JP2006250955A - 非汚染性本体を有する腐食性流体内の流量計 - Google Patents

非汚染性本体を有する腐食性流体内の流量計 Download PDF

Info

Publication number
JP2006250955A
JP2006250955A JP2006174410A JP2006174410A JP2006250955A JP 2006250955 A JP2006250955 A JP 2006250955A JP 2006174410 A JP2006174410 A JP 2006174410A JP 2006174410 A JP2006174410 A JP 2006174410A JP 2006250955 A JP2006250955 A JP 2006250955A
Authority
JP
Japan
Prior art keywords
housing
flow meter
pressure
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006174410A
Other languages
English (en)
Inventor
Gerald R Cucci
クッチ、ジェラルド、アール.
Diane L Englund
イングルンド、ダイアン、エル.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NT INTERNATL Inc
Original Assignee
NT INTERNATL Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NT INTERNATL Inc filed Critical NT INTERNATL Inc
Publication of JP2006250955A publication Critical patent/JP2006250955A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/40Details of construction of the flow constriction devices
    • G01F1/44Venturi tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/34Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure
    • G01F1/36Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction
    • G01F1/363Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by measuring pressure or differential pressure the pressure or differential pressure being created by the use of flow constriction with electrical or electro-mechanical indication

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Detergent Compositions (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

【課題】腐食性流体を輸送する流路へインライン結合された流量計を提供する。
【解決手段】絶縁部材を有する非汚染の流量計が開示されている。該流量計は、導管のくぼみ部分の反対側に位置されている2つの圧力センサ変換器を含む。各圧力変換器は、絶縁部材によって導管を通じて流体の流れにさらされることから隔離されている。流量計は、腐食性材料を運ぶ流体流路内にインラインで配置され、ここにおいて、2つの圧力センサ間の圧力差の平方根は、流体が流れる導管内の流量の割合を決定することによって演算される。流量計は、流体流路内の温度変化を補償い、更に、流体が流れる導管内の圧力又は流量の割合がしきい値を超え、あるいは下回ったとき警報を発する。また、本発明に係る流量計は、不純物、不要なイオン、又は蒸気の流路への導入を回避する。
【選択図】図4

