JP2006245568A - System for cooling semiconductor chip, and structure and manufacturing method of cooling device - Google Patents

System for cooling semiconductor chip, and structure and manufacturing method of cooling device Download PDF

Info

Publication number
JP2006245568A
JP2006245568A JP2006043032A JP2006043032A JP2006245568A JP 2006245568 A JP2006245568 A JP 2006245568A JP 2006043032 A JP2006043032 A JP 2006043032A JP 2006043032 A JP2006043032 A JP 2006043032A JP 2006245568 A JP2006245568 A JP 2006245568A
Authority
JP
Japan
Prior art keywords
cooling device
chip
manufacturing
cooling system
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006043032A
Other languages
Japanese (ja)
Inventor
明漢 ▲黄▼
Ming-Hang Hwang
Yu-Chiang Cheng
裕強 鄭
Chao-Yi Chen
兆逸 陳
Ping-Feng Lee
秉峰 李
Hsin-Lung Kuo
欣▲りゅう▼ 郭
Bin-Wei Lee
秉蔚 李
惟中 ▲しょう▼
Wei-Chung Hsiao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Getac Technology Corp
Original Assignee
Mitac Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitac Technology Corp filed Critical Mitac Technology Corp
Publication of JP2006245568A publication Critical patent/JP2006245568A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/143Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded injection molded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for cooling a semiconductor chip having high cooling efficiency, and a structure and a manufacturing method of a cooling device. <P>SOLUTION: The system has a cooling device 33, heat exchanger device 34, pump device 35, and a tube 351 for circulating a cooling fluid between the cooling device and the heat exchanger device. The cooling device is disposed in contact with a semiconductor chip and receives waste heat of the chip, and formed of a heat conduction material so that it cools the fluid flowing in the cooling device and the heat exchanger device in a circulating manner by the pump device. The heat conduction material may be a mixture of a metal material and carbon having a tetrahedron structure, or a material having a structure where a surface of a metal material is covered with the carbon having the tetrahedron structure, or a combination of them. The carbon having the tetrahedron structure has a property of high heat conductivity, improving a heat conduction effect of the heat conduction material. In a method of manufacturing the heat conduction material, the material is prepared by a chemical vapor deposition process, a physical vapor deposition process, a melting process, or other material manufacturing methods, and the carbon having the tetrahedron structure may be provided covering the surface of the metal material, or may be mixed into the metal material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体チップ冷却システム及びその冷却装置の構造と製造方法に関し、特に該冷却装置は金属材料及び正四面体構造の炭素を含んだ熱伝導材料から組成する半導体チップ冷却システム及びその冷却装置の構造と製造方法に関する。   The present invention relates to a semiconductor chip cooling system and a structure and manufacturing method of the cooling device, and more particularly, the cooling device is composed of a metal material and a heat conductive material containing tetrahedral carbon, and the cooling device. This invention relates to the structure and manufacturing method.

半導体産業の急速な発展に伴い、大型集積回路は小体積・高密度に向かって機能向上を目指している。各種集積回路のうち、中央演算処理ユニットチップ(CPU)は集積回路研究開発と改良の重点である。パーソナルコンピュータ及び各種サーバなどの核となるシステムに用いられるため、パーソナルコンピュータや各種サーバのパフォーマンスの効率はCPUチップの効率よって決まる。CPUチップは製造工程改良後、クロック周波数が増加でき効率が向上する。しかしそれに伴い発熱量が増大することは避けられない。発生した熱が適時に排除できなければ、CPUチップのデバイス効率は低下し、損傷してしまうこともある。よって如何に効果的に発生した熱をシステムから排出するかが非常に重要な課題となっている。 With the rapid development of the semiconductor industry, large integrated circuits are aiming for functional improvements toward smaller volumes and higher densities. Of the various integrated circuits, the central processing unit chip (CPU) is the focus of integrated circuit research and development and improvement. Since it is used in a core system such as a personal computer and various servers, the performance efficiency of the personal computer and various servers is determined by the efficiency of the CPU chip. After improving the manufacturing process of the CPU chip, the clock frequency can be increased and the efficiency is improved. However, it is inevitable that the amount of heat generated increases accordingly. If the generated heat cannot be removed in a timely manner, the device efficiency of the CPU chip is lowered and may be damaged. Therefore, how to effectively discharge the generated heat from the system is a very important issue.

図1に示すように、公知の強制空冷チップ冷却システム1は、CPUチップ11、基板12及び冷却装置13を具える。CPUチップ11は更に複数のピン111を具えて、CPUチップ11を基板12に接続し、基板12は公知のマザーボード及びディスプレイカードであってよい。また冷却装置13はファン131を具えてもよく、熱伝導グリス132を塗布してCPUチップ11の上部に緊密に接着する。CPUチップ11の動作時に発生する熱は、熱伝導グリス132を経て冷却装置13に伝わり、冷却装置13はファン131により発生する気流を経て廃熱を外部へ排出することができる。 As shown in FIG. 1, a known forced air cooling chip cooling system 1 includes a CPU chip 11, a substrate 12, and a cooling device 13. The CPU chip 11 further includes a plurality of pins 111 to connect the CPU chip 11 to the substrate 12, and the substrate 12 may be a known mother board and display card. The cooling device 13 may include a fan 131, which is coated with heat conductive grease 132 and closely adhered to the upper portion of the CPU chip 11. The heat generated during the operation of the CPU chip 11 is transmitted to the cooling device 13 through the heat conduction grease 132, and the cooling device 13 can discharge the waste heat to the outside through the air flow generated by the fan 131.

しかし上述のシステムによる冷却方法は、ファン131で気流を発生させて廃熱を外部へ排出するため、冷却効率はファン131の大きさと回転速度によって制限され、迅速に廃熱を冷却装置13から外部へ排出することができず、CPUチップ11は廃熱を冷却装置13に迅速に伝導させることができなくなり、CPUチップ11に熱が蓄積して効率が悪化してしまう。 However, since the cooling method by the above-described system generates an air flow by the fan 131 and exhausts the waste heat to the outside, the cooling efficiency is limited by the size and the rotation speed of the fan 131, and the waste heat is quickly removed from the cooling device 13 to the outside. The CPU chip 11 cannot quickly conduct the waste heat to the cooling device 13, and heat accumulates in the CPU chip 11 to deteriorate the efficiency.

