JP2006241426A - Chemically heat-generating composition - Google Patents

Chemically heat-generating composition Download PDF

Info

Publication number
JP2006241426A
JP2006241426A JP2005126625A JP2005126625A JP2006241426A JP 2006241426 A JP2006241426 A JP 2006241426A JP 2005126625 A JP2005126625 A JP 2005126625A JP 2005126625 A JP2005126625 A JP 2005126625A JP 2006241426 A JP2006241426 A JP 2006241426A
Authority
JP
Japan
Prior art keywords
salt
carbide
chemical
exothermic composition
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005126625A
Other languages
Japanese (ja)
Other versions
JP4713931B2 (en
Inventor
Tomohisa Ota
智久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2005126625A priority Critical patent/JP4713931B2/en
Priority to KR1020060010709A priority patent/KR20060089170A/en
Publication of JP2006241426A publication Critical patent/JP2006241426A/en
Application granted granted Critical
Publication of JP4713931B2 publication Critical patent/JP4713931B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an additive for a chemically heat-generating composition, capable of being readily prepared; and to provide the heat-generating composition containing the additive and having excellent heat-generating characteristics. <P>SOLUTION: The additive for the chemically heat-generating composition comprises a carbonized product of a salt-containing organic material. The chemically heat-generating composition contains the additive. The chemical pocket heater (disposable pocket heater) includes the chemically heat-generating composition. The salt-containing organic material (e.g. lees of soy sauce) which is an industrial waste is effectively utilized, and the production process of the chemically heat-generating composition such as the chemical pocket heater is simplified by utilizing the carbonized product of the salt-containing organic material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、酸素の存在下で発熱する化学発熱組成物用の添加剤およびこの添加剤を含む化学発熱組成物に関する。   The present invention relates to an additive for a chemical exothermic composition that generates heat in the presence of oxygen and a chemical exothermic composition containing the additive.

化学発熱組成物は、金属の酸化熱を利用する発熱組成物であり、いわゆる使い捨てカイロ(化学カイロ)などに利用されている。化学発熱組成物は、一般に、鉄粉などの金属粉、食塩などの金属ハロゲン化物、水、活性炭粉末、および保水材などを含有している。この発熱組成物に鉄粉を用いる場合は、鉄粉が水および空気中の酸素と反応して水酸化第二鉄となる過程で発生する反応熱を、熱源としている。金属ハライド化合物(例えば、食塩)は鉄の酸化速度の調節のために、活性炭粉末は水分の保持、温度調整、空気中の酸素の保持などのために、そして保水材は金属粉のべたつき防止などのために含有されている。粉末成分である活性炭粉末および保水材は、水分の保持などの点で、共通した機能を有すると考えられる。一般的には、発熱組成物中、金属粉を53質量%、食塩を3質量%、活性炭粉末を15質量%、保水材を1質量%および水分を28質量%含むように調製される。   The chemical exothermic composition is an exothermic composition that utilizes the heat of metal oxidation, and is used for so-called disposable warmers (chemical warmers). The chemical exothermic composition generally contains a metal powder such as iron powder, a metal halide such as salt, water, activated carbon powder, and a water retention material. When iron powder is used for this exothermic composition, reaction heat generated in the process of iron powder reacting with water and oxygen in the air to form ferric hydroxide is used as a heat source. Metal halide compounds (eg, salt) are used to control the oxidation rate of iron, activated carbon powder is used to maintain moisture, adjust the temperature, hold oxygen in the air, etc. Is contained for. The activated carbon powder and the water retention material, which are powder components, are considered to have a common function in terms of moisture retention and the like. In general, the exothermic composition is prepared to contain 53% by mass of metal powder, 3% by mass of sodium chloride, 15% by mass of activated carbon powder, 1% by mass of water retention material and 28% by mass of moisture.

このような化学発熱組成物を使い捨てカイロとして使用するために、これらの成分について、あるいは組成物の調製方法について、種々の検討が行われている。例えば、特定の比表面積を有する鉄粉を全鉄粉の50質量%以上含有し、所定の通気度を有する包装材料に収納された発熱体が開発されている(特許文献1)。しかし、使用する材料が限定されるため汎用性に欠け、そしてコストが高くなる。   In order to use such a chemical exothermic composition as a disposable body warmer, various studies have been conducted on these components or methods for preparing the composition. For example, a heating element containing 50% by mass or more of iron powder having a specific specific surface area and housed in a packaging material having a predetermined air permeability has been developed (Patent Document 1). However, since the materials to be used are limited, the versatility is lacking and the cost is increased.

発熱助剤として一般に使用される食塩は、分散性を考慮して食塩水の状態で使用されている。しかし、食塩水は水に比べて活性炭粉末、保水材などの粉末成分に吸収されにくいため、乾燥状態の粉体に添加すると団塊が生じたり、分散が不均一になったり、食塩の分散に長時間かかったりなどの問題がある。そのため、混合した活性炭粉末や保水材などの粉末成分に水を添加して予め保水させ、次いでこれに食塩水を添加することによって食塩水を均一に分散させた後、封入直前に金属粉を混合する方法がある(特許文献2)。   Commonly used salt as an exothermic aid is used in the form of saline in consideration of dispersibility. However, salt water is less absorbed by powdered components such as activated carbon powder and water retention material than water, so when added to dry powder, nodules are formed, dispersion is uneven, and salt dispersion is long. There are problems such as taking time. Therefore, after adding water to the powdered components such as the activated carbon powder and water retention material, pre-retained water, and then adding salt water to this to uniformly disperse the salt water, and then mixing the metal powder immediately before encapsulation There is a method to do (Patent Document 2).

食塩の代わりに、窒素含有化合物、リン酸塩およびカリウム塩を用いて、使用後に土壌改良剤として使用できる化学発熱組成物が開発されている(特許文献3)。しかし、食塩を用いる場合と比較してコストが高い。   A chemical exothermic composition that can be used as a soil conditioner after use has been developed using nitrogen-containing compounds, phosphates, and potassium salts instead of salt (Patent Document 3). However, the cost is high compared to the case of using salt.

さらに、可燃物と多孔性珪藻土とを焼成して得られる多孔質で吸水性および保水性に富む炭化物(活性炭)を用いた発熱体は、金属粉末の酸化をスムーズに行うことができる(特許文献4)。しかし、この活性炭は、所定量の二酸化ケイ素を含有する必要があるため、原料の入手が困難である。   Furthermore, a heating element using a porous carbide (activated carbon) obtained by firing a combustible material and porous diatomaceous earth can smoothly oxidize metal powder (Patent Document) 4). However, since this activated carbon needs to contain a predetermined amount of silicon dioxide, it is difficult to obtain raw materials.

このように、発熱組成物の調製に関して種々の方法が検討されているが、いずれの方法においても食塩の添加が必要である。そのため、食塩水の調整工程が必要である、食塩水添加系における団塊の発生を回避するために複雑な工程が必要であるなどの問題がある。
特開平6−315498号公報 特開平6−241575号公報 特開平7−173459号公報 特開2000−60887号公報
As described above, various methods for preparing the exothermic composition have been studied. In any method, addition of sodium chloride is necessary. For this reason, there is a problem that a salt solution adjustment step is necessary, and that a complicated step is necessary to avoid the occurrence of baby boom in the salt solution addition system.
JP-A-6-315498 JP-A-6-241575 Japanese Unexamined Patent Publication No. 7-173659 JP 2000-60887 A

本発明は、より簡便に調製され得る化学発熱組成物用の添加剤、およびこの添加剤を含む発熱特性に優れた発熱組成物を提供することを目的とする。   An object of the present invention is to provide an additive for a chemical exothermic composition that can be more easily prepared, and an exothermic composition having excellent exothermic characteristics containing the additive.

本発明は、含塩有機物の炭化物からなる化学発熱組成物用添加剤を提供する。   The present invention provides an additive for a chemical exothermic composition comprising a salt-containing organic carbide.

1つの実施態様では、上記含塩有機物の炭化物が、含塩有機物を400〜1000℃の温度で焼成して得られる炭化物である。   In one embodiment, the carbide of the salt-containing organic material is a carbide obtained by baking the salt-containing organic material at a temperature of 400 to 1000 ° C.

別の実施態様では、上記含塩有機物の炭化物が、含塩有機物を100〜1000℃の温度で焼成して得られる炭化物を、さらに300〜1000℃の温度で活性化処理して得られる炭化物である。   In another embodiment, the carbide of the salt-containing organic substance is a carbide obtained by activating the carbide obtained by baking the salt-containing organic substance at a temperature of 100 to 1000 ° C, and further at a temperature of 300 to 1000 ° C. is there.

他の実施態様では、上記含塩有機物が、食品廃棄物、都市ごみ、下水汚泥、集落排水汚泥、し尿汚泥、および家畜ふん尿からなる群から選択される少なくとも一つの廃棄物である。   In another embodiment, the salt-containing organic matter is at least one waste selected from the group consisting of food waste, municipal waste, sewage sludge, settlement drainage sludge, human waste sludge, and livestock manure.

また、他の実施態様では、上記食品廃棄物が、醤油粕、塩昆布廃棄物、佃煮廃棄物、味噌廃棄物、スープ、出し汁、漬物、都市厨芥、および調理屑からなる群から選択される少なくとも一つの廃棄物である。   In another embodiment, the food waste is at least selected from the group consisting of soy sauce cake, salt kelp waste, boiled waste, miso waste, soup, soup stock, pickles, municipal waste, and cooking waste. One waste.