Description

この発明は、一般に流量計に関し、より詳細には、液体状態あるいはガス状態のいずれかにおいて、化学的に腐食性を有する流体流路内でインライン接続された流量計に関する。ここで、前記流量計は2つの化学的に不活性な圧力センサを含み、該圧力センサは、非汚染性本体のくびれ部分の各反対側に設けられ、流体流路から分離されている。
通常、腐食性流体は、感応性材料の処理に使用されている。これら感応性材料の生産過程においては、汚染に対する感受性が、製造業者において直面する重要な問題である。例えば、製造業者は、腐食性流体を使用して半導体ウェハを処理する。いくつかの製造システムは、異物や発生した蒸気によって感応性材料への汚染を低減するように設計されている。
製造システムで使用される処理設備は、汚染によるダメージのすべての根源を除去するように試みる構造を含む。感応性材料の処理は、しばしば感応性材料が腐食性材料と直接接触することを伴う。従って、腐食性流体が非汚染状態の処理側に送られることは重要である。処理設備のいくつかの部品は、共に、発生した粒子の量を低減し、かつ、処理する化学物質を汚染の影響から隔絶するように設計されている。
液体輸送システムは、供給タンクからの腐食性化学物質をポンプステーションと調整ステーションを通して、並びに処理設備自体を通じて運ぶ。化学液体輸送システムは、パイプ、チューブ、モニタ装置、検知装置、バルブ、付属品及び関連する装置を含み、通常、有毒化学物質の悪影響に対して抵抗性のあるプラスチックスで作られている。慣例的に、前記モニタ装置に使用されている金属は、長い期間にわたって腐食性の環境に対して信頼性をもって耐えることができない。
従って、モニタ装置と検知装置は、代替物質を組み込むか、あるいは腐食性流体から隔絶させておく必要がある。
半導体製造において共通に使用されている処理設備は、圧力センサや流量計のようなモニタ装置や検知装置を有する。このようなモニタ装置や検知装置は、閉ループのフィードバック系に接続され、設備の監視や制御に使用されている。また、これらモニタ装置及び検知装置は、引き起こされる可能性のある如何なる汚染も除去するように設計されなければならない。例えば、既知のタービン流量計は移動部分を有し、その部分は摩耗したり、腐食性流体にさらされたとき劣化に至る。更に、これらタービン流量計は、次の処理流体を汚染する流体を捕捉する傾向がある。前記タービン流量計の使用を回避する場合、前記モニタ装置及び検知装置は、センサを組み込み得る。また、これらの装置は、不純物、不要なイオン、あるいは気化ガスが処理ステップに導入されるのを回避するように設計されなければならない。
流量計における圧力センサの一般的な使用は、従来技術において知られている。例えば、ベンチュリ、ノズル、オリフィスあるいは開水路を用いたメータは、流れの割合を計測したり制御するために使用される。差動センサあるいはセンサを具備したピトー管が使用されるが、これらの構造は、汚染物質が簡単に詰まってしまうあるいは汚染物質を捕捉してしまう細いポートあるいは毛細管を必要とする。従来技術は、腐食性物質を運ぶ流体流路内にインラインに配置され、処理流体を汚染しない流量計について開示していない。ゆえに、腐食性材料を運ぶ流体流路内にインラインに配置され、非汚染圧力センサを有する流量計の存在が必要である。更に、流体流路内の温度変化によっても精度が影響されない流量計の存在が必要である。
流体を取り扱う機械的な処理設備は、しばしば潜在的に漏洩を引き起こす。このような漏洩は、感応性材料あるいは他の製品の処理に対して、更には処理設備を手入れして維持しなければならない作業者の両方に対してきわめて危険な状態を作り得る。ゆえに、化学物質輸送システムは、漏洩が回避されるように設計されなければならない。
インラインの機械的な流体圧力に反応するゲージであって、保護膜によって流体の流れから分離されたゲージは、従来技術において知られている。前記ゲージは、検知流体で満たされたキャビティを有するハウジング内に設けられる。そのキャビティは、流体の流れに近接して形成され、保護用の可撓性のフレキシブルな膜によって分離されている。キャビティ内に含まれている前記検知流体は、典型的にはシリコンオイルである。流体内の圧力の変動は、キャビティ内のシリコンオイルの圧力に影響を及ぼす。そのオイル圧力は、機械的な圧力に反応するゲージによって検出される。
キャビティ内の流体は、普通、大きな熱膨張係数を有し、これは、膜内に重大な歪みを発生させる要因となっている。保護膜内の大きな歪み変動は、キャビティ内の流体が流体流路に漏洩して流路を汚染させるという可能性を増加させる。
更に、圧力ゲージの精度は、検知流体の大きな熱膨張係数によって負方向に影響される。従って、汚染流体を流体流路に漏洩させないインライン圧力ゲージの存在が必要である。更に、精度が流体流路内の温度変化によっても影響されない圧力ゲージの存在が必要である。
特許文献1におけるコリンズらは、腐食性雰囲気の環境下における静電容量型近接センサの使用を記述している。特許文献1における1つの実施の形態において、静電容量型近接センサは、バルブや連結部材を有するパイプシステムのような機能的な装置内に組み込まれているものとして記述されている。前記静電容量型近接センサは、前記装置の機能的な一部分として動作し、所定の領域内に検知領域を作る。そして、種々の流体が所定の領域を通過する際、前記所定の領域内の電気的特性の変動を決定するために使用される。液体の対象物がある場合においては、前記検知領域に関連する電流のモニタリング変動、逆に液体の対象物がない場合においては、パイプ設備における空気あるいはガスによって、対象とする媒体の存否の表示を生ずる。入り組んだバルブ設備が、流体の流れを制御するために使用され、流体が漏洩して処理流体の流れを汚染するという可能性をはらんでいる。
上述で明らかにされた従来技術は、化学的処理設備における腐食性のある化学的な輸送システム内の流体の流量率を決定する装置について、何も開示していないか、あるいは考慮さえしていない。更に、上述で明らかにされた従来技術は、流体の流れ内で流体の流量率及び圧力のいずれかあるいは双方を測定する装置について何も開示していない。化学的輸送システム内の流体の流れを監視することは、様々な理由で有益である。第1に、前記システム内の流れの変動は、前記システム内の漏洩を示すことになる。第2に、前記輸送システム内の流れは、所定の安全基準を超過しないように調整される。第3に、流体の流れにおける変動は、汚染物質の流体流路への妨害あるいは侵入を示す。
従って、腐食性材料を運ぶ流体流路内においてインラインに配置された非汚染の流量計の存在が必要である。ここで、前記流量計は、流体流路において得られた圧力の差動測定値に基づいて流量率を測定する。また、この場合の流量率の決定は、逆に流体流路内の温度変化によって影響しない。更に、不純物、不要なイオン、あるいは蒸気の前記流路への導入を阻止する流量計の存在が必要である。
本発明は、これらの要求を扱うものである。
米国特許第5,316,035号明細書 米国特許第4,177,496号明細書 米国特許第4,598,381号明細書
本発明の目的は、腐食性流体を輸送する流路へインライン結合された流量計を提供することであり、ここで、流量の割合は、流路において与えられた差動圧力測定値に基づいて決定される。前記流量計は、非汚染性本体内に設けられた2つの圧力センサを含む。ここにおいて、これら圧力センサは、くびれた部材によって、流路内において互いに分離されている。
前記流量計は、流体流路内の温度変化を補償し、流体が静止しているときの2つの圧力センサ間の圧力差を補償して、ゼロ調整する特徴を提供する。好ましい実施の形態においては、流量計の構成部分は、ハウジング、カバー、電気的コネクター、圧力部品、隔離膜、シール用リング、2つの圧力センサ、回路基板及び電子回路、スペーサ用リング及び押さえ付け用リングを含む。
前記流量計用のハウジングは該ハウジングを貫通する穴を有し、該穴は、このハウジングが流体流路においてインライン接続されたときに、流体の流れを通すための通路あるいは導管を形成する。前記穴の各反対側の端には、圧力部品が整列され、シール可能に連結されている。前記圧力部品は、化学的に不活性な材料から構成されており、これらの部品はたやすく入手でき、当業者に知られている。
また、前記ハウジングは2つの圧力変換器を受け入れるキャビティを有し、該キャビティは、ハウジングの外部表面から延在している。ここで、各キャビティは前記穴にそれぞれ独立に連通している。好ましい実施の形態においては、前記穴は、前記2つのキャビティの間に位置されているくびれ部分に向かって先細りになっている。その狭い領域は、2つのキャビティに近接した穴横断点内で圧力低下をもたらす。この圧力変動は、2つのキャビティのそれぞれに配置された圧力センサ変換器によって検知される。流量率は、前記圧力変動に基づいて決定される。2つの圧力センサを使用した流量率の決定方法は後述する。
絶縁膜、圧力センサ、シール部材、スペーサ用リング及び押さえ付け用リングは、ハウジングの各キャビティ内に含まれている。これらの構成部品とそれらの変形例は、1995年10月3日に出願され、本出願と同じ譲受人に譲渡された係属中の出願(出願番号08/538,478)に述べられており、その完全な開示は、参考としてこの明細書中に組み込まれる。
ハウジングに配置されたハイブリッドあるいは完全に集積された電子回路は、2つの圧力センサ変換器双方と、カバーに設けられた電気的コネクターに有効に結合されている。前記電子回路は、2つの圧力センサによって検知された情報から流路内の流量の割合の尺度である信号を生成する。更に、前記電子回路は、流体流路内の下流あるいは上流の一方あるいは他方の静的な圧力に相当する信号を生成する。その結果、流路内の流量計の方向付け(オリエンテーション)は互換性を有し、流れの方向は、各圧力センサにて検知された圧力を比較することによって表される。流路を流れるガスの静的な圧力を検知する際に、検知された圧力に対してガスの濃度差の結果として非線形に訂正することによって補正が行われる。
また、この電子回路は、温度に感応する構成部品を組み合わせて使用して、流路内の温度変化に基づく各キャビティに関連する圧力測定値を調整するようにしてもよい。更に、ユーザによる流量計のゼロ調整を許容する電子回路にスイッチを組み込むようにしてもよい。
前記電子回路は、電気的リードによって電気的コネクターに接続され、電力は、外部電源を伴う前記電気的コネクターに適合する電気的リードを通じて前記電子回路に伝達される。更に、計算された流量率に比例する標準4−20mAの信号のようなアナログ出力が、付加された電気的リードを通じて伝達される。
前記実施の形態の変形例において、ハウジングは、2つの対称的な半ハウジングを有する。各半ハウジングは、縦穴と、該縦穴内に規制部材を受け入れるための反対の穴を含む。他の実施の形態において、2つのキャビティ間に配列された縦穴の一部分は、移動可能な差込部材を受け入れる第3のキャビティを有する。
その差込部材は、これらを通じて延びる通路を有し、これは、1つの穴部から他の穴部への通路を形づくる。他の実施の形態の変形例において、ブッシュが、2つのキャビティ間の穴内にくびれ部分を作るために摩擦的に嵌合されている。更に他の実施の形態の変形例において、不活性なサファイア圧力変換器は、それぞれのキャビティ内に配置され、絶緑膜を除去することによって流体の流れに直接接触している。
このように、本発明の主たる目的は、流体流路にインライン接続されるように適合する非汚染性流量計を提供することにある。
本発明の他の目的は、流量計を提供することにある。ここにおいて、前記流量計の不活性な圧力センサの構成部品は、流体の流れに直接接触して位置する。
本発明の更に他の目的は、関連する圧力センサに直接接触している絶縁部材を有する流量計を提供することにある。絶縁部材は、センサとそれに関連する電子回路を潜在的に腐食性のある処理化学物質から隔絶するように作用し、輸送途上にある処理流体への汚染物質の導入を阻止する。
本発明の更に他の目的は、流量計を提供することにある。ここにおいて、流路内の流量率を決定するにあたって、流路の圧力は、流路内の2つの独立したポイントにじゃまされることなく測定される。
本発明の更に他の目的は、非汚染の流量計を提供することにある。この流量計は、流量がゼロのときに、2つの圧力センサ変換器間の初期の圧力差を補償する。
本発明の更に他の目的は、非汚染で、化学的に不活性な流量計を提供することにある。この流量計は、流体流路内の流量率又は圧力のいずれかを決定する。
