JP2006249460A - Sn PLATING OR Sn ALLOY PLATING HAVING EXCELLENT SUPPRESSION OF WHISKER GENERATION - Google Patents

Sn PLATING OR Sn ALLOY PLATING HAVING EXCELLENT SUPPRESSION OF WHISKER GENERATION Download PDF

Info

Publication number
JP2006249460A
JP2006249460A JP2005064477A JP2005064477A JP2006249460A JP 2006249460 A JP2006249460 A JP 2006249460A JP 2005064477 A JP2005064477 A JP 2005064477A JP 2005064477 A JP2005064477 A JP 2005064477A JP 2006249460 A JP2006249460 A JP 2006249460A
Authority
JP
Japan
Prior art keywords
plating
alloy
grain boundary
hkl
alloy phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005064477A
Other languages
Japanese (ja)
Other versions
JP5059292B2 (en
Inventor
Toshiki Sato
俊樹 佐藤
Kazumi Yanagisawa
佳寿美 柳澤
Hidehito Okamoto
秀仁 岡本
Toshiyuki Mitsui
俊幸 三井
Fumio Okuda
文雄 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Leadmikk Co Ltd
Original Assignee
Kobe Steel Ltd
Shinko Leadmikk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Leadmikk Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2005064477A priority Critical patent/JP5059292B2/en
Publication of JP2006249460A publication Critical patent/JP2006249460A/en
Application granted granted Critical
Publication of JP5059292B2 publication Critical patent/JP5059292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Sn plating or Sn alloy plating structure free from the generation of whiskers, to provide its production method, and particularly, to provide an Sn plating or Sn alloy plating structure where the generation of whiskers is suppressed even when being subjected to external stress such as bending, and to provide its production method. <P>SOLUTION: The Sn plating or Sn alloy plating is characterized in that an alloy phase of Sn is formed on the grain boundaries of Sn plating or Sn alloy plating, and particularly, an alloy phase of Sn in which the ratio to be occupied in the length of the grain boundaries is ≥50% is formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、SnめっきまたはSn合金めっきの技術分野に関し、特に半導体リードフレームや電子部品のコネクター端子に使用されるSnめっき銅板や銅合金板に関し、ショートの原因となるウイスカー発生を抑制するSnめっきまたはSn合金めっきの構造およびSnめっきまたはSn合金めっき構造の製造方法に関する。   The present invention relates to the technical field of Sn plating or Sn alloy plating, and more particularly to Sn plated copper plates and copper alloy plates used for connector terminals of semiconductor lead frames and electronic components, and Sn plating that suppresses the occurrence of whiskers causing short circuits. The present invention also relates to a structure of Sn alloy plating and a manufacturing method of Sn plating or Sn alloy plating structure.

半導体のリードフレームや電子機器のコネクター端子は、通常ハンダ付け性を良くするためにSn-Pb合金メッキが施されているが、近年、環境問題からPbを用いないSnめっきが求められている。   Semiconductor lead frames and connector terminals of electronic devices are usually plated with Sn—Pb alloy in order to improve solderability. However, in recent years, Sn plating that does not use Pb is required due to environmental problems.

しかしながら、Snめっき表面からは、めっき後に自発的に直径数μm、長さは数μmから長いものは数mmにもなる針状のSnの単結晶であるウイスカーが発生し、短絡の問題が発生する。このウイスカーは、速いものはめっき後数日以内で発生し、遅いものはめっき後数ヶ月で発生するなど様々である。   However, whisker which is a single crystal of needle-like Sn having a diameter of several μm and a length of several μm to several mm is spontaneously generated from the surface of Sn plating, resulting in a short circuit problem. To do. As for this whisker, a fast one occurs within a few days after plating, and a slow one occurs several months after plating.

このSnのウイスカーの成長機構は完全には理解されていないが、Snめっき層に圧縮応力が加わると、これが駆動力となってSn原子の拡散が誘発されることによりウイスカーが成長するといわれている。   The growth mechanism of this Sn whisker is not completely understood, but it is said that when compressive stress is applied to the Sn plating layer, this will be the driving force and induce whisker diffusion. .

従って、Snのウイスカー発生を防止するためには、Snめっき層に圧縮応力がかからないようにする方法がある。   Therefore, in order to prevent the generation of Sn whiskers, there is a method for preventing the Sn plating layer from being subjected to compressive stress.

ここで、Snめっき層に加わる圧縮応力としては、めっきによって生じるめっき残留圧縮応力、めっき後に、基板のCuとが反応してめっきとCu基板の界面にSnと銅の合金相(Cu3SnやCu6Sn5)が形成されることによる圧縮応力の発生、めっき後の曲げ加工等により発生する圧縮応力がある。   Here, as the compressive stress applied to the Sn plating layer, the plating residual compressive stress generated by plating, the Cu of the substrate reacts after plating, and the alloy phase of Sn and copper (Cu3Sn or Cu6Sn5) at the interface between the plating and the Cu substrate There is a compressive stress generated due to the generation of compressive stress due to the formation of, and bending after plating.

このため、圧縮応力を低減してウイスカー発生を防止する方法として、(1)めっき条件やめっき方法の検討によるめっき残留応力の低減、(2)SnとCuの合金相が基板とめっき界面にできないように銅や銅合金基板上に下地めっきを行う、(3)Snめっき後に熱処理を行うことによる残留応力緩和、がある。   For this reason, as a method of reducing the compressive stress and preventing whisker generation, (1) Reduction of plating residual stress by studying plating conditions and plating method, (2) Sn and Cu alloy phase cannot be at the substrate and plating interface As described above, there is a base plating on a copper or copper alloy substrate, and (3) residual stress relaxation by performing a heat treatment after Sn plating.

(1)の方法は、例えば、特許文献1に示されるように、パルスめっきを行うことによりSnめっきの内部応力を緩和する方法がある。しかしながら、初期のめっき残留応力を低減しても、めっき後に徐々にSnと基板の銅が反応して界面にSnと銅の合金相が形成されることによる圧縮応力が発生するために、結局ウイスカーが発生する。   As a method of (1), for example, as shown in Patent Document 1, there is a method of relaxing internal stress of Sn plating by performing pulse plating. However, even if the initial plating residual stress is reduced, after the plating, Sn and the copper of the substrate react gradually, and a compressive stress is generated due to the formation of an alloy phase of Sn and copper at the interface. Occurs.

(2)の方法は、例えば、非特許文献1に報告されているように、DittesらはCu基板上にNiやAg下地めっきを行うことによりCuとSnの合金層形成による応力発生が抑制されウイスカー発生が抑制されることを示している。しかしながら、めっき後の残留圧縮応力が存在すればウイスカーが発生する。従って、(1)との組合せが必要となるが、めっき後に加工がなされると圧縮応力が発生するためにウイスカーが発生する。   In the method (2), for example, as reported in Non-Patent Document 1, Dittes et al. Suppress the generation of stress due to the formation of an alloy layer of Cu and Sn by performing Ni or Ag base plating on a Cu substrate. This shows that whisker generation is suppressed. However, whiskers are generated if there is residual compressive stress after plating. Therefore, a combination with (1) is required, but if processing is performed after plating, a whisker is generated because compressive stress is generated.

(3)の方法は、例えば、特許文献2に示されるように、Snめっき材を180℃〜融点温度の範囲で熱処理する方法や特許文献3に示されるようにSnーCu合金めっきを227℃以上270℃以下で15分以内の熱処理を行う方法等がある。これらの方法は、熱処理により、急速に基板―めっき界面に合金相が形成されるが加熱状態にあるため、発生する圧縮応力が急速に緩和されるとともに、一端合金相ができると合金相中のSnやCuの拡散速度は非常に遅くなるため、常温に戻した時には、合金相の成長が抑制されることになり新たな応力発生が抑制される。また、加熱により応力緩和が起こった後に、加熱後の冷却によりSnとCuの熱膨張係数差により引っ張り応力が発生するため、ウイスカー発生が抑制される。しかしながら、加工による外部圧縮応力が発生するとウイスカーが発生する。   The method (3) includes, for example, a method of heat-treating an Sn plating material in the range of 180 ° C. to a melting point temperature as shown in Patent Document 2 and a Sn-Cu alloy plating of 227 ° C. as shown in Patent Document 3. There is a method of performing heat treatment at 270 ° C. or lower and within 15 minutes. In these methods, an alloy phase is rapidly formed at the substrate-plating interface by heat treatment, but since it is in a heated state, the generated compressive stress is rapidly relieved, and once the alloy phase is formed, Since the diffusion rate of Sn and Cu becomes very slow, the growth of the alloy phase is suppressed and the generation of new stress is suppressed when the temperature is returned to room temperature. In addition, after stress relaxation occurs due to heating, tensile stress is generated due to the difference in thermal expansion coefficient between Sn and Cu due to cooling after heating, and thus whisker generation is suppressed. However, whisker is generated when external compressive stress is generated by processing.