本発明は、また、上記いずれかに記載の含塩有機物の炭化物、および金属粉を含有する、化学発熱組成物を提供する。   The present invention also provides a chemical exothermic composition comprising any of the above-mentioned salt-containing organic carbides and metal powder.

1つの実施態様においては、上記化学発熱組成物は、炭化物、および金属粉に加えて、水を含有する。   In one embodiment, the chemical exothermic composition contains water in addition to the carbide and the metal powder.

1つの実施態様においては、上記化学発熱組成物は、さらに保水材および/または含塩有機物の炭化物以外の炭素粉末を含有する。   In one embodiment, the chemical exothermic composition further contains a carbon powder other than a water retaining material and / or a salt-containing organic carbide.

別の実施態様においては、上記化学発熱組成物は、金属粉25質量部に対して、前記含塩有機物の炭化物を0.1〜25質量部の割合で含む。   In another embodiment, the chemical exothermic composition contains 0.1 to 25 parts by mass of the carbide of the salt-containing organic substance with respect to 25 parts by mass of the metal powder.

また、別の実施態様においては、上記化学発熱組成物は、金属粉25質量部に対して、前記含塩有機物の炭化物を0.1〜25質量部および前記炭素粉末を0.1〜15質量部含む。   In another embodiment, the chemical exothermic composition has 0.1 to 25 parts by mass of the carbide of the salt-containing organic substance and 0.1 to 15 parts by mass of the carbon powder with respect to 25 parts by mass of the metal powder. Including parts.

さらなる実施態様では、上記炭素粉末は、石炭系炭化物または木質系炭化物、これらの活性炭あるいは再生活性炭である。   In a further embodiment, the carbon powder is coal-based carbide or wood-based carbide, activated carbon thereof or regenerated activated carbon.

本発明はさらに、上記のいずれかの化学発熱組成物を含む、化学カイロを提供する。   The present invention further provides a chemical warmer comprising any of the above-described chemical exothermic compositions.

本発明の化学発熱組成物用の添加剤として用いられる含塩有機物の炭化物は、均一に分散された適量の食塩を含むため、化学発熱組成物の構成成分として必要な食塩ならびに粉末成分である活性炭粉末および/または保水材を同時に供給し得る。この含塩有機物の炭化物は、親水性に優れるため、水と混合しても団塊を発生することがない。したがって、化学発熱組成物の従来の製造工程において最も困難な課題とされている、食塩水を活性炭あるいは保水材に配合する工程における団塊の発生やべとつきの問題が解決され得、化学発熱組成物の製造工程が簡略化ならびに改善される。また、この含塩有機物の炭化物を含有する化学発熱組成物は、従来の使い捨てカイロに比べて発熱特性も高いか、遜色がない。さらに、含塩有機物、特に含塩有機性廃棄物の有効利用が促進され、そして製造コストも低減できる。   Since the carbide of a salt-containing organic substance used as an additive for the chemical exothermic composition of the present invention contains an appropriate amount of uniformly dispersed sodium chloride, activated carbon which is a necessary salt and powder component as a constituent component of the chemical exothermic composition Powder and / or water retention material may be supplied simultaneously. The salt-containing organic carbide is excellent in hydrophilicity, so that it does not generate a nodule even when mixed with water. Therefore, the problem of nodulation and stickiness in the process of blending saline with activated carbon or water retaining material, which is the most difficult problem in the conventional manufacturing process of chemical exothermic composition, can be solved. The manufacturing process is simplified and improved. Further, this chemical exothermic composition containing a salt-containing organic carbide has higher exothermic characteristics or no inferiority compared to conventional disposable warmers. Furthermore, effective use of salt-containing organic substances, particularly salt-containing organic wastes, is promoted, and the manufacturing cost can be reduced.

(含塩有機物)
本明細書において、含塩有機物とは、塩分を含有する有機性物質をいう。例えば、塩分(食塩)を含有する食品(例えば、味噌、醤油、塩辛、塩昆布など)、塩分を含有する有機性廃棄物(以下、「含塩有機性廃棄物」あるいは、単に「含塩廃棄物」ということがある)などが挙げられるが、これらに制限されない。資源の有効利用という観点からは、含塩有機性廃棄物が好ましく用いられる。含塩有機物は、有価物として購入する、無償で入手する、お金を貰って入手する(逆有償購入)などの方法で入手できる。あるいは、これらの方法を組み合わせて入手してもよい。
(Salt-containing organic matter)
In the present specification, the salt-containing organic substance refers to an organic substance containing a salt content. For example, food containing salt (salt) (for example, miso, soy sauce, salted salt, salt kelp, etc.), organic waste containing salt (hereinafter “salt-containing organic waste” or simply “salt-containing waste” It may be referred to as a “product”), but is not limited thereto. From the viewpoint of effective use of resources, salt-containing organic waste is preferably used. The salt-containing organic substance can be obtained by a method such as purchasing as a valuable resource, obtaining it free of charge, obtaining it with money (reverse purchase). Or you may obtain combining these methods.

含塩有機性廃棄物としては、例えば、都市ごみ、下水汚泥、集落排水汚泥、し尿汚泥、家畜糞尿、食品廃棄物がある。家畜糞尿としては、例えば、牛糞、豚糞、鶏糞などがある。食品廃棄物としては、例えば、醤油の製造過程で生じる醤油の絞り粕(醤油粕)、塩昆布廃棄物、佃煮廃棄物、味噌廃棄物、スープ、出し汁、漬物、都市厨芥、調理屑などが例示される。これらの含塩廃棄物は、単独で用いてもよく、2種以上組み合わせて用いてもよい。含塩廃棄物は、炭化物としたときの塩分濃度を考慮して、組み合わせて用いてもよい。例えば、塩分濃度が比較的低い都市ごみ、下水汚泥、集落排水汚泥、し尿汚泥、家畜糞尿、調理屑などを用いる場合は、塩分濃度が比較的高い醤油粕、塩昆布廃棄物、佃煮廃棄物、あるいは味噌廃棄物、または食塩などを混合して用いてもよい。含塩廃棄物を混合物として用いる場合、そのまま炭化処理に用いてもよい。炭化物中に食塩を均一に分散させるために、例えば、ミキサーなどで混合し、均一にしてから焼成することが、より好ましい。   Examples of the salt-containing organic waste include municipal waste, sewage sludge, settlement drainage sludge, human waste sludge, livestock manure, and food waste. Examples of livestock manure include cow dung, pig manure, and chicken manure. Examples of food waste include soy sauce squeezed rice cake (soy sauce cake), salt kombu waste, boiled waste, miso waste, soup, soup stock, pickles, urban rice cake, cooking waste, etc. Is done. These salt-containing wastes may be used alone or in combination of two or more. The salt-containing waste may be used in combination in consideration of the salinity when the carbide is used. For example, when using municipal waste, sewage sludge, village drainage sludge, human waste sludge, livestock manure, cooking waste, etc. with relatively low salinity, soy sauce cake, salt kelp waste, boiled waste, Or you may mix and use miso waste or salt. When salt-containing waste is used as a mixture, it may be used as it is for carbonization. In order to uniformly disperse the sodium chloride in the carbide, it is more preferable to mix with a mixer or the like and make the mixture uniform before firing.

(含塩有機物の炭化物(含塩炭化物))
含塩有機物(例えば、含塩廃棄物)の炭化物は、後述する含塩有機物の一次処理で得られた炭化物、および一次処理で得られた炭化物をさらに処理(二次処理)して得られる活性炭化物、並びに含塩有機物を薬品賦活法で処理して得られる活性炭化物など、種々の方法で得られる炭化物が含まれる。含塩炭化物は、粉末であることが好ましい。あるいは、粉末の含塩炭化物を種々の形状に成型したものを用いてもよい。含塩炭化物を粉末にする方法は、当業者に周知の炭化物の粉末化方法が適用される。
(Carbide of salt-containing organic matter (salt-containing carbide))
Carbides of salt-containing organic substances (for example, salt-containing waste) are obtained by further processing (secondary treatment) of carbides obtained by the primary treatment of salt-containing organic matter described later and carbides obtained by the primary treatment. Carbides and carbides obtained by various methods such as activated carbides obtained by treating salt-containing organic substances by a chemical activation method are included. The salt-containing carbide is preferably a powder. Alternatively, powdered salt-containing carbides molded into various shapes may be used. As a method for powdering salt-containing carbide, a carbide powdering method known to those skilled in the art is applied.

(一次処理)
含塩有機物の炭化(一次処理)は、含塩有機物を好ましくは100〜1000℃、より好ましくは650〜850℃の温度で焼成することにより、行われる。100℃未満では、この含塩炭化物を含む発熱性混合物の発熱特性が悪くなる傾向にあり、1000℃を超えると炭化物中の食塩が揮発するおそれがある。得られた含塩炭化物は粉末としてもよい。
(Primary processing)
Carbonization (primary treatment) of the salt-containing organic substance is performed by baking the salt-containing organic substance at a temperature of preferably 100 to 1000 ° C, more preferably 650 to 850 ° C. If it is less than 100 degreeC, the exothermic characteristic of the exothermic mixture containing this salt-containing carbide tends to deteriorate, and if it exceeds 1000 degreeC, salt in the carbide may volatilize. The obtained salt-containing carbide may be a powder.