本発明のこれらの目的及びその他の目的はもちろん、これらの特徴及び他の特徴並びに本発明の利点は、添付の図面に関連して以下に示す好ましい実施の形態の詳細なる記述と、請求の範囲を参照すれば当業者にとって容易に諒解されるであろう。なお、ある図面において同一の数字は対応する部分を示すものとする。
最初に図1及び図2に示すように、流量計は、全体として数字10によって示されている。流量計10は、一般に、ハウジング又は本体12、締め金具で締結するためのスロット14、圧力の入口部品及び出口部品16及び18とカバー20を含む。既知の構成の電気的コネクター22は、カバー20に着脱可能に取り付けられている。前記ハウジング12とカバー20は、好ましくは、ポリテトラフルオロエチレン(PTFE)のような化学的に不活性で非汚染性のポリマーで製造されている。カバー20は、それを貫通して延在する穴24を有し、この穴24は、適当なねじ(図示せず)を使用してカバー20をハウジング12に固定するためのものである。カバー20がハウジング12にシールされることを許容するために、適当なガスケット(図示せず)が、好ましくはカバーとハウジングとの間に配置されている。いかなる限定も意図するものではないが、ダブリュー・エル・ゴアアンドアソシエイテッド・インコーポレーテッド(W.L.Gore&Assoc.,Inc.,)の登録商標であるGOR−TEXとして販売される多層構造で作られたガスケット又はシールは、ハウジング12の内部領域への液体の流れを制限している間に、真の大気圧の基準とするために、ハウジング12の内部領域への通気を許容する。
流量計の内部構造が図3〜図6に参考として示されている。縦穴26は、導管を形成するようにハウジング12を通して延びている。従って、流量計10が圧力部品16及び18経由で流体流路(図示せず)にインライン接続されている場合、穴26は、流体流路内を流体が流れる通路として作用する。流体流路内の流量計10の方向付けは、その効果に影響を及ぼすことなく逆にすることもできる。
第1及び第2の横方向に延びるキャビティ28及び30は、ハウジング12の外部表面32から穴26に向かってずっと延びている。当業者は、キャビティ28及び30がハウジングの異なる側壁からハウジングの内部にそれぞれ延在することができることが諒解されよう。2つのキャビティ28及び30は、隔壁34によって所定の間隔で分離されている。また、穴26は、2つのキャビティ28及び30間に位置されているくびれ部又は狭部35を含む。ハウジング内の各キャビティ28及び30と穴26とが交差する部位に近接する領域に、環状のリップ36が形成されている。各リップ36は、囲繞しており、前記穴26から各キャビティ28及び30に対する開口部分を画成する。
薄い可撓性のあるポリマーディスクあるいは絶縁膜38は、各キャビティ28及び30のリップ36上に位置されている。限定するものではないが、前記膜は、好ましくは、0.001インチと0.040インチ間の範囲の厚みを有するように構成されている。膜38の上面は、グルーブ又は溝のパターンを作るようにすりむかれている。好ましくは、前記可撓性のある膜38は、テトラフルオロエチレン・フルオロカーボン・ポリマーから製造される。このようなテトラフルオロエチレン・フルオロカーボン・ポリマーの1つは、イー・アイ・デュポン ネモアース社(E.I.duPont Nemours)による登録商標であるテフロン(登録商標)として販売されている。
前記絶縁膜38は、その表面上に形成された薄いフィルムを有し、この薄いフィルムは、圧力変換器用キャビティに腐食性化学物質が漏洩することに対するバッファとして作用する。更に、この薄いフィルムは、容量センサのための電気的シールドとして作用する。これにより、流量計を通じて流体が流れる際に、誘電特性の変動から導かれる不正確な問題を除去する。前記薄いフィルムは、例えば、絶縁膜38上に塗布されたカーボン粉とエポキシインク、あるいは絶縁膜38内に表面モールドされたカーボンの薄いフィルムである。コーティングされたディスク膜38は、好ましくはモールドされる。これは、いくつかの他の処理による吹き付けあるいは製造は、膜中にピンホールの通路を残すからである。一方、絶縁膜38はカーボン繊維で補強されてもよい。これにより、絶縁膜38の弾性特性が増加し、PTFEの絶縁膜における常温流れの傾向が低減する。
流量計10が完全に組み立てられると、各可撓性のある膜38と各キャビティのリップ36との間の環状の表面接触は、これらの間に形成された気密封止の如くになる。各リップ36と絶縁膜38の種々の特徴は、限定するものではないが、前述の係属中の出願(出願番号08/538,478)で述べたように変えることができる。
各圧力変換器42及び44は、スペーサ用リング48と外部からねじ込まれた押さえ付けリング50によって各キャビティ28及び30内の所定の位置に保持されている。前記絶縁膜38と2つの変換器42及び44は、化学的に不活性なOリングシール52及び54によってハウジング12内にシールされている。余剰のシールが、位置決めされたOリング52及び54によって作り出されている。これらのシール部材52及び54は、たやすく入手でき、当業者によく知られた構造のものである。付加的なスペーサ用リング56(図4参照)は、圧力変換器の大きさによっては必要となる。
図5及び図6に示すように、排管あるいは導管40は、ハウジングの壁32を通じ、余剰シール部材52及び54間の各キャビティ28及び30に延びて形成され、これによって、余剰シール間の領域はドレインされる。この場合、排管は、排水路、通路又は出口として作用し、その結果、流体は、流体流路からシール部材52を経て漏洩する。センサ41は、排管40内に位置され、電子回路46に(図示しないリードによって)電気的に接続されている。当業者であるならば、導電センサ、容量センサ、電気を用いないファイバの光学センサが排管40内での流体の存在を検知する場合に等しく使えることが諒解されるであろう。流体が第1のシール部材を通して漏洩した場合、その流体は前記センサ41を付勢し、これによって、警報を次いで設定する電気回路46に信号を送出する。
余剰シール部材の配置は、圧力変換器42、44及び電子回路46が腐食性流体の影響によってダメージを受けるのを防止することを助ける。更に、前記余剰シールは流体の流れを隔離し、これにより、流体の潜在的な汚染を低減する。加えて、非汚染領域に対して腐食性流体を運び去るために、チューブ(図示せず)が排管40に接続されてもよい。
再び図3及び図4に示すように、圧力センサ42及び44は、組み込まれた可撓性のある絶縁膜38の上面に配置されている。各圧力センサは、当業者に知られている容量タイプあるいは圧電タイプのものである。各圧力センサの基体は膜38に直接接触しており、これら基体は膜に対する押圧あるいは粘着、熱溶着、その他の既知の方法によって接着されている。前記基体は、該基体上に形成されたカーボンフィルムを有し、潜在的な漏洩に対する付加的なシールドとして作用し、更に電気的シールドとして作用する。
1つの実施の態様において、アルミナ・セラミックス圧力センサが使用される。ここにおいて、アルミナ・セラミックス圧力センサは、薄く一般に柔軟性のあるセラミックシートと、厚く剛性のあるセラミックシートと、これらセラミックシート間に挟まれた絶縁性のスペーサリングとを有する。最初の薄いセラミックシートあるいはダイアフラムは、典型的な厚み0.020インチに近似する0.005から0.050インチの厚みを有する。厚いセラミックシートは、0.100から0.200インチの範囲の厚みを有する。前記スペーサリングは、ガラス、ポリマーあるいは選択的にセラミックシートのような適当な材料で構成され、これらセラミックシートは一緒にろう付けされる。セラミック基板の塞がれた表面は、金、ニッケルあるいはクロムのような金属によってメタライズされて、容量のある極板が形成されている。同様の容量型圧力変換器は、特許文献2においてべル等によって述べられている。特許文献2で述べられているものと類似するその他の容量型圧力変換器は、入手可能であり、当業者に知られている。
使用される圧力センサが、サファイア容量型圧力変換器のタイプのものであれば、可撓性のある膜38が除去され得ると考えられる。サファイア変換器は不活性であり、腐食性流体にさらされたときの摩耗に対する耐性がある。流体の流れに直接連通するサファイアセンサを持つことで、更に、各変換器の圧力測定が向上する。
流量計のハウジング12の変形例が次の図7から図9に示されている。該ハウジング12は、2つのセクション、即ちハーフ58及び60に分かれており、ここにおいて、下流側のセクション58は、該セクシヨンに形成されたキャビティ62と縦穴66を有し、上流側のセクション60は、該セクションに形成されたキャビティ64と縦穴68を有する。各セクション58及び60における縦穴66及び68は、それぞれ対向する穴70及び72を有する。前記2つのセクション58及び60は、対向する穴70及び72が整列されて係合しており、これによって、規制部材74が挿入される中空のキャビティが形成される(図8及び図9参照)。前記規制部材74は、該規制部材74を貫通して延在する中央開口76を有し、この中央開口は、縦穴66及び68に整列されている(図10参照)。
前記規制部材の中央開口76は、その直径が、縦穴66及び68の各断面における直径よりも小さい。前記規制部材74は、化学的に不活性なシール用の既知のOリングによって、各ハウジングセクションの縦穴66及び68に密着されて係合されている。限定されるわけではないが、前記規制部材74と組み込まれたシール用リングは、好ましくは、ポリテトラフルオロエチレンで構成される。
ハウジング12の更に他の実施の形態は、更に、図11に示されている。この実施の形態において、第3のキャビティ78は、ハウジング12の底部の外部表面から延び、穴26に連通する。第3のキャビティ78は、第1及び第2のキャビティ28及び30間の中央に形成されている。置換可能な挿入部材、即ち差込部材80が前記第3のキャビティ78内に挿入され、シールされている。前記差込部材80は、この差込部材80を貫通して延びる開口あるいはチャンネル82(図示せず)を有し、ここにおいて、前記チャンネル82は縦穴26に整列されている。これにより、1つの穴部から他の穴部に通じる通路が形成される。第3のキャビティ78は、ハウジング12の外部表面の頂部から延びることも考えられる。このような構成配置において、一旦、カバー20がハウジング12にシールされると、第3のキャビティ78に対する外部からのアクセスが制限されよう。
チャンネル82の直径は、穴部26のいずれの直径よりも小さい。これにより、くびれた部分、即ち、絞られた部分が形成されることになる。差込部材80は、既知の化学的に不活性なOリング84によって第3のキャビティ78に係合されている。いかなる制限も意図するものではないが、差込部材74とシール用リング84は、ポリテトラフルオロエチレンで構成される。ここにおいて、シール用リング84は、差込部材74を第3のキャビティ78内にシールする。差込部材は、代替的には、サファイアで構成される。この材料は、流体の流れに伴う摩耗に対して耐性を有する。
他の変形例において、くぼみ部分35は、キャビティ28及び30間に摩擦を伴って嵌合されたブッシュ部材によって構成されている。もちろん、前記ブッシュ部材は、残りの穴部を連通する縦穴26の断面形状よりも小さな穴を有する。
当業者であれば、前記くぼみ部分35が、上述したような、様々な形態によって作られることが諒解されよう。前記くぼみ部分は、サファイアで構成することもできる。これによって、流量計の寿命を延ばすことができる。当業者であれば、サファイアが不活性物質であって、腐食性流体の流れによる摩耗に対して高い耐性を有することが諒解されよう。
当業者であれば、各実施の形態におけるキャビティ及びハウジングは、一般的に、同じく圧力部品16及び18、カバー20、絶縁膜38、圧力センサ42及び44、電子回路46、スペーサリング48、及び押さえ付け用リング50を受容する寸法とされていることが容易に諒解されよう。また、各実施の形態は、センサを受け入れるためのキャビティ間に、様々な形態を有するくぼみ部分を具備し、流体が前記くぼみ部分を横断して流れる際に圧力低下が生成されることになる。
再び図3を参照すると、電子回路モジュール46は、セラミック圧力変換器42及び44の上方に位置されており、セラミック圧力変換器42及び44の導電性表面に電気的に接続されている。前記電子回路モジュール46は、更に、適当なリード(図示せず)によってコネクタ22(図1参照)の内部接続部に接続されている。好ましい実施の形態において、前記電気的コネクタ22は、化学的不活性な材料で作られ、好ましくはニューマティコ(Pneumatico)から入手可能なタイプであり、部品番号はpo3rsd−00004−24である。