圧縮応力の低減以外にもSn合金めっきによるウイスカー防止方法が報告されている。例えば、特許文献4にはSn-Bi合金メッキ、特許文献5にはSn-Zn合金メッキ、特許文献6にはSn-Cu合金メッキ、特許文献7にはSn-Ag合金メッキについて記載されている。Sn-Cuについてはウイスカーの抑制理由については明記されていないが、Sn-BiやSn-ZnはBiやZnがSnの拡散を抑制し、Sn-AgについてはSnめっき層にAgの合金相が形成されるためにウイスカー発生が抑制されると記載されている。しかしながら、これらの方法でも完全にウイスカー発生を抑制することは困難であり、ウイスカー発生を抑制するPbフリーのSnめっきが要望されている。
特開2003−129276 特開昭57―126992 特開2003−193289 特開2004―169073 特開2003−253470 特開2000−87204 特開2002−220682 Tin Whisker Formation-Results,Test Methods and Countermeasures,IEEE(2003)pp822―826
In addition to reducing compressive stress, whisker prevention methods using Sn alloy plating have been reported. For example, Patent Document 4 describes Sn—Bi alloy plating, Patent Document 5 describes Sn—Zn alloy plating, Patent Document 6 describes Sn—Cu alloy plating, and Patent Document 7 describes Sn—Ag alloy plating. . The reason for whisker suppression is not specified for Sn-Cu, but Sn-Bi and Sn-Zn inhibit the diffusion of Sn by Bi and Zn, and Sn-Ag has an Ag alloy phase in the Sn plating layer. It is described that whisker generation is suppressed due to the formation. However, even with these methods, it is difficult to completely suppress whisker generation, and there is a demand for Pb-free Sn plating that suppresses whisker generation.
JP2003-129276 JP 57-126992 JP2003-193289 JP2004-169073 JP2003-253470 JP2000-87204 JP2002-220682 Tin Whisker Formation-Results, Test Methods and Countermeasures, IEEE (2003) pp822-826

本発明はこのような事情に着目してなされたものであって、その目的は、ウイスカーが発生することの無いSnめっきまたはSn合金メッキ及びその製造方法を提供するものである。特に、曲げ加工等の外部応力が加わってもウイスカー発生が抑制されるSnめっきまたはSn合金メッキ及びその製造方法を提供するものである。   The present invention has been made paying attention to such circumstances, and an object thereof is to provide Sn plating or Sn alloy plating in which no whisker is generated, and a method for manufacturing the same. In particular, the present invention provides an Sn plating or Sn alloy plating in which the generation of whiskers is suppressed even when an external stress such as bending is applied, and a method for manufacturing the same.

本発明者らは、上記目的を達成するため、鋭意研究を行なった結果、本発明を完成するに至った。本発明によれば上記目的を達成することができる。   In order to achieve the above object, the present inventors have intensively studied, and as a result, completed the present invention. According to the present invention, the above object can be achieved.

このようにして完成され上記目的を達成することができた本発明は、SnめっきまたはSn合金メッキに係わり、それは次のような構成としたものである。   The present invention thus completed and capable of achieving the above object relates to Sn plating or Sn alloy plating, and has the following configuration.

請求項1は、SnめっきまたはSn合金めっきの結晶粒界にSnの合金相が形成されていることを特徴とするSnめっきまたはSn合金めっきである(第一発明)。   Claim 1 is Sn plating or Sn alloy plating characterized in that an Sn alloy phase is formed at the grain boundary of Sn plating or Sn alloy plating (first invention).

請求項2は、SnめっきまたはSn合金めっきの結晶粒界に形成されるSnの合金相の結晶粒界に占める割合が50%以上であることを特徴とする請求項1記載のSnめっきまたはSn合金めっきである(第二発明)。   A second aspect of the present invention is characterized in that the ratio of the Sn alloy phase formed at the grain boundaries of Sn plating or Sn alloy plating to the grain boundaries is 50% or more. Alloy plating (second invention).

請求項3は、SnめっきまたはSn合金めっきの結晶粒界に形成されるSnの合金相が、SnとCu 、SnとFe、SnとCo、SnとNiの合金のいずれかであることを特徴とする請求項1または2記載のSnめっきまたはSn合金めっきである(第三発明)。   Claim 3 is characterized in that the Sn alloy phase formed at the grain boundary of Sn plating or Sn alloy plating is any one of Sn and Cu, Sn and Fe, Sn and Co, Sn and Ni alloy The Sn plating or the Sn alloy plating according to claim 1 or 2 (third invention).

請求項4は、Sn合金めっきの合金元素が、Cu、Co、Fe、Niから選ばれる少なくとも1種類以上であることを特徴とする請求項1ないし3の何れかに記載のSn合金めっきである(第四発明)。   Claim 4 is the Sn alloy plating according to any one of claims 1 to 3, wherein the alloy element of the Sn alloy plating is at least one selected from Cu, Co, Fe, and Ni. (Fourth invention).

請求項5は、銅または銅合金基板上に、第一層としてCu、Fe、Co、Ni、Ni-Pめっき層の何れか1層があり、その上に第二層としてSnめっきまたはSn合金めっき層があることを特徴とする請求項1ないし4の何れかに記載のSnめっきまたはSn合金めっきである(第五発明)。   In claim 5, on the copper or copper alloy substrate, there is any one of Cu, Fe, Co, Ni, Ni-P plating layer as the first layer, and Sn plating or Sn alloy as the second layer thereon. 5. The Sn plating or Sn alloy plating according to claim 1, further comprising a plating layer (fifth invention).

請求項6は、SnめっきまたはSn合金めっきの結晶粒界に形成されるSnの合金相が、SnとCuであることを特徴とする請求項3記載のSnめっきまたはSn合金めっきである(第六発明)。   Claim 6 is Sn plating or Sn alloy plating according to claim 3, wherein the Sn alloy phase formed at the grain boundaries of Sn plating or Sn alloy plating is Sn and Cu. Six inventions).

請求項7は、CuのX線源を用いたX線回折法のθ−2θ法により、2θを30°〜80°まで測定することによって得られるX線回折スペクトルのSnのピークのうち、(220)面のピーク強度I(220)と(321)面のピーク強度I(321)が式(1)を満足することを特徴とする請求項1ないし6の何れかに記載のSnめっきまたはSn合金めっきであり、
[I(220/I0220)+I(321/I0321)]/[ΣI(hkl)/I0(hkl)]≧ 0.5 ・・・(1)
ここで、I0(hkl)は、JCPDSカード記載の(hkl)面のピーク強度、I(hkl)は測定されたSnの(hkl)面のピーク高さを示す(第七発明)。
According to a seventh aspect of the present invention, among the Sn peaks of an X-ray diffraction spectrum obtained by measuring 2θ from 30 ° to 80 ° by a θ-2θ method of an X-ray diffraction method using a Cu X-ray source ( 220) The peak intensity I (220) of the plane and the peak intensity I (321) of the (321) plane satisfy the formula (1), or Sn plating or Sn according to any one of claims 1 to 6 Alloy plating,
[I (220 / I 0 220) + I (321 / I 0 321)] / [ΣI (hkl) / I 0 (hkl)] ≧ 0.5 (1)
Here, I 0 (hkl) represents the peak intensity of the (hkl) plane described in the JCPDS card, and I (hkl) represents the peak height of the measured Sn (hkl) plane (seventh invention).

請求項8は、請求項1〜7のいずれかに記載のSnめっきまたはSn合金めっきが施されてなる銅または銅合金めっき製品である。(第八発明)。   Claim 8 is a copper or copper alloy plated product to which the Sn plating or Sn alloy plating according to any one of claims 1 to 7 is applied. (Eighth invention).

請求項9は、CuまたはCu合金基板上にSnめっきまたはSn合金めっきを行う工程と、その後、100℃〜180℃の温度で熱処理を行う工程を行うことにより、SnめっきまたはSn合金めっきの結晶粒界にSn-Cu合金相を形成する方法である(第九発明)。   Claim 9 is a crystal of Sn plating or Sn alloy plating by performing a step of performing Sn plating or Sn alloy plating on a Cu or Cu alloy substrate and then a step of performing a heat treatment at a temperature of 100 ° C. to 180 ° C. This is a method of forming a Sn—Cu alloy phase at the grain boundary (ninth invention).

請求項10は、基板上に第一層としてFe、Co、Ni、Ni-P、Cuめっき層の何れか一層をめっきする工程と、その上にSnめっきまたはSn合金めっきを行う工程と、その後、100℃〜180℃の温度で熱処理を行う工程を行うことにより、SnめっきまたはSn合金めっきの結晶粒界に第一層のめっき層に含まれる金属元素とSnの合金相を形成する方法である(第十発明)。   Claim 10 is a step of plating any one of Fe, Co, Ni, Ni-P, Cu plating layers as a first layer on a substrate, a step of performing Sn plating or Sn alloy plating thereon, and thereafter The method of forming an alloy phase of Sn and the metal element contained in the first plating layer at the grain boundary of Sn plating or Sn alloy plating by performing a heat treatment step at a temperature of 100 ° C. to 180 ° C. Yes (tenth invention).

本発明によれば、曲げ加工等の外部応力が加わった場合においてもウイスカーが発生することの無い優れたSnめっきまたはSn合金メッキ構造及びその製造方法を提供する可能となり、この種技術分野にすこぶる有益な貢献を果たすものである。   According to the present invention, it is possible to provide an excellent Sn plating or Sn alloy plating structure that does not generate whiskers even when an external stress such as bending is applied, and a method for manufacturing the same. It makes a useful contribution.

Snめっきからのウイスカー発生のメカニズムは完全には把握されていないが、先にも述べたとおり、めっきに作用する圧縮応力がSn原子の拡散を誘起してウイスカーが発生すると考えられている。   Although the mechanism of whisker generation from Sn plating is not completely understood, it is considered that whisker is generated by compressive stress acting on plating inducing diffusion of Sn atoms as described above.

従来の技術では、圧縮応力の発生を防止することに注力がなされていたが、めっきに外部から曲げ加工などの機械加工が加わると圧縮応力は避けることができず、ウイスカー発生につながってしまう。   In the prior art, an effort has been made to prevent the generation of compressive stress. However, if mechanical processing such as bending is applied to the plating from the outside, the compressive stress cannot be avoided, leading to the generation of whiskers.

