JP2006242895A - 電波誘導装置 - Google Patents

電波誘導装置 Download PDF

Info

Publication number
JP2006242895A
JP2006242895A JP2005062482A JP2005062482A JP2006242895A JP 2006242895 A JP2006242895 A JP 2006242895A JP 2005062482 A JP2005062482 A JP 2005062482A JP 2005062482 A JP2005062482 A JP 2005062482A JP 2006242895 A JP2006242895 A JP 2006242895A
Authority
JP
Japan
Prior art keywords
signal
processing unit
fourier transform
receiver
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005062482A
Other languages
English (en)
Other versions
JP4723880B2 (ja
Inventor
Shoichiro Adachi
正一郎 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005062482A priority Critical patent/JP4723880B2/ja
Publication of JP2006242895A publication Critical patent/JP2006242895A/ja
Application granted granted Critical
Publication of JP4723880B2 publication Critical patent/JP4723880B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】MTIによるクラッタ抑圧を行うことなく高いSN比で瞬時にしか出現しない目標を検出でき、2チャンネルの信号で測角できる電波誘導装置を提供する。
【解決手段】受信器3からの受信信号を処理する信号処理器7は、受信信号のパルス繰り返し期間毎にサンプルしたデータ列を高速フーリエ変換する高速フーリエ変換処理部71a、71bと、高速フーリエ変換処理部において得られた周波数領域の信号のうちの所定の周波数帯域以外をゼロ埋めした後にフーリエ逆変換して出力する帯域制限高速フーリエ逆変換処理部72a、72bと、帯域制限高速フーリエ逆変換処理部から出力された時間領域の信号の最大値およびその前後の複数点の信号を短時間フーリエ変換によりコヒーレント積分する短時間フーリエ変換処理部73a、73bと、短時間フーリエ変換処理部において得られた信号に基づき目標検出および測角を行う目標検出測角処理部74とを備える。
【選択図】図1