図12及び図13参照すると、電子回路モジュール46の電子回路の概略図が示されている。この電子回路は、2つの圧力センサ42及び44から読み出された圧力、あるいは選択的に下流側の圧力変換器44で読み出された圧力を、4−20mAのアナログ電流量の表示に変換するために使用される。上流側の変換器42からの生のアナログ信号は、端子102に入力されるように供給され、同様に、下流側の変換器44からのアナログ変換器の生の出力信号は、端子104に入力されるように供給される。端子106及び108は、電源入力端子であり、端子110及び112は、接地バス114(図12参照)に接続されている。
+5Vの電源バス116と接地バス114との間にアナログ式の温度補償チップ118が接続されており、これは、好ましくは、ナショナル・セミコンダクタ・インコーポレーテッド(National Semiconductor Inc.,)から入手できる型式LM45素子からなる。この温度補償チップ118は、+5Vの電源バス116につながる配線120によって接続されたV+端子と、接地バス114につながる半導体ダイオード122を通じて接続されたV-入力を有する。前記ダイオード122はオフセットを与える。その結果、温度補償チップ118の出力端子124で生成された温度に比例する信号は、0℃以下、即ち、見かけ上、負の値にすることができる。
入力端子102及び104で生成された生の信号は、端子124で生成された温度補償信号と共に、デジタル(A/D)変換器チップ126への4チャンネルのΣ−Δ変調タイプのアナログラインにそれぞれ個別に供給される。前記チップ126は、好ましくは、アナログ・デバイセス・コーポレーション(Analog Devices Corporation)によって供給されているAD7714集積回路チップで構成される。前記集積回路の動作モードの詳細を希望する場合には、前記アナログ・デバイセス・コーポレーションから入手可能なデータシートを参考とされたい。
前記Σ−Δ変調A/D変換器は、アナログ圧力入力をデジタルフィルタリングする機能を有する。ここで、ローパスフィルタのカットオフ周波数は、マイクロプロセッサチップ128内で実行されるソフトウェアによって設定されたプログラム可能な量である。限定するものではないが、マイクロプロセッサ128は、マイクロチップ・テクノロジー・コーポレーション(Microchip Technology Corporation)で入手可能な型式PIC16C73集積回路で構成される。抵抗分圧回路はレジスタ130及び132を有し、正電圧側のバス116と接地バス114間に接続されており、圧力データが線形とされている際に電圧補償を与える。
前記A/Dチップ126は、その直列出力データストリームをライン134を通じてマイクロプロセッサ128上のデータ入力端子136に与える。A/D変換器チップ126からの前記シリアルデータは、一般的に数字138で示される水晶制御クロック回路から与えられるタイミング信号の制御下に出力タイミングが制御される。このクロック回路138は、更に、マイクロプロセッサ128のタイミングを制御するために、タイミングパルスをライン140を通して前記マイクロプロセッサチップ128のクロック入力端子142に供給する。
マイクロプロセッサ128は、上流側及び下流側の変換器42及び44によって取り出された瞬時圧力差を演算するように、また、いくつかの必要なゼロ調整とスケーリングが機能するように、プログラムされている。スイッチ134は、マイクロプロセッサ128に接続されている。前記スイッチ134が、ONに切り替わったとき、2つの圧力センサ42及び44間の圧力における差が演算される。典型的には、ユーザは、流体の流れがない場合のテストモードに対してスイッチ134を付勢する。流体の流れがない間の圧力における差は、マイクロプロセッサに格納される。そして、ユーザは、スイッチ134を滅勢する。流体が流れている間、前記格納された値は、圧力差から減算される。これにより、ゼロ調整が行われていることとなる。更に、テストにおいては、前述のように計測された圧力差が、予め設定された上限値以上か、下限値以下であるかどうか決定が行われる。前記圧力差が予め設定された上限値以上、下限値以下であった場合、警報が発せられる。前記圧力差が予め設定された制限内にあるときは流量の割合が計算される。
安定した状態の流れにおいては、流量の割合はすべてのポイントにおいて同じであることが知られている。流量(I)は、Im=ρvAとして表される。ここで、ρは流体の密度、vは流体の速度、Aは流体が通る面積を示す。連続の式A11=A22から、流量計10内の流量の割合は、ある定数に√(P1−P2)を乗算した値に等しいことが見出される。このことから、マイクロプロセッサ128は、流量の割合を2つの圧力センサから受け取ったデータに基づいて演算する。当業者であれば、層流を伴うと、流量の割合は、ある定数にP1−P2を乗算した値により近づくことが諒解されるであろう。従って、流量下限値はシステム内に設定し得る。その結果、"レイノルズ数"が所定のしきい値以下である場合、流量計は、流量を0として特定する。
図13は、前記マイクロプロセッサ128によって演算された流量の割合を、現存するアナログ制御システムで取り扱うことができる4mAから20mAの範囲に絞られたアナログ信号に変換するために使用される回路を示す。換言すれば、マイクロプロセッサ128によって演算された流量のデジタル値は、電流の振幅が前記演算された流量の値に直接比例するものであって、かつ、4mAから20mAの範囲内にあるアナログ信号に変換される。
流量を示す4mAから20mAの範囲のアナログ電流を供給することに加えて、前記システムは、更に、下流側の変換器44又は上流側の変換器42によって検知された圧力に比例する4mA〜2OmAの電流信号を供給するために使用される。より詳細には、図13に示されるように、前記電子回路は、実質的に同一な上側の部分と下側の部分、即ち、流量に比例した4mA〜20mAの電流信号が出力端子144及び146を介して取り出されることになる部分と、圧力に比例した4mA〜20mAの電流信号が出力端子148及び150を介して取り出されることになる部分に分離されている。
図12に戻って参照すると、前記マイクロプロセッサ128は、クロック信号をライン152上に供給する。このライン152は図13の対応するライン152に接続されている。同様に、第1及び第2のデータ出力ライン154及び156は、マイクロプロセッサ128から、図13上、左側にある対応するライン154及び156に接続されている。図13における2つのチャンネルのいずれが作動するかを決定するための信号は、マイクロプロセッサ128からライン158を通って発せられるデジタル−アナログ変換器チップの選択信号の方法によって供給される。この信号は、デジタル−アナログ(D/A)変換器チップ164あるいはデジタル−アナログチップ166のいずれかの"チップセレクト"端子に出力を供給する光学分離回路160及び162に供給される。それぞれの場合、D/A変換器164及び166は、マキシム・コーポレーション(Maxim Corporation)から入手可能な型式MAX538D/A変換器チップのような12ビットデバイスから構成してもよい。
図13から諒解されるように、更に、ライン152上のクロック信号は、ライン154及び156上のデータ信号と同様に、光学カプラ168、170、172及び174を経由して光学的に分離され、その結果として生じる各信号は、それぞれD/A変換器に供給される。
垂直ライン176の右側に位置する電子回路は、前記デジタル−アナログ変換器164又は前記デジタル−アナログ変換器166からのアナログ信号出力を、前記D/A変換器164及び166の電圧出力に対応する4mA〜20mAの範囲の電流信号に変換するように機能する。図13から諒解されるように、前記D/A変換器164からの出力は、レジスタ178を通じてオペアンプ180の非反転入力に供給されている。前記オペアンプの反転端子は、グランド194に接続されている。オペアンプ180の出力は、レジスタ184及び186でバイアスされながらFETデバイス182のゲート電極に接続されている。
FETデバイス182用及びD/A変換器164用の参照電圧は、+側電圧バス192と接地バス194間において直列に接続された直列接続ダイオード188及び190によって得られる。垂直ライン176の右側に図示されたD/A変換器166に関連した電流変換回路への電圧については、すでに述べたD/A変換器164に関連するものと実質的に同じであり、その説明を繰り返すことは必要ないものと考える。
図12においてマイクロプロセッサ128から来るように示されている出力ライン196及び198は、図13において対応する番号が付されたラインを介して光学カプラ200に供給されている。光学カプラ200からの出力は、電力がライン144と146、更にライン148と150に供給されていることを示す。
図12に戻って参照すると、前記マイクロプロセッサチップ128は、全体的に数字202で示されているRS232シリアルポートと組み合わさっている。
このように、本発明に係る流量計デバイスは、更に別の中央処理装置(図示せず)含む様々な周辺装置との連絡が可能となる。前記電子回路46は、また、サーミスタ又はこれに類する部品をそれらの中に含むことによって流路内の温度が変化するときに圧力及び流量の出力を調整することもできる。各圧力変換器はそれぞれ個別に温度で補正される。温度補償手段の一つは、特許文献3によって開示されている。
使用に際し、ユーザは、流量計10を流体流路に圧力部品16及び18を介して結合する。流路を通じて流体が流れるとき、2つのキャビティのそれぞれに隣接する圧力は、電子回路46によって検知され、これにより、流量の割合は、2つの検知された圧力に基づいて演算される。ゲージ圧力と絶対圧力が、同じように取り扱われる。流量の割合の決定から、流量の割合又は下流側の圧力が、所定の制限以上あるいは以下に増加あるいは減少したとき、又は処理装置が停止したときに、警報が発せられる。
当業者であれば、流量の割合が、最小の所望の出力値が最小圧力に関連し、最大の所望の出力値が最大圧力に関連するものであることが諒解されよう。例えば、圧力センサは、測定目盛の0から100psig(ポンド/inch2規格)が、0psigで4mA(ミリアンペア)、100psigで20mAとなるように設定されている。
圧力センサと密着する不活性なテフロン(登録商標)絶縁膜を提供することによって、動作している流体は汚染を引き起こすセンサの表面に接触しなくなる。開示されたシール構造は、動作している流体がハウジング12のキャビティに入らず、電子回路46に不利な影響を与えないことを確実にする。
この発明は、特許法に従うため、並びに新規な原理を適用する上で必要な情報及びこのような特殊な部品を組み立る場合及び使用する場合に必要な情報を当業者に提供するために、本明細書において、かなり詳細に説明している。しかしながら、本発明は、本質的に異なる装置によっても実施されることが理解されよう。いくつかの変形例における装置の詳細及び処理手順の操作の双方については、発明の目的から逸脱しない範囲で達成し得ることが諒解されよう。
図1は、本発明に従って作られた流量計の側面図である。 図2は、図1に示されるタイプの流量計の上面図である。 図3は、図1に示されるタイプの流量計を側面からみた部分断面図である。 図4は、流量計の変形例をカバーと電子回路を取り去って側面からみた拡大部分断面図である。 図5は、流量計の変形例を背面からみた拡大部分断面図である。 図6は、図5に示す流量計の分解図である。 図7は、本発明に従う流量計の変形例の側面図である。 図8は、図7に示されるタイプの流量計を、明瞭のために、圧力変換器、電子回路、絶縁膜、押さえ付けリング、スペーサ用リング及びシール部材を取り去って、側面からみて示す部分断面図である。 図9は、図8に示されるタイプの流量計を、カバーと電子回路を取り去って示す上面図である。 図10は、図8の実施例において使用される規制部材の拡大断面図である。 図11は、本発明に従う流量計ハウジングの他の実施例を側面からみて示す部分断面図である。 図12は、本発明に従う流量計で使用される電子回路の概略図である。 図13は、本発明に従う流量計で使用される電子回路の概略図である。
符号の説明
10…流量計 12…ハウジング
26…縦穴 28…第1のキャビティ
30…第2のキャビティ 34…隔壁
35…狭部 36…リップ
38…絶縁膜 40…排管あるいは導管
41…センサ 42、44…圧力変換器
46…電子回路 48…スペーサ用リング
50…押さえ付けリング 52、54…Oリングシール
58、60…ハーフ 62、64…キャビティ