一方、本発明者らはSn原子の拡散に着目し、鋭意研究を行なった結果、SnまたはSn合金メッキの結晶粒界にSn原子の拡散速度が遅くなる合金相を形成することによりウイスカーの発生を抑制することを見出した。   On the other hand, the present inventors paid attention to the diffusion of Sn atoms, and as a result of intensive research, the formation of whiskers by forming an alloy phase in which the diffusion rate of Sn atoms becomes slow at the grain boundaries of Sn or Sn alloy plating Found to suppress.

すなわち、Sn原子の拡散は、Snの結晶粒内を拡散する体拡散よりはSnの結晶粒界を拡散する粒界拡散が支配的であり、SnまたはSn合金の結晶粒界がウイスカー発生に重要な役割を果たすと考えられる。従って、SnまたはSn合金の結晶粒界にSn原子の拡散を阻害する合金相を形成すれば、ウイスカーの発生を抑制できるという考えに至ったのである。   That is, the diffusion of Sn atoms is dominated by grain boundary diffusion that diffuses Sn grain boundaries rather than body diffusion that diffuses within Sn crystal grains, and the grain boundaries of Sn or Sn alloy are important for whisker generation It is thought that it plays a role. Therefore, the idea has been reached that the formation of whiskers can be suppressed by forming an alloy phase that inhibits the diffusion of Sn atoms at the grain boundaries of Sn or Sn alloy.

このような合金相としては、SnとCu、SnとFe、SnとNi、SnとCo等の組み合わせを挙げることができる。すなわち、具体的には、Cu6Sn5、FeSn2、FeSn、Fe3Sn2、Ni3Sn4、Ni3Sn2、CoSn2、CoSn等である。   Examples of such alloy phases include combinations of Sn and Cu, Sn and Fe, Sn and Ni, Sn and Co, and the like. Specifically, Cu6Sn5, FeSn2, FeSn, Fe3Sn2, Ni3Sn4, Ni3Sn2, CoSn2, CoSn, and the like.

Sn原子の拡散を十分に阻害し、ウイスカー発生を抑えるためには、結晶粒界に形成されるSn合金相の結晶粒界の長さにしめる割合が50%以上であることが好ましい。   In order to sufficiently inhibit the diffusion of Sn atoms and suppress the generation of whiskers, it is preferable that the ratio of the grain boundary length of the Sn alloy phase formed at the grain boundaries is 50% or more.

当然ながら、これらのSn合金相の厚みは、厚い方が好ましい。Snの合金相中のSnの拡散係数は小さいが、厚みが薄いと合金相をSnの原子が突き抜けてしまい、拡散のバリアとしての効果が低くなるからである。従ってSn合金相の厚みは、好ましくは0.05μm以上、より好ましくは0.1μm以上、最も好ましくは0.2μm以上とすべきある。また、Snの合金相はなるべく連続していることが好ましい。断続して、存在する場合は、合金相が切れた部分からSnが粒界拡散していくからである。従って、基板表面からめっきの表面までつながるSnめっきまたはSn合金めっきの一本の結晶粒界全体に連続的に合金相が形成されていることが最も好ましい。さらに、ウイスカーを形成するSn原子はウイスカーから数十μm以上離れたSn原子も関与していると考えられるため、粒界全部に合金相が形成されていなくても、例えば、めっきの厚み方向と垂直な方向を横切る基板表面からめっき表面に達するめっきの結晶粒界のうち、例えばめっきの厚み方向と垂直な方向の30μmの間に1本の割合で基板表面からめっきの表面まで結晶粒界全体に連続的に合金層が形成されている結晶粒界があれば良い。   Of course, it is preferable that the thickness of these Sn alloy phases is thick. This is because the Sn diffusion coefficient in the Sn alloy phase is small, but if the thickness is small, Sn atoms penetrate through the alloy phase and the effect as a diffusion barrier is reduced. Therefore, the thickness of the Sn alloy phase should preferably be 0.05 μm or more, more preferably 0.1 μm or more, and most preferably 0.2 μm or more. Further, the Sn alloy phase is preferably as continuous as possible. This is because, when intermittently present, Sn diffuses from the part where the alloy phase is broken. Therefore, it is most preferable that an alloy phase is continuously formed over the entire crystal grain boundary of Sn plating or Sn alloy plating connected from the substrate surface to the plating surface. Furthermore, it is considered that Sn atoms forming whiskers are also involved in Sn atoms several tens of μm or more away from the whiskers, so even if an alloy phase is not formed at all grain boundaries, for example, the thickness direction of plating and Of the grain boundaries of the plating that reach the plating surface from the substrate surface crossing the vertical direction, for example, the entire grain boundary from the substrate surface to the plating surface at a ratio of 30 μm in the direction perpendicular to the thickness direction of the plating There may be a crystal grain boundary in which an alloy layer is continuously formed.

このうち、Sn合金めっきがSn-Cu合金めっきの場合や、めっきする基材がCuまたはCu合金の場合は、Sn―Cu合金中のCuや基材中のCuをSnまたはSn合金めっきの結晶粒界に拡散させることによりSnとCuの合金相を結晶粒界に形成させることができる。この場合、CuまたはCu合金基材上にCu下地めっきを行っても良い。特に基材が42アロイ(Fe―Ni合金)のような銅を含まない場合には、Cu下地めっきを行うことが有効である。   Among these, when Sn alloy plating is Sn-Cu alloy plating, or when the substrate to be plated is Cu or Cu alloy, Cu in Sn-Cu alloy or Cu in substrate is Sn or Sn alloy plating crystal By diffusing into the grain boundary, an alloy phase of Sn and Cu can be formed at the grain boundary. In this case, Cu base plating may be performed on the Cu or Cu alloy base material. In particular, when the base material does not contain copper such as 42 alloy (Fe—Ni alloy), it is effective to perform Cu base plating.

Sn-Cu合金めっきの場合は、CuはSnに固溶せずSn中のCuの拡散係数が大きいため、CuはSn-Cu合金めっきの結晶粒界に析出しようとする。このため、Sn-Cu合金めっきの結晶粒界にSn-Cu合金相が析出するが、結晶粒界に合金相を析出させるためには結晶粒界の構造が影響する。すなわち、結晶粒界のエネルギーが低い場合にはSn-Cu合金の十分な析出が行われず、ウイスカー発生を抑制することができない。また、基板にCuが含まれない場合には、Cuの供給がSn-Cu合金めっき中のCuしかないため、Sn-Cu中のCu組成が低くなれば十分な合金相を結晶粒界に析出することができない。従って、Sn―Cu合金めっき中のCu組成としては、1wt%以上である必要がある。好ましくは2wt%以上であり、最も好ましくは3wt%以上である。一方、Cuが多すぎると、Sn−Cu合金めっきの結晶粒内でCu-Su合金相の析出が起こり、結晶粒界にCuが析出しなくなり、粒界にCu−Sn合金相を形成しなくなるため、10wt%以下であることが好ましい。より好ましくは9wt%、最も好ましくは8wt%以下である。   In the case of Sn—Cu alloy plating, Cu does not dissolve in Sn and the diffusion coefficient of Cu in Sn is large, so Cu tends to precipitate at the grain boundaries of Sn—Cu alloy plating. For this reason, the Sn—Cu alloy phase is precipitated at the crystal grain boundary of the Sn—Cu alloy plating, but the structure of the crystal grain boundary influences the precipitation of the alloy phase at the crystal grain boundary. That is, when the energy of the crystal grain boundary is low, the Sn—Cu alloy is not sufficiently precipitated, and whisker generation cannot be suppressed. In addition, when the substrate does not contain Cu, the supply of Cu is only Cu in Sn-Cu alloy plating, so if the Cu composition in Sn-Cu is low, a sufficient alloy phase is precipitated at the grain boundaries. Can not do it. Therefore, the Cu composition in the Sn—Cu alloy plating needs to be 1 wt% or more. Preferably it is 2 wt% or more, and most preferably 3 wt% or more. On the other hand, if there is too much Cu, Cu-Su alloy phase will precipitate in the crystal grains of Sn-Cu alloy plating, Cu will not precipitate at the grain boundaries, and Cu-Sn alloy phase will not be formed at the grain boundaries Therefore, it is preferably 10 wt% or less. More preferably, it is 9 wt%, and most preferably 8 wt% or less.

また、Cu下地めっきを行う場合は、Cuめっきの厚さを0.1μm以上にするのが好ましい。これより薄いとCuのSnめっきまたはSn合金めっき粒界への拡散が十分行われないからである。好ましくは0.2μm以上最も好ましくは0.5μm以上である。Cuの拡散は後で述べるSnまたはSn合金めっきの結晶配向性を調整することにより自発的に形成することができるが、熱処理を行うことによってさらに合金層を多く形成することができる。   Moreover, when performing Cu base plating, it is preferable that the thickness of Cu plating shall be 0.1 micrometer or more. If the thickness is smaller than this, the diffusion of Cu into the Sn plating or Sn alloy plating grain boundary is not sufficiently performed. Preferably it is 0.2 μm or more, most preferably 0.5 μm or more. Although Cu diffusion can be spontaneously formed by adjusting the crystal orientation of Sn or Sn alloy plating described later, more alloy layers can be formed by heat treatment.