一次処理で得られた含塩炭化物中には、通常、0.1〜50質量%の食塩が均一に分散された状態で含まれる。この含塩炭化物の比表面積は、用いる含塩有機物によっても異なるが、一般的には、約1m/g〜60m/gの範囲にある場合が多い。 The salt-containing carbide obtained by the primary treatment usually contains 0.1 to 50% by mass of salt in a uniformly dispersed state. The specific surface area of the chlorine-carbides varies depending chlorine organic substances used, in general, is often in the range of from about 1m 2 / g~60m 2 / g.

(二次処理)
二次処理は、上記一次処理で得られた含塩炭化物にさらに活性化処理を行う処理である。活性化処理には、大きくガス賦活法と薬品賦活法とがある。どちらの方法を用いてもよい。ガス賦活法は、炭化された原料に、水蒸気、二酸化炭素、酸素(空気)、これらのガスと燃焼ガスとの混合ガス、燃焼ガスなどを高温で接触反応させる方法である。本発明においては、一次処理して得られた含塩炭化物に、例えば、水蒸気、空気(酸素)、二酸化炭素などを添加しながら600〜1000℃、好ましくは800〜900℃の温度で処理する方法(ガス賦活法)を用いて、行われる。あるいは、含塩有機物を一次処理よりも低い温度、例えば、300〜500℃の温度で焼成して得られる炭化物を二次処理してもよい。二次処理の温度が600℃未満では炭化物の活性化が不十分となる場合があり、1000℃を超えると活性炭化物中の食塩が揮発するおそれがある。
(Secondary processing)
The secondary treatment is a treatment for further activating the salt-containing carbide obtained by the primary treatment. The activation treatment includes a gas activation method and a chemical activation method. Either method may be used. The gas activation method is a method in which water vapor, carbon dioxide, oxygen (air), a mixed gas of these gases and a combustion gas, a combustion gas, or the like is brought into contact with a carbonized raw material at a high temperature. In the present invention, the salt-containing carbide obtained by the primary treatment is treated at a temperature of 600 to 1000 ° C., preferably 800 to 900 ° C. while adding water vapor, air (oxygen), carbon dioxide, etc., for example. (Gas activation method) is used. Or you may carry out the secondary treatment of the carbide | carbonized_material obtained by baking a salt containing organic substance at the temperature lower than a primary treatment, for example, the temperature of 300-500 degreeC. If the temperature of the secondary treatment is less than 600 ° C, the activation of the carbide may be insufficient, and if it exceeds 1000 ° C, the salt in the activated carbide may volatilize.

二次処理で得られる活性炭化物中には、通常、0.1〜50質量%の食塩が均一に分散された状態で含まれる。活性炭化物の比表面積は、用いる含塩有機物によっても異なるが、一般的には、約100m/g〜300m/gの範囲にある場合が多く、これは一次処理のみの炭化物の5〜10倍の比表面積である。また、二次処理を行うことで、炭化物の均質化、表面洗浄効果もあることから、活性炭化物が、好ましく用いられる場合がある。 The activated carbide obtained by the secondary treatment usually contains 0.1 to 50% by mass of sodium chloride in a uniformly dispersed state. The specific surface area of activity carbide used varies depending chlorine organic substances, in general, often in the range of from about 100m 2 / g~300m 2 / g, which is a carbide of only primary treatment 5-10 Double specific surface area. Further, by performing the secondary treatment, there are also effects of homogenizing the carbide and cleaning the surface, so that the activated carbide may be preferably used.

(薬品賦活法)
薬品賦活法は、原料に賦活薬品を均等に含浸させて、不活性ガス雰囲気中で加熱(焼成)し、薬品による脱水および酸化反応により、活性炭化する方法である。賦活薬品としては、塩化亜鉛、リン酸、塩化カルシウム、硫化カルシウム、水酸化カリウムなどの脱水性、酸化性あるいは侵食性を有する化合物が挙げられる。最も好ましくは、塩化亜鉛である。薬品賦活法によって含塩有機物の活性炭化物を得る方法は、例えば、100〜200℃で数時間乾燥した含塩有機物に、上記記載の賦活薬品(例えば、塩化亜鉛)の飽和水溶液を添加、混合し、賦活薬品を含塩有機物に含浸させ、さらに不活性ガス雰囲気中で100〜200℃で数時間乾燥(焼成)させる方法である。薬品賦活法における賦活薬品と乾燥含塩有機物との質量比(賦活薬品含浸質量/乾燥含塩有機物質量)は、使用する賦活薬品および含塩有機物により異なるが、一般的には、0.5〜5であり、好ましくは、1〜4である。なお、質量比は以下の式で表される。
(Chemical activation method)
The chemical activation method is a method in which a raw material is uniformly impregnated with an activation chemical, heated (baked) in an inert gas atmosphere, and activated carbonized by dehydration and oxidation reaction with the chemical. Examples of the activator include compounds having dehydrating properties, oxidizing properties, and erosive properties such as zinc chloride, phosphoric acid, calcium chloride, calcium sulfide, and potassium hydroxide. Most preferred is zinc chloride. A method for obtaining an activated carbide of a salt-containing organic substance by a chemical activation method is, for example, adding and mixing a saturated aqueous solution of the activation chemical (for example, zinc chloride) described above to a salt-containing organic substance dried at 100 to 200 ° C. for several hours. In this method, the salt-containing organic substance is impregnated with an activation chemical, and further dried (baked) at 100 to 200 ° C. for several hours in an inert gas atmosphere. In the chemical activation method, the mass ratio of the activation chemical to the dry salt-containing organic substance (activation chemical impregnation mass / dry salt-containing organic substance amount) varies depending on the activation chemical and the salt-containing organic substance to be used. 5, preferably 1-4. In addition, mass ratio is represented with the following formula | equation.

質量比=(Y−X)/X
X:賦活薬品を含浸する前の含塩有機物の乾燥質量
Y:賦活薬品を含浸した後の含塩有機物の乾燥質量
Mass ratio = (Y−X) / X
X: Dry mass of the salt-containing organic substance before impregnating the activation chemical Y: Dry mass of the salt-containing organic substance after impregnating the activation chemical

賦活薬品として塩化亜鉛を用いる場合、含塩有機物を110℃で乾燥し、塩化亜鉛を含浸させた後、約110℃で乾燥することが好ましい。塩化亜鉛の質量比は約3であることが好ましい。   When zinc chloride is used as the activator, it is preferable to dry the salt-containing organic substance at 110 ° C., impregnate the zinc chloride, and then dry at about 110 ° C. The mass ratio of zinc chloride is preferably about 3.

この薬品賦活法で処理して得られた含塩炭化物は、賦活薬品による脱水および酸化反応により、微細な多孔質を有しており、比表面積が大きくなるため、本発明における含塩炭化物として、好適に用いられる。薬品賦活化した炭化物を、さらに、300〜1000℃の温度で、活性化処理(二次処理)してもよい。この処理により、さらに活性炭としての機能が向上する。二次処理の温度が300℃未満では活性炭化物の活性化が不十分となるおそれがあり、1000℃を超えると、活性炭化物中の食塩が揮発する恐れがある。   The salt-containing carbide obtained by the treatment by this chemical activation method has a fine porosity due to the dehydration and oxidation reaction by the activation chemical, and the specific surface area becomes large. Preferably used. The activated carbon (chemical treatment) may be further activated (secondary treatment) at a temperature of 300 to 1000 ° C. This treatment further improves the function as activated carbon. If the temperature of the secondary treatment is less than 300 ° C, activation of the activated carbide may be insufficient, and if it exceeds 1000 ° C, salt in the activated carbide may volatilize.

炭化処理あるいは薬品賦活処理に用いる方法に特に制限はなく、バッチ処理でもよく、連続処理でもよい。炭化処理装置としては、バッチ炉、キルン型処理装置、流動層型処理装置、スクリュー型処理装置など、その装置は問わない。   There is no restriction | limiting in particular in the method used for a carbonization process or a chemical activation process, Batch processing may be sufficient and continuous processing may be sufficient. The carbonization treatment apparatus may be any apparatus such as a batch furnace, a kiln type treatment apparatus, a fluidized bed type treatment apparatus, or a screw type treatment apparatus.

(化学発熱組成物用添加剤)
本発明の化学発熱組成物用添加剤は、上記の含塩炭化物からなる。含塩炭化物は粉末状、あるいは、固形状であり得る。このような化学発熱組成物用添加剤は、化学発熱組成物における必須成分である、食塩成分かつ活性炭成分および/または保水材成分として好適に使用される。なお、含塩炭化物としては、一次処理で得られる炭化物、これに二次処理を施した含塩有機物の活性炭化物(以下、単に活性炭化物という)、一次処理よりも低温で焼成処理した後、二次処理を行って得られる活性炭化物、薬品賦活法で得られた活性炭化物など含む。これらの含塩炭化物は、単独で用いてもよく、適宜混合して用いても良い。
(Additive for chemical exothermic composition)
The additive for chemical exothermic composition of the present invention comprises the above-mentioned salt-containing carbide. The salt-containing carbide may be in the form of powder or solid. Such an additive for a chemical exothermic composition is suitably used as a salt component and an activated carbon component and / or a water retention component, which are essential components in the chemical exothermic composition. The salt-containing carbides include carbides obtained by primary treatment, activated carbides of salt-containing organics subjected to secondary treatment (hereinafter simply referred to as activated carbides), calcination treatment at a lower temperature than primary treatment, The activated carbide obtained by performing the next treatment, the activated carbide obtained by the chemical activation method, and the like are included. These salt-containing carbides may be used singly or may be used in appropriate mixture.