Claims (7)

  1. 流体流路にインライン接続されるように適合した化学的に不活性な流量計において、
    (a)化学的に不活性なハウジングを有し、該ハウジングは、流体の流れ用通路を形成するように前記ハウジングを介して延びる第1の所定の横断面積の縦穴を有し、該通路の入口端と出口端は、流体流路にインライン接続するために適合するものであり、更に、前記ハウジングは、それぞれ前記ハウジングの外部表面から前記ハウジングの縦穴に交差してそれぞれ延びる第1及び第2の離間した個々のキャビティを有し、前記縦穴は、前記第1及び第2のキャビティ間に配置された着脱自在な挿入部材を有し、前記着脱自在な挿入部材は、前記第1の所定の横断面積よりも小さい第2の横断面積を有する第2の穴を有し、
    (b)前記第1のキャビティ内に設けられ、流路内の第1の圧力を検知するための第1の検知手段を有し、
    (c)前記第2のキャビティ内に設けられ、流路内の第2の圧力を検知するための第2の検知手段を有し、
    (d)ハウジングのキャビティ内の位置で前記第1及び第2の検知手段を固定させるための押さえ付け手段を有し、
    (e)前記ハウジング内に含まれ、かつ、第1及び第2の検知手段に接続される電子回路を有し、前記電子回路は、穴内の検知された第1及び第2の圧力に比例する信号を受け取る
    ことを特徴とする流量計。
  2. 請求項1記載の流量計において、
    更に、それぞれ前記第1及び第2のキャビティ内に含まれる化学的に不活性な可撓性のある膜を前記ハウジングの縦穴に近接して有し、各膜は、第1及び第2の対向する主面を有し、前記第1の主面は、流体流路を流れる流体にさらされていることを特徴とする流量計。
  3. 請求項1記載の流量計において、
    前記着脱自在な挿入部材は、サファイアから製造されることを特徴とする流量計。
  4. 請求項1記載の流量計において、
    前記第1及び第2の検知手段は、それぞれサファイアセンサからなることを特徴とする流量計。
  5. 請求項1記載の流量計において、
    前記ハウジングは、それぞれ縦穴とこれと反対の穴を含む第1及び第2の半ハウジングを有し、前記縦穴とこれと反対の穴は、各半ハウジングの縦穴が整列されて第1及び第2の半ハウジングが並置されたときに、前記着脱自在な挿入部材を受け入れることを特徴とする流量計。
  6. 請求項1記載の流量計において、
    前記ハウジングは、化学的に不活性なポリマーで製造されていることを特徴とする流量計。
  7. 請求項6記載の流量計において、
    前記化学的に不活性なポリマーは、ポリテトラフルオロエチレンからなることを特徴とする流量計。
JP2006174410A 1996-02-15 2006-06-23 非汚染性本体を有する腐食性流体内の流量計 Pending JP2006250955A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08/601,786 US5672832A (en) 1996-02-15 1996-02-15 Chemically inert flow meter within caustic fluids having non-contaminating body