Description

本発明は、クラッタ環境下で、例えばヘリコプタのブレード信号のような非定常信号を検出することにより目標を検出する電波誘導装置に関し、特に、目標検出時の信号対ノイズ比(SN比)を向上させる技術に関する。
従来、電波誘導シーカ装置や移動体搭載用レーダ装置といった、クラッタ環境下で高速移動しながら目標を検出する電波誘導装置が知られている。図23は、このような電波誘導装置の構成を示すブロック図である。この電波誘導装置は、アンテナ1、送信器2、受信器3、信号処理器4および速度検出器5から構成されている。
アンテナ1は、アンテナ素子111〜11N、送受信モジュール121〜12Nおよび給電回路13から構成されている。アンテナ素子111〜11Nは、送受信モジュール121〜12Nから送られてくる高周波信号を空中に向けてそれぞれ放射するとともに、空中からの信号、つまり目標からの反射波を受信し、送受信モジュール121〜12Nにそれぞれ送る。
送受信モジュール121〜12Nは、給電回路13から送られてくる信号の位相を調整して高周波送信信号に変換し、さらに増幅してアンテナ素子111〜11Nにそれぞれ送る。また、送受信モジュール121〜12Nは、アンテナ素子111〜11Nから送られてくる高周波受信信号を増幅し、さらに位相を調整して中間周波信号に変換し、給電回路13に送る。
給電回路13は、送信器2から送られてくる送信信号をN個に電力分配して送受信モジュール121〜12Nに送る。また、給電回路13は、送受信モジュール121〜12Nから送られてくる信号を合成し、受信信号として受信器3に送る。
送信機2は、送信信号を生成してアンテナ1の給電回路13に送る。受信器3は、アンテナ1の給電回路13から送られてくる受信信号を周波数変換し、さらにデジタル信号に変換する。受信器3において得られたデジタル信号は、受信デジタル信号として信号処理器4に送られる。速度検出器5は、自己の移動速度を検出する。速度検出器5で検出された速度は、速度信号として信号処理器4に送られる。
信号処理器4は、MTI(Moving Target Indicator;移動目標検出)処理部41、DFT(Discrete Fourier Transformation;離散フーリエ変換)処理部42、目標検出測角処理部43およびMTIノッチ位置演算処理部44から構成されている。MTIノッチ位置演算処理部44は、速度検出器5から送られてくる速度信号に基づいてノッチ位置を検出し、ノッチ位置信号としてMTI処理部41に送る。
MTI処理部41は、MTIノッチ位置演算処理部44から送られてくるノッチ位置信号に基づいて、受信器3から送られてくる受信デジタル信号のうちの所定範囲を選択し、選択した範囲の受信デジタル信号に含まれるクラッタを抑圧する。クラッタの抑圧は、目標のドップラ周波数と目標以外のクラッタからの反射信号のドップラ周波数との違いを利用して行われる。MTI処理部41においてクラッタが抑圧された信号は、DFT処理部42に送られる。
DFT処理部42は、ドップラ周波数の異なる目標を分離検出するために、MTI処理部41から送られてくる信号に対し、パルス繰り返し周期(PRI:Pulse Repetition Interval)単位で離散フーリエ変換処理を行い、その結果を目標検出測角処理部43に送る。なお、DFT処理部42の代わりに、STFT(Short Time Fourier Transform;短時間フーリエ変換)処理部が採用される場合もある。
目標検出測角処理部43は、DFT処理部42から送られてくる信号の最大値に基づき目標検出処理および測角処理を実行する。この目標検出測角処理部43における目標検出の結果および測角の結果は、目標情報として外部に送出される。
以上のように構成される従来の電波誘導装置では、クラッタ環境下で、例えばホバリングヘリコプタのブレード信号を検出することにより目標を検出する場合のように、目標が瞬時にしか出現しない場合には、DFTまたはSTFTを実施し、この際、瞬時にしか存在しない信号に対するヒット数を増加させるとともに熱雑音を増加させないようにヒット数を選定し、目標を検出することが行われている。
また、クラッタが強い場合には、クラッタを抑圧するために、数パルスのMTIとDFT(またはSTFT)とを組み合わせることが行われている。移動体に搭載されたレーダ装置のMTIクラッタ抑圧性能は、非特許文献1に示されているように、移動体の移動速度およびPRIに比例し、アンテナ開口に反比例して低下する。
MERRILL I. SKOLNIK、"RADAR HANDBOOK"、McGRAW-HILL(1990)、pp.16.6−16.8
上述した従来の電波誘導装置では、自己の移動速度が速く、速度変化も大きく、かつアンテナ開口が小さい場合には、上述した非特許文献1に示されるように、MTIによるクラッタ抑圧効果が不十分であるため、MTIと組み合わせてDFTまたはSTFTを使用することができないという問題がある。
また、目標検出後の測角処理においては、アンテナから得られる和信号、方位角方向の差信号および仰角方向の差信号といった3チャンネルの信号が使用されていたが、装置の構成の簡単化および低価格化の要請から、PRI毎のデータ列の全期間にわたる和信号、および、PRI毎のデータ列の前半が方位角方向の差信号から成り後半が仰角方向の差信号からなる信号といった2チャンネルの信号が使用されるように構成されている。従って、目標が瞬時にしか出現しない場合は、2チャンネルの信号によっては、方位角方向の差信号および仰角方向の差信号の何れかを得ることができない状態が発生し、測角できないという問題がある。
本発明は、このような問題を解消するためになされたものであり、MTIによるクラッタ抑圧を行うことなく高いSN比で瞬時にしか出現しない目標を検出でき、また、2チャンネルの信号で測角を行うことができる電波誘導装置を提供することを課題とする。
第1の発明に係る電波誘導装置は、上記課題を達成するために、アンテナからの信号を受信する受信器と、前記受信器から送られてくる受信信号を処理する信号処理器とを備え、前記信号処理器は、前記受信器から送られてくる受信信号のパルス繰り返し毎にサンプルしたデータ列を高速フーリエ変換する高速フーリエ変換処理部と、前記高速フーリエ変換処理部において得られた周波数領域の信号のうちの所定の周波数帯域以外をゼロ埋めした後にフーリエ逆変換して出力する帯域制限高速フーリエ逆変換処理部と、前記帯域制限高速フーリエ逆変換処理部から出力された時間領域の信号の最大値およびその前後の複数点の信号を短時間フーリエ変換によりコヒーレント積分する短時間フーリエ変換処理部と、前記短時間フーリエ変換処理部において得られた信号に基づき目標検出および測角を行う目標検出測角処理部とを備えることを特徴とする。
また、第2の発明に係る電波誘導装置は、第1の発明に係る電波誘導装置において、前記帯域制限高速フーリエ逆変換処理部は、予め想定された複数の目標の各々の特徴に適応する複数の周波数帯域について、前記高速フーリエ変換処理部において得られた周波数領域の信号のうちの該周波数帯域以外をゼロ埋めした後にフーリエ逆変換して複数の時間領域の信号を生成し、生成された複数の時間領域の信号を用いてよりSN比を大きくした信号を出力することを特徴とする。
また、第3の発明に係る電波誘導装置は、アンテナからの信号を受信する受信器と、前記受信器から送られてくる受信信号を処理する信号処理器とを備え、前記信号処理器は、前記受信器から送られてくる受信信号のパルス繰り返し期間毎にサンプルしたデータ列をフィルタ演算することによりクラッタを抑圧するフィルタ処理部と、前記フィルタ処理部でクラッタが抑圧された信号の最大値およびその前後の複数点の信号を短時間フーリエ変換により波形積分する短時間フーリエ変換処理部と、前記短時間フーリエ変換処理部において得られた信号に基づき目標検出および測角を行う目標検出測角処理部とを備えることを特徴とする。