図2に示すように、公知の水冷式チップ冷却システム2は、CPUチップ21、基板22、冷却装置23、熱交換装置24及びポンプ装置25を具える。CPUチップ21は更に複数のピン211を具えてCPUチップ21を基板22に接続し、基板22は公知のマザーボード及びディスプレイカードであってよい。また冷却装置23は熱伝導グリス231を塗布してCPUチップ21の上部に緊密に接着することができる。ポンプ装置25、冷却装置23及び熱交換装置24は更にチューブ251で相互に接続し、ポンプ装置25は水流(図中未表示)をチューブ251を経て冷却装置23と熱交換装置24の間を循環して流動できるようにする。
CPUチップ21の動作時に発生する熱は、熱伝導グリス231を経て冷却装置23に伝わり、冷却装置23は水流の循環流動を経て熱を熱交換装置24に伝え、熱交換装置24は更にファン241を具えてファン241によって発生する気流で熱交換装置24の熱を外部に排出できる。
As shown in FIG. 2, the known water-cooled chip cooling system 2 includes a CPU chip 21, a substrate 22, a cooling device 23, a heat exchange device 24, and a pump device 25. The CPU chip 21 further includes a plurality of pins 211 to connect the CPU chip 21 to the substrate 22, and the substrate 22 may be a known mother board and display card. Further, the cooling device 23 can apply heat conductive grease 231 and closely adhere to the upper part of the CPU chip 21. The pump device 25, the cooling device 23 and the heat exchange device 24 are further connected to each other by a tube 251, and the pump device 25 circulates a water flow (not shown in the figure) between the cooling device 23 and the heat exchange device 24 via the tube 251. To be able to flow.
The heat generated during the operation of the CPU chip 21 is transmitted to the cooling device 23 through the heat conduction grease 231, the cooling device 23 transmits the heat to the heat exchanging device 24 through the circulation flow of the water flow, and the heat exchanging device 24 further includes the fan 241. The heat of the heat exchanging device 24 can be discharged to the outside by the air flow generated by the fan 241.

上述のシステムの冷却方法は水のような高比熱材料が循環して流動するときに廃熱を熱交換装置24に伝達するため、冷却効率はポンプ装置25で水の流動循環速度を上昇させることで向上できる。熱交換装置24は基板22上に設置しないため、体積上の制限がなく、ファン241の大きさと回転速度を増加して冷却効率を上げることもできる。よって上述のシステムでは効果的にCPUチップ21の冷却効率を向上させることができる。 Since the cooling method of the above-described system transmits waste heat to the heat exchange device 24 when a high specific heat material such as water circulates and flows, the cooling efficiency increases the flow rate of water flow in the pump device 25. Can improve. Since the heat exchanging device 24 is not installed on the substrate 22, there is no volume limitation, and the cooling efficiency can be increased by increasing the size and rotation speed of the fan 241. Therefore, the cooling efficiency of the CPU chip 21 can be effectively improved in the above-described system.

合わせて図3に示すように、図2に示す冷却装置23の構造分解図では、冷却装置23は上半部232と下半部233に対称に分解することができ、上半部232と下半部233は同じ構造を具えるようにすることができる。下半部233は更に2個の半円孔2331と下半部233内部に形成した溝空間2332を具えてもよく、上半部232も2個の半円孔2321と上半部232内部に形成した溝空間(図中未表示)を具えてもよい。上半部232と下半部233を相対して重ねて結合すると、半円孔2321、2331は結合して円形孔となりチューブ251を冷却装置23に接続して水が流入流出する開口部とすることができ、上半部232と下半部233の溝空間は水が流動する通路を形成し、水が冷却装置23内で熱伝導を経て廃熱を受け取るようにでき、流動して冷却装置23の廃熱を除去する。 In addition, as shown in FIG. 3, in the structural exploded view of the cooling device 23 shown in FIG. 2, the cooling device 23 can be decomposed symmetrically into an upper half 232 and a lower half 233. The half 233 can have the same structure. The lower half 233 may further include two semicircular holes 2331 and a groove space 2332 formed inside the lower half 233, and the upper half 232 is also disposed inside the two semicircular holes 2321 and the upper half 232. A formed groove space (not shown in the figure) may be provided. When the upper half 232 and the lower half 233 are overlapped and joined to each other, the semicircular holes 2321 and 2331 are joined to form a circular hole, and the tube 251 is connected to the cooling device 23 to form an opening through which water flows in and out. The groove spaces of the upper half 232 and the lower half 233 form a passage through which water flows, and the water can receive waste heat through heat conduction in the cooling device 23. 23 waste heat is removed.

水流の流速はポンプ装置の加圧で水流循環を向上させることができるが、冷却装置の材質の熱伝導が良好でなければ、適時に廃熱を水流に伝導して除去することができず、やはり冷却不良の問題が生じてしまう。現在一般に使用している熱伝導材質は多くはアルミ、銅、銀またはその合金であり、熱伝導率が高いという特性を具えているが、CPUチップの効率が日々上昇しているなかで、廃熱の発生速度も大幅に増大し、こういった熱伝導材質では高冷却効率の要求を十分に満たすことができなくなっている。そのため、代替の熱伝導材料を見つけることが重要な課題となっている。 The flow velocity of the water flow can improve the water flow circulation by pressurizing the pump device, but if the heat conduction of the material of the cooling device is not good, the waste heat cannot be conducted to the water flow in a timely manner and removed. The problem of poor cooling still arises. Currently, the most commonly used thermal conductive materials are aluminum, copper, silver or their alloys, and they have the characteristic of high thermal conductivity. However, as the efficiency of CPU chips increases day by day, The rate of heat generation has also increased significantly, and these heat conducting materials cannot fully meet the requirements for high cooling efficiency. Therefore, finding an alternative heat conducting material has become an important issue.