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP09529346A Division JP2000510575A (ja) 1996-02-15 1997-01-22 非汚染性本体を有する腐食性流体内の流量計

Publications (1)

Publication Number Publication Date
JP2006250955A true JP2006250955A (ja) 2006-09-21

Family

ID=24408760

Family Applications (2)

Application Number Title Priority Date Filing Date
JP09529346A Pending JP2000510575A (ja) 1996-02-15 1997-01-22 非汚染性本体を有する腐食性流体内の流量計
JP2006174410A Pending JP2006250955A (ja) 1996-02-15 2006-06-23 非汚染性本体を有する腐食性流体内の流量計

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP09529346A Pending JP2000510575A (ja) 1996-02-15 1997-01-22 非汚染性本体を有する腐食性流体内の流量計

Country Status (8)

Country Link
US (1) US5672832A (ja)
EP (1) EP0880686B1 (ja)
JP (2) JP2000510575A (ja)
KR (1) KR100287298B1 (ja)
AT (1) ATE216070T1 (ja)
CA (1) CA2245867C (ja)
DE (1) DE69711850T2 (ja)
WO (1) WO1997030333A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186539A1 (ko) * 2017-04-06 2018-10-11 인제대학교 산학협력단 박막을 이용하여 분리 가능한 구조를 갖는 미세 유체 유속 측정장치