熱処理を行う場合には、処理温度は100℃以上180℃以下であることが望ましい。100℃以上でないと拡散を促進する効果が得られない。また180℃以下としたのは、CuのSn結晶内を拡散する体拡散の方が優勢となり、Cuが粒界拡散する前にSnまたはSn合金めっきと基材の界面にCuとSnの合金層が形成されるため、この層がCuの粒界拡散のバリア層として働いて、Snの結晶粒界での合金相形成を阻害するからである。また、処理時間については、10分以上60分以下が好ましい。10分以下だとCuが十分拡散せず、60分以上だと、結晶粒界に析出したCu-Sn合金相が凝集を起こし、あるCu-Sn合金の結晶に集まるため、結晶粒界に析出しているCu-Sn合金の割合がかえって減少してしまうからである。   When heat treatment is performed, the treatment temperature is desirably 100 ° C. or higher and 180 ° C. or lower. If it is not higher than 100 ° C, the effect of promoting diffusion cannot be obtained. In addition, the body diffusion that diffuses within the Sn crystal of Cu becomes more prevalent, and the Cu and Sn alloy layer at the interface between the Sn or Sn alloy plating and the substrate before Cu diffuses at the grain boundary. This is because this layer acts as a barrier layer for Cu grain boundary diffusion and hinders alloy phase formation at the Sn grain boundary. Further, the treatment time is preferably 10 minutes or more and 60 minutes or less. If it is less than 10 minutes, Cu does not diffuse sufficiently, and if it is more than 60 minutes, the Cu-Sn alloy phase precipitated at the crystal grain boundaries aggregates and collects in the crystals of a certain Cu-Sn alloy. This is because the proportion of the Cu—Sn alloy that is being used decreases.

また、SnとFe、SnとNi、SnとCoの合金相を形成したい場合には、基材上にFe、Ni、Ni-P、Coの下地めっきを行い、熱処理をおこなうか、または、Sn-Niめっき、Sn-Coめっき、Sn-Feめっきを行い熱処理を行うことにより、SnまたはSn合金めっきの結晶粒界に合金相を形成することができる。当然、これらの下地めっきと合金めっきを組み合わせて熱処理を行っても良い。熱処理温度は100℃以上180℃以下であることが好ましい。100℃以下だと拡散が十分起こらず、180℃を超えると、Cuの場合と同様に界面に合金元素の拡散バリア層が形成されるため、かえって粒界に合金層が形成されない。   In addition, if you want to form an alloy phase of Sn and Fe, Sn and Ni, Sn and Co, perform an underplating of Fe, Ni, Ni-P, Co on the substrate and perform heat treatment, or Sn An alloy phase can be formed at the grain boundary of Sn or Sn alloy plating by performing heat treatment after performing -Ni plating, Sn-Co plating, and Sn-Fe plating. Naturally, heat treatment may be performed by combining these base plating and alloy plating. The heat treatment temperature is preferably 100 ° C. or higher and 180 ° C. or lower. If the temperature is 100 ° C. or lower, diffusion does not occur sufficiently. If the temperature exceeds 180 ° C., an alloy element diffusion barrier layer is formed at the interface as in the case of Cu.

これらの合金相は、Focused ion beam(FIB)装置により、Ga+イオンビームをSnまたはSn合金めっきの表面から膜厚方向に当ててめっき層を削り取ってめっきの断面を形成するときにめっきの断面から放出される二次電子像を撮ることにより、その有無を調べることができる。すなわち、Ga+を照射すると、めっき断面に現れる結晶粒の結晶の方位や結晶構造の違いにより放出される二次電子の量が異なるため、結晶粒や結晶粒界に存在する合金相毎にコントラストが異なる像が得られることから、合金相の存在の有無を確認することができる。   These alloy phases are removed from the plating cross-section when the Ga + ion beam is applied to the film thickness direction from the Sn or Sn alloy plating surface by the Focused ion beam (FIB) device to form the plating cross-section. The presence or absence of the secondary electron image can be examined by taking a secondary electron image. In other words, when Ga + is irradiated, the amount of secondary electrons emitted differs depending on the crystal orientation and crystal structure of the crystal grains appearing on the plating cross section, so that there is a contrast for each alloy phase present in the crystal grains and crystal grain boundaries. Since different images are obtained, the presence or absence of the alloy phase can be confirmed.

具体的には、SnまたはSnめっきの表面を保護するために、それらの表面にカーボン蒸着膜を厚さ約2μm成膜し、その後、FIB装置のチャンハ゛ー内にサンプルを設置して真空引きした後、加速電圧30kV、ビーム径320nm、ビーム電流約3700pAのガリウムイオンをサンプル表面(蒸着面)に垂直に照射してサンプルの膜厚方向にSnめっきまたはSn合金めっき層を切断してめっきの断面を出す。さらに、切断面に平行に加速電圧30kV、ビーム径92nm、ビーム電流約1400pAのガリウムイオンを照射することにより、断面の仕上げ加工を行った後に、加速電圧30kV、ビーム径7nm、ビーム電流約2pAのガリウムイオンを断面に照射するときに断面から放出される二次電子による二次電子像(SIM像)を撮ることによって粒界に合金相が形成されているかどうか見ることができる。なお、SIM像は、サンプル表面の法線に対してサンプルを60°傾けて撮った。   Specifically, in order to protect the surface of Sn or Sn plating, a carbon vapor deposition film was formed on the surface about 2 μm thick, and then the sample was placed in the chamber of the FIB apparatus and evacuated. Then, gallium ions with an acceleration voltage of 30 kV, a beam diameter of 320 nm, and a beam current of about 3700 pA are irradiated perpendicularly to the sample surface (deposition surface), and the Sn plating or Sn alloy plating layer is cut in the sample film thickness direction to obtain a cross section of the plating. put out. Furthermore, after finishing the cross section by irradiating gallium ions with an acceleration voltage of 30 kV, a beam diameter of 92 nm, and a beam current of about 1400 pA in parallel to the cut surface, an acceleration voltage of 30 kV, a beam diameter of 7 nm, and a beam current of about 2 pA Whether or not an alloy phase is formed at the grain boundary can be seen by taking a secondary electron image (SIM image) of secondary electrons emitted from the cross section when the cross section is irradiated with gallium ions. The SIM image was taken with the sample tilted 60 ° with respect to the normal of the sample surface.

このようにして合金相の有無を観察した際に、例えば、30μm幅の領域の断面に確認できる結晶粒界の長さの合計に占める合金相の形成長さの割合が50%以上あればウイスカー発生抑制効果がえられる。この合金相の形成長さの割合は好ましくは、65%以上、最も好ましくは80%以上である。   When the presence or absence of the alloy phase is observed in this way, for example, if the proportion of the formation length of the alloy phase in the total length of the grain boundary that can be confirmed in the cross section of the 30 μm width region is 50% or more, the whisker Generation suppression effect is obtained. The proportion of the formation length of the alloy phase is preferably 65% or more, and most preferably 80% or more.

ここで、粒界の長さと粒界に析出した合金相の長さ及び合金相の比率は具体的には次のようにして求めることができる。   Here, the length of the grain boundary, the length of the alloy phase precipitated at the grain boundary, and the ratio of the alloy phase can be specifically obtained as follows.

図1にFIBで形成したSnめっき銅板の断面写真の一例を示す。同図1の写真に示すようにSnめっきの断面にはコントラストの差によってSnの結晶粒が見えており、さらに、結晶粒界に白く見える合金相も観察されることがわかる。結晶粒界の長さと合金相の長さを画像解析により求めるために、まず、図1のSnめっき層の部分を図2のように切り取り、図2の写真の結晶粒界に生成した白く見える合金相の上に線を引き、明るさ、コントラスト、ガンマ値を調整することにより、写真の像を消して合金相上に引いた線のみが像に残るようにする。これを図3に示す。同様にして、図2の写真の結晶粒界上に合金相上に引いたのと同じ太さの線を引き写真の像を消すことにより引いた線のみが残るようにする。これを図4に示す。これらの図を画像解析により、線のピクセル数を求め、図3のピクセル数を図4のピクセル数で割ることによって結晶粒界長さに占める合金相の長さの割合を求める。図3の場合は、ピクセル数が2907、図4はピクセル数3922であったので、このSnめっき銅板の例における合金相の占める割合は74%として求められることになる。   FIG. 1 shows an example of a cross-sectional photograph of a Sn-plated copper plate formed of FIB. As shown in the photograph of FIG. 1, it can be seen that Sn crystal grains are visible in the cross section of Sn plating due to the difference in contrast, and an alloy phase that appears white at the crystal grain boundary is also observed. In order to obtain the length of the crystal grain boundary and the length of the alloy phase by image analysis, first, the Sn plating layer portion of FIG. 1 is cut out as shown in FIG. By drawing a line on the alloy phase and adjusting the brightness, contrast, and gamma value, the photographic image is erased so that only the line drawn on the alloy phase remains in the image. This is shown in FIG. Similarly, a line having the same thickness as that drawn on the alloy phase is drawn on the crystal grain boundary of the photograph of FIG. 2 so that only the drawn line remains by erasing the image of the photograph. This is shown in FIG. These figures are image-analyzed to determine the number of pixels of the line, and the ratio of the length of the alloy phase to the grain boundary length is determined by dividing the number of pixels in FIG. 3 by the number of pixels in FIG. In the case of FIG. 3, the number of pixels is 2907, and FIG. 4 has the number of pixels 3922. Therefore, the ratio of the alloy phase in the example of the Sn-plated copper plate is calculated as 74%.

なお、基板が銅板や銅の下地めっきがある場合には、Snめっきと銅板、Snめっきと銅下地めっきとの間にSnとCuの合金相であるCu6Sn5が形成する。この合金相とSnめっきの粒界は基板とSnめっきの界面と同等と考え、この境界には線は引かないこととする。   When the substrate has a copper plate or a copper base plating, Sn plating and a copper plate, and Cu6Sn5 that is an alloy phase of Sn and Cu are formed between the Sn plating and the copper base plating. The grain boundary between this alloy phase and Sn plating is considered to be equivalent to the interface between the substrate and Sn plating, and no line is drawn at this boundary.