(化学発熱組成物)
本発明の化学発熱組成物は、上記炭化物からなる化学発熱組成物用添加剤、および金属粉を含有する。必要に応じて、水、保水材、あるいは含塩炭化物以外の炭素粉末(以下、単に炭素粉末ということがある)を含有する。水は、特に化学カイロ(使い捨てカイロ)などの用途に使用する場合には、含有させる方が好ましい。
(Chemical exothermic composition)
The chemical exothermic composition of this invention contains the additive for chemical exothermic compositions consisting of the said carbide | carbonized_material, and a metal powder. If necessary, it contains water, a water retention material, or carbon powder other than salt-containing carbide (hereinafter sometimes simply referred to as carbon powder). In particular, when water is used for uses such as chemical warmers (disposable warmers), it is preferable to contain water.

金属粉としては、鉄粉、アルミニウム粉、亜鉛粉、銅粉、あるいは、これらの金属粉を任意の割合で混合した混合金属粉、これら金属を任意の割合で混合して得られた合金の粉末などが挙げられる。   As the metal powder, iron powder, aluminum powder, zinc powder, copper powder, mixed metal powder obtained by mixing these metal powders in an arbitrary ratio, or alloy powder obtained by mixing these metals in an arbitrary ratio Etc.

水としては、蒸留水、イオン交換水、純水、超純水、水道水、工業用水などが用いられる。   As water, distilled water, ion exchange water, pure water, ultrapure water, tap water, industrial water, or the like is used.

保水材としては、粘土鉱物(例えば、カオリン、タルク、スメクタイト、バーミキュライト、マイカ、パーライト、ベントナイトなど)、高吸水性樹脂、木粉、繊維粉、籾殻粉、シリカゲル、珪藻土などが挙げられる。なお、木粉、繊維粉、籾殻、籾殻粉などを炭化した炭素粉末もまた、保水材として機能し得る場合があり得る。   Examples of the water retention material include clay minerals (for example, kaolin, talc, smectite, vermiculite, mica, perlite, bentonite, etc.), superabsorbent resin, wood powder, fiber powder, rice husk powder, silica gel, diatomaceous earth, and the like. Note that carbon powder obtained by carbonizing wood powder, fiber powder, rice husk, rice husk powder, or the like may also function as a water retention material.

含塩炭化物以外の炭素粉末としては、石炭に由来する炭化物の粉末;ヤシガラ、パーム、間伐材などの木材、竹、ケナフ、籾殻、草、落ち葉などの植物に由来する木質系炭化物の粉末;および、これらの炭化物をさらに活性炭化した後に得られる粉末が挙げられる。さらには、これらの再生品である再生活性炭(例えば、上水道や脱臭用に使用された活性炭を再度賦活処理した活性炭)を使用しても良い。再生活性炭は、粉末化して用いてもよい。   Carbon powders other than salt-containing carbides include carbide powders derived from coal; wood-based carbide powders derived from plants such as coconut husk, palm, thinned wood, bamboo, kenaf, rice husk, grass, fallen leaves; and And powder obtained after further active carbonization of these carbides. Furthermore, you may use the reproduction | regeneration activated carbon (For example, activated carbon which activated again the activated carbon used for waterworks and deodorization) which is these reproduction | regeneration products. Regenerated activated carbon may be used after being powdered.

本発明の化学発熱組成物は、以下の例に制限されないが、金属粉25質量部に対して、含塩炭化物が0.1〜25質量部配合されることが好ましい。必要に応じて、水、炭素粉末あるいは保水材を添加する場合、金属粉25質量部に対して、水は5〜20質量部、炭素粉末は0.1〜15質量部、保水材は0.1〜15質量部、好ましくは0.5〜5質量部配合される。この場合、化学発熱組成物中の食塩濃度が、0.1〜10質量%、好ましくは0.5〜5質量%となるように含塩炭化物の配合量を調整する。含塩炭化物は粉末であってもよく、所定の大きさに成型されていてもよい。   Although the chemical exothermic composition of this invention is not restrict | limited to the following examples, It is preferable that 0.1-25 mass parts of salt-containing carbide | carbonized_material is mix | blended with respect to 25 mass parts of metal powders. As needed, when adding water, carbon powder, or a water retention material, water is 5-20 mass parts, carbon powder is 0.1-15 mass parts, and a water retention material is 0.00 with respect to 25 mass parts of metal powder. 1-15 mass parts, Preferably 0.5-5 mass parts is mix | blended. In this case, the compounding amount of the salt-containing carbide is adjusted so that the salt concentration in the chemical exothermic composition is 0.1 to 10% by mass, preferably 0.5 to 5% by mass. The salt-containing carbide may be a powder or may be molded to a predetermined size.

炭素粉末を配合しない場合、含塩炭化物は、金属粉25質量部に対して、好ましくは5〜35質量部配合され、より好ましくは10〜25質量部配合される。   When the carbon powder is not blended, the salt-containing carbide is preferably blended in an amount of 5 to 35 parts by mass, more preferably 10 to 25 parts by mass with respect to 25 parts by mass of the metal powder.

炭素粉末を配合する場合、含塩炭化物は、金属粉25質量部に対して、好ましくは0.1〜15質量部配合される。この場合、含塩炭化物の含有量は、炭素粉末と同量か、それ以下であってもよい。   When the carbon powder is blended, the salt-containing carbide is preferably blended in an amount of 0.1 to 15 parts by mass with respect to 25 parts by mass of the metal powder. In this case, the content of the salt-containing carbide may be the same as or less than that of the carbon powder.

なお、金属粉、含塩炭化物、水、炭素粉末、保水材などの、化学発熱組成物の成分を混合する順序は、特に限定されない。   The order of mixing the components of the chemical exothermic composition such as metal powder, salt-containing carbide, water, carbon powder, and water retention material is not particularly limited.

化学発熱組成物の用途は、発熱を必要とする用途であれば、特に制限はない。化学発熱組成物は、化学カイロ、温度調節用の調温剤、路面凍結防止剤、土壌、屋根上用融雪剤、あるいはシチュー、スープなどの温かい料理の保温剤などの用途に使用できる。これらの用途に応じて、金属粉および含塩炭化物粉末を配合し、炭素粉末、保水が必要である場合には水と保水材、水が過剰に存在する場合には吸水材など、必要に応じて、これらの材料を適宜選択して、配合すればよい。例えば、化学発熱組成物を化学カイロとして用いる場合は、水を配合し、必要に応じて、炭素粉末、保水材などを適宜添加する。   The chemical exothermic composition is not particularly limited as long as it is an application that requires heat generation. The chemical exothermic composition can be used for applications such as a chemical warmer, a temperature adjusting agent for temperature adjustment, a road surface anti-freezing agent, a snow melting agent for soil and a roof, or a warming agent for warm dishes such as stew and soup. According to these applications, metal powder and salt-containing carbide powder are blended, carbon powder, water and water retention material when water retention is necessary, water absorption material when water is excessive, etc. These materials may be appropriately selected and blended. For example, when a chemical exothermic composition is used as a chemical warmer, water is added and carbon powder, a water retaining material, etc. are added as needed.

(化学カイロ)
上記の化学発熱組成物のうち、金属粉、含塩炭化物および水を含有し、必要に応じて、炭素粉末あるいは保水材を含有する化学発熱組成物は、化学カイロ(使い捨てカイロ)として、好ましく用いられる。化学カイロに用いる場合、金属粉としては、鉄粉が好ましく用いられる。鉄粉の比表面積、表面の凹凸状態、粒径などは、適宜選択される。必要に応じて、鉄粉の種類や粒径の異なるものを組み合わせて用いてもよい。化学カイロ用の化学発熱組成物は、適切な包装材料に充填されて、化学カイロとして使用され得る。包装材料としては、当業者が化学カイロ用に通常用いる通気孔を有する包装材料が用いられる。このような化学カイロは、さらに化学カイロの包装に通常用いられる非通気性の包装材料で密封される。
(Chemical Cairo)
Among the above-mentioned chemical exothermic compositions, a chemical exothermic composition containing metal powder, salt-containing carbide and water, and optionally containing carbon powder or a water retention material, is preferably used as a chemical warmer (disposable warmer). It is done. When used in chemical warmers, iron powder is preferably used as the metal powder. The specific surface area of the iron powder, the surface irregularity state, the particle size and the like are appropriately selected. If necessary, iron powders of different types and particle sizes may be used in combination. A chemical exothermic composition for a chemical warmer can be used as a chemical warmer, filled in a suitable packaging material. As the packaging material, a packaging material having a vent hole that is usually used by those skilled in the art for chemical warmers is used. Such chemical warmers are further sealed with a non-breathable packaging material commonly used for packaging chemical warmers.

以下に含塩有機物として醤油粕、味噌、および都市ごみを用いる実施例について本発明を説明するが、本発明はこれらの実施例に制限されるものではない。   Hereinafter, the present invention will be described with respect to examples using soy sauce cake, miso, and municipal waste as salt-containing organic substances, but the present invention is not limited to these examples.

(実施例1〜2:醤油粕炭化物等の調製)
(実施例1:醤油粕炭化物の調製)
醤油粕150g(湿質量)を無酸素条件下、800℃で、45分間電気炉内で焼成し、粉末化して、醤油粕炭化物を得た。得られた粉末状の醤油粕炭化物の性状を表1に示す。
(Examples 1-2: Preparation of soy sauce bran carbide)
(Example 1: Preparation of soy sauce cake carbide)
150 g of soy sauce cake (wet mass) was baked in an electric furnace at 800 ° C. for 45 minutes under oxygen-free conditions and pulverized to obtain a soy sauce cake carbide. Table 1 shows the properties of the powdered soy sauce cake charcoal obtained.