公知のダイヤモンド材料は高い硬度、高い熱伝導率、広い光透過波長帯、耐蝕性といった特性を具えているため、長い間各種用途の重要な材料として使われてきた。ダイヤモンド材料の熱伝導率は常温で銅の五倍、高温時には赤外線放射も強くなり、その放熱効果が間接的に増大するため、ダイヤモンド材料は高温時により放熱機能を発揮できる。しかし、天然単結晶ダイヤモンドは非常に高価なため、製造コストを低下させるべく産業に利用できる人造ダイヤモンドの各種技術が発展した。人造ダイヤモンドの技術は公知技術においてたくさんの技術と製造工程が開発されており、なかでも炭水化合物を直接分解する方法が最もよく見られる。マイクロ波プラズマ化学気相成長法(MPCVD)や熱フィラメント化学気相成長法(HFCVD)で多結晶ダイヤモンド膜を堆積でき、この多結晶ダイヤモンド膜は天然単結晶ダイヤモンドと同等の物理特性を具える。これにより、ダイヤモンド材料を広く各種産業に応用できるようになった。
特開2005−347500号公報 特開2004−173233号公報
Known diamond materials have characteristics such as high hardness, high thermal conductivity, wide light transmission wavelength band, and corrosion resistance, and thus have been used as important materials for various applications for a long time. The thermal conductivity of diamond material is five times that of copper at room temperature, and infrared radiation becomes stronger at high temperatures, and its heat dissipation effect increases indirectly, so that diamond materials can exhibit a heat dissipation function at higher temperatures. However, since natural single crystal diamond is very expensive, various techniques of artificial diamond that can be used in industry have been developed to reduce manufacturing costs. Artificial diamond technology is known in the art, and many technologies and manufacturing processes have been developed. Among them, the method of directly decomposing a carbon-water compound is most often seen. A polycrystalline diamond film can be deposited by microwave plasma chemical vapor deposition (MPCVD) or hot filament chemical vapor deposition (HFCVD), and this polycrystalline diamond film has the same physical properties as natural single crystal diamond. As a result, diamond materials can be widely applied to various industries.
JP 2005-347500 A JP 2004-173233 A

熱伝導材料の開発は、金属材料と正四面体構造の炭素(ダイヤモンド材料など)を含め、大幅に熱伝導率を向上させて公知の熱伝導材料の冷却効率不良という問題を解決することが望まれている。そこで、チップ冷却システム及びその冷却装置の構造と製造方法を提供して、上述の問題を解決することを課題とする。 The development of heat conductive materials, including metal materials and tetrahedral carbon (such as diamond material), is expected to improve the thermal conductivity and solve the problem of poor cooling efficiency of known heat conductive materials. It is rare. Therefore, it is an object to provide a chip cooling system and a structure and manufacturing method of the cooling device to solve the above-described problems.

本発明は、チップ冷却システム及びその冷却装置の構造と製造方法を提供する。チップ冷却システムは、チップ、冷却装置、熱交換装置、ポンプ装置及び複数のチューブを具える。冷却装置は一種の熱伝導材料で構成し、その熱伝導材料は一金属材料及び正四面体構造の炭素を含む。また、金属材料は銅、アルミ、銀またはその合金、或いはその他の高熱伝導率の金属材料であってよく、正四面体構造の炭素はダイヤモンドとすることができる。このほか、正四面体構造の炭素は金属材料表面を覆うだけでも、金属材料中に混入しても、または両者を同時に具えるようにしてもよい。冷却装置に使用する金属材料表面を覆う熱伝導材用の製造方法は化学気相成長法、物理気相成長法、溶融、金属射出成型、またはその他の材料生成方法を含むことができる。上述の冷却装置は高熱伝導率の正四面体構造の炭素を混入またはこれに覆われているため、冷却装置の冷却効率を大幅に向上させることができる。 The present invention provides a chip cooling system and a structure and manufacturing method of the cooling device. The chip cooling system includes a chip, a cooling device, a heat exchange device, a pump device, and a plurality of tubes. The cooling device is composed of a kind of heat conductive material, and the heat conductive material includes a monometallic material and carbon having a tetrahedral structure. The metal material may be copper, aluminum, silver or an alloy thereof, or other metal material having high thermal conductivity, and the tetrahedral carbon may be diamond. In addition, the carbon having a regular tetrahedral structure may cover the surface of the metal material, may be mixed in the metal material, or may be provided at the same time. The manufacturing method for the heat conductive material covering the surface of the metal material used in the cooling device may include chemical vapor deposition, physical vapor deposition, melting, metal injection molding, or other material generation methods. Since the above-described cooling device is mixed with or covered with carbon having a tetrahedral structure with high thermal conductivity, the cooling efficiency of the cooling device can be greatly improved.

本発明が提供するチップ冷却システム及びその冷却装置の構造と製造方法によって、冷却効率を大幅に増大して、集積回路チップが必要とする冷却効率を満たすことができ、チップの作動上の品質を大幅に向上させることができ、半導体製造工程を主とした集積回路産業の競争力を強化できるほか、集積回路を使用した製品の品質が向上する。 According to the chip cooling system and the structure and manufacturing method of the cooling device provided by the present invention, the cooling efficiency can be greatly increased to satisfy the cooling efficiency required by the integrated circuit chip, and the operational quality of the chip can be improved. This can greatly improve the competitiveness of the integrated circuit industry, mainly in the semiconductor manufacturing process, and improve the quality of products using integrated circuits.