また、このような結晶粒界に合金相を形成するには、まず、SnまたはSn合金めっきが(220)面と(321)面に配向していることが望ましい。すなわち、CuのX線源を用いたθ―2θ法のX線回折で、2θの範囲が20°から80°まで測定したときのSnまたはSn合金めっきの結晶面のピークのうち、(220)面と(321)面のピーク強度が(1)式を満たすことが望ましい。Snの結晶面は20°から80°では11本のピークが現れる。すなわち、(200)、(101)、(220)、(211)、(301)、(112)、(400)、(321)、(420)、(411)、(312)の面である。このうち、(200)面と(400)面は同じ面なので、(400)面は省くと基本的には10個の異なる面のピークが現れる。ここで、結晶面を(hkl)で表し、JCPDS回折データカードに記載されているSnの(hkl)面のピーク強度をI0(hkl)、測定によって得られた(hkl)面のピーク強度(ピーク高さ)をI(hkl)とすると、I(hkl)/I0(hkl)/ΣI(hkl)/I0(hkl)は、(hkl)面の配向性を表す。ここで、Σは、20°から80°に現れる(400)を除く10個の結晶面についての和を表す。I(hkl)/I0(hkl)/ΣI(hkl)/I0(hkl)は、測定されたピーク強度がJCPDS回折データカードと全く同じであれば、すなわち、配向性が全く無いならば、10本のピークについて考えているので、0.1になる。従って、ある(hkl)面のピークが強く、その面に配向していれば、0.1を超え、その面のピーク強度が弱いならば、0.1より小さくなる。つまり、(1)式は、(220)面と(321)面の配向の度合いを表しており、この値が0.5以上のときにSnまたはSnめっきの結晶粒界に合金相が形成されやすくなるのである。好ましくは、0.65以上、最も好ましくは0.8以上である。   In order to form an alloy phase at such a crystal grain boundary, it is desirable that Sn or Sn alloy plating is first oriented in the (220) plane and the (321) plane. That is, among the peaks of the crystal plane of Sn or Sn alloy plating when the range of 2θ is measured from 20 ° to 80 ° by X-ray diffraction of the θ-2θ method using a Cu X-ray source, (220) It is desirable that the peak intensity of the plane and the (321) plane satisfy the formula (1). Eleven peaks appear on the crystal plane of Sn from 20 ° to 80 °. That is, the surfaces are (200), (101), (220), (211), (301), (112), (400), (321), (420), (411), and (312). Of these, since the (200) plane and the (400) plane are the same plane, if the (400) plane is omitted, basically 10 different plane peaks appear. Here, the crystal plane is represented by (hkl), the peak intensity of Sn (hkl) plane described in the JCPDS diffraction data card is I0 (hkl), and the peak intensity (peak) of the (hkl) plane obtained by measurement When the height is I (hkl), I (hkl) / I0 (hkl) / ΣI (hkl) / I0 (hkl) represents the orientation of the (hkl) plane. Here, Σ represents the sum of 10 crystal planes excluding (400) appearing from 20 ° to 80 °. I (hkl) / I0 (hkl) / ΣI (hkl) / I0 (hkl) is 10 if the measured peak intensity is exactly the same as the JCPDS diffraction data card, that is, no orientation. Since we are thinking about the peak of, it becomes 0.1. Therefore, if the peak of a certain (hkl) plane is strong and oriented in that plane, it will exceed 0.1, and if the peak intensity of that plane is weak, it will be less than 0.1. In other words, equation (1) represents the degree of orientation of the (220) plane and the (321) plane. When this value is 0.5 or more, an alloy phase is formed at the grain boundary of Sn or Sn plating. It becomes easier. Preferably, it is 0.65 or more, and most preferably 0.8 or more.

本発明の実施例および比較例について、以下説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
(実施例1)
銅板をアルカノールスルホン酸を用いたSnめっき浴に浸せきし、電流密度15A/dm2、めっき温度30℃で厚さ10μmのSnめっきを作製した。また、銅板を硫酸Snめっき浴に浸せきし、電流密度2A/dm2、めっき温度15℃で厚さ10μmのSnめっきを作製した。
Examples of the present invention and comparative examples will be described below. The present invention is not limited to this embodiment, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention, all of which are within the technical scope of the present invention. include.
(Example 1)
The copper plate was immersed in an Sn plating bath using alkanol sulfonic acid to produce a 10 μm thick Sn plating at a current density of 15 A / dm 2 and a plating temperature of 30 ° C. In addition, the copper plate was immersed in a sulfuric acid Sn plating bath to produce a 10 μm thick Sn plating at a current density of 2 A / dm 2 and a plating temperature of 15 ° C.

これらのSnめっきをFIB(SIIナノテクノロジー株式会社製:SMI9200高性能イオン顕微鏡)を用いて、めっき断面をGa+イオン照射により作製し、断面のSIM像を撮り、Snめっきの粒界を観察した。SIM像は、倍率4500倍でSnめっき層の幅30μmにわたって撮影した。このSIM像から観察される結晶粒界の長さの合計を求め、次にこのうち占める合金相が形成されている結晶粒界の長さの合計を求め、結晶粒界全体の長さの合計との比を求めた。この断面観察は任意の3カ所について行い、それぞれの箇所で求めた結晶粒界全体の長さの合計との比の平均値を算出してそれを本めっきの結晶粒界全体の長さの合計との比とした。また、合金相の結晶をFIBを使って厚さ約100nmの薄片に加工し、透過電子顕微鏡(TEM)を用いて電子線回折を行った結果得られる回折像を解析したところ、Cu6Sn5であった。このことから、Cu基板からCuがSnめっきの結晶粒界に拡散して合金相を形成したことがわかる。   These Sn platings were prepared by using FIB (SII Nano Technology Co., Ltd .: SMI9200 high-performance ion microscope) to produce plated sections by Ga + ion irradiation, SIM images of the sections were taken, and Sn plating grain boundaries were observed. The SIM image was taken over a width of 30 μm of the Sn plating layer at a magnification of 4500 times. Calculate the total length of the grain boundaries observed from this SIM image, then calculate the total length of the grain boundaries where the alloy phase occupies the total, and calculate the total length of the entire grain boundaries. The ratio was calculated. This cross-sectional observation was performed at three arbitrary locations, and the average value of the ratio with the total length of the entire grain boundary obtained at each location was calculated, and this was calculated as the total length of the entire grain boundary of the main plating. And the ratio. In addition, the alloy phase crystals were processed into thin pieces with a thickness of about 100 nm using FIB, and the diffraction image obtained as a result of electron beam diffraction using a transmission electron microscope (TEM) was analyzed. As a result, Cu6Sn5 was obtained. . This shows that Cu diffused from the Cu substrate to the grain boundary of Sn plating to form an alloy phase.

アルカノールスルホン酸Snめっき浴から作製したSnめっきの合金相の結晶粒界に占める割合は90%であった。一方、硫酸Snめっき浴から作製したSnめっきの合金相の結晶粒界に占める割合は、37%であった。   The ratio of the alloy phase of Sn plating prepared from the alkanol sulfonic acid Sn plating bath to the crystal grain boundary was 90%. On the other hand, the ratio of the Sn plating alloy phase produced from the sulfuric acid Sn plating bath to the crystal grain boundary was 37%.

また、SnめっきをCuのX線源を用いてθ―2θ法で20°から80°までX線回折を行い、Snのピークの高さを測定し、(1)式の計算を行った。このとき、アルカノールスルホン酸Snめっき浴から成膜したSnめっきは、(1)式の値が0.99であったのに対し、硫酸Sn浴から成膜したSnめっきは、(1)式の値が0.1であった。   Further, Sn plating was performed by X-ray diffraction from 20 ° to 80 ° by a θ-2θ method using a Cu X-ray source, the height of the Sn peak was measured, and the calculation of equation (1) was performed. At this time, the Sn plating formed from the alkanol sulfonic acid Sn plating bath had a value of 0.99 in the formula (1), whereas the Sn plating formed from the sulfuric acid Sn bath had the formula (1). The value was 0.1.

これらのSnめっきを、温度85℃、相対湿度85RH%の恒温恒湿試験装置内に入れて500時間保持した。その後、Snめっきの表面をSEM(走査型電子顕微鏡)で、倍率100倍で観察し、めっき表面の任意の5カ所の0.5mm×1mmの領域に発生したウイスカーの本数を測定し、平均値を求めた。その結果、結晶粒界の合金相が多く生成した有機酸Snめっき浴から作製したSnめっきからはウイスカーは全く認められなかった。一方、合金相があまり形成しなかった硫酸Snめっき浴から作製したSnめっき表面からは10本のウイスカーが認められた。   These Sn platings were placed in a constant temperature and humidity test apparatus having a temperature of 85 ° C. and a relative humidity of 85 RH%, and held for 500 hours. Thereafter, the surface of the Sn plating was observed with a scanning electron microscope (SEM) at a magnification of 100 times, and the number of whiskers generated in an area of 0.5 mm × 1 mm at any five locations on the plating surface was measured, and the average value Asked. As a result, no whiskers were observed in the Sn plating produced from the organic acid Sn plating bath in which many alloy phases at the grain boundaries were formed. On the other hand, ten whiskers were observed on the Sn plating surface prepared from the sulfuric acid Sn plating bath in which the alloy phase was not formed so much.