(実施例2:活性化醤油粕炭化物の調製)
醤油粕を無酸素条件下、400℃、45分間電気炉内で焼成し、醤油粕炭化物を得た。この醤油粕炭化物300gを、再度電気炉に入れ、無酸素条件下にて水蒸気を添加しながら、800℃、1時間電気炉内で焼成し、粉末化して、活性化醤油粕炭化物を得た。得られた活性化醤油粕炭化物の性状を表1に併せて示す。
(Example 2: Preparation of activated soy sauce charcoal)
The soy sauce cake was baked in an electric furnace at 400 ° C. for 45 minutes under oxygen-free conditions to obtain a soy sauce cake carbide. 300 g of this soy sauce cake charcoal was put into an electric furnace again, baked in an electric furnace at 800 ° C. for 1 hour while adding water vapor under oxygen-free conditions, and pulverized to obtain activated soy sauce koji carbide. Properties of the obtained activated soy sauce cake charcoal are also shown in Table 1.

Figure 2006241426
Figure 2006241426

(実施例3〜6:醤油粕炭化物を用いる化学カイロの調製)
(実施例3)
上記実施例2で得られた活性化醤油粕炭化物6gに水5gを混合した。活性化醤油粕炭化物と水との混合は団塊を形成することなく、スムーズに行われた。これに鉄粉(和光純薬製、平均粒径150メッシュ以下)10gを混合して化学発熱組成物を調製した。調製後、直ちに耐火煉瓦上に置いたティーバッグ用のパックに化学発熱組成物を封入してカイロ1を調製した。経時的にカイロの温度を測定した。各成分の配合量を表2に、そしてカイロ1の発熱特性を図1に示す。
(Examples 3 to 6: Preparation of chemical warmers using soy sauce cake carbide)
(Example 3)
5 g of water was mixed with 6 g of the activated soy sauce koji carbide obtained in Example 2 above. Mixing of activated soy sauce cake charcoal and water was performed smoothly without forming a baby boom. This was mixed with 10 g of iron powder (manufactured by Wako Pure Chemical Industries, average particle size of 150 mesh or less) to prepare a chemical exothermic composition. Immediately after the preparation, a chemical exothermic composition was sealed in a tea bag pack placed on a refractory brick to prepare Cairo 1. Cairo temperature was measured over time. The amount of each component is shown in Table 2, and the heat generation characteristics of Cairo 1 are shown in FIG.

(実施例4)
上記実施例2で得られた活性化醤油粕炭化物を10gおよび水を6g用いたこと以外は、上記実施例3と同様にしてカイロ2を調製し、発熱特性を検討した。活性化醤油粕炭化物と水との混合は団塊を形成することなく、スムーズに行われた。各成分の配合量を表2に、そしてカイロ2の発熱特性を図1に示す。
Example 4
Cairo 2 was prepared in the same manner as in Example 3 except that 10 g of activated soy sauce charcoal obtained in Example 2 and 6 g of water were used, and the heat generation characteristics were examined. Mixing of activated soy sauce cake charcoal and water was performed smoothly without forming a baby boom. The amount of each component is shown in Table 2, and the heat generation characteristics of Cairo 2 are shown in FIG.

(実施例5)
上記実施例2で得られた活性化醤油粕炭化物1gおよび木炭粉末を2g混合し、水を7g加えて混合した。混合は団塊を形成することなく、スムーズに行われた。これに、鉄粉(和光純薬製、平均粒径150メッシュ以下)10gを混合して化学発熱組成物を調製した。上記実施例3と同様にしてカイロ3を調製し、発熱特性を検討した。活性化醤油粕炭化物と水との混合は団塊を形成することなく、スムーズに行われた。各成分の配合量を表2に、そしてカイロ3の発熱特性を図1に示す。
(Example 5)
1 g of activated soy sauce charcoal obtained in Example 2 and 2 g of charcoal powder were mixed, and 7 g of water was added and mixed. Mixing was performed smoothly without forming a baby boom. To this, 10 g of iron powder (manufactured by Wako Pure Chemical Industries, average particle size of 150 mesh or less) was mixed to prepare a chemical exothermic composition. Cairo 3 was prepared in the same manner as in Example 3, and the heat generation characteristics were examined. Mixing of activated soy sauce cake charcoal and water was performed smoothly without forming a baby boom. The amount of each component is shown in Table 2, and the heat generation characteristics of Cairo 3 are shown in FIG.

(実施例6)
上記実施例1で得られた醤油粕炭化物を1g、水を6g、および木炭粉末を3g用いたこと以外は、上記実施例5と同様にしてカイロ4を調製し、発熱特性を検討した。醤油粕炭化物、木炭粉末および水との混合は団塊を形成することなく、スムーズに行われた。各成分の配合量を表2に、そしてカイロ4の発熱特性を図1に示す。
(Example 6)
Cairo 4 was prepared in the same manner as in Example 5 except that 1 g of soy sauce charcoal obtained in Example 1 above, 6 g of water, and 3 g of charcoal powder were used, and the heat generation characteristics were examined. Mixing with soy sauce cake charcoal, charcoal powder and water was performed smoothly without forming a baby boom. The amount of each component is shown in Table 2, and the heat generation characteristics of Cairo 4 are shown in FIG.

Figure 2006241426
Figure 2006241426

(比較例1〜3)
比較例として市販のカイロを3種類購入し、それぞれ、市販カイロ1、市販カイロ2、および市販カイロ3として、発熱特性を測定した。発熱特性を図1に示す。
(Comparative Examples 1-3)
As a comparative example, three types of commercially available warmers were purchased, and the exothermic characteristics were measured as commercially available warmer 1, commercially available warmer 2, and commercially available warmer 3, respectively. The heat generation characteristics are shown in FIG.

図1からわかるように、活性化醤油粕炭化物を用いたカイロ1およびカイロ2は、市販カイロ1〜3よりも発熱温度がやや高く、十分にカイロとして使用できることがわかった。しかし、カイロ1およびカイロ2の昇温速度は遅かった。   As can be seen from FIG. 1, Cairo 1 and Cairo 2 using activated soy sauce cake charcoal have a slightly higher exothermic temperature than commercially available Cairo 1-3 and can be used sufficiently as a warmer. However, the heating rate of Cairo 1 and Cairo 2 was slow.

また、炭素粉末(木炭粉末)と活性化醤油粕炭化物とを組み合わせて用いたカイロ3および炭素粉末と醤油粕炭化物とを組み合わせて用いたカイロ4はいずれも、用いた醤油粕炭化物の量が少ないが、昇温特性はほぼ市販カイロ1〜3と同等であった。活性化醤油粕炭化物と炭素粉末とを組み合わせて用いたカイロ3は、市販カイロ1〜3と同等の昇温特性を有し、かつ発熱温度も比較的高く、市販カイロ2とほぼ同等の発熱特性を示しており、実用的であることが確認された。また、醤油粕炭化物と炭素粉末とを組み合わせて用いたカイロ4も、市販カイロ2とほぼ同等の発熱特性を示しており、実用的であることが確認された。   In addition, both Cairo 3 using a combination of carbon powder (charcoal powder) and activated soy sauce charcoal and Cairo 4 using a combination of carbon powder and soy sauce charcoal have a small amount of soy sauce charcoal used. However, the temperature rise characteristics were almost equivalent to those of commercially available Cairo 1-3. Cairo 3 using a combination of activated soy sauce charcoal and carbon powder has a temperature rise characteristic equivalent to that of commercially available Cairo 1-3, a relatively high exothermic temperature, and almost the same exothermic characteristic as that of commercially available Cairo 2. This was confirmed to be practical. In addition, Cairo 4 using a combination of soy sauce charcoal carbide and carbon powder also showed heat generation characteristics substantially equivalent to those of commercially available Cairo 2, and was confirmed to be practical.

(実施例7〜12:醤油粕からの化学カイロの調製)
(実施例7)
醤油粕140g(湿質量)を無酸素条件下、700℃で、45分間電気炉内で焼成し、醤油粕炭化物を得た。醤油粕炭化物2.5gおよび木炭7.5gを混合し、これに水10gを混合した。醤油粕炭化物、木炭および水の混合は団塊を形成することなく、スムーズに行われた。これに鉄粉(パウダーテック社製RDH−3M)を25g混合して化学発熱組成物を調製した。調製後、直ちに耐火煉瓦上に置いたティーバッグ用のパックに化学発熱組成物を封入してカイロ5を調製した。経時的にカイロ5の温度を測定した。各成分の配合量および発熱組成物中の食塩濃度を表3に、そして発熱特性を図2に示す。なお、ナトリウム濃度(Na濃度)は、JIS K0102.48.1に基づくフレーム光度法で測定した。塩素濃度(Cl濃度)は、ポンプ燃焼法による塩素濃度とJIS K0102.35.3に基づくイオンクロマトグラフ法による燃焼性塩素濃度の加算値である。醤油粕炭化物中の食塩濃度は、Na濃度とCl濃度を加算した値である。
(Examples 7 to 12: Preparation of chemical warmers from soy sauce cake)
(Example 7)
140 g (wet mass) of soy sauce cake was baked in an electric furnace at 700 ° C. for 45 minutes under oxygen-free conditions to obtain a soy sauce cake carbide. Soy sauce cake charcoal 2.5g and charcoal 7.5g were mixed, and water 10g was mixed therewith. Mixing of soy sauce charcoal, charcoal and water was performed smoothly without forming a baby boom. This was mixed with 25 g of iron powder (RDH-3M manufactured by Powdertech Co., Ltd.) to prepare a chemical exothermic composition. Immediately after the preparation, a chemical exothermic composition was enclosed in a tea bag pack placed on a refractory brick to prepare a warmer 5. The temperature of Cairo 5 was measured over time. The amount of each component and the salt concentration in the exothermic composition are shown in Table 3, and the exothermic characteristics are shown in FIG. The sodium concentration (Na concentration) was measured by a flame photometric method based on JIS K0102.48.1. The chlorine concentration (Cl concentration) is an added value of the chlorine concentration by the pump combustion method and the combustible chlorine concentration by the ion chromatography method based on JIS K0102.35.3. The salt concentration in the soy sauce cake carbide is a value obtained by adding the Na concentration and the Cl concentration.

(実施例8)
実施例7で得られた醤油粕炭化物を5g、木炭を5gおよび水を12.5g用いたこと以外は実施例7と同様にして、カイロ6を調製した。醤油粕炭化物、木炭および水の混合は団塊を形成することなく、スムーズに行われた。経時的にカイロ6の温度を測定した。各成分の配合量および発熱組成物中の食塩濃度を表3に、そしてカイロ6の発熱特性を図2に示す。
(Example 8)
Cairo 6 was prepared in the same manner as in Example 7, except that 5 g of the soy sauce charcoal obtained in Example 7, 5 g of charcoal, and 12.5 g of water were used. Mixing of soy sauce charcoal, charcoal and water was performed smoothly without forming a baby boom. The temperature of Cairo 6 was measured over time. The amount of each component and the salt concentration in the exothermic composition are shown in Table 3, and the exothermic characteristics of Cairo 6 are shown in FIG.

(実施例9)
実施例7で得られた醤油粕炭化物を7.5g、木炭を2.5g、および水を12.6g用いたこと以外は実施例7と同様にして、カイロ7を調製した。醤油粕炭化物、木炭および水の混合は団塊を形成することなく、スムーズに行われた。経時的にカイロ7の温度を測定した。各成分の配合量および発熱組成物中の食塩濃度を表3に、そしてカイロ7の発熱特性を図2に示す。
Example 9
Cairo 7 was prepared in the same manner as in Example 7, except that 7.5 g of the soy sauce cake obtained in Example 7, 2.5 g of charcoal, and 12.6 g of water were used. Mixing of soy sauce cake charcoal, charcoal and water was performed smoothly without forming a nodule. The temperature of Cairo 7 was measured over time. The amount of each component and the salt concentration in the exothermic composition are shown in Table 3, and the exothermic characteristics of Cairo 7 are shown in FIG.

(実施例10)
醤油粕を無酸素条件下、400℃、45分間電気炉内で焼成して得られた醤油粕炭化物300gを、再度電気炉に入れ、無酸素条件下にて水蒸気を添加しながら、800℃、1時間電気炉内で焼成し、活性化醤油粕炭化物を得た。この活性化醤油粕炭化物を2.5g、木炭を7.5g、水を12g用いたこと以外は、実施例7と同様にして、カイロ8を調製した。活性化醤油粕炭化物、木炭および水の混合は団塊を形成することなく、スムーズに行われた。経時的にカイロ8の温度を測定した。各成分の配合量および発熱組成物中の食塩濃度を表3に、そしてカイロ8の発熱特性を図2に示す。
(Example 10)
300 g of soy sauce cake charcoal obtained by baking soy sauce cake in an electric furnace under anaerobic conditions at 400 ° C. for 45 minutes is placed in the electric furnace again, and while adding steam under anoxic conditions, It fired in an electric furnace for 1 hour to obtain activated soy sauce charcoal. Cairo 8 was prepared in the same manner as in Example 7, except that 2.5 g of this activated soy sauce cake carbide, 7.5 g of charcoal, and 12 g of water were used. Mixing of activated soy sauce charcoal, charcoal and water was performed smoothly without forming a baby boom. The temperature of the warmer 8 was measured over time. The amount of each component and the salt concentration in the exothermic composition are shown in Table 3, and the exothermic characteristics of Cairo 8 are shown in FIG.

(実施例11)
実施例10で得られた活性化醤油粕炭化物を8g、木炭を7.5g、および水を15g用いたこと以外は、実施例10と同様にして、カイロ9を調製した。活性化醤油粕炭化物、木炭および水の混合は団塊を形成することなく、スムーズに行われた。経時的にカイロ9の温度を測定した。各成分の配合量および発熱組成物中の食塩濃度を表3に、そしてカイロ9の発熱特性を図2に示す。
(Example 11)
Cairo 9 was prepared in the same manner as in Example 10, except that 8 g of activated soy sauce cake obtained in Example 10, 7.5 g of charcoal, and 15 g of water were used. Mixing of activated soy sauce charcoal, charcoal and water was performed smoothly without forming a baby boom. The temperature of the warmer 9 was measured over time. The amount of each component and the salt concentration in the exothermic composition are shown in Table 3, and the exothermic characteristics of Cairo 9 are shown in FIG.

(実施例12)
実施例10で得られた活性化醤油粕炭化物を10gおよび水を5.1g用いたこと以外は、実施例10と同様にして、カイロ10を調製した。このカイロ10では、木炭を使用していない。活性化醤油粕炭化物と水との混合は団塊を形成することなく、スムーズに行われた。経時的にカイロ10の温度を測定した。各成分の配合量および発熱組成物中の食塩濃度を表3に、そしてカイロ10の発熱特性を図2に示す。
(Example 12)
Cairo 10 was prepared in the same manner as in Example 10 except that 10 g of the activated soy sauce cake obtained in Example 10 and 5.1 g of water were used. In this warmer 10, charcoal is not used. Mixing of activated soy sauce cake charcoal and water was performed smoothly without forming a baby boom. The temperature of the warmer 10 was measured over time. The amount of each component and the salt concentration in the exothermic composition are shown in Table 3, and the exothermic characteristics of Cairo 10 are shown in FIG.

Figure 2006241426
Figure 2006241426

(比較例4〜5)
比較例として市販のカイロを2種類購入し、それぞれ、市販カイロ4、および市販カイロ5として、カイロ5〜10と同様に、発熱特性を測定した。発熱特性を図2に示す。
(Comparative Examples 4-5)
As a comparative example, two types of commercially available Cairo were purchased, and the exothermic characteristics were measured as commercially available Cairo 4 and commercially available Cairo 5 in the same manner as Cairo 5-10. The heat generation characteristics are shown in FIG.

図2から、醤油粕炭化物を用いたカイロ5および6は比較例4の市販カイロ4と同等の性能が得られたことがわかる。これらのカイロ5および6は、それぞれ、塩分を1.6%および3.1%含有していた。また、醤油粕炭化物を用いたカイロ7は、比較例4のカイロ4よりは、発熱特性の持続性が若干劣るが、比較例5の市販カイロ5と同等の性能が得られたことがわかる。このカイロ7の塩分濃度は、5%であった。   From FIG. 2, it can be seen that the warmers 5 and 6 using soy sauce bran carbide obtained the same performance as the commercially available warmer 4 of Comparative Example 4. These Cairo 5 and 6 contained 1.6% and 3.1% salt, respectively. In addition, it can be seen that the warmer 7 using the soy sauce koji carbide was slightly inferior in sustainability of the heat generation characteristics than the warmer 4 of the comparative example 4, but the performance equivalent to the commercially available warmer 5 of the comparative example 5 was obtained. The salt concentration of this warmer 7 was 5%.

活性化醤油粕炭化物を用いたカイロ8は、ほぼ、市販のカイロ4と同等の発熱特性を有していることがわかる。また、カイロ9は、市販のカイロ4と同等またはそれ以上の発熱特性を有している。ほぼ同量の食塩を含有する醤油粕炭化物を用いるカイロ7とカイロ9とを比較すると、カイロ7の発熱持続時間は比較的短いのに対して、カイロ9の発熱持続時間は長い。これは、カイロ9に使用した木炭の量がカイロ7の3倍であるので、鉄粉、水および食塩の接触が少なくなるために、鉄の急激な酸化反応が抑制されること、および木炭に付着している酸素が反応に寄与するためと考えられる。カイロ10は、市販のカイロ5と同様の発熱特性を示し、カイロ7と同様、発熱持続時間が短かった。これは、塩分濃度が10質量%であったこと、木炭を使用しなかったことから、鉄と水と食塩とが比較的接触しやすく、鉄の酸化反応が早くなったためと考えられる。木炭などの添加により、改良可能と思われる。   It can be seen that the body warmer 8 using activated soy sauce cake charcoal has almost the same heat generation characteristics as the commercially available body warmer 4. In addition, the warmer 9 has a heat generation characteristic equal to or higher than that of the commercially available warmer 4. Comparing Cairo 7 and Cairo 9 using soy sauce bran carbide containing almost the same amount of salt, Cairo 7 has a relatively short exothermic duration, whereas Cairo 9 has a long exothermic duration. This is because the amount of charcoal used for the warmer 9 is three times that of the warmer 7, so that the contact of iron powder, water and salt is reduced, so that the rapid oxidation reaction of iron is suppressed, and the charcoal This is probably because the attached oxygen contributes to the reaction. Cairo 10 exhibited heat generation characteristics similar to those of commercially available Cairo 5, and, like Cairo 7, the heat generation duration was short. This is presumably because the salt concentration was 10% by mass and charcoal was not used, so that iron, water and salt were relatively in contact with each other, and the iron oxidation reaction was accelerated. It can be improved by adding charcoal.

(実施例13〜17:味噌からの化学カイロの調製)
(実施例13)
市販の合わせ味噌(吉兆味噌(株)製、原料:米、大豆、食塩)を用いた。味噌を342g取り、これを小型焼成炉に投入し、700℃にて焼成した。700℃までの昇温時間は15分とし、その後20分間700℃に保持して炭化を行い、みそ炭化物Aを得た。みそ炭化物A中の食塩濃度は26%であった。
(Examples 13 to 17: Preparation of chemical warmers from miso)
(Example 13)
A commercially available combined miso (manufactured by Yoshicho Miso Co., Ltd., raw materials: rice, soybean, salt) was used. 342 g of miso was taken and placed in a small firing furnace and fired at 700 ° C. The temperature raising time up to 700 ° C. was 15 minutes, and then carbonization was carried out while maintaining the temperature at 700 ° C. for 20 minutes to obtain miso carbide A. The salt concentration in miso carbide A was 26%.

みそ炭化物Aを5gとり、これに木炭(カイロ用活性炭)5g、鉄粉(パウダーテック社カイロ用鉄粉(RDH−3M))25g、水道水9g、および樹脂(高分子樹脂:オルガノ製アンバーライト)1gを混合し、化学カイロ11を調製した。なお、混合は1分以内に行った。カイロ11の食塩濃度は2.9%であった。経時的にカイロ11の温度を測定した。各成分の配合量を表4に、そしてカイロ11の発熱特性を図3に示す。比較として。市販カイロ6を用いた。なお、みそ炭化物Aと水との混合は団塊を形成することなく、スムーズに行われた。   Take 5g of miso carbide A, and add 5g of charcoal (activated carbon for warmers), 25g of iron powder (iron powder for warmers (RDH-3M)), 9g of tap water, and resin (polymer resin: Organo Amberlite) ) 1 g was mixed to prepare chemical warmer 11. The mixing was performed within 1 minute. The salt concentration of Cairo 11 was 2.9%. The temperature of the warmer 11 was measured over time. The amount of each component is shown in Table 4, and the heat generation characteristics of the warmer 11 are shown in FIG. As a comparison. Commercially available Cairo 6 was used. In addition, mixing of the miso carbide A and water was performed smoothly without forming a baby boom.

(実施例14)
味噌を336gとり、炭化温度を600℃としたこと以外は実施例13と同様にして、みそ炭化物Bを得た。みそ炭化物B中の食塩濃度は24%であった。このみそ炭化物Bを用いて、水道水を9.1gとしたこと以外は実施例13と同様にして、カイロ12を調製した。みそ炭化物Bと水との混合は団塊を形成することなく、スムーズに行われた。なお、カイロ12中の食塩濃度は2.7%であった。各成分の配合量を表4に、そしてカイロ12の発熱特性を図3に示す。
(Example 14)
Miso carbide B was obtained in the same manner as in Example 13 except that 336 g of miso was taken and the carbonization temperature was 600 ° C. The salt concentration in miso carbide B was 24%. Cairo 12 was prepared using this miso carbide B in the same manner as in Example 13 except that the tap water was changed to 9.1 g. Mixing of miso carbide B and water was performed smoothly without forming a nodule. The salt concentration in Cairo 12 was 2.7%. The amount of each component is shown in Table 4, and the heat generation characteristics of the warmer 12 are shown in FIG.

(実施例15)
味噌を365gとり、炭化温度を500℃としたこと以外は実施例13と同様にして、みそ炭化物Cを得た。みそ炭化物C中の食塩濃度は22%であった。このみそ炭化物Cを用いて、実施例13と同様にして、カイロ13を調製した。みそ炭化物Cと水との混合は団塊を形成することなく、スムーズに行われた。なお、カイロ13中の食塩濃度は2.4%であった。各成分の配合量を表4に、そしてカイロ13の発熱特性を図3に示す。
(Example 15)
Miso carbide C was obtained in the same manner as in Example 13 except that 365 g of miso was taken and the carbonization temperature was 500 ° C. The salt concentration in miso carbide C was 22%. Cairo 13 was prepared using this miso carbide C in the same manner as in Example 13. Mixing of miso carbide C and water was performed smoothly without forming a nodule. The salt concentration in Cairo 13 was 2.4%. The amount of each component is shown in Table 4, and the heat generation characteristics of the warmer 13 are shown in FIG.

(実施例16)
味噌を339gとり、炭化温度を400℃としたこと以外は実施例13と同様にして、みそ炭化物Dを得た。みそ炭化物D中の食塩濃度は、20%であった。このみそ炭化物Dを用いて、水を9.1gとしたこと以外は実施例13と同様にして、カイロ14を調製した。みそ炭化物Dと水との混合は団塊を形成することなく、スムーズに行われた。なお、カイロ14中の食塩濃度は2.2%であった。各成分の配合量を表4に、そしてカイロ14の発熱特性を図3に示す。
(Example 16)
Miso carbide D was obtained in the same manner as in Example 13 except that 339 g of miso was taken and the carbonization temperature was 400 ° C. The salt concentration in miso carbide D was 20%. Cairo 14 was prepared using this miso carbide D in the same manner as in Example 13 except that water was changed to 9.1 g. Mixing of miso carbide D and water was performed smoothly without forming a nodule. The salt concentration in Cairo 14 was 2.2%. The amount of each component is shown in Table 4, and the heat generation characteristics of the warmer 14 are shown in FIG.

(実施例17)
味噌を362gとり、炭化温度を300℃とし、保持時間を40分としたこと以外は実施例13と同様にして、みそ炭化物Eを得た。みそ炭化物E中の食塩濃度は18%であった。このみそ炭化物Eを用いて、水を9.1gとしたこと以外は実施例13と同様にして、カイロ15を調製した。みそ炭化物Eと水との混合は団塊を形成することなく、スムーズに行われた。なお、カイロ15中の食塩濃度は2.0%であった。各成分の配合量を表4に、そしてカイロ15の発熱特性を図3に示す。
(Example 17)
Miso carbide E was obtained in the same manner as in Example 13 except that 362 g of miso was taken, the carbonization temperature was 300 ° C., and the holding time was 40 minutes. The salt concentration in miso carbide E was 18%. Using this miso carbide E, Cairo 15 was prepared in the same manner as in Example 13 except that water was changed to 9.1 g. Mixing of miso carbide E and water was performed smoothly without forming a nodule. The salt concentration in Cairo 15 was 2.0%. The amount of each component is shown in Table 4, and the heat generation characteristics of Cairo 15 are shown in FIG.

Figure 2006241426
Figure 2006241426

図3からわかるように、実施例13(カイロ11)の発熱温度は85℃程度であり、立ち上がり時間は10分程度であった。80℃の保持時間も25分であり、市販カイロと遜色がなかった。   As can be seen from FIG. 3, the heat generation temperature of Example 13 (Cairo 11) was about 85 ° C., and the rise time was about 10 minutes. The holding time at 80 ° C. was also 25 minutes, which was not inferior to commercially available warmers.

また、実施例14および15(カイロ12およびカイロ13)の発熱温度は80℃程度であり、立ち上がり時間は10分程度であった。80℃の保持時間も25分であり、市販カイロと遜色がなかった。   In addition, the heat generation temperature of Examples 14 and 15 (Cairo 12 and Cairo 13) was about 80 ° C., and the rise time was about 10 minutes. The holding time at 80 ° C. was also 25 minutes, which was not inferior to commercially available warmers.

実施例16(カイロ14)の発熱温度は80℃程度であり、立ち上がり時間は10分程度であり、市販カイロと遜色がなかった。しかし、80℃の保持時間は20分と、若干市販カイロより低下したが、使用できる範囲である。   The heat generation temperature of Example 16 (Cairo 14) was about 80 ° C., the rise time was about 10 minutes, and was not inferior to a commercially available body warmer. However, the retention time at 80 ° C. was 20 minutes, which was slightly lower than the commercially available body warmer, but is in a usable range.

実施例17(カイロ15)の発熱温度は75℃程度であり、立ち上がり時間は10分程度であった。75℃の保持時間は20分と、若干市販カイロ6より低下したが、使用できる範囲である。   The heat generation temperature of Example 17 (Cairo 15) was about 75 ° C., and the rise time was about 10 minutes. The holding time at 75 ° C. was 20 minutes, which was slightly lower than that of the commercially available body warmer 6, but is in a usable range.

(実施例18〜21:都市ごみを用いる化学カイロの調製)
(実施例18)
商業ごみ処理プラントで、450℃、1時間、無酸素状態で焼成を行った炭化物(都市ごみ炭化物F)を入手した。表5に都市ごみ炭化物Fの分析値を示す。
(Examples 18 to 21: Preparation of chemical warmers using municipal waste)
(Example 18)
Carbide (city waste carbide F) which was baked in an oxygen-free state at 450 ° C. for 1 hour in a commercial waste treatment plant was obtained. Table 5 shows the analysis values of municipal waste carbide F.