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3154048B2 (ja) * 1996-10-25 2001-04-09 株式会社ゼクセルヴァレオクライメートコントロール 熱交換媒体圧力測定装置
US7296282B1 (en) * 1999-01-22 2007-11-13 Koplar Interactive Systems International Llc Interactive optical cards and other hand-held devices with increased connectivity
US6578435B2 (en) * 1999-11-23 2003-06-17 Nt International, Inc. Chemically inert flow control with non-contaminating body
JP4792686B2 (ja) * 2000-02-07 2011-10-12 ソニー株式会社 画像処理装置及び画像処理方法並びに記録媒体
US6782754B1 (en) 2000-07-07 2004-08-31 Rosemount, Inc. Pressure transmitter for clean environments
US6550338B1 (en) 2000-07-07 2003-04-22 Ardishir Rashidi Pressure sensing device
JP2002156302A (ja) * 2000-11-17 2002-05-31 Surpass Kogyo Kk 圧力センサー
KR100676249B1 (ko) * 2001-05-23 2007-01-30 삼성전자주식회사 기판 절단용 냉매, 이를 이용한 기판 절단 방법 및 이를수행하기 위한 장치
KR100994616B1 (ko) * 2001-05-25 2010-11-15 엔테그리스, 아이엔씨. 플루오르폴리머 유량계
US7127815B2 (en) * 2001-11-26 2006-10-31 Emerson Electric Co. Method of manufacturing a Coriolis flowmeter
US6606917B2 (en) * 2001-11-26 2003-08-19 Emerson Electric Co. High purity coriolis mass flow controller
US20030098069A1 (en) * 2001-11-26 2003-05-29 Sund Wesley E. High purity fluid delivery system
US6920795B2 (en) * 2002-01-09 2005-07-26 Red Wing Technologies, Inc. Adapter for coupling a sensor to a fluid line
US6792814B2 (en) * 2002-04-10 2004-09-21 Rutgers, The State University Of New Jersey Flowmeter
US20040049301A1 (en) * 2002-09-10 2004-03-11 M Fsi Ltd. Apparatus and method for preparing and supplying slurry for CMP machine
US6880405B2 (en) * 2002-12-30 2005-04-19 Pti Technologies, Inc. Electrical/visual differential pressure indicator with solid state sensor
US6843139B2 (en) * 2003-03-12 2005-01-18 Rosemount Inc. Flow instrument with multisensors
US7131451B2 (en) * 2003-09-04 2006-11-07 Rivatek Incorporated Apparatus for controlling and metering fluid flow
US6945115B1 (en) * 2004-03-04 2005-09-20 General Mems Corporation Micromachined capacitive RF pressure sensor
US7096738B2 (en) * 2004-03-18 2006-08-29 Rosemount Inc. In-line annular seal-based pressure device
TWM262699U (en) * 2004-03-18 2005-04-21 Metertek Technology Inc Flowmeter
JP2005274265A (ja) * 2004-03-24 2005-10-06 Nippon M K S Kk 流量計
US20050267413A1 (en) * 2004-05-26 2005-12-01 Wang Jong H Flow monitoring devices and methods of use
US7262693B2 (en) 2004-06-28 2007-08-28 Rosemount Inc. Process field device with radio frequency communication
US7117104B2 (en) * 2004-06-28 2006-10-03 Celerity, Inc. Ultrasonic liquid flow controller
US8160535B2 (en) 2004-06-28 2012-04-17 Rosemount Inc. RF adapter for field device
US7077008B2 (en) * 2004-07-02 2006-07-18 Honeywell International Inc. Differential pressure measurement using backside sensing and a single ASIC
US7222029B2 (en) * 2004-07-08 2007-05-22 Celerity, Inc. Attitude insensitive flow device system and method
US7347099B2 (en) * 2004-07-16 2008-03-25 Rosemount Inc. Pressure transducer with external heater
JP2006153677A (ja) * 2004-11-30 2006-06-15 Dainippon Screen Mfg Co Ltd 差圧式流量計、流量制御装置および基板処理装置
US7337084B2 (en) 2005-06-21 2008-02-26 Invensys Systems, Inc. Switch-activated zero checking feature for a Coriolis flowmeter
US7866337B2 (en) * 2005-07-08 2011-01-11 Entegris, Inc. Chemically inert flow controller with non-contaminating body
TW200739039A (en) * 2005-08-12 2007-10-16 Celerity Inc Ultrasonic flow sensor
US7679033B2 (en) * 2005-09-29 2010-03-16 Rosemount Inc. Process field device temperature control
KR100687261B1 (ko) * 2005-12-02 2007-02-26 주식회사 우일하이테크 차압식 유량계
US7261003B2 (en) * 2006-01-03 2007-08-28 Freescale Semiconductor, Inc. Flowmeter and method for the making thereof
DE202006003446U1 (de) * 2006-03-02 2006-05-18 Eto Sensoric Kg Drucksensorvorrichtung
JP2009529674A (ja) * 2006-03-09 2009-08-20 インテグリス・インコーポレーテッド 分離チャンバを有する流体ハンドリング装置
US7409871B2 (en) 2006-03-16 2008-08-12 Celerity, Inc. Mass flow meter or controller with inclination sensor
US8302496B2 (en) * 2006-06-03 2012-11-06 Eldon James Corporation Universal sensor fitting for process applications
US7467555B2 (en) * 2006-07-10 2008-12-23 Rosemount Inc. Pressure transmitter with multiple reference pressure sensors
NO326270B1 (no) 2006-09-13 2008-10-27 Fluenta As Arrangement for a male fluidhastighet
DE202006016225U1 (de) 2006-10-19 2007-02-01 Endress + Hauser Gmbh + Co. Kg Druckmessaufnehmer
US7530278B2 (en) * 2006-11-02 2009-05-12 Rivatek, Inc. Fluid flow blender and methods
US7472608B2 (en) * 2007-04-04 2009-01-06 Rosemount Inc. Flangeless differential pressure transmitter for industrial process control systems
US8365765B2 (en) * 2007-09-10 2013-02-05 Joel David Bell Flow restrictor cartridge for fluid flow measurements
US20090093774A1 (en) * 2007-10-04 2009-04-09 Baxter International Inc. Ambulatory pump with intelligent flow control
US8215157B2 (en) * 2007-10-04 2012-07-10 Baxter International Inc. System and method for measuring liquid viscosity in a fluid delivery system
US7779698B2 (en) * 2007-11-08 2010-08-24 Rosemount Inc. Pressure sensor
US8403908B2 (en) * 2007-12-17 2013-03-26 Hospira, Inc. Differential pressure based flow sensor assembly for medication delivery monitoring and method of using the same
US8517990B2 (en) 2007-12-18 2013-08-27 Hospira, Inc. User interface improvements for medical devices
US8065924B2 (en) * 2008-05-23 2011-11-29 Hospira, Inc. Cassette for differential pressure based medication delivery flow sensor assembly for medication delivery monitoring and method of making the same
CA2726707C (en) 2008-06-17 2016-01-19 Rosemount Inc. Rf adapter for field device with low voltage intrinsic safety clamping
JP5255698B2 (ja) 2008-06-17 2013-08-07 ローズマウント インコーポレイテッド 電圧降下が可変のフィールド機器用無線アダプタ
JP5232299B2 (ja) 2008-06-17 2013-07-10 ローズマウント インコーポレイテッド ループ電流バイパスを備えるフィールド機器のためのrfアダプター
US8929948B2 (en) 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
JP5408916B2 (ja) * 2008-07-08 2014-02-05 サーパス工業株式会社 差圧式流量計及び流量コントローラ
US7819838B2 (en) * 2008-09-02 2010-10-26 Hospira, Inc. Cassette for use in a medication delivery flow sensor assembly and method of making the same
US20100114027A1 (en) * 2008-11-05 2010-05-06 Hospira, Inc. Fluid medication delivery systems for delivery monitoring of secondary medications
US8048022B2 (en) * 2009-01-30 2011-11-01 Hospira, Inc. Cassette for differential pressure based medication delivery flow sensor assembly for medication delivery monitoring and method of making the same
JP5220642B2 (ja) * 2009-02-05 2013-06-26 サーパス工業株式会社 差圧式流量計および流量コントローラ
US20100280486A1 (en) * 2009-04-29 2010-11-04 Hospira, Inc. System and method for delivering and monitoring medication
JP2010276533A (ja) 2009-05-29 2010-12-09 Horiba Advanced Techno Co Ltd 流量測定装置及び流体圧力測定装置
US9674976B2 (en) 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
DE102009040542A1 (de) * 2009-09-08 2011-03-10 Bürkert Werke GmbH Vorrichtung und Verfahren zum Durchflussmessen oder -regeln
US8113046B2 (en) 2010-03-22 2012-02-14 Honeywell International Inc. Sensor assembly with hydrophobic filter
US8656772B2 (en) 2010-03-22 2014-02-25 Honeywell International Inc. Flow sensor with pressure output signal
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
EP2458358B1 (en) * 2010-11-29 2017-09-27 Corning Incorporated In-line contactless pressure sensors and methods of measuring pressure
US8695417B2 (en) 2011-01-31 2014-04-15 Honeywell International Inc. Flow sensor with enhanced flow range capability
EP2745204A4 (en) 2011-08-19 2015-01-07 Hospira Inc SYSTEMS AND METHOD FOR A GRAPHIC INTERFACE WITH A GRAPHICAL PRESENTATION OF MEDICAL DATA
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device
WO2013090709A1 (en) 2011-12-16 2013-06-20 Hospira, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
KR101406397B1 (ko) * 2012-10-24 2014-06-13 주식회사 포스코 센서장치 및 이를 포함하는 냉각설비의 성능 평가장치
JP5928053B2 (ja) * 2012-03-23 2016-06-01 アイシン精機株式会社 冷却プラグ
CA2868801C (en) 2012-03-30 2021-07-13 Hospira, Inc. Air detection system and method for detecting air in a pump of an infusion system
CA3089257C (en) 2012-07-31 2023-07-25 Icu Medical, Inc. Patient care system for critical medications
US9052217B2 (en) 2012-11-09 2015-06-09 Honeywell International Inc. Variable scale sensor
EP2735782B1 (de) * 2012-11-22 2018-07-18 TI Automotive (Fuldabrück) GmbH Schnellkupplung mit integriertem Sensor
US10046112B2 (en) 2013-05-24 2018-08-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
ES2845748T3 (es) 2013-05-29 2021-07-27 Icu Medical Inc Sistema de infusión y método de uso que impiden la sobresaturación de un convertidor analógico-digital
EP3003441B1 (en) 2013-05-29 2020-12-02 ICU Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
US20150133861A1 (en) 2013-11-11 2015-05-14 Kevin P. McLennan Thermal management system and method for medical devices
ES2776363T3 (es) 2014-02-28 2020-07-30 Icu Medical Inc Sistema de infusión y método que utiliza detección óptica de aire en línea de doble longitud de onda
WO2015184366A1 (en) 2014-05-29 2015-12-03 Hospira, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US10143795B2 (en) 2014-08-18 2018-12-04 Icu Medical, Inc. Intravenous pole integrated power, control, and communication system and method for an infusion pump
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
NZ737340A (en) 2015-05-26 2019-06-28 Icu Medical Inc Disposable infusion fluid delivery device for programmable large volume drug delivery
US10105732B2 (en) * 2016-01-05 2018-10-23 Taiwan Semiconductor Manufacturing Co., Ltd. Coater and surface treatment method
CA3023658C (en) 2016-05-13 2023-03-07 Icu Medical, Inc. Infusion pump system and method with common line auto flush
TWI645889B (zh) 2016-06-01 2019-01-01 恩特葛瑞斯股份有限公司 導電過濾裝置
KR101685195B1 (ko) * 2016-06-03 2016-12-20 채희관 이중 압력게이지를 구비하는 볼 밸브
EP3468635A4 (en) 2016-06-10 2019-11-20 ICU Medical, Inc. ACOUSTIC FLOW SENSOR FOR CONTINUOUS MEDICINE FLOW MEASUREMENTS AND INFUSION FEEDBACK CONTROL
JP6871721B2 (ja) * 2016-11-17 2021-05-12 株式会社堀場エステック 圧力式流量計
EP3367074A1 (en) * 2017-02-23 2018-08-29 Kamstrup A/S Electronic flow meter including a built-in pressure sensor
CN107045072A (zh) * 2017-03-17 2017-08-15 广西电网有限责任公司电力科学研究院 一种气体流速测量装置
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11906336B2 (en) 2018-01-31 2024-02-20 Hydroacoustics Inc. Pumpjack production well including venturi fluid sensor and capacitive flow sensor
WO2019152591A1 (en) * 2018-01-31 2019-08-08 Hydroacoustics Inc. Fluid sensor and pumpjack control system
US11346186B2 (en) 2018-02-07 2022-05-31 Hydroacoustics, Inc. Oil recovery tool and system
US11821293B2 (en) 2018-02-07 2023-11-21 Hydroacoustics. Inc. Oil recovery tool and system
KR102495884B1 (ko) 2018-05-07 2023-02-06 엔테그리스, 아이엔씨. 정전기 방전 완화 기능이 통합된 유체 회로
CN109000844B (zh) * 2018-06-14 2020-11-06 王志华 一种火电厂用管道压力测量装置
CN112673239A (zh) * 2018-09-18 2021-04-16 斯瓦戈洛克公司 流体监测模块布置
US10883865B2 (en) 2018-09-19 2021-01-05 Swagelok Company Flow restricting fluid component
KR20210157913A (ko) 2019-05-23 2021-12-29 엔테그리스, 아이엔씨. 정전 방전 완화 배관
USD939079S1 (en) 2019-08-22 2021-12-21 Icu Medical, Inc. Infusion pump
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
AU2021311443A1 (en) 2020-07-21 2023-03-09 Icu Medical, Inc. Fluid transfer devices and methods of use
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734526A (en) * 1956-02-14 aagaard
US2190713A (en) * 1937-02-17 1940-02-20 Zeiss Ikon Ag Piezoelectric pressure indicator
US4177496A (en) * 1976-03-12 1979-12-04 Kavlico Corporation Capacitive pressure transducer
US5063784A (en) * 1988-06-06 1991-11-12 Ridenour Ralph Gaylord Refrigerant transducer assembly and method
JPH04258176A (ja) * 1991-02-12 1992-09-14 Mitsubishi Electric Corp 半導体圧力センサ
US5183078A (en) * 1991-06-24 1993-02-02 Sorrell Harold E Combination shut-off and test-injection valve
US5184514A (en) * 1991-07-12 1993-02-09 Rosemount Inc. Corrosion resistant isolator
JP2896725B2 (ja) * 1991-12-26 1999-05-31 株式会社山武 静電容量式圧力センサ
US5313839A (en) * 1992-08-31 1994-05-24 Ridenour Ralph Gaylord Transducer assembly and method
US5316035A (en) * 1993-02-19 1994-05-31 Fluoroware, Inc. Capacitive proximity monitoring device for corrosive atmosphere environment
US5410916A (en) * 1994-06-24 1995-05-02 Honeywell Inc. Flowthrough pressure sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186539A1 (ko) * 2017-04-06 2018-10-11 인제대학교 산학협력단 박막을 이용하여 분리 가능한 구조를 갖는 미세 유체 유속 측정장치