以上の結果から、Snめっきの結晶が(220)面または(321)面に配向しているときにSnめっきの結晶粒界にSnとCuの合金相が多く形成され、ウイスカー発生が効果的に抑制されることがわかる。
(実施例2)
アルカノールスルホン酸Snのめっき浴にアルカノールスルホン酸銅を添加し、その添加量を変えることにより、42アロイ基板上にCu組成が異なるSn-Cu合金めっきを厚さ10μm成膜した。このとき2.5A/dm2と5A/dm2の電流密度でめっきした。
From the above results, when the Sn plating crystal is oriented in the (220) plane or the (321) plane, many Sn and Cu alloy phases are formed at the grain boundary of the Sn plating, and the generation of whiskers is effective. It turns out that it is suppressed.
(Example 2)
By adding alkanol sulfonic acid copper to the plating bath of alkanol sulfonic acid Sn and changing the addition amount, Sn-Cu alloy plating having a different Cu composition was formed on a 42 alloy substrate to a thickness of 10 μm. At this time, plating was performed at current densities of 2.5 A / dm 2 and 5 A / dm 2.

めっき後にEDX(エネルギー分散型蛍光X線分析装置)によりSn―Cu合金めっき中の銅の組成を分析した。また、実施例1と同様にSn-Cuめっき断面をFIBにより観察し、結晶粒界に占める合金相の割合を測定した。さらに、Sn−Cu合金めっきの配向性についてもX線回折により(1)式を用いて求めた。   After plating, the composition of copper in Sn-Cu alloy plating was analyzed by EDX (energy dispersive X-ray fluorescence spectrometer). Further, similarly to Example 1, the Sn—Cu plating cross section was observed by FIB, and the ratio of the alloy phase in the crystal grain boundary was measured. Furthermore, the orientation of the Sn—Cu alloy plating was also determined by X-ray diffraction using the formula (1).

さらに、実施例1と同様に85℃、85RH%の恒温恒湿試験機に500時間放置し、ウイスカ発生本数をSEMで観察した(観察領域は0.5mm×1mm)。   Further, as in Example 1, it was left in a constant temperature and humidity tester at 85 ° C. and 85 RH% for 500 hours, and the number of whiskers generated was observed by SEM (observation area was 0.5 mm × 1 mm).

結果を表1に示す。No.3〜6の本発明の好ましい範囲にあるSn-Cu合金めっきは、ウイスカーの発生は認められなかった。No.1,2の、Cu組成が1wt%と2wt%のものについてはコブ状の突起が数個発生した。No.7はCu組成は十分だが、Sn-Cuめっきの(220)と(321)に配向していないため結晶粒界にCuとSnの合金相が十分に形成されずに多少のウイスカーが発生した。またNo.8は、配向はしているが、Cuの量が少ないため、結晶粒界の合金相形成が十分ではなく、多少のウイスカーが発生した。   The results are shown in Table 1. No generation of whiskers was observed in the Sn—Cu alloy plating No. 3 to 6 in the preferred range of the present invention. In No. 1 and 2 with Cu compositions of 1 wt% and 2 wt%, several bump-shaped protrusions were generated. No. 7 has a sufficient Cu composition, but it is not oriented to (220) and (321) of Sn-Cu plating, so the alloy phase of Cu and Sn is not sufficiently formed at the grain boundary and some whiskers are generated did. In addition, No. 8 was oriented, but because the amount of Cu was small, the formation of an alloy phase at the crystal grain boundary was not sufficient, and some whiskers were generated.

Figure 2006249460
Figure 2006249460

(実施例3)
2cm×10cm×厚さ0.3mmの42アロイの表面に硫酸銅めっき浴中でCuめっきを成膜したあとに、アルカンスルホン酸Snめっき液中で電流密度3A/dm2でSnめっきを8μmの厚さになるように成膜して、42アロイ、Cuめっき、Snめっきの3層めっきを作製した。Cuめっきの膜厚は、0μm、0.05μm、0.1μm、0.25μm、0.6μmの4種類とした。
Example 3
After depositing Cu plating in a copper sulfate plating bath on the surface of a 42 alloy of 2cm x 10cm x 0.3mm thickness, the Sn plating was 8μm thick at a current density of 3A / dm2 in an alkanesulfonic acid Sn plating solution. The film was formed in such a manner that a three-layer plating of 42 alloy, Cu plating, and Sn plating was produced. The thickness of the Cu plating was 4 types: 0 μm, 0.05 μm, 0.1 μm, 0.25 μm, and 0.6 μm.

また、同様に、42アロイの表面に硫酸銅めっき浴中でCuめっきを成膜したあとに、アルカンスルホン酸Snめっき浴にアルカンスルホン酸銅を添加した浴中で電流密度3A/dm2でめっき膜厚が8μmとなるようにめっきをおこなうことにより、42アロイ、Cuめっき、Sn-Cu合金めっきの3層めっきを作製した。Cuめっきの膜厚は、0.25μmとした。   Similarly, after depositing Cu plating on the surface of 42 alloy in a copper sulfate plating bath, plating film with a current density of 3A / dm2 in a bath in which copper alkanesulfonate was added to an alkanesulfonic acid Sn plating bath By plating to a thickness of 8 μm, a three-layer plating of 42 alloy, Cu plating, and Sn—Cu alloy plating was produced. The film thickness of the Cu plating was 0.25 μm.

実施例1と同様にこれらのめっき材の断面をFIBで作製して断面観察することにより、粒界に生成したSn-Cuの合金相の割合を求めた。さらに、X線回折により、めっきの配向性も調査した。   Similar to Example 1, the cross sections of these plating materials were prepared by FIB and the cross sections were observed, whereby the ratio of the Sn—Cu alloy phase generated at the grain boundaries was determined. Furthermore, the orientation of the plating was also investigated by X-ray diffraction.

これらのめっき材を90℃のL字型に曲げて、実施例1と同様に85℃、85RH%、500時間の条件で恒温恒湿試験を行った。その後、L字型に曲げた内側の1mm×0.5mmの領域をSEM(倍率100倍)で観察した。   These plating materials were bent into an L shape at 90 ° C., and a constant temperature and humidity test was conducted in the same manner as in Example 1 under the conditions of 85 ° C., 85 RH%, and 500 hours. Thereafter, an inner 1 mm × 0.5 mm region bent into an L shape was observed with SEM (magnification 100 times).

結果を表2に示す。Cuめっき層が無いものは、Cuの供給が無いために、多くのウイスカー発生が認められた。Cuめっき層の厚さが0.05μmのものは、Cuの供給が不十分であるために粒界のSn-Cu合金相形成が十分でなく、僅かにウイスカーが発生した。Cuめっき厚さが0.1μm以上のものは、0.1〜0.25ではノジュールが発生しているが、ウイスカーの発生は認められなかった。   The results are shown in Table 2. In the case where there was no Cu plating layer, since there was no supply of Cu, many whiskers were observed. When the thickness of the Cu plating layer was 0.05 μm, the supply of Cu was insufficient, so the formation of Sn—Cu alloy phase at the grain boundary was not sufficient, and whiskers were slightly generated. When the Cu plating thickness was 0.1 μm or more, nodules were generated in the range of 0.1 to 0.25, but no whiskers were observed.

Figure 2006249460
Figure 2006249460

(実施例4)
銅板上にFeめっき、Coめっき、Ni-Pめっきを厚さ0.2μmめっきしたあとに、光沢剤を含む硫酸Snめっき浴中で、電流密度2A/dm2で厚さ4μmのSnめっきを作製した。
Example 4
After copper plating, Fe plating, Co plating, and Ni-P plating were 0.2μm thick, Sn plating with a current density of 2A / dm2 and a thickness of 4μm was prepared in a Sn plating bath containing brightener. .

次に、これらのめっき材を温度120℃の熱処理炉に入れて24時間の熱処理を行った。   Next, these plated materials were put in a heat treatment furnace at a temperature of 120 ° C. and subjected to heat treatment for 24 hours.

そして、実施例1と同様にこれらのめっき材の断面をFIBで作製して断面観察を行うことにより、粒界に占める合金相の割合を求めた。また、X線回折を行ったところ、めっきは全て(220)と(321)面に配向しており、(1)式で計算した値は0.8〜0.88の間であった。   Then, in the same manner as in Example 1, cross sections of these plated materials were prepared by FIB and the cross section was observed, whereby the ratio of the alloy phase in the grain boundary was determined. Further, when X-ray diffraction was performed, the plating was all oriented in the (220) and (321) planes, and the value calculated by the equation (1) was between 0.8 and 0.88.

これらのめっき材を実施例3と同様にL字型の90℃に曲げて、85℃、85RH%、500時間の恒温恒湿試験を行い、L字に曲げた内側をSEM(倍率100倍)で観察することによりウイスカーの発生度合いを観察した。   Bending these plating materials to 90 ° C L-shaped in the same manner as in Example 3, 85 ° C, 85RH%, 500 hours constant temperature and humidity test, SEM (100 times magnification) inside bent to L-shaped The degree of whisker generation was observed by observing with.

結果を表3に示す。何れのめっきもウイスカーの発生は認められなかった。   The results are shown in Table 3. No whisker was observed in any of the platings.

Figure 2006249460
Figure 2006249460

(実施例5)
メタンスルホン酸Sn浴にそれぞれ硫酸第一鉄、硫酸ニッケル、硫酸コバルトを添加しためっき浴中に42アロイの板を浸せきして、電流密度8A/dm2で、それぞれSn-Fe、Sn-Ni、Sn-Co合金めっきをめっき膜厚10μmとなるようにめっきを行った。その後、これらのめっきについてX線回折を行った。
(Example 5)
A 42 alloy plate is immersed in a plating bath in which ferrous sulfate, nickel sulfate, and cobalt sulfate are added to a methanesulfonic acid Sn bath, respectively, at a current density of 8 A / dm 2, and Sn—Fe, Sn—Ni, Sn, respectively. -Co alloy plating was performed so that the plating film thickness was 10 μm. Thereafter, X-ray diffraction was performed on these platings.