また、第4の発明に係る電波誘導装置は、第1〜第3の発明に係る電波誘導装置の何れかにおいて、前記アンテナから得られた方位角方向の差信号と仰角方向の差信号とをパルス繰り返し周期で交互に選択して差信号として出力するスイッチを備え、前記受信器は、前記アンテナから送られてくる和信号および前記スイッチから出力される差信号を受信信号として前記信号処理器に送ることを特徴とする。
第1の発明に係る電波誘導装置によれば、受信信号を高速フーリエ変換と帯域制限高速フーリエ逆変換により、クラッタを抑圧すると同時に、複数バンクに広がった信号を積分することで信号エネルギーを集め、かつ帯域制限することにより雑音を低減し、時間領域の信号を短時間フーリエ変換によってコヒーレント積分することによりSN比を向上させるように構成したので、瞬時にしか出現しない目標であっても、MTIによるクラッタ抑圧を行うことなく高いSN比で目標を検出できる。
また、第2の発明に係る電波誘導装置によれば、帯域制限高速フーリエ逆変換処理部は、予め想定された複数の目標の各々の特徴に適応する複数の周波数帯域について、該周波数帯域以外をゼロ埋めした後にフーリエ逆変換して複数の時間領域の信号を生成し、その信号を用いてよりSN比を大きくした信号を出力するように構成したので、対象とする目標に対して、より強い相関をもった検出が可能になる。
また、第3の発明に係る電波誘導装置によれば、受信信号にフィルタ演算を施すことにより、クラッタおよび雑音を除去し、このフィルタ演算が施された信号を短時間フーリエ変換によりコヒーレント積分することによりSN比を向上させるように構成したので、瞬時にしか出現しない目標であっても、MTIによるクラッタ抑圧を行うことなく高いSN比で検出できる。
また、第4の発明に係る電波誘導装置によれば、アンテナから得られた方位角方向の差信号と仰角方向の差信号とがパルス繰り返し周期で交互に出力される差信号と和信号といった2つの信号を信号処理器に送るように構成したので、瞬時にしか出現しない非定常信号に対して2チャンネルでの測角処理が可能になる。
以下、本発明の実施例に係る電波誘導装置を、図面を参照しながら詳細に説明する。
図1は、本発明の実施例に係る電波誘導装置の構成を示すブロック図である。この電波誘導装置は、アンテナ1、送信器2、受信器3、速度検出器5、スイッチ6および信号処理器7から構成されている。
アンテナ1は、アンテナ素子111〜11N、送受信モジュール121〜12Nおよび給電回路13から構成されている。アンテナ素子111〜11Nは、送受信モジュール121〜12Nから送られてくる高周波信号を空中に向けてそれぞれ放射するとともに、空中からの信号、つまり目標からの反射波を受信し、送受信モジュール121〜12Nにそれぞれ送る。
送受信モジュール121〜12Nは、給電回路13から送られてくる信号の位相を調整して高周波送信信号に変換し、さらに増幅してアンテナ素子111〜11Nにそれぞれ送る。また、送受信モジュール121〜12Nは、アンテナ素子111〜11Nから送られてくる高周波受信信号を増幅し、さらに位相を調整して中間周波信号に変換し、受信信号として給電回路13に送る。
給電回路13は、送信器2から送られてくる送信信号をN個に電力分配して送受信モジュール121〜12Nに送る。また、給電回路13は、送受信モジュール121〜12Nから送られてくる受信信号に基づき、和信号Σを生成して受信器3に送るとともに、方位角方向の差信号ΔAZおよび仰角方向の差信号ΔELを生成してスイッチ6に送る。
スイッチ6は、アンテナ1から入力端子aに送られてくる差信号ΔAZおよびアンテナ1から入力端子bに送られてくる差信号ΔELの何れかを、信号処理器7から送られてくるスイッチ制御信号に従って交互に選択し、共通端子cから出力する。スイッチ制御信号は、後述するように、PRI毎に変化する。従って、スイッチ6からは、差信号ΔAZと差信号ΔELとがPRI毎に切り替えられた(タイムシェアされた)信号が出力される。このスイッチ6の出力は、差信号Δとして受信器3に送られる。
送信機2は、送信信号を生成してアンテナ1の給電回路13に送る。受信器3は、アンテナ1の給電回路13から送られてくる和信号Σおよびスイッチ6から送られてくる差信号Δを周波数変換し、さらにデジタル信号に変換する。この受信器3において周波数変換されたデジタルの和信号Σおよび差信号Δは、信号処理器4に送られる。この構成により、受信器3より後段の回路では、和信号Σおよび差信号Δといった2チャンネルの信号を処理することにより目標検出および測角を行うことができるので、和信号Σ、差信号ΔAZおよび差信号ΔELといった3チャンネルの信号を処理する必要がある従来の電波誘導装置に較べて構成を簡単化でき、また低コスト化が可能になっている。
速度検出器5は、自己の移動速度を検出する。この速度検出器5で検出された速度は、速度信号として信号処理器4に送られる。
本発明の高速フーリエ変換処理部は、第1FFT処理部71aおよび第2FFT処理部71bから構成され、帯域制限高速フーリエ逆変換処理部は、第1帯域制限IFFT処理部72aおよび第2帯域制限IFFT処理部72bから構成され、短時間フーリエ変換処理部は、第1STFT73aおよび第2STFT処理部73bから構成されている。
第1FFT処理部71aは、受信器3から送られてくる、PRI毎にサンプリングされた複数個のデータ列からなる和信号Σを、窓関数付で高速フーリエ変換する。この第1FFT処理部71aにおける高速フーリエ変換によって得られた周波数領域の信号は、第1帯域制限IFFT処理部72aに送られる。
同様に、第2FFT処理部71bは、スイッチ6から送られてくる、PRI毎にサンプリングされた複数個のデータ列からなる差信号Δを、窓関数付で高速フーリエ変換する。この第2FFT処理部71bにおける高速フーリエ変換によって得られた周波数領域の信号は、第2帯域制限IFFT処理部72bに送られる。
第1帯域制限IFFT処理部72aは、第1FFT処理部71aから送られてきた周波数領域の信号のうち、所定の周波数帯域以外の部分をゼロ埋め(ゼロフィル)することにより帯域制限する。この際、受信信号の周波数は、自己の移動に起因してドップラ周波数だけ移動しているので、帯域制限された信号に対して、速度検出器5から送られてくる速度信号に応じたオフセットが与えられる。その後、第1帯域制限IFFT処理部72aは、帯域制限された信号を高速フーリエ逆変換して時間領域の信号に戻す。この第1帯域制限IFFT処理部72aにおいて得られた時間領域の信号は、第1STFT処理部73aに送られる。
同様に、第2帯域制限IFFT処理部72bは、第2FFT処理部71bから送られてきた周波数領域の信号のうち、所定の周波数帯域以外の部分をゼロ埋めすることにより帯域制限する。この際、受信信号の周波数は、自己の移動に起因してドップラ周波数だけ移動しているので、帯域制限された信号に対して、速度検出器5から送られてくる速度信号に応じたオフセットが与えられる。その後、第2帯域制限IFFT処理部72bは、帯域制限された信号を高速フーリエ逆変換して時間領域の信号に戻す。この第1帯域制限IFFT処理部72bにおいて得られた時間領域の信号は、第2STFT処理部73bに送られる。
第1STFT処理部73aは、第1帯域制限IFFT処理部72aから送られてきた時間領域の信号に対し、短時間フーリエ変換を実行する。より詳しくは、第1STFT処理部73aは、第1帯域制限IFFT処理部72aから送られてくる信号のピーク値を中心とする前後の数点の信号を短時間フーリエ変換により波形積分する。この第1STFT処理部73aにおける短時間フーリエ変換により得られた信号は、目標検出測角処理部74に送られる。
同様に、第2STFT処理部73bは、第2帯域制限IFFT処理部72bから送られてきた時間領域の信号に対し、短時間フーリエ変換を実行する。より詳しくは、第2STFT処理部73bは、第2帯域制限IFFT処理部72bから送られてくる信号のピーク値を中心とする前後の数点の信号を短時間フーリエ変換により波形積分する。この第2STFT処理部73bにおける短時間フーリエ変換により得られた信号は、目標検出測角処理部74に送られる。
目標検出測角処理部74は、第1STFT処理部73aおよび第2STFT処理部73bから送られてくる信号に基づき、目標検出処理および測角処理を実行する。この目標検出測角処理部74における目標検出処理の結果および測角処理の結果は、目標情報として外部に送出される。
タイミング制御部75は、PRI毎に変化するスイッチ制御信号を生成し、スイッチ6に送る。これにより、上述したように、スイッチ6から、差信号ΔAZと差信号ΔELとがPRI毎に切り替えられた差信号Δが出力され、受信器3に送られる。
次に、上記のように構成される実施例1に係る電波誘導装置の動作を、電波誘導装置を実際に動作させて取得したデータを用いて説明する。以下の説明で使用する取得データは、PRI=6.5μs毎に2048点サンプルした和信号Σのデータである。また、データの取得は地上に固定した電波誘導装置を用いて行ったので、自己の移動速度は0m/sである。
図2は、受信器3から得られた和信号Σのデータ列(2048サンプル)を示す。このデータ列が第1FFT処理部71aに送られる。第1FFT処理部71aは、2048個のデータ列からなる和信号Σを、窓関数付で高速フーリエ変換する。図3は、Blackman窓関数を用いて高速フーリエ変換した結果を示す。ここで、抽出したい信号はヘリコプタのブレード信号である。
なお、実測は、ホバリングしているヘリコプタではなく、微速で移動しているのでヘリコプタに対して行ったので、図3では、その胴体から反射された胴体信号に対応する波形も出現しているが、ホバリングしているヘリコプタの場合は、胴体信号に対応する波形は出現しない。ヘリコプタのブレード信号は、その特性に応じた周波数帯域で、周波数方向の広がりを有する。このブレード信号からさらに高い周波数の領域に広がっている信号はノイズである。第1FFT処理部71aにおいて得られた信号は、第1帯域制限IFFT処理部72aに送られる。
第1帯域制限IFFT処理部72aでは、図4に示すように、第1FFT処理部71aから送られてきた信号のうち、ブレード信号に対応する周波数帯域以外の部分がゼロ埋めされて帯域制限される。
なお、自己の移動速度は0m/sであるので、ドップラ効果による周波数の移動は存在せず、オフセットはゼロである。その後、高速フーリエ逆変換が行われる。これにより、図5に示すような、抽出したブレード信号に対応する位置にピークを有する時間領域の信号が得られる。第1帯域制限IFFT処理部72aにおいて得られた時間領域の信号は、第1STFT処理部73aに送られる。
第1STFT処理部73aでは、図6に示すような、第1帯域制限IFFT処理部72aから送られてきた信号のピーク値を中心とする前後の4点、合計8点に対して短時間フーリエ変換を実行する。図7は、第1STFT処理部73aにおける短時間フーリエ変換により得られた信号を示す。この短時間フーリエ変換により、周波数方向に拡がったヘリコプタからの反射信号のS/N比を改善することができる。この第1STFT処理部73aにおいてり得られた結果は、目標検出測角処理部74に送られる。
受信器3から得られる差信号Δについても、第2FFT処理部71b、第2帯域制限IFFT処理部72bおよび第1STFT処理部73bにおいて、上述した処理と同様の処理が行われる。そして、第2STFT処理部73bにおいて得られた結果は、目標検出測角処理部74に送られる。目標検出測角処理部74では、第1STFT処理部73aから得られる信号に基づき目標検出が行われるとともに、第1STFT処理部73aから得られる信号および第2STFT処理部73bから得られる信号に基づき測角処理が行われ、これらの処理結果が目標情報として出力される。
以上説明したように、本発明の実施例1に係る電波誘導装置によれば、第1帯域制限IFFT処理部72aおよび第2帯域制限IFFT処理部72bから出力される信号によって目標検出および測角を行うこともできるが、さらに、第1STFT処理部73aおよび第2STFT処理部73bにおいて短時間フーリエ変換を行うことにより、周波数方向に拡がったヘリコプタからの反射信号のS/N比を改善するように構成したので、MTIを使用しない場合でも、瞬時にしか出現しない目標に対してクラッタを抑圧し、目標を可能な限り高いS/N比で検出し測角できる。特に、自己の移動速度が速く、速度変化も大きく、且つアンテナ開口が小さい場合に対して、その効果が大である。
また、アンテナ1から得られた方位角方向の差信号と仰角方向の差信号とをパルス繰り返し周期で交互に選択して差信号として出力するスイッチ6を備え、受信器3は、アンテナから送られてくる和信号およびスイッチから出力される差信号を受信信号として信号処理器7に送るように構成したので、瞬時にしか出現しない非定常信号に対して2チャンネルでの測角処理が可能になる。
なお、上述した実施例1では、第1帯域制限IFFT処理部72aおよび第2帯域制限IFFT処理部72bにおいて、所定の周波数帯域以外の信号をゼロ埋めした後にフーリエ逆変換して出力するように構成したが、第1帯域制限IFFT処理部72aおよび第2帯域制限IFFT処理部72bは、予め想定された複数の目標の各々の特徴に適応する複数の周波数帯域について、第1高速フーリエ変換処理部71aおよび第2高速フーリエ変換処理部71bにおいて得られた周波数領域の信号のうちの該周波数帯域以外をゼロ埋めした後にフーリエ逆変換して複数の時間領域の信号を生成し、生成された複数の時間領域の信号を用いてよりSN比を大きくした信号を出力するように構成できる。このような構成によれば、対象とする目標に対して、より強い相関をもった検出が可能になる。
本発明の実施例2に係る電波誘導装置は、非定常信号の検出をデジタルフィルタで行うように構成したものである。
図8は、本発明の実施例2に係る電波誘導装置の構成を示すブロック図である。この電波誘導装置は、信号処理器8の構成のみが、実施例1に係る電波誘導装置と異なる。以下では、実施例1に係る電波誘導装置の構成と同一部分には同一の符号を付して説明を省略または簡略化し、相違する部分を中心に説明する。
信号処理器8は、第1デジタルフィルタ処理部81a、第2デジタルフィルタ処理部81b、フィルタ係数メモリ82、第1STFT処理部73a、第2STFT処理部73b、目標検出測角処理部74およびタイミング制御部75から構成されている。
第1デジタルフィルタ処理部81aは、受信器3から送られてくる、PRI毎にサンプリングされた複数個のデータ列からなる和信号Σに対してフィルタ演算処理を施すことによりクラッタを抑圧する。この第1デジタルフィルタ処理部81aにおけるフィルタ演算処理によってクラッタが抑圧された信号は、第1STFT処理部73aに送られる。
同様に、第2デジタルフィルタ処理部81bは、スイッチ6から送られてくる、PRI毎にサンプリングされた複数の個のデータ列からなる差信号Δをフィルタ演算処理することによりクラッタを抑圧する。この第2デジタルフィルタ処理部81bにおけるフィルタ演算処理によってクラッタが抑圧された信号は、第2STFT処理部73bに送られる。
図9は、第1デジタルフィルタ処理部81aおよび第2デジタルフィルタ処理部81bを構成するデジタルフィルタの詳細な回路構成を示す図である。このデジタルフィルタは、楕円関数型のIIR(Infinite Impulse Response Filter)フィルタから構成されており、16段の単位遅延素子(Z-1)、各単位遅延素子の出力を入力側の加算器にフィードバックする16個の係数アンプa1〜a16および各単位遅延素子の出力を出力側の加算器に送る16個の係数アンプb1〜b16を備える。
フィルタ係数データメモリ82は、複数の速度に対応する複数のフィルタ係数セットを予め記憶している。このフィルタ係数データメモリ82からは、速度検出器5から送られてくる速度信号に対応するフィルタ係数セットが読み出され、第1デジタルフィルタ処理部81aおよび第2デジタルフィルタ処理部81bに送られる。これにより、フィルタ係数セットの切り換えが行われる。
ここで、自己の速度に対応したフィルタ係数セットについて説明する。例えば自己の速度が100m/sから800m/sまで変化し、送信周波数を6GHzとすれば、速度とドップラ周波数の関係は図10のようになる。今、100m/s毎にフィルタ係数セットを用意すると8セットが必要になる。100m/s毎のドップラ周波数オフセットは4kHzであるので、フィルタ係数データメモリ82には、自己の移動速度に対応してフィルタ応答が図12〜図19に示す形状となるようなフィルタ係数セットが記憶される。
具体的には、図12は、自己の移動速度が100m/sの場合のフィルタ係数によって実現されるフィルタ応答を示す図である。図13は、自己の移動速度が200m/sの場合のフィルタ係数によって実現されるフィルタ応答を示す図である。図14は、自己の移動速度が300m/sの場合のフィルタ係数によって実現されるフィルタ応答を示す図である。図15は、自己の移動速度が400m/sの場合のフィルタ係数によって実現されるフィルタ応答を示す図である。図16は、自己の移動速度が500m/sの場合のフィルタ係数によって実現されるフィルタ応答を示す図である。図17は、自己の移動速度が600m/sの場合のフィルタ係数によって実現されるフィルタ応答を示す図である。図18は、自己の移動速度が700m/sの場合のフィルタ係数によって実現されるフィルタ応答を示す図である。図19は、自己の移動速度が800m/sの場合のフィルタ係数によって実現されるフィルタ応答を示す図である。
図11は、上記フィルタ応答を実現するために、フィルタ係数データメモリ82に記憶されるフィルタ係数セットの一例を示す。各フィルタ係数セットにより形成されるフィルタは、その通過帯域幅は変わらず、中心周波数がオフセットして行く。
次に、上記のように構成される実施例2に係る電波誘導装置の動作を、電波誘導装置を実際に動作させて取得したデータを用いて説明する。以下の説明で使用する取得データは、PRI=6.5μs毎に2048点サンプルした和信号Σのデータである。また、データの取得は地上に固定した電波誘導装置を用いて行ったので、自己の移動速度は0m/sである。
実施例1に係る電波誘導装置と同様に、受信器3からは、図2に示すような和信号Σのデータ列(2048サンプル)が得られる。このデータ列が第1デジタルフィルタ処理部81aに送られる。第1デジタルフィルタ処理部81aは、2048個のデータ列からなる和信号Σ入力対してデジタルフィルタ演算を行う。図20は、第1デジタルフィルタ処理部81aにおけるフィルタ演算の結果を示し、図21は、このフィルタ演算に使用したフィルタ応答を示す。このようにして、第1デジタルフィルタ処理部81aにおいて得られた信号は、第1STFT処理部73aに送られる。
第1STFT処理部73aでは、第1デジタルフィルタ処理部81aから送られてきた信号のピーク値を中心とする前後の4点、合計8点に対して短時間フーリエ変換を実行して波形積分を行う。図22は、第1STFT処理部73aにおける短時間フーリエ変換により得られた信号を示す。この短時間フーリエ変換により、周波数方向に拡がったヘリコプタからの反射信号のS/N比を改善することができる。この第1STFT処理部73aにおいてり得られた結果は、目標検出測角処理部74に送られる。
受信器3から得られる差信号Δについても、第2デジタルフィルタ処理部81bおよび第1STFT処理部73bにおいて、上述した処理と同様の処理が行われる。そして、第2STFT処理部73bにおいて得られた結果は、目標検出測角処理部74に送られる。目標検出測角処理部74では、第1STFT処理部73aから得られる信号に基づき目標検出が行われるとともに、第1STFT処理部73aから得られる信号および第2STFT処理部73bから得られる信号に基づき測角処理が行われ、これらの処理結果が目標情報として出力される。
以上説明したように、本発明の実施例2に係る電波誘導装置によれば、受信信号にフィルタ演算を施すことにより、クラッタおよび雑音を除去し、このフィルタ演算が施された信号を短時間フーリエ変換によりコヒーレント積分することによりSN比を向上させるように構成したので、瞬時にしか出現しない目標であっても、MTIによるクラッタ抑圧を行うことなく高いSN比で検出できる。
本発明は、クラッタ環境下で、例えばヘリコプタのブレード信号のような非定常信号を検出することにより目標を検出するレーダ装置全般に適用することができる。
本発明の実施例1に係る電波誘導装置の構成を示すブロック図である。 本発明の実施例1に係る電波誘導装置において受信器から得られるデータ列の例を示す図である。 本発明の実施例1に係る電波誘導装置においてBlackman窓関数を用いて高速フーリエ変換した結果を示す図である。 本発明の実施例1に係る電波誘導装置において行われる、ゼロ埋めによる帯域制限を説明するための図である。 本発明の実施例1に係る電波誘導装置において帯域制限高速フーリエ逆変換処理を行った結果を示す図である。 本発明の実施例1に係る電波誘導装置において短時間フーリエ変換に使用される信号を説明するための図である。 本発明の実施例1に係る電波誘導装置において短時間フーリエ変換処理を行った結果を示す図である。 本発明の実施例2に係る電波誘導装置の構成を示すブロック図である。 本発明の実施例2に係る電波誘導装置で使用されるデジタルフィルタの詳細な回路構成を示す図である。 自己の移動速度とドップラ周波数の関係を示す図である。 本発明の実施例2に係る電波誘導装置で使用されるデジタルフィルタ係数の例を示す図である。 本発明の実施例2に係る電波誘導装置において自己の移動速度が100m/sの場合のフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置において自己の移動速度が200m/sの場合のフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置において自己の移動速度が300m/sの場合のフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置において自己の移動速度が400m/sの場合のフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置において自己の移動速度が500m/sの場合のフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置において自己の移動速度が600m/sの場合のフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置において自己の移動速度が700m/sの場合のフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置において自己の移動速度が800m/sの場合のフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置におけるデジタルフィルタ演算の結果を示す図である。 本発明の実施例2に係る電波誘導装置におけるデジタルフィルタ応答を示す図である。 本発明の実施例2に係る電波誘導装置において短時間フーリエ変換処理を行った結果を示す図である。 従来の電波誘導装置の構成を示すブロック図である。
符号の説明
1 アンテナ
2 送信機
3 受信器
5 速度検出器
6 スイッチ
7、8 信号処理器
111〜11N アンテナ素子
121〜12N 送受信モジュール
13 給電回路
71a 第1FFT処理部
71b 第2FFT処理部
72a 第1帯域制限IFFT処理部
72a 第2帯域制限IFFT処理部
73a 第1STFT処理部
73b 第2STFT処理部
74 目標検出測角処理部
75 タイミング制御部
81a 第1デジタルフィルタ処理部
81b 第2デジタルフィルタ処理部
82 フィルタ係数データメモリ

Claims (4)

  1. アンテナからの信号を受信する受信器と、
    前記受信器から送られてくる受信信号を処理する信号処理器とを備え、
    前記信号処理器は、
    前記受信器から送られてくる受信信号のパルス繰り返し期間毎にサンプルしたデータ列を高速フーリエ変換する高速フーリエ変換処理部と、
    前記高速フーリエ変換処理部において得られた周波数領域の信号のうちの所定の周波数帯域以外をゼロ埋めした後にフーリエ逆変換して出力する帯域制限高速フーリエ逆変換処理部と、
    前記帯域制限高速フーリエ逆変換処理部から出力された時間領域の信号の最大値およびその前後の複数点の信号を短時間フーリエ変換によりコヒーレント積分する短時間フーリエ変換処理部と、
    前記短時間フーリエ変換処理部において得られた信号に基づき目標検出および測角を行う目標検出測角処理部と、
    を備えることを特徴とする電波誘導装置。
  2. 前記帯域制限高速フーリエ逆変換処理部は、予め想定された複数の目標の各々の特徴に適応する複数の周波数帯域について、前記高速フーリエ変換処理部において得られた周波数領域の信号のうちの該周波数帯域以外をゼロ埋めした後にフーリエ逆変換して複数の時間領域の信号を生成し、生成された複数の時間領域の信号を用いて、よりSN比を大きくした信号を出力することを特徴とする請求項1記載の電波誘導装置。
  3. アンテナからの信号を受信する受信器と、
    前記受信器から送られてくる受信信号を処理する信号処理器とを備え、
    前記信号処理器は、
    前記受信器から送られてくる受信信号のパルス繰り返し期間毎にサンプルしたデータ列をフィルタ演算することによりクラッタを抑圧するフィルタ処理部と、
    前記フィルタ処理部でクラッタが抑圧された信号の最大値およびその前後の複数点の信号を短時間フーリエ変換によりコヒーレント積分する短時間フーリエ変換処理部と、
    前記短時間フーリエ変換処理部において得られた信号に基づき目標検出および測角を行う目標検出測角処理部と、
    を備えることを特徴とする電波誘導装置。
  4. 前記アンテナから得られた方位角方向の差信号と仰角方向の差信号とをパルス繰り返し周期で交互に選択して差信号として出力するスイッチを備え、
    前記受信器は、前記アンテナから送られてくる和信号および前記スイッチから出力される差信号を受信信号として前記信号処理器に送ることを特徴とする請求項1乃至請求項3の何れか1項記載の電波誘導装置。

JP2005062482A 2005-03-07 2005-03-07 電波誘導装置 Active JP4723880B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005062482A JP4723880B2 (ja) 2005-03-07 2005-03-07 電波誘導装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062482A JP4723880B2 (ja) 2005-03-07 2005-03-07 電波誘導装置

Publications (2)

Publication Number Publication Date
JP2006242895A true JP2006242895A (ja) 2006-09-14
JP4723880B2 JP4723880B2 (ja) 2011-07-13

Family

ID=37049447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062482A Active JP4723880B2 (ja) 2005-03-07 2005-03-07 電波誘導装置

Country Status (1)

Country Link
JP (1) JP4723880B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162725A (ja) * 2008-01-10 2009-07-23 Toshiba Corp レーダ装置および目標検出方法
JP2011174866A (ja) * 2010-02-25 2011-09-08 Toshiba Corp 目標検出・追尾装置
JP2012168060A (ja) * 2011-02-15 2012-09-06 Nec Corp 精測進入レーダ、精測進入レーダ制御方法およびその制御用プログラム
JP2013195189A (ja) * 2012-03-19 2013-09-30 Toshiba Corp 目標角度検出装置、目標角度検出方法及び誘導装置
JP2013195190A (ja) * 2012-03-19 2013-09-30 Toshiba Corp 目標角度検出装置、目標角度検出方法及び誘導装置
KR101348512B1 (ko) 2012-11-08 2014-01-10 재단법인대구경북과학기술원 레이더를 이용한 이동 타겟 판단 장치 및 그 방법
JP2019184391A (ja) * 2018-04-09 2019-10-24 日本無線株式会社 信号処理システム及び信号処理方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155379A (en) * 1980-05-01 1981-12-01 Ishikawajima Harima Heavy Ind Scrap preheating equipment
JPS59221683A (ja) * 1983-05-31 1984-12-13 Mitsubishi Electric Corp レ−ダ装置
JPH01114775A (ja) * 1987-10-29 1989-05-08 Mitsubishi Electric Corp パルスドツプラレーダ用追尾受信機
JPH05223918A (ja) * 1991-12-17 1993-09-03 Mitsubishi Electric Corp 信号処理装置
JPH07294566A (ja) * 1994-04-28 1995-11-10 Advantest Corp 高分解能周波数分析装置を用いたドップラ補償装置
JP2000111630A (ja) * 1998-10-06 2000-04-21 Alps Electric Co Ltd 電波到来方向推定方法及びその装置
JP2000206235A (ja) * 1999-01-14 2000-07-28 Mitsubishi Electric Corp レ―ダ装置
JP2001296351A (ja) * 2000-04-13 2001-10-26 Mitsubishi Electric Corp 送受信装置
JP2002181921A (ja) * 2000-12-14 2002-06-26 Toshiba Corp パルスデータ生成方法、シェイプデータ生成方法、パルスデータ生成装置、シェイプデータ生成装置及び送信パルス信号生成装置
JP2002520624A (ja) * 1998-07-14 2002-07-09 レイセオン・カンパニー 改善された検出評価性能のためのノンコヒーレントな利得向上技術
JP2002236172A (ja) * 2000-12-06 2002-08-23 Mitsubishi Electric Corp レーダ装置
JP2003149327A (ja) * 2001-11-14 2003-05-21 Mitsubishi Electric Corp ドップラレーダの信号処理装置
JP2005017143A (ja) * 2003-06-26 2005-01-20 Toshiba Corp 気象レーダ信号処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155379U (ja) * 1980-04-22 1981-11-19

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155379A (en) * 1980-05-01 1981-12-01 Ishikawajima Harima Heavy Ind Scrap preheating equipment
JPS59221683A (ja) * 1983-05-31 1984-12-13 Mitsubishi Electric Corp レ−ダ装置
JPH01114775A (ja) * 1987-10-29 1989-05-08 Mitsubishi Electric Corp パルスドツプラレーダ用追尾受信機
JPH05223918A (ja) * 1991-12-17 1993-09-03 Mitsubishi Electric Corp 信号処理装置
JPH07294566A (ja) * 1994-04-28 1995-11-10 Advantest Corp 高分解能周波数分析装置を用いたドップラ補償装置
JP2002520624A (ja) * 1998-07-14 2002-07-09 レイセオン・カンパニー 改善された検出評価性能のためのノンコヒーレントな利得向上技術
JP2000111630A (ja) * 1998-10-06 2000-04-21 Alps Electric Co Ltd 電波到来方向推定方法及びその装置
JP2000206235A (ja) * 1999-01-14 2000-07-28 Mitsubishi Electric Corp レ―ダ装置
JP2001296351A (ja) * 2000-04-13 2001-10-26 Mitsubishi Electric Corp 送受信装置
JP2002236172A (ja) * 2000-12-06 2002-08-23 Mitsubishi Electric Corp レーダ装置
JP2002181921A (ja) * 2000-12-14 2002-06-26 Toshiba Corp パルスデータ生成方法、シェイプデータ生成方法、パルスデータ生成装置、シェイプデータ生成装置及び送信パルス信号生成装置
JP2003149327A (ja) * 2001-11-14 2003-05-21 Mitsubishi Electric Corp ドップラレーダの信号処理装置
JP2005017143A (ja) * 2003-06-26 2005-01-20 Toshiba Corp 気象レーダ信号処理装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009162725A (ja) * 2008-01-10 2009-07-23 Toshiba Corp レーダ装置および目標検出方法
JP2011174866A (ja) * 2010-02-25 2011-09-08 Toshiba Corp 目標検出・追尾装置
JP2012168060A (ja) * 2011-02-15 2012-09-06 Nec Corp 精測進入レーダ、精測進入レーダ制御方法およびその制御用プログラム
JP2013195189A (ja) * 2012-03-19 2013-09-30 Toshiba Corp 目標角度検出装置、目標角度検出方法及び誘導装置
JP2013195190A (ja) * 2012-03-19 2013-09-30 Toshiba Corp 目標角度検出装置、目標角度検出方法及び誘導装置
KR101348512B1 (ko) 2012-11-08 2014-01-10 재단법인대구경북과학기술원 레이더를 이용한 이동 타겟 판단 장치 및 그 방법
JP2019184391A (ja) * 2018-04-09 2019-10-24 日本無線株式会社 信号処理システム及び信号処理方法

Also Published As

Publication number Publication date
JP4723880B2 (ja) 2011-07-13

Similar Documents

Publication Publication Date Title
CN110031805B (zh) 雷达装置
US10539645B2 (en) Angle of arrival estimation
JP6818541B2 (ja) レーダ装置および測位方法
US7567201B2 (en) Vehicle-installation direction detection apparatus enabling accurate detection of target body directions irrespective of vehicle speed
CN108885254B (zh) 物体检测装置
US9400325B2 (en) Method and apparatus for increasing angular resolution in an automotive radar system
JP4723880B2 (ja) 電波誘導装置
JP2017173227A (ja) レーダ装置及びレーダ方法
JP2017535788A (ja) 自動車レーダーシステムにおける角分解能を増加する方法および装置
KR20150094240A (ko) 레이더를 이용한 표적 검출 장치 및 표적을 검출하는 방법
EP2363728A1 (en) Interleaved beam coherent radar apparatus and processing method
JP2009145206A5 (ja)
JP2014132250A (ja) レーダ装置
US20220050176A1 (en) Radar device
US9568601B1 (en) Successive-MFCW modulation for ultra-fast narrowband radar
EP3399334B1 (en) Object detecting device and sensor device
JP6419330B2 (ja) 目標検出装置および目標検出方法
US7755538B2 (en) Radar apparatus
JP2010025576A (ja) 波数推定装置
JP5618494B2 (ja) レーダ装置
JP7275897B2 (ja) レーダシステム
CA3087977C (en) Radar device
JP6688977B2 (ja) レーダ装置
JP2005195339A (ja) レーダ信号処理装置
US20230176187A1 (en) Tdm fmcw radar apparatus and signal processing method of apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4723880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3