図4に示すように、本発明のチップ冷却システム3は、チップ31、基板32、冷却装置33、熱交換装置34及びポンプ装置35を具える。チップ31はCPUチップとすることができ、且つ複数のピン311を具えてチップ31を基板32に接続し、基板32は公知のマザーボード及びディスプレイカードであってよい。また、冷却装置33は熱伝導グリス331の塗布によりチップ31の上面に緊密に接着することができる。ポンプ装置35、冷却装置33及び熱交換装置34は更にチューブ351で相互に接続し、ポンプ装置35は高比熱係数の流体(図中未表示)を具えてチューブ351を経て冷却装置33及び熱交換装置34の間を循環させることができる。続いて、冷却装置33は一種の熱伝導材料で構成し、熱伝導材料は一金属材料と正四面体構造の炭素を含み、その金属材料は銅、アルミ、銀、またはその合金、またはその他の高熱伝導率の金属材料とすることができ、正四面体構造の炭素はダイヤモンドとすることができる。このほか、正四面体構造の炭素は金属材料表面を覆うだけでもよく、金属材料中に直接混入してもよく、または両者を同時に具えてもよい。 As shown in FIG. 4, the chip cooling system 3 of the present invention includes a chip 31, a substrate 32, a cooling device 33, a heat exchange device 34, and a pump device 35. The chip 31 may be a CPU chip, and may include a plurality of pins 311 to connect the chip 31 to the substrate 32. The substrate 32 may be a known mother board and display card. Further, the cooling device 33 can be tightly bonded to the upper surface of the chip 31 by application of the heat conductive grease 331. The pump device 35, the cooling device 33, and the heat exchange device 34 are further connected to each other by a tube 351. The pump device 35 includes a fluid having a high specific heat coefficient (not shown in the drawing) and passes through the tube 351 to exchange the heat with the cooling device 33. Circulation between devices 34 can be made. Subsequently, the cooling device 33 is composed of a kind of heat conductive material, and the heat conductive material includes one metal material and tetrahedral carbon, and the metal material is copper, aluminum, silver, or an alloy thereof, or other The metal material can have a high thermal conductivity, and the tetrahedral carbon can be diamond. In addition, the carbon having a tetrahedral structure may only cover the surface of the metal material, may be directly mixed into the metal material, or may be provided at the same time.

CPU31動作時に発生する廃熱は、熱伝導グリス331を経て冷却装置33に伝達され、冷却装置33は流体(水とすることができる)の循環流動を経て廃熱を熱交換装置34に伝達し、熱交換装置34は気流発生装置341を具えて気流発生装置341で生成する気流によって熱交換装置34の廃熱を外部へ排出することができる。 Waste heat generated during the operation of the CPU 31 is transmitted to the cooling device 33 through the heat conduction grease 331, and the cooling device 33 transmits the waste heat to the heat exchanging device 34 through a circulating flow of fluid (which can be water). The heat exchange device 34 includes an air flow generation device 341 and can discharge waste heat of the heat exchange device 34 to the outside by an air flow generated by the air flow generation device 341.

合わせて図5に示す図4の冷却装置33の構造分解図では、冷却装置33は対称な構造として上半部332と下半部333に分解でき、上半部332と下半部333は同じ構造を具えるようにできる。下半部333は更に、2個の半円孔3331及び下半部333内部に形成した溝空間3332を具え、上半部332も2個の半円孔3321及び上半部332内部に形成した溝空間(図中未表示)を具えることができる。上半部332と下半部333を相対して重ねて結合すると、半円孔3321、3331は結合して円孔となり、チューブ351で冷却装置33に接続して流体が出入りする開口部とすることができる。上半部332と下半部333に形成した溝空間は流体の通路となり、流体が冷却装置33内で熱伝導により廃熱を受け取り、流動して冷却装置33の廃熱を冷却装置33から取り去る。 In addition, in the structural exploded view of the cooling device 33 of FIG. 4 shown in FIG. 5, the cooling device 33 can be decomposed into an upper half 332 and a lower half 333 as a symmetrical structure, and the upper half 332 and the lower half 333 are the same. Can have a structure. The lower half 333 further includes two semicircular holes 3331 and a groove space 3332 formed inside the lower half 333, and the upper half 332 is also formed inside the two semicircular holes 3321 and the upper half 332. A groove space (not shown in the figure) can be provided. When the upper half portion 332 and the lower half portion 333 are overlapped and joined relative to each other, the semicircular holes 3321 and 3331 are joined to form a circular hole, which is connected to the cooling device 33 by a tube 351 to be an opening through which fluid enters and exits. be able to. Groove spaces formed in the upper half 332 and the lower half 333 serve as fluid passages, and the fluid receives waste heat by heat conduction in the cooling device 33 and flows to remove the waste heat of the cooling device 33 from the cooling device 33. .

上述の実施例から分かるように、冷却装置33は本発明の一種の熱伝導材料で構成し、その高熱伝導率によって迅速に冷却装置33の廃熱を流体に伝達でき、流体はポンプ装置35の加圧によって迅速に冷却装置33と熱交換装置34の間で循環流動できるため、迅速に冷却装置33の廃熱を熱交換装置34に運ぶことができ、熱交換装置34は気流発生装置341(ファンであってよい)の効率を上昇させることによって熱交換装置34の外部への廃熱排出を加速することができ、システム全体の冷却効率を向上させる。よって上述のシステムは、効果的にチップ31の冷却効率が向上する。 As can be seen from the above-described embodiments, the cooling device 33 is made of a kind of heat conductive material of the present invention, and the high heat conductivity can quickly transfer the waste heat of the cooling device 33 to the fluid. Since the pressure can circulate and flow quickly between the cooling device 33 and the heat exchanging device 34, the waste heat of the cooling device 33 can be quickly conveyed to the heat exchanging device 34, and the heat exchanging device 34 is an air flow generator 341 ( By increasing the efficiency of the fan (which may be a fan), waste heat discharge to the outside of the heat exchange device 34 can be accelerated, and the cooling efficiency of the entire system is improved. Therefore, the above-described system effectively improves the cooling efficiency of the chip 31.