その後、130℃の熱処理炉に入れて16時間熱処理を行った。   Then, it heat-processed for 16 hours in the 130 degreeC heat processing furnace.

さらに、実施例1と同様にめっきの断面をFIBで作製し、断面観察を行った。また、これらのめっきを90°のL字型に曲げて、85℃、85RH%、500時間の恒温恒湿試験を行った後に、SEMでL字型に曲げた部分の内側の0.5mm×1mmの領域をSEMで観察(倍率100倍)してウイスカー発生状況を観察した。   Further, in the same manner as in Example 1, a cross section of plating was prepared by FIB, and the cross section was observed. In addition, these platings were bent into a 90 ° L-shape, subjected to a constant temperature and humidity test for 85 hours at 85 ° C., 85RH%, and then 0.5 mm × 1 mm inside the portion bent into an L shape by SEM. This region was observed by SEM (magnification 100 times) to observe the state of whisker generation.

結果を表4に示す。これらのめっきからは何れもウイスカーの発生は認められなかった。   The results are shown in Table 4. No whisker was observed from any of these platings.

Figure 2006249460
Figure 2006249460

(実施例6)
アルカノールスルホン酸Snめっき浴にアルカノールスルホン酸Agを加えためっき液中で銅基板上にSn-Agめっきを膜厚8μm成膜した。
(Example 6)
An Sn-Ag plating film having a thickness of 8 μm was formed on a copper substrate in a plating solution obtained by adding alkanol sulfonic acid Ag to an alkanol sulfonic acid Sn plating bath.

このめっきの表面からEDX(加速電圧:20keV、電子銃―試料間距離:15mm、倍率:100倍)で組成を分析したところ、Sn-Agめっき中のAgの含有量は2.1wt%であった。   When the composition was analyzed from the surface of this plating with EDX (acceleration voltage: 20 keV, electron gun-sample distance: 15 mm, magnification: 100 times), the Ag content in the Sn-Ag plating was 2.1 wt%. .

実施例1と同様このめっき材の断面をFIBで作製して断面観察を行うことにより、粒界に占める合金相の割合を求めたところ、90%であった。また、Sn-Ag合金めっきのX線回折を行ったところ、(1)式で計算した値は0.84であった。   As in Example 1, the ratio of the alloy phase occupying the grain boundary was determined by producing a cross section of this plated material with FIB and observing the cross section, and it was 90%. Further, when the X-ray diffraction of the Sn—Ag alloy plating was performed, the value calculated by the equation (1) was 0.84.

このめっき材を実施例3と同様にL字型の90℃に曲げて、85℃、85RH%、500時間の恒温恒湿試験を行い、L字に曲げた部分の内側をSEM(倍率100倍)で観察することによりウイスカーの発生度合いを観察したが、ウイスカーの発生は認められなかった。   This plating material was bent to 90 ° C in an L shape in the same manner as in Example 3, and subjected to a constant temperature and humidity test for 85 hours at 85 ° C, 85RH%, and the inside of the bent portion was SEM (magnification 100 times). ), The degree of whisker generation was observed, but no whisker generation was observed.

FIBで形成したSnめっき銅板の断面写真の一例を示す。An example of the cross-sectional photograph of the Sn plating copper plate formed by FIB is shown. 図1の写真より切り取ったSnめっき層の部分を示す。The part of Sn plating layer cut out from the photograph of FIG. 1 is shown. 図2の写真の結晶粒界に生成した合金相の上に線を引いて得られた図を示す。The figure obtained by drawing a line on the alloy phase produced | generated in the crystal grain boundary of the photograph of FIG. 2 is shown. 図2の写真の結晶粒界上に線を引いて得られた図を示す。The figure obtained by drawing a line on the crystal grain boundary of the photograph of FIG. 2 is shown.

Claims (10)

SnめっきまたはSn合金めっきの結晶粒界にSnの合金相が形成されていることを特徴とするSnめっきまたはSn合金めっき。   Sn plating or Sn alloy plating characterized in that an Sn alloy phase is formed at a grain boundary of Sn plating or Sn alloy plating. SnめっきまたはSn合金めっきの結晶粒界に形成されるSnの合金相の結晶粒界の長さに占める割合が50%以上であることを特徴とする請求項1記載のSnめっきまたはSn合金めっき。   2. The Sn plating or Sn alloy plating according to claim 1, wherein the proportion of the Sn alloy phase formed in the grain boundary of the Sn plating or Sn alloy plating in the length of the crystal grain boundary is 50% or more. . SnめっきまたはSn合金めっきの結晶粒界に形成されるSnの合金相が、SnとCu 、SnとFe、SnとCo、SnとNiの合金の何れかであることを特徴とする請求項1または2記載のSnめっきまたはSn合金めっき   2. The Sn alloy phase formed at the grain boundary of Sn plating or Sn alloy plating is any one of Sn and Cu, Sn and Fe, Sn and Co, and Sn and Ni. Or Sn plating or Sn alloy plating of 2 Sn合金めっきの合金元素が、Cu、Co、Fe、Niから選ばれる少なくとも1種類以上であることを特徴とする請求項1ないし3の何れかに記載のSn合金めっき。   4. The Sn alloy plating according to claim 1, wherein an alloy element of the Sn alloy plating is at least one selected from Cu, Co, Fe, and Ni. 基板上に、第一層としてCu、Fe、Co、Ni、Ni-Pめっき層の何れか1層があり、その上に第二層としてSnめっきまたはSn合金めっき層があることを特徴とする請求項1ないし4の何れかに記載のSnめっきまたはSn合金めっき。   On the substrate, there is one layer of Cu, Fe, Co, Ni, Ni-P plating layer as the first layer, and Sn plating or Sn alloy plating layer as the second layer. The Sn plating or Sn alloy plating according to any one of claims 1 to 4. SnめっきまたはSn合金めっきの結晶粒界に形成されるSnの合金相が、SnとCuの合金であることを特徴とする請求項3記載のSnめっきまたはSn合金めっき。 4. The Sn plating or Sn alloy plating according to claim 3, wherein an Sn alloy phase formed at a grain boundary of Sn plating or Sn alloy plating is an alloy of Sn and Cu. CuのX線源を用いたX線回折法のθ−2θ法により、2θを20°〜80°まで測定することによって得られるX線回折スペクトルのSnのピークのうち、(220)面のピーク強度I(220)と(321)面のピーク強度I(321)が式(1)を満足することを特徴とする請求項1ないし6の何れかに記載のSnめっきまたはSn合金めっき。
[I(220/I0220)+I(321/I0321)]/[ΣI(hkl)/I0(hkl)]≧ 0.5 ・・・(1)
ここで、I0(hkl)は、JCPDSカード記載の(hkl)面のピーク強度、I(hkl)は測定されたSnの(hkl)面のピーク高さを示す。
Among the Sn peaks of the X-ray diffraction spectrum obtained by measuring 2θ from 20 ° to 80 ° by the θ-2θ method of the X-ray diffraction method using a Cu X-ray source, the peak on the (220) plane The Sn plating or Sn alloy plating according to any one of claims 1 to 6, wherein the peak intensity I (321) of the strength I (220) and the (321) plane satisfies the formula (1).
[I (220 / I 0 220) + I (321 / I 0 321)] / [ΣI (hkl) / I 0 (hkl)] ≧ 0.5 (1)
Here, I 0 (hkl) represents the peak intensity of the (hkl) plane described in the JCPDS card, and I (hkl) represents the peak height of the measured Sn (hkl) plane.
請求項1〜7のいずれかに記載のSnめっきまたはSn合金めっきが施されてなる銅または銅合金めっき製品。   A copper or copper alloy plated product to which the Sn plating or Sn alloy plating according to any one of claims 1 to 7 is applied. CuまたはCu合金基板上にSnめっきまたはSn合金めっきを行う工程と、その後、100℃〜180℃の温度で熱処理を行う工程を行うことにより、SnめっきまたはSn合金めっきの結晶粒界にSn-Cu合金相を形成する方法。   By performing a Sn plating or Sn alloy plating process on a Cu or Cu alloy substrate and then a heat treatment process at a temperature of 100 ° C. to 180 ° C., Sn— or Sn alloy plating grain boundaries are formed. A method of forming a Cu alloy phase. 基板上に第一層としてFe、Co、Ni、Ni-P、Cuめっき層の何れか一層をめっきする工程と、その上にSnめっきまたはSn合金めっきを行う工程と、その後、100℃〜180℃の温度で熱処理を行う工程を行うことにより、SnめっきまたはSn合金めっきの結晶粒界に第一層のめっき層に含まれる金属元素とSnの合金相を形成する方法。


A step of plating any one of Fe, Co, Ni, Ni-P and Cu plating layers as a first layer on the substrate, a step of performing Sn plating or Sn alloy plating thereon, and then 100 ° C. to 180 ° C. A method of forming an alloy phase of a metal element and Sn contained in a first plating layer at a grain boundary of Sn plating or Sn alloy plating by performing a heat treatment at a temperature of ° C.