Also Published As

Publication number Publication date
EP0880686B1 (en) 2002-04-10
ATE216070T1 (de) 2002-04-15
EP0880686A4 (en) 1999-04-21
KR100287298B1 (ko) 2001-04-16
KR19990082600A (ko) 1999-11-25
EP0880686A1 (en) 1998-12-02
CA2245867A1 (en) 1997-08-21
CA2245867C (en) 2001-09-11
DE69711850D1 (de) 2002-05-16
JP2000510575A (ja) 2000-08-15
US5672832A (en) 1997-09-30
DE69711850T2 (de) 2002-09-26
WO1997030333A1 (en) 1997-08-21

Similar Documents

Publication Publication Date Title
JP2006250955A (ja) 非汚染性本体を有する腐食性流体内の流量計
WO1997030333A8 (en) Flow meter within caustic fluids having non-contaminating body
JP3323513B2 (ja) 非汚染性本体を有する圧力センサモジュール
KR100800088B1 (ko) 비오염 본체를 가진, 화학적 불활성의 흐름 제어장치
JP5256032B2 (ja) 非汚染体を備えた化学的不活性流制御装置
CA2312748C (en) Non-contaminating pressure transducer module
JP5079492B2 (ja) 環状静電容量式圧力センサ
EP1944583B1 (en) Differential pressure type flowmeter
US6920795B2 (en) Adapter for coupling a sensor to a fluid line
EP0079942A1 (en) FLOW DISTRIBUTION DEVICE FOR A FLOW METER.
US20050211000A1 (en) Flowmeter
WO1999028718A1 (en) Fluid monitoring device
GB2188158A (en) Flowmeter
KR20030034264A (ko) 열량형 질량유량 측정센서 및 그의 오차보정 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070710

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904