図6に示すように、図5の冷却装置33の下半部333構造の別の分解図では、複数個の放熱フィン3333を溝空間3332に形成し冷却装置33の下半部333に接続する。流体が溝空間3332が形成する通路内を流動すると、放熱フィン3333の熱伝導により迅速に冷却装置33の廃熱を受け取ることができるため、この構造でチップの冷却効率を向上できる。また放熱フィン3333は本発明の熱伝導材料で構成でき、且つ熱伝導材料は金属材料及び正四面体構造の炭素を含んで、放熱フィン3333の熱伝導率を増加でき、システム全体の冷却効率が向上する。 As shown in FIG. 6, in another exploded view of the lower half 333 structure of the cooling device 33 of FIG. 5, a plurality of heat radiation fins 3333 are formed in the groove space 3332 and connected to the lower half 333 of the cooling device 33. . When the fluid flows in the passage formed by the groove space 3332, the waste heat of the cooling device 33 can be quickly received by the heat conduction of the radiating fins 3333, so that the cooling efficiency of the chip can be improved with this structure. Further, the heat radiating fins 3333 can be formed of the heat conductive material of the present invention, and the heat conductive material contains a metal material and tetrahedral carbon, so that the heat conductivity of the heat radiating fins 3333 can be increased, and the cooling efficiency of the entire system improves.

図7に示すように、本発明のチップ冷却システムの冷却装置の製造方法は、公知の金属射出成型技術4を含み、原料ホッパ41、原料射出装置42及び金型43を具える。金属射出成型を行う際には、原料ホッパ41に入れた原料を原料射出装置42から金型43で形成するキャビティ44に射出し成型する。原料は金属または金属及び正四面体構造の炭素微粉末を含む溶融材料とすることができ、金属材料は銅、アルミ、銀、またはその合金またはその他の高熱伝導率の金属材料とすることができ、正四面体構造の炭素の融点は前述のいずれの金属の融点より高いため、金属及び正四面体構造炭素を結合して一種の原料とすることができる。また、金属射出成型品の構造はキャビティ44の形状であり、この実施例ではキャビティ44の形状は図5に示す下半部333の構造としてもよく、同様にして図5に示す上半部332の構造も分かり、上半部332と下半部333を接合(溶接を用いてもよい)すれば図4に示す冷却装置33となる。 As shown in FIG. 7, the manufacturing method of the cooling device of the chip cooling system of the present invention includes a known metal injection molding technique 4 and includes a raw material hopper 41, a raw material injection device 42, and a mold 43. When performing metal injection molding, the raw material put in the raw material hopper 41 is injected and molded from the raw material injection device 42 into the cavity 44 formed by the mold 43. The raw material can be metal or a molten material containing metal and tetrahedral carbon fine powder, and the metal material can be copper, aluminum, silver, or an alloy thereof or other metal material with high thermal conductivity Since the melting point of carbon having a regular tetrahedral structure is higher than the melting point of any of the aforementioned metals, the metal and the tetrahedral structural carbon can be combined to form a kind of raw material. Further, the structure of the metal injection molded product is the shape of the cavity 44. In this embodiment, the shape of the cavity 44 may be the structure of the lower half 333 shown in FIG. 5, and similarly, the upper half 332 shown in FIG. If the upper half 332 and the lower half 333 are joined (welding may be used), the cooling device 33 shown in FIG. 4 is obtained.

図8に示すように、本発明のチップ冷却システムの冷却装置のもう一つの製造方法は、公知のマイクロ波プラズマ化学気相成長法5を含み、正四面体構造の炭素を金属表面に形成するもので、特に図4の冷却装置33の表面に成膜する。その反応プロセスは始めに反応させる混合気体を気体送入口51から気体反応室52に送入する。同時に、マイクロ波発生システム53がマイクロ波を発生し混合気体に活性反応性イオンを発生させて反応を行い、徐々に支持台54上の金属材質構造55の表面に堆積して正四面体構造の炭素膜(ダイヤモンド膜とすることができる)を形成する。金属材料構造55は図7に示す方法で成型した冷却装置とすることができ、冷却装置は銅、アルミ、銀、またはその合金またはその他の高熱伝導率の金属材料で構成し、余剰の期待は排気口56から排出し、このような反応プロセスで表面をダイヤモンドで覆った熱伝導材料が得られる。この実施例では金属材質構造55は図5に示す上半部332または下半部333としてもよく、正四面体構造の炭素膜を堆積してから接合して図4に示す冷却装置33とする。 As shown in FIG. 8, another manufacturing method of the cooling device of the chip cooling system according to the present invention includes the known microwave plasma chemical vapor deposition method 5 and forms tetrahedral carbon on the metal surface. In particular, a film is formed on the surface of the cooling device 33 of FIG. In the reaction process, a mixed gas to be reacted first is sent from the gas inlet 51 to the gas reaction chamber 52. At the same time, the microwave generation system 53 generates microwaves and reacts by generating active reactive ions in the mixed gas and gradually deposits on the surface of the metal material structure 55 on the support base 54 to form a tetrahedral structure. A carbon film (which can be a diamond film) is formed. The metal material structure 55 can be a cooling device molded by the method shown in FIG. 7, and the cooling device is made of copper, aluminum, silver, an alloy thereof, or other metal material having high thermal conductivity, A heat conductive material is obtained which is discharged from the exhaust port 56 and whose surface is covered with diamond by such a reaction process. In this embodiment, the metal material structure 55 may be the upper half part 332 or the lower half part 333 shown in FIG. 5, and a carbon film having a regular tetrahedral structure is deposited and bonded to form the cooling device 33 shown in FIG. .

図9に示すように、本発明のチップ冷却システムの冷却装置の更に別の製造方法は、公知のイオンビームスパッタリング法6を含み、イオンビームスパッタリング6は物理気相成長法の一種であり、正四面体構造の炭素を金属表面に成膜するもので、特に図4の冷却装置33の表面に形成する。製造プロセスは、まず正四面体構造の炭素材料を圧縮してターゲット61を製造し、これを第一イオン銃62のイオンビーム発射方向と狭角45度前後に配置し、第一イオン銃62に打たれて飛び散った正四面体構造の炭素微粒子が第二イオン銃63前方へ飛来し、第二イオン銃63が正四面体構造の炭素微粒子に十分な運動エネルギーを与えて金属材質構造64表面にスパッタして均一な正四面体構造の炭素膜を形成する。金属材質構造64は図7に示す方法で成型した冷却装置とすることができ、冷却装置は銅、アルミ、銀またはその合金またはその他の高熱伝導率の金属材料で構成し、余剰の正四面体構造の炭素微粒子は排気口65から排出する。この実施例で金属材質構造64は図5に示す上半部332または下半部333とすることもでき、正四面体構造の炭素膜を堆積してから接合して図4に示す冷却装置33とする。 As shown in FIG. 9, another manufacturing method of the cooling device of the chip cooling system of the present invention includes a known ion beam sputtering method 6, which is a kind of physical vapor deposition method. Tetrahedral carbon is deposited on the surface of the metal, particularly on the surface of the cooling device 33 of FIG. In the manufacturing process, a carbon material having a regular tetrahedron structure is first compressed to manufacture a target 61, which is arranged at a narrow angle of about 45 degrees with respect to the ion beam firing direction of the first ion gun 62. The tetrahedral carbon particles that have been struck and scattered fly to the front of the second ion gun 63, and the second ion gun 63 imparts sufficient kinetic energy to the carbon particles of the tetrahedral structure to the surface of the metal material structure 64. A carbon film having a uniform tetrahedral structure is formed by sputtering. The metal material structure 64 can be a cooling device molded by the method shown in FIG. 7, and the cooling device is made of copper, aluminum, silver, an alloy thereof, or other metal material having high thermal conductivity, and an extra tetrahedron. The carbon fine particles having the structure are discharged from the exhaust port 65. In this embodiment, the metal material structure 64 may be the upper half portion 332 or the lower half portion 333 shown in FIG. 5, and a carbon film having a regular tetrahedron structure is deposited and bonded, and then the cooling device 33 shown in FIG. And

公知のエア吹付け式チップ冷却システムの略図である。1 is a schematic diagram of a known air blowing tip cooling system. 公知の水冷式チップ冷却システムの略図である。1 is a schematic diagram of a known water-cooled chip cooling system. 公知の冷却装置構造の分解略図である。1 is an exploded schematic view of a known cooling device structure. 本発明のチップ冷却システムの略図である。1 is a schematic diagram of a chip cooling system of the present invention. 本発明の冷却装置構造の分解略図である。2 is a schematic exploded view of the cooling device structure of the present invention. 本発明のもう一つの冷却装置構造の分解略図である。4 is an exploded schematic view of another cooling device structure of the present invention. 本発明のチップ冷却システム冷却装置の製造方法略図である。1 is a schematic diagram of a method for manufacturing a chip cooling system cooling device of the present invention. 本発明の冷却システムの冷却装置のもう一つの製造方法略図である。4 is another schematic diagram of a method for manufacturing a cooling device of the cooling system of the present invention. 本発明の冷却システムの冷却装置の更に別の製造方法略図である。It is another manufacturing method schematic of the cooling device of the cooling system of this invention.

符号の説明Explanation of symbols

1 エア吹付け式チップ冷却システム
11 CPU
111 ピン
12 基板
13 冷却装置
131 ファン
132 熱伝導グリス
2 水冷式チップ冷却システム
21 CPU
211 ピン
22 基板
23 冷却装置
231 熱伝導グリス
232 上半部
2321 半円孔
233 下半部
2331 半円孔
2332 溝空間
24 熱交換装置
25 ポンプ装置
251 チューブ
3 チップ冷却システム
31 チップ
311 ピン
32 基板
33 冷却装置
331 熱伝導グリス
332 上半部
3321 半円孔
333 下半部
3331 半円孔
3332 溝空間
3333 放熱フィン
34 熱交換装置
341 気流発生装置
35 ポンプ装置
351 チューブ
4 金属射出成型
41 原料ホッパ
42 原料射出装置
43 金型
44 キャビティ
5 マイクロ波プラズマ化学気相成長法
51 気体送入口
52 気体反応室
53 マイクロ波発生システム
54 支持台
55 金属材質構造
56 排気口
6 イオンビームスパッタリング法
61 ターゲット
62 第一イオン銃
63 第二イオン銃
64 金属材質構造
65 排気口
1 Air blowing type chip cooling system 11 CPU
111 Pin 12 Substrate 13 Cooling device 131 Fan 132 Heat conduction grease 2 Water-cooled chip cooling system 21 CPU
211 Pin 22 Substrate 23 Cooling device 231 Thermal conduction grease 232 Upper half portion 2321 Semicircular hole 233 Lower half portion 2331 Semicircular hole 2332 Groove space 24 Heat exchange device 25 Pump device 251 Tube 3 Chip cooling system 31 Chip 311 Pin 32 Substrate 33 Cooling device 331 Thermal conduction grease 332 Upper half portion 3321 Semicircular hole 333 Lower half portion 3331 Semicircular hole 3332 Groove space 3333 Radiation fin 34 Heat exchange device 341 Airflow generator 35 Pump device 351 Tube 4 Metal injection molding 41 Raw material hopper 42 Raw material Injection device 43 Mold 44 Cavity 5 Microwave plasma chemical vapor deposition method 51 Gas inlet 52 Gas reaction chamber 53 Microwave generation system 54 Support base 55 Metal material structure 56 Exhaust port 6 Ion beam sputtering method 61 Target 62 First ion Gun 63 second On gun 64 metal material structure 65 outlet

Claims (26)

半導体チップ冷却システムであって、
熱交換装置、ポンプ装置、冷却装置及び該冷却装置と熱交換装置間で冷却流体を循環するチューブからなり、該冷却装置は半導体チップに接して配置されてその廃熱を受け、且つ該冷却装置は、金属材料と正四面体構造の炭素を混合した熱伝導材料を成型した成型体、又はこれらの成型体若しくは金属材料などからなる成型体表面に正四面体構造の炭素皮膜を形成した成型体からなり、ポンプ装置により冷却装置と熱交換装置内で循環流動する流体により冷却される、
ことを特徴とする半導体チップ冷却システム。
A semiconductor chip cooling system,
A heat exchange device, a pump device, a cooling device, and a tube for circulating a cooling fluid between the cooling device and the heat exchange device. The cooling device is disposed in contact with a semiconductor chip and receives waste heat thereof, and the cooling device. Is a molded body obtained by molding a heat conductive material in which a metal material and carbon having a tetrahedral structure are mixed, or a molded body in which a carbon film having a tetrahedral structure is formed on the surface of the molded body made of these molded body or metal material. And is cooled by a fluid circulating in the cooling device and the heat exchange device by the pump device.
A semiconductor chip cooling system.
該チップは、CPUチップであることを特徴とする請求項1記載のチップ冷却システム。   The chip cooling system according to claim 1, wherein the chip is a CPU chip. 該金属材料は、銅材質であることを特徴とする請求項1記載のチップ冷却システム。   The chip cooling system according to claim 1, wherein the metal material is a copper material. 該金属材料は、銀材質であることを特徴とする請求項1記載のチップ冷却システム。   2. The chip cooling system according to claim 1, wherein the metal material is a silver material. 該金属材料は、アルミ材質であることを特徴とする請求項1記載のチップ冷却システム。   2. The chip cooling system according to claim 1, wherein the metal material is an aluminum material. 該金属材料は、高熱伝導率の金属合金材質であることを特徴とする請求項1記載のチップ冷却システム。   2. The chip cooling system according to claim 1, wherein the metal material is a metal alloy material having a high thermal conductivity. 正四面体構造の炭素は、ダイヤモンドであることを特徴とする請求項1記載のチップ冷却システム。   The chip cooling system according to claim 1, wherein the tetrahedral carbon is diamond. 該熱正四面体構造の炭素皮膜は、金属表面上に化学気相成長法で正四面体構造の炭素皮膜を形成して成ることを特徴とする請求項1記載のチップ冷却システム。   2. The chip cooling system according to claim 1, wherein the carbon film having a thermotetrahedral structure is formed by forming a carbon film having a tetrahedral structure on a metal surface by chemical vapor deposition. 該正四面体構造の炭素皮膜は、金属表面上に物理気相成長法で正四面体構造の炭素皮膜を形成して成ることを特徴とする請求項1記載のチップ冷却システム。   2. The chip cooling system according to claim 1, wherein the carbon film having a regular tetrahedral structure is formed by forming a carbon film having a regular tetrahedral structure on a metal surface by physical vapor deposition. 該成型体は、正四面体構造の炭素を混入した溶融材料から形成されることを特徴とする請求項1記載のチップ冷却システム。   2. The chip cooling system according to claim 1, wherein the molded body is formed of a molten material mixed with carbon having a tetrahedral structure. 該成型体の成型法は、金属の射出成型で形成して成ることを特徴とする請求項1記載のチップ冷却システム。   2. The chip cooling system according to claim 1, wherein the molding method is formed by metal injection molding. 該冷却装置は、熱交換面に複数個の放熱フィンを具えて成ることを特徴とする請求項1記載のチップ冷却システム。   2. The chip cooling system according to claim 1, wherein the cooling device comprises a plurality of heat dissipating fins on the heat exchange surface. 該放熱フィンは、金属材料と正四面体構造の炭素を混合した熱伝導材料を成型した成型体、又はこれらの成型体若しくは金属材料などからなる成型体表面に正四面体構造の炭素皮膜を形成した成型体から成ることを特徴とする請求項12記載のチップ冷却システム。   The radiating fin is formed by molding a heat conductive material obtained by mixing a metal material and carbon having a tetrahedral structure, or a carbon film having a tetrahedral structure is formed on the surface of the molded body made of such a molded body or metal material. The chip cooling system according to claim 12, wherein the chip cooling system is made of a molded body. 該熱交換装置に、更に気流発生装置を具えて成ることを特徴とする請求項1記載のチップ冷却システム。   The chip cooling system according to claim 1, further comprising an airflow generator in the heat exchange device. 該気流発生装置は、ファンであることを特徴とする請求項14記載のチップ冷却システム。   The chip cooling system according to claim 14, wherein the airflow generation device is a fan. 該流体は、水であることを特徴とする請求項14記載のチップ冷却システム。   The chip cooling system according to claim 14, wherein the fluid is water. 半導体チップ冷却装置の製造方法であって、
金属材料と正四面体構造の炭素を混合した熱伝導材料を成型した成型体、又はこれらの成型体若しくは金属材料などからなる成型体表面に正四面体構造の炭素皮膜を形成した成型体を作成し、
該成型法がプレス成型法によるものであって、冷却装置に成型し、且つ成型された該冷却装置はハウジング構造を具えて少なくとも二つの孔を該ハウジング上に形成すると共に、少なくとも一つの流体通路を該ハウジング内部に形成して該対応する二つの孔を接続するように成形すること、
以上を含むことを特徴とする冷却装置の製造方法。
A method for manufacturing a semiconductor chip cooling device, comprising:
Creates a molded body in which a metal material and carbon with a tetrahedral structure are molded, or a molded body in which a carbon film with a tetrahedral structure is formed on the surface of a molded body made of these molded bodies or metallic materials. And
The molding method is a press molding method, wherein the molding device is molded into a cooling device, and the molded cooling device has a housing structure to form at least two holes on the housing and at least one fluid passage. Forming the inside of the housing to connect the two corresponding holes,
The manufacturing method of the cooling device characterized by including the above.
上記金属材料として銅材質を用いることを特徴とする請求項17記載の冷却装置の製造方法。   The method for manufacturing a cooling device according to claim 17, wherein a copper material is used as the metal material. 上記金属材料として銀材質を用いることを特徴とする請求項17記載の冷却装置の製造方法。   The method for manufacturing a cooling device according to claim 17, wherein a silver material is used as the metal material. 上記金属材料としてアルミ材質を用いることを特徴とする請求項17記載の冷却装置の製造方法。   18. The method for manufacturing a cooling device according to claim 17, wherein an aluminum material is used as the metal material. 上記金属材料として高熱伝導率の金属合金材質を用いることを特徴とする請求項17記載の冷却装置の製造方法。   18. The method for manufacturing a cooling device according to claim 17, wherein a metal alloy material having high thermal conductivity is used as the metal material. 上記正四面体構造の炭素としてダイヤモンドを用いることを特徴とする請求項17記載の冷却装置の製造方法。   18. The method for manufacturing a cooling device according to claim 17, wherein diamond is used as the carbon having the regular tetrahedral structure. 上記正四面体構造の炭素皮膜の製造方法として化学気相成長法を用いることを特徴とする請求項17記載の冷却装置の製造方法。   18. The method for manufacturing a cooling device according to claim 17, wherein a chemical vapor deposition method is used as a method for manufacturing the carbon film having the regular tetrahedral structure. 上記正四面体構造の炭素皮膜の製造方法として物理気相成長法を用いることを特徴とする請求項17記載の冷却装置の製造方法。   18. The method for manufacturing a cooling device according to claim 17, wherein a physical vapor deposition method is used as a method for manufacturing the carbon film having the regular tetrahedral structure. 上記成型体の製造方法として溶融材料によることを特徴とする請求項17記載の冷却装置の製造方法。   18. The method for manufacturing a cooling device according to claim 17, wherein the method for manufacturing the molded body is made of a molten material. 上記プレス成型法として金属射出成型法によることを特徴とする請求項17記載の冷却装置の製造方法。   18. The method for manufacturing a cooling device according to claim 17, wherein the press molding method is a metal injection molding method.
JP2006043032A 2005-03-02 2006-02-20 System for cooling semiconductor chip, and structure and manufacturing method of cooling device Pending JP2006245568A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94106354A TWI283052B (en) 2005-03-02 2005-03-02 Chip heat dissipation system and manufacturing method and structure of heat dissipation device thereof

Publications (1)

Publication Number Publication Date
JP2006245568A true JP2006245568A (en) 2006-09-14

Family

ID=36848285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043032A Pending JP2006245568A (en) 2005-03-02 2006-02-20 System for cooling semiconductor chip, and structure and manufacturing method of cooling device

Country Status (3)

Country Link
JP (1) JP2006245568A (en)
DE (1) DE102006004636A1 (en)
TW (1) TWI283052B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114276A (en) * 2009-11-30 2011-06-09 T Rad Co Ltd Heatsink
CN110798965A (en) * 2019-11-13 2020-02-14 重庆大学 Controllable active fluid heat dissipation system of electronic component integrated on PCB

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080298021A1 (en) * 2007-05-31 2008-12-04 Ali Ihab A Notebook computer with hybrid diamond heat spreader
EP2056345A1 (en) * 2007-11-02 2009-05-06 Plansee Se Heat sink module for electronic components or circuits and method for its manufacture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126870A (en) * 1997-10-21 1999-05-11 Denso Corp Heat sink with integrated fin and production thereof
JP2001024372A (en) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd Cooling device and electronic equipment using the same
JP2001339022A (en) * 1999-12-24 2001-12-07 Ngk Insulators Ltd Heat sink material and its manufacturing method
WO2004080914A1 (en) * 2003-03-11 2004-09-23 Plansee Aktiengesellschaft Heat sink having a high thermal conductivity
JP2005045003A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Radiator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126870A (en) * 1997-10-21 1999-05-11 Denso Corp Heat sink with integrated fin and production thereof
JP2001024372A (en) * 1999-07-12 2001-01-26 Matsushita Electric Ind Co Ltd Cooling device and electronic equipment using the same
JP2001339022A (en) * 1999-12-24 2001-12-07 Ngk Insulators Ltd Heat sink material and its manufacturing method
WO2004080914A1 (en) * 2003-03-11 2004-09-23 Plansee Aktiengesellschaft Heat sink having a high thermal conductivity
JP2005045003A (en) * 2003-07-22 2005-02-17 Matsushita Electric Ind Co Ltd Radiator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011114276A (en) * 2009-11-30 2011-06-09 T Rad Co Ltd Heatsink
CN110798965A (en) * 2019-11-13 2020-02-14 重庆大学 Controllable active fluid heat dissipation system of electronic component integrated on PCB

Also Published As

Publication number Publication date
TW200633164A (en) 2006-09-16
TWI283052B (en) 2007-06-21
DE102006004636A1 (en) 2006-09-07

Similar Documents

Publication Publication Date Title
WO2016173286A1 (en) Liquid cooling radiator and electronic device
TW200836596A (en) Methods and devices for cooling printed circuit boards
JP2006245577A (en) Forced air-cooling chip cooler and its manufacturing process
JP2006245568A (en) System for cooling semiconductor chip, and structure and manufacturing method of cooling device
TW202124899A (en) Heat dissipating device
JP2004207690A (en) Heat sink made of resin material
JP2006245560A (en) Structure of heat dissipation fin and its manufacturing process
JP2006270068A (en) Semiconductor chip cooling system, structure and manufacturing method of heat exchange device for the same
CN206471326U (en) A kind of liquid-cooling heat radiator
JP2006229220A (en) Cooling structure for semiconductor device or like, and manufacturing method for same
JP3113254U (en) heat pipe
TWM609021U (en) Liquid cooling heat dissipation device and liquid cooling heat dissipation system with the same
JP2007273930A (en) Cooling member
US20070199679A1 (en) Chip Heat Dissipation System and Manufacturing Method and Structure of Heat Dissipation Device Thereof
CN104934278B (en) The efficient cooling means of liquid metal and device of EUV light source sparking electrode
US20070201207A1 (en) Chip Heat Dissipation System and Structure of Heat Exchange Device and Manufacturing Method Thereof
Qi et al. Numerical investigation on submerged jet cooling for avionics devices
JP2007294785A (en) Heat transfer element aggregate member
US20070199677A1 (en) Heat Sink Fin Structure and Manufacturing Method Thereof
JP2006245569A (en) Heat dissipation conduit structure for semiconductor chip and its production process
WO2023276940A1 (en) Thermal device cooling heat sink
JP2005024107A (en) Heat exchanger and method of manufacturing the same
TWI837610B (en) Devices of drawing out surface heat of electronic components
JP2006245570A (en) Heat dissipation conduit structure for cooling device such as semiconductor chip and its production process
TW519865B (en) High efficiency heat sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Effective date: 20100803

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100812

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110418

Free format text: JAPANESE INTERMEDIATE CODE: A02