JP2005064477A 2005-03-08 2005-03-08 Sn alloy plating excellent in suppressing whisker generation Expired - Fee Related JP5059292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005064477A JP5059292B2 (en) 2005-03-08 2005-03-08 Sn alloy plating excellent in suppressing whisker generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005064477A JP5059292B2 (en) 2005-03-08 2005-03-08 Sn alloy plating excellent in suppressing whisker generation

Publications (2)

Publication Number Publication Date
JP2006249460A true JP2006249460A (en) 2006-09-21
JP5059292B2 JP5059292B2 (en) 2012-10-24

Family

ID=37090256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005064477A Expired - Fee Related JP5059292B2 (en) 2005-03-08 2005-03-08 Sn alloy plating excellent in suppressing whisker generation

Country Status (1)

Country Link
JP (1) JP5059292B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218318A (en) * 2007-03-07 2008-09-18 Hitachi Cable Ltd Wiring conductor, manufacturing method therefor
JP2008218317A (en) * 2007-03-07 2008-09-18 Hitachi Cable Ltd Wiring conductor, manufacturing method therefor
JP2009024194A (en) * 2007-07-17 2009-02-05 Toyota Motor Corp Plated member
JP2009144210A (en) * 2007-12-14 2009-07-02 Kobe Steel Ltd Sn-PLATED COPPER SUBSTRATE, METHOD FOR MANUFACTURING Sn-PLATED COPPER SUBSTRATE, LEAD FRAME USING THE SAME, AND CONNECTOR TERMINAL
JP2010013702A (en) * 2008-07-03 2010-01-21 Toyota Motor Corp Plated member and method for forming plated layer
JP2010126766A (en) * 2008-11-27 2010-06-10 Toyota Motor Corp PLATED BASE MATERIAL HAVING Sn PLATING LAYER AND METHOD OF MANUFACTURING THE SAME
JP2012023286A (en) * 2010-07-16 2012-02-02 Renesas Electronics Corp Semiconductor device
JP2012238784A (en) * 2011-05-13 2012-12-06 Murata Mfg Co Ltd Electronic component
WO2013111625A1 (en) * 2012-01-23 2013-08-01 株式会社村田製作所 Electronic part and manufacturing method therefor
JP2013534709A (en) * 2010-07-16 2013-09-05 アエムセ Electrical connection device with improved conductance
KR101422365B1 (en) * 2009-09-30 2014-07-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Coating film of sn or sn alloy formed by plating and composite material having same
EP2304770A4 (en) * 2008-06-30 2015-03-04 Agere Systems Inc Preventing or mitigating growth formations on metal films
WO2016098669A1 (en) * 2014-12-15 2016-06-23 千住金属工業株式会社 Solder alloy for plating and electronic component
KR102618832B1 (en) * 2022-11-25 2023-12-29 주식회사 호진플라텍 Copper-tin alloy layer forming method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285395A (en) * 1988-09-19 1990-03-26 Hitachi Cable Ltd Production of electronic parts
JPH10313086A (en) * 1997-05-09 1998-11-24 Mitsubishi Electric Corp Solder film, formation thereof, resin-sealed semiconductor device having that solder film and film modifying device which is used for manufacture thereof
JPH111793A (en) * 1997-01-28 1999-01-06 Furukawa Electric Co Ltd:The Reflow solder plating material and its manufacture
JP2001335987A (en) * 2000-05-24 2001-12-07 Murata Mfg Co Ltd Electronic parts, method for manufacturing electronic parts and circuit board
JP2002069688A (en) * 2000-09-04 2002-03-08 Nikko Techno Service:Kk Tin alloy plated material for terminal and connector
JP2003171790A (en) * 2001-01-19 2003-06-20 Furukawa Electric Co Ltd:The Plating material, production method therefor, and electrical and electronic part obtained by using the same
JP2005048205A (en) * 2003-07-29 2005-02-24 Fujikura Ltd Heat treatment method for connector-fitted part of electroplated terminal part of flexible flat cable, flexible printed circuit board or the like

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0285395A (en) * 1988-09-19 1990-03-26 Hitachi Cable Ltd Production of electronic parts
JPH111793A (en) * 1997-01-28 1999-01-06 Furukawa Electric Co Ltd:The Reflow solder plating material and its manufacture
JPH10313086A (en) * 1997-05-09 1998-11-24 Mitsubishi Electric Corp Solder film, formation thereof, resin-sealed semiconductor device having that solder film and film modifying device which is used for manufacture thereof
JP2001335987A (en) * 2000-05-24 2001-12-07 Murata Mfg Co Ltd Electronic parts, method for manufacturing electronic parts and circuit board
JP2002069688A (en) * 2000-09-04 2002-03-08 Nikko Techno Service:Kk Tin alloy plated material for terminal and connector
JP2003171790A (en) * 2001-01-19 2003-06-20 Furukawa Electric Co Ltd:The Plating material, production method therefor, and electrical and electronic part obtained by using the same
JP2005048205A (en) * 2003-07-29 2005-02-24 Fujikura Ltd Heat treatment method for connector-fitted part of electroplated terminal part of flexible flat cable, flexible printed circuit board or the like

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218318A (en) * 2007-03-07 2008-09-18 Hitachi Cable Ltd Wiring conductor, manufacturing method therefor
JP2008218317A (en) * 2007-03-07 2008-09-18 Hitachi Cable Ltd Wiring conductor, manufacturing method therefor
JP2009024194A (en) * 2007-07-17 2009-02-05 Toyota Motor Corp Plated member
JP2009144210A (en) * 2007-12-14 2009-07-02 Kobe Steel Ltd Sn-PLATED COPPER SUBSTRATE, METHOD FOR MANUFACTURING Sn-PLATED COPPER SUBSTRATE, LEAD FRAME USING THE SAME, AND CONNECTOR TERMINAL
EP2304770A4 (en) * 2008-06-30 2015-03-04 Agere Systems Inc Preventing or mitigating growth formations on metal films
JP2010013702A (en) * 2008-07-03 2010-01-21 Toyota Motor Corp Plated member and method for forming plated layer
DE112009001549T5 (en) 2008-07-03 2012-01-12 Toyota Jidosha Kabushiki Kaisha Lead-free plating element and method of forming a plating layer
JP2010126766A (en) * 2008-11-27 2010-06-10 Toyota Motor Corp PLATED BASE MATERIAL HAVING Sn PLATING LAYER AND METHOD OF MANUFACTURING THE SAME
KR101422365B1 (en) * 2009-09-30 2014-07-22 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Coating film of sn or sn alloy formed by plating and composite material having same
JP2013534709A (en) * 2010-07-16 2013-09-05 アエムセ Electrical connection device with improved conductance
JP2012023286A (en) * 2010-07-16 2012-02-02 Renesas Electronics Corp Semiconductor device
JP2012238784A (en) * 2011-05-13 2012-12-06 Murata Mfg Co Ltd Electronic component
WO2013111625A1 (en) * 2012-01-23 2013-08-01 株式会社村田製作所 Electronic part and manufacturing method therefor
JPWO2013111625A1 (en) * 2012-01-23 2015-05-11 株式会社村田製作所 Electronic component and manufacturing method thereof
US9437365B2 (en) 2012-01-23 2016-09-06 Murata Manufacturing Co., Ltd. Electronic component and manufacturing method therefor
WO2016098669A1 (en) * 2014-12-15 2016-06-23 千住金属工業株式会社 Solder alloy for plating and electronic component
JPWO2016098669A1 (en) * 2014-12-15 2017-06-15 千住金属工業株式会社 Solder alloys and electronic parts for plating
EP3235588A4 (en) * 2014-12-15 2018-06-20 Senju Metal Industry Co., Ltd Solder alloy for plating and electronic component
TWI647317B (en) * 2014-12-15 2019-01-11 日商千住金屬工業股份有限公司 Soldering alloys and electronic parts for electroplating
KR102618832B1 (en) * 2022-11-25 2023-12-29 주식회사 호진플라텍 Copper-tin alloy layer forming method

Also Published As

Publication number Publication date
JP5059292B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5059292B2 (en) Sn alloy plating excellent in suppressing whisker generation
JP4817095B2 (en) Whisker suppression surface treatment method
JP6380174B2 (en) Silver plated copper terminal material and terminal
WO2010047373A1 (en) Copper alloy material, electric and electronic parts, and copper alloy material manufacturing method
KR20120104553A (en) Copper alloy sheet material having low young&#39;s modulus and method for producing same
US20140170436A1 (en) Tin-plated copper-alloy material for terminal having excellent insertion/extraction performance
JP2007270266A (en) Sn-PLATED COPPER ALLOY MATERIAL AND ITS MANUFACTURING METHOD
JP2006083465A (en) Copper alloy sheet for electric and electronic parts having bendability
JP5144814B2 (en) Copper alloy material for electrical and electronic parts
KR102547165B1 (en) Sn plating material and its manufacturing method
CN103124807A (en) Immersion tin silver plating in electronics manufacture
KR20220124174A (en) Cu-Ni-Si-based copper alloy plate and its manufacturing method and energized parts
JP2018115361A (en) Tin-plated copper terminal material with high insertability, and production method thereof
Jo et al. Least lead addition to mitigate tin whisker for ambient storage
JPWO2019176838A1 (en) Copper alloy sheet material, manufacturing method thereof, heat dissipation component for electric and electronic equipment, and shield case
JP2007262458A (en) WHISKER RESISTANT REFLOW Sn PLATING MATERIAL
TWI522497B (en) Phosphorous containing anode for copper electroplating, method for producing the same, and method for copper electroplating
JP4740814B2 (en) Copper alloy reflow Sn plating material with excellent whisker resistance
KR102349545B1 (en) Copper alloy wire rod and manufacturing method thereof
WO2021065866A1 (en) Terminal material for connectors
JP2010242121A (en) Cu-Zn-Sn ALLOY PLATE AND TIN-PLATED Cu-Zn-Sn ALLOY STRIP
JP2015017301A (en) Secondary battery current collector copper alloy rolled foil and method for producing the same
TW201339374A (en) Sn plating material
WO2017038825A1 (en) Plating material having excellent heat resistance and method for manufacturing same
JP5714465B2 (en) Sn plating material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110912

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees