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、シリコン樹脂などが上げられる。この中でも特にマイカが好ましい。その理由としては、耐熱性、電気絶縁性に優れ加工性し易く、しかも安価である。
一方、チャックトップの材質としてセラミックスを用いた場合、チャックトップと発熱体の間に絶縁層を形成する必要がない、という利点がある。セラミックスの中でも特にアルミナや窒化アルミニウム、窒化ケイ素、ムライト、アルミナとムライトの複合材料は、ヤング率が比較的高いため、プローブカードの荷重による変形が小さく、好ましい。これらのうち、アルミナに関しては、比較的低コストで、高温における絶縁性が優れている点で好ましい。また、アルミナは一般に焼結する際、焼結温度を低下させるために、シリコンやアルカリ土類金属等の酸化物などを添加しているが、その添加量を減らしアルミナの純度を上げれば、コストは上昇するが、絶縁性は更に向上する。純度99.6%以上で高い絶縁性が得られ、99.9%以上では特に絶縁性は高くなる。また、アルミナは純度が上がると、絶縁性と同時に熱伝導率も向上し、純度99.5%において熱伝導率30W/mKとなる。アルミナの純度は、絶縁性、熱伝導率及びコストを考慮して適宜選択することができる。また、窒化アルミニウムに関しては、170W/mKと特に高い熱伝導率を有している点で好ましい。
また、チャックトップの材質として金属を適用することも可能である。この場合、特にヤング率の高いタングステンやモリブデン及びこれらの合金を使用することも可能である。具体的な合金としてはタングステンと銅の合金、モリブデンと銅の合金が上げられる。これらの合金は、タングステンやモリブデンに銅を含浸させて作製することができる。これらの金属に対しても、上記のセラミックス−金属の複合体と同様に導電体であるため、上記の手法をそのまま適用して、チャックトップ導体層を形成し、発熱体を形成することでチャックトップとして使用することができる。
チャックトップに3.1MPaの荷重を加えたときに、そのたわみ量は30μm以下であることが好ましい。チャックトップには、プローブカードからウェハを検査するための多数のピンがウェハを押し付けるため、その圧力がチャックトップにも影響を及ぼし、少なからずチャックトップも撓む。このときの撓み量が30μmを超えると、プローブカードのピンがウェハに均一に押しあてることができないため、ウェハの検査ができなくなり、好ましくない。この圧力を加えた場合の撓み量としては、更に好ましくは10μm以下である。
本発明においては、支持体の内部の空隙に冷却機構を具備してもよい。冷却機構は、チャックトップを冷却する必要が生じた際に、その熱を奪うことで、チャックトップを急速に冷却することができ、スループットを向上させることができるため好ましい。
冷却機構の材質としては、アルミニウムや銅及びその合金が熱伝導率が高く、急速にチャックトップの熱を奪うことができるため好ましい。またステンレスやマグネシウム合金、ニッケル、その他の金属材料を使用することもできる。冷却機構に、耐酸化性を付与するために、ニッケルや金、銀といった耐酸化性を有する金属膜をメッキや溶射等の手法を用いて形成することができる。
冷却機構の材質としてセラミックスを使用することもできる。セラミックスの中でも、窒化アルミニウムや炭化珪素は熱伝導率が高く、急速にチャックトップの熱を奪うことができるため好ましい。また窒化珪素や酸窒化アルミニウムは、機械的強度が高く、耐久性に優れているため好ましい。アルミナやコージェライト、ステアタイトなどの酸化物セラミックスは比較的安価であるため好ましい。以上のように冷却機構の材質は、用途、コストなどを考慮して適宜選択すればよい。これらの材質の中でも、アルミニウムにニッケルメッキを施したものや、銅にニッケルメッキを施したものが耐酸化性にも優れ、また熱伝導率も高く、価格も比較的安価であるため、特に好ましい。
この冷却機構の内部には、冷媒を流してもよい。冷媒を流すことにより、チャックトップから冷却機構に伝達した熱を素早く冷却機構から取り除き、チャックトップの冷却速度を向上できるため好ましい。冷媒の種類としては、水、フロリナート、ガルデンなどの液体、あるいは窒素、空気、ヘリウムなどの気体が請託できるが、0℃以上でのみ使用する場合には、比熱の大きさ、価格を考慮すると水が好ましく、氷点下まで冷却する場合には比熱を考慮するとガルデンが好ましい。
冷媒を流す流路の形成方法としては、例えば、2枚の板を用意し、その一方に機械加工等によって流路を形成する。耐食性、耐酸化性を向上させるために、2枚の板の表面全面にニッケルメッキを施した後、ネジ止めや溶接等の手段により2両者を張り合わせる。このとき流路の周囲には冷媒が漏れないように例えばO−リング等を挿入するとよい。
また、別の流路の形成方法としては、冷却板に冷媒を流すパイプを取り付けることができる。この場合、冷却板とパイプの接触面積を増やすために、冷却板にパイプとほぼ同じ断面形状の溝加工を施し、この溝の中にパイプを設置したり、パイプの断面形状に一部に平面形状を形成し、この平面を以て冷却板に固定してもよい。冷却板とパイプ固定方法は、金属バンドなどを介してネジ止めしてもよいし、溶接や、ロウ付けすることも可能である。冷却板とパイプの間に樹脂などの変形能を有する物質を挟み込めば、両者を密着させて冷却効率を向上させることができる。
チャックトップを加熱する際は、冷却機構をチャックトップから離間できれば、効率よく昇温することができるため、冷却機構は可動式であることが好ましい。冷却機構を可動式にする手法としては、エアシリンダーなどの昇降手段を用いることができる。冷却機構にはプローブカードの荷重がかかることはなく、したがって荷重による変形等の問題が生じることはない。
チャックトップの冷却速度を重視する場合は、冷却機構をチャックトップに固定しても良い。すなわち、チャックトップのウェハ載置面の反対側に発熱体を設置し、その下面に冷却機構を固定することができる。別の実施形態としては、チャックトップのウェハ載置面の反対側に直接冷却機構を設置し、さらにその下面に発熱体を固定する方法がある。この時、チャックトップのウェハ載置面の反対側と冷却機構の間に、変形能と耐熱性を有し、かつ熱伝導率の高い軟性材を挿入することもできる。チャックトップと冷却機構の間に互いの平面度や反りを緩和できる軟性材を備えることで、接触面積をより広くすることができ、本来備える冷却機構の冷却能力をより発揮することが出来るので、冷却速度を高めることができる。
いずれの形態においても固定方法については特に制約はなく、例えばネジ止めや、クランプといった機械的な手法で固定することができる。またネジ止めでチャックトップと冷却機構及び発熱体を固定する場合、ネジの個数を3個以上とすると各部材間の密着性が高まり好ましく、6個以上とすればさらに好ましい。
また、冷却機構は支持体の空隙中に設置されてもよいし、支持体上に冷却機構を搭載し、その上にチャックトップを搭載しても良い。いずれの設置方法においても、可動式の場合と比較して、チャックトップと冷却機構が強固に固定されているため、冷却速度を大きくすることができる。冷却機構を支持体上に搭載した場合、冷却機構とチャックトップとの接触面積が増加し、より短時間でチャックトップを冷却することができる。
チャックトップに固定した冷却機構が冷媒により冷却可能である場合、チャックトップ昇温時または高温保持時には冷却機構に冷媒を流さないことが好ましい。発熱体で発生した熱が冷媒に奪わることがなく、効率的な昇温または高温保持が可能になるからである。当然、冷却時に再び冷媒を流せば、チャックトップを効率的に冷却することができる。
更に、チャックトップ内部に冷媒を流す流路を設けて、チャックトップ自体を冷却機構とすることも可能である。この場合、冷却機構をチャックトップに固定するよりも、より一層冷却時間を短縮できる。チャックトップの材質としては、上記と同じくセラミックスおよび金属−セラミックス複合材料を用いることができる。構造としては例えば、部材Iの片面にチャックトップ導体層を形成しウェハ載置面として、その反対面側に冷媒を流すための流路を形成して、更に流路を形成した面に部材IIをロウ付け、ガラス付けまたはネジ止めなどの手法により一体化することができる。また、部材IIの片面に流路を形成して、この流路を形成した面にて部材Iと一体化してもよく、部材Iと部材IIの両方に流路を形成して、互いの流路を形成した面同士で一体化してもよい。部材Iと部材IIの熱膨張係数差は小さい方が好ましく、理想的には同材質であることが好ましい。
また、チャックトップ自体を冷却機構とした場合、その材質として金属を使用することもできる。金属は、上記セラミックスやセラミックスと金属の複合体と比べて安価であり、加工が容易であるため流路を形成しやすい、といった利点がある。しかし、プローブカードの荷重により変形しやすいため、チャックトップのウェハ載置面の反対側に、チャックトップ変形防止用の板状体を設置するとよい。この変形防止板は、チャックトップの材質としてセラミックスまたは金属−セラミックス複合材料を用いた場合と同様、ヤング率が250GPa以上であることが好ましい。
変形防止板の設置箇所は、支持体内に形成された空隙内に収容しても良いし、チャックトップと支持体の間に挿入しても良い。また、チャックトップと変形防止板とは、ネジ止め等の機械的な手法によって固定しても良いし、ロウ付けやガラス付けなどの手法によって固定しても良い。チャックトップ昇温時または高温保持時には、冷却機構に冷媒を流さず、冷却時にのみ冷媒を流せば、効率的な昇降温が可能である点は、冷却機構をチャックトップに固定する場合と同様である。
また、チャックトップの材質が金属である場合、例えばチャックトップの材質が酸化や変質しやすい、または電気導電性が充分に高くない、といった理由から、ウェハ載置面に改めてチャックトップ導体層を形成してもよい。形成方法は上記と同様、蒸着、スパッタ、溶射あるいはメッキなどの方法を用いることができる。
金属製チャックトップに変形防止板を設置する構造においても、上記と同様の電磁シールド層やガード電極層の形成が可能である。例えば、チャックトップのウェハ載置面の反対側の面に、絶縁された発熱体を設置し金属層で覆った上で、更に絶縁層を介してガード電極層を形成し、ガード電極層とチャックトップとの間に絶縁層を形成する。更に変形防止板を設置して、チャックトップ、発熱体および変形防止板を一体的にチャックトップに固定すればよい。
本発明のウェハ保持体は、例えば、ウェハプローバあるいはハンドラ装置あるいはテスター装置に適用すれば、微細回路を有する半導体であっても、接触不良なく検査を行うことができる。
直径310mm、厚み15mmのSi−SiC基板を用意した。この基板の片面に対して、ウェハを真空チャックするための同心円状の溝と、貫通孔を形成し、更にチャックトップ導体層としてニッケルメッキを施して、ウェハ載置面とした。その後、ウェハ載置面を研磨加工し、全体の反り量を10μm、表面粗さをRaで0.02μmに仕上げ、チャックトップを完成させた。
次に支持体として直径310mm、厚み40mmの円柱状のムライトーアルミナ複合体を準備した。この支持体のチャックトップに接触する面および底面を、平面度0.09mmまで仕上げた後、チャックトップ側の面に、内径290mm、深さ20mmの座繰り加工を施し、発熱体を設置するための空隙とした。チャックトップには電磁シールド層としてマイカで絶縁したステンレス箔を取り付け、さらにマイカで挟み込んだ発熱体を取り付けた。発熱体はステンレスの箔を、所定のパターンでエッチングした。電磁シールド層と発熱体は、支持体に設けた空隙に収まる位置に配置した。また支持体には、発熱体に給電する電極を接続するための貫通孔を形成した。支持体の側面、および底面にはアルミニウムを溶射して、金属層とした。
次に、ムライトーアルミナ複合体、銅、インバー合金、アルミナ、アルミニウムの材質の支持部材を用意した。支持部材は、外径10mm、内径6mmのパイプ形状のものを用いた。支持体の上に発熱体と電磁シールド層を取り付けたチャックトップを搭載し、支持部材を表1に示すように設置して、ウェハプローバ用ウェハ保持体とした。
このウェハ保持体をウェハプローバに搭載し、発熱体に通電することでウェハを100℃、及び200℃に加熱して、初期評価としてウェハ全面にわたりプロービングした際に、撓みが小さいものを◎、若干撓むが特性としては許容範囲であるものを○、特性として問題となるレベルの撓みが発生する部分があるものを△、撓みが大きくプロービングができない部分が多いものを×として評価した結果を表1に示す。
Figure 2006253630
表1よりプロービング時に撓みを小さくするために支持部材入れることが好ましいことが分かる。また、銅やインバーなどの結果から熱膨張係数が支持体と大きく異なる支持部材では、熱膨張量に差ができ、プロービング特性が好ましくないことがわかる。アルミニウムのような、更にヤング率の低い材質を支持部材として用いることはもっと好ましくないことが分かる。ムライト−アルミナ複合体の支持体に対し、熱膨張量が近く、ヤング率が高いアルミナの支持部材を用いた場合には、同一材質でなくとも、比較的良好なプロービング特性を示すことが分かる。
本発明によれば、支持体とチャックトップ間に支持部材を挿入することで、チャックトップのたわみを大幅に低減することができ、大口径のウェハについてもプロービングが可能なウェハ保持体を提供することができる。
本発明のウェハプローバ用ウェハ保持体の断面構造の一例を示す。 本発明のウェハプローバ用ウェハ保持体の平面構造の一例を示す。 本発明のウェハプローバ用ウェハ保持体の平面構造の一例を示す。 本発明のウェハプローバ用ウェハ保持体の平面構造の一例を示す。 本発明のウェハプローバ用ウェハ保持体の断面構造の一例を示す。
符号の説明
1 ウェハ保持体
2 チャックトップ
3 チャックトップ導体層
4 支持体
5 空隙
50 支持部材
51 パイプ状支持部材


Claims (9)

  1. 表面にチャックトップ導体層を有するチャックトップと、該チャックトップを支持する支持体とからなり、前記チャックトップと支持体との間の空隙部に、支持部材を有することを特徴とするウェハ保持体。
  2. 前記支持部材が、前記支持体に対し、同心円状に配置されていることを特徴とする請求項1に記載のウェハ保持体。
  3. 前記支持部材が、前記支持体のほぼ中央に配置されていることを特徴とする請求項1に記載のウェハ保持体。
  4. 前記支持体に対して同心円状に配置された支持部材と、支持体のほぼ中央に配置された支持部材とを有することを特徴とする請求項1乃至3のいずれかに記載のウェハ保持体。
  5. 前記支持部材が、パイプ形状であることを特徴とする請求項1乃至4のいずれかに記載のウェハ保持体。
  6. 前記支持部材の熱膨張係数と、前記支持体の熱膨張係数がほぼ等しいことを特徴とする請求項1乃至5のいずれかに記載のウェハ保持体。
  7. 前記支持部材のヤング率が、100GPa以上であることを特徴とする請求項1乃至6のいずれかに記載のウェハ保持体。
  8. 請求項1乃至7のいずれかに記載したウェハ保持体を備えたことを特徴とするウェハプローバ用のヒータユニット。
  9. 請求項8に記載のヒータユニットを備えたウェハプローバ。




JP2005227335A 2004-11-30 2005-08-05 ウェハ保持体およびそれを搭載したウェハプローバ Active JP4155288B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005227335A JP4155288B2 (ja) 2004-11-30 2005-08-05 ウェハ保持体およびそれを搭載したウェハプローバ
US11/498,276 US20070082313A1 (en) 2005-08-04 2006-08-03 Wafer holder, heater unit having the wafer holder, and wafer prober having the heater unit
TW095128735A TW200725776A (en) 2005-08-04 2006-08-04 Wafer holder, heater having wafer holder, and wafer probe having heater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004346460 2004-11-30
JP2005033155 2005-02-09
JP2005227335A JP4155288B2 (ja) 2004-11-30 2005-08-05 ウェハ保持体およびそれを搭載したウェハプローバ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008031439A Division JP2008124513A (ja) 2004-11-30 2008-02-13 ウェハ保持体およびそれを搭載したウェハプローバ

Publications (2)

Publication Number Publication Date
JP2006253630A true JP2006253630A (ja) 2006-09-21
JP4155288B2 JP4155288B2 (ja) 2008-09-24

Family

ID=37093739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227335A Active JP4155288B2 (ja) 2004-11-30 2005-08-05 ウェハ保持体およびそれを搭載したウェハプローバ

Country Status (1)

Country Link
JP (1) JP4155288B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009976A (ja) * 2007-06-26 2009-01-15 Sei Hybrid Kk ウェハプローバ用ウェハ保持体
JP2009021484A (ja) * 2007-07-13 2009-01-29 Sei Hybrid Kk ウエハプローバ用ウエハ保持体及びそれを搭載したウエハプローバ
JP2009021483A (ja) * 2007-07-13 2009-01-29 Sei Hybrid Kk ウエハプローバ用ウエハ保持体及びウエハプローバ
JP2012175046A (ja) * 2011-02-24 2012-09-10 Sumitomo Electric Ind Ltd 半導体製造装置用ヒータユニット
JP2012191241A (ja) * 2012-06-27 2012-10-04 Sumitomo Electric Ind Ltd ウエハプローバ用ウエハ保持体及びそれを搭載したウエハプローバ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009976A (ja) * 2007-06-26 2009-01-15 Sei Hybrid Kk ウェハプローバ用ウェハ保持体
JP2009021484A (ja) * 2007-07-13 2009-01-29 Sei Hybrid Kk ウエハプローバ用ウエハ保持体及びそれを搭載したウエハプローバ
JP2009021483A (ja) * 2007-07-13 2009-01-29 Sei Hybrid Kk ウエハプローバ用ウエハ保持体及びウエハプローバ
JP2012175046A (ja) * 2011-02-24 2012-09-10 Sumitomo Electric Ind Ltd 半導体製造装置用ヒータユニット
JP2012191241A (ja) * 2012-06-27 2012-10-04 Sumitomo Electric Ind Ltd ウエハプローバ用ウエハ保持体及びそれを搭載したウエハプローバ

Also Published As

Publication number Publication date
JP4155288B2 (ja) 2008-09-24

Similar Documents

Publication Publication Date Title
JP3945527B2 (ja) ウェハプローバ用ウェハ保持体およびそれを搭載したウェハプローバ
JP2007035747A (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP4049172B2 (ja) ウェハプローバ用ウェハ保持体およびそれを搭載したウェハプローバ
JP2007043042A (ja) ウェハ保持体およびその製造方法、ならびにそれを搭載したウェハプローバ及び半導体加熱装置
JP2007035899A (ja) ウエハプローバ用ウエハ保持体及びそれを搭載したウエハプローバ
US20070023320A1 (en) Wafer holder, heater unit having the wafer holder, and wafer prober having the heater unit
JP2007042911A (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP4063291B2 (ja) ウェハプローバ用ウェハ保持体およびそれを搭載したウェハプローバ
JP4433478B2 (ja) 加熱装置およびそれを搭載したウェハプローバ
JP4462140B2 (ja) ウエハプローバ用チャックトップ、ウエハ保持体、及びそれらを備えたウエハプローバ
JP2007042960A (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP2007042958A (ja) ウェハプローバ用ウェハ保持体およびそれを搭載したウェハプローバ
JP4646715B2 (ja) ウェハプローバ用ウェハ保持体およびそれを搭載したウェハプローバ
JP4155288B2 (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP5067050B2 (ja) ウエハプローバ用ウエハ保持体及びそれを搭載したウエハプローバ
JP2007042909A (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP2007035737A (ja) ウェハ保持体及びウェハ保持体を備えたウェハプローバ
JP2007235171A (ja) ウェハプローバ用ウェハ保持体およびそれを搭載したウェハプローバ
JP2010186765A (ja) ウエハプローバ用ウエハ保持体及びそれを搭載したウエハプローバ
JP5500421B2 (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP2007042908A (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP4356661B2 (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP2008124513A (ja) ウェハ保持体およびそれを搭載したウェハプローバ
JP2007208186A (ja) ウエハ保持体、それを搭載した半導体製造装置及びウエハプローバ
JP4462143B2 (ja) ウェハ保持体及びウェハ保持体を備えたウェハプローバ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061201

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4155288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250