都市ごみ炭化物Fを5gとり、これに木炭(カイロ用活性炭)5g、鉄粉(パウダーテック社カイロ用鉄粉(RDH−3M))25g、水道水9g、および樹脂(高分子樹脂:オルガノ製アンバーライト)を混合し、化学カイロ16を調製した。なお、混合は1分以内に行った。経時的にカイロ16の温度を測定した。各成分の配合量およびカイロ組成物中の食塩濃度を表6に、そしてカイロ16の発熱特性を図4に示す。比較として、市販カイロ7を用いた。なお、都市ごみ炭化物Fと水との混合は団塊を形成することなく、スムーズに行われた。   Take 5g of municipal waste carbide F, 5g of charcoal (activated carbon for warmers), 25g of iron powder (iron powder for warmers (RDH-3M)), 9g of tap water, and resin (polymer resin: Organo Amber) Wright) was mixed to prepare a chemical warmer 16. The mixing was performed within 1 minute. The temperature of the warmer 16 was measured over time. The amount of each component and the salt concentration in the warmer composition are shown in Table 6, and the exothermic characteristics of warmer 16 are shown in FIG. For comparison, a commercially available body warmer 7 was used. In addition, mixing of municipal waste carbide F and water was performed smoothly without forming a baby boom.

(実施例19)
都市ごみ炭化物Fを焼成炉に投入し、15分で700℃に達するように昇温した。昇温後、20分間、700℃に保持し、冷却して、都市ごみ炭化物Gを得た。表5に都市ごみ炭化物Gの分析値を示す。
(Example 19)
Municipal waste carbide F was put into a firing furnace and heated to reach 700 ° C. in 15 minutes. After raising the temperature, it was kept at 700 ° C. for 20 minutes and cooled to obtain municipal waste carbide G. Table 5 shows the analysis values of municipal waste carbide G.

都市ごみ炭化物Gを用いたこと以外は実施例18と同様にして、化学カイロ17を調製した。カイロ17の食塩濃度は0.87質量%であった。経時的にカイロ17の温度を測定した。各成分の配合量およびカイロ組成物中の食塩濃度を表6に、そしてカイロ17の発熱特性を図4に示す。なお、都市ごみ炭化物Gと水との混合は団塊を形成することなく、スムーズに行われた。   A chemical warmer 17 was prepared in the same manner as in Example 18 except that municipal waste carbide G was used. The salt concentration of Cairo 17 was 0.87% by mass. The temperature of the warmer 17 was measured over time. The amount of each component and the salt concentration in the warmer composition are shown in Table 6, and the exothermic characteristics of warmer 17 are shown in FIG. In addition, mixing with municipal waste carbide G and water was performed smoothly, without forming a nodule.

(実施例20)
温度を800℃に代えたこと以外は実施例19と同様に処理して、都市ごみ炭化物Hを得た。表5に都市ごみ炭化物Hの分析値を示す。
(Example 20)
Municipal waste carbide H was obtained in the same manner as in Example 19 except that the temperature was changed to 800 ° C. Table 5 shows analysis values of municipal waste carbide H.

都市ごみ炭化物Hを用いたこと以外は実施例18と同様にして、化学カイロ18を調製した。経時的にカイロ18の温度を測定した。各成分の配合量およびカイロ組成物中の食塩濃度を表6に、そしてカイロ18の発熱特性を図4に示す。なお、都市ごみ炭化物Hと水との混合は団塊を形成することなく、スムーズに行われた。   A chemical warmer 18 was prepared in the same manner as in Example 18 except that the municipal waste carbide H was used. The temperature of the warmer 18 was measured over time. The amount of each component and the salt concentration in the warmer composition are shown in Table 6, and the exothermic characteristics of warmer 18 are shown in FIG. In addition, mixing with municipal waste carbide H and water was performed smoothly, without forming a nodule.

(実施例21)
都市ごみ炭化物Fを焼成炉に投入し、15分で850℃に達するように昇温し、850℃で、水蒸気を150g/時間の速度で供給しながら、1時間、活性化処理し、活性化都市ごみ炭化物Iを得た。表5に活性化都市ごみ炭化物Iの分析値を示す。
(Example 21)
Municipal waste carbide F is put into a firing furnace, heated to reach 850 ° C. in 15 minutes, activated at 850 ° C. for 1 hour while supplying steam at a rate of 150 g / hour, and activated. Municipal waste carbide I was obtained. Table 5 shows analytical values of activated municipal waste carbide I.

都市ごみ炭化物Iを用いたこと以外は実施例18と同様にして、化学カイロ19を調製した。経時的にカイロ19の温度を測定した。各成分の配合量およびカイロ組成物中の食塩濃度を表6に、そしてカイロ19の発熱特性を図4に示す。なお、都市ごみ炭化物Iと水との混合は団塊を形成することなく、スムーズに行われた。   A chemical warmer 19 was prepared in the same manner as in Example 18 except that municipal waste carbide I was used. The temperature of the warmer 19 was measured over time. The amount of each component and the salt concentration in the warmer composition are shown in Table 6, and the exothermic characteristics of warmer 19 are shown in FIG. The municipal waste carbide I and water were mixed smoothly without forming a baby boom.

Figure 2006241426
Figure 2006241426

表5に示すように、都市ごみ炭化物F〜Iは食塩を含んでおり、十分に化学発熱組成物として使用できる。   As shown in Table 5, municipal waste carbides F to I contain sodium chloride and can be sufficiently used as a chemical exothermic composition.

Figure 2006241426
Figure 2006241426

図4からわかるように、実施例18(カイロ16)の発熱温度は60℃程度であるが、その温度になるまで30分以上を要しており、炭化が不十分と思われた。実施例19(カイロ17)は、発熱温度は75℃と市販カイロより若干低いが、立ち上がり時間は7分で良好であった。さらに、75℃での保持時間も20分程度と良好であった。実施例20(カイロ18)および実施例21(カイロ19)は、発熱温度は80℃以上で良好であり、立ち上がり時間も8分程度と良好であった。また、80℃での保持時間も20分程度であり、市販のカイロと比較しても遜色がなかった。   As can be seen from FIG. 4, the exothermic temperature of Example 18 (Cairo 16) was about 60 ° C., but it took 30 minutes or more to reach that temperature, and carbonization seemed insufficient. In Example 19 (Cairo 17), the exothermic temperature was 75 ° C., which was slightly lower than that of the commercially available Cairo, but the rise time was 7 minutes, which was good. Furthermore, the holding time at 75 ° C. was as good as about 20 minutes. In Example 20 (Cairo 18) and Example 21 (Cairo 19), the exothermic temperature was good at 80 ° C. or higher, and the rise time was good at about 8 minutes. In addition, the holding time at 80 ° C. was about 20 minutes, and even when compared with a commercially available warmer, there was no inferiority.

なお、都市ごみには重金属類が含まれているおそれがある。そのため、全水銀、カドミウム、鉛、六価クロムおよび砒素について、JIS4100および環境省告示第13号に基づく方法で、溶出試験を行った。結果を表7に示す。表7において、環境基準は、環境省告示第13号に基づく方法によることを意味する。   Municipal waste may contain heavy metals. Therefore, a dissolution test was conducted for all mercury, cadmium, lead, hexavalent chromium and arsenic by a method based on JIS 4100 and Ministry of the Environment Notification No. 13. The results are shown in Table 7. In Table 7, the environmental standard means that the method is based on the Ministry of the Environment Notification No. 13.

Figure 2006241426
Figure 2006241426

表7に示すように、実施例18の都市ごみ炭化物中の重金属量は、JIS4100および環境基準に定められた量よりも少ないことがわかった。実施例21の都市ごみ炭化物中の重金属量は、JIS4100および環境基準に定められた量よりも少ない。環境基準では六価クロムがやや高いが、他の重金属量は少ない。従って、この都市ごみ炭化物は、安全性に優れていることも理解される。   As shown in Table 7, it was found that the amount of heavy metals in the municipal waste carbide of Example 18 was less than the amount defined in JIS 4100 and environmental standards. The amount of heavy metals in the municipal waste carbide of Example 21 is less than the amount defined in JIS 4100 and environmental standards. According to environmental standards, hexavalent chromium is slightly higher, but the amount of other heavy metals is small. Therefore, it is understood that this municipal waste carbide is excellent in safety.

このように、都市ごみの炭化物から、安全でかつ性能に優れた化学発熱組成物が得られることわかる。   Thus, it can be seen that a chemical exothermic composition that is safe and excellent in performance can be obtained from the carbide of municipal waste.

本発明の化学発熱組成物用添加剤として用いられる含塩有機物の炭化物は、化学発熱組成物における必須成分である、食塩成分かつ活性炭成分および/または保水材成分として好適に使用され、そして親水性にも優れる。そのため、従来の化学発熱組成物の製造工程において問題となっていた食塩溶解工程および食塩水配合工程が不要となり、化学発熱組成物への水添加処理工程をスムーズに行うことができ、これらの製造工程が簡略化される。さらに、従来単に廃棄されるのみであった含塩有機物の有効利用方法も提供されるので、リサイクルの面でも有用である。廃棄物利用であることから、本発明の化学発熱組成物用添加剤の製造コストも低減される。したがって、本発明の化学発熱組成物用添加剤および本発明の化学発熱組成物は、化学カイロ(使い捨てカイロ)をはじめとする、化学発熱組成物の製造に非常に好適である。   The salt-containing organic carbide used as the additive for the chemical exothermic composition of the present invention is suitably used as a salt component and an activated carbon component and / or a water retention component, which are essential components in the chemical exothermic composition, and is hydrophilic. Also excellent. Therefore, the salt dissolution step and the salt solution blending step, which have been problems in the conventional manufacturing process of chemical exothermic compositions, are no longer necessary, and the water addition treatment step to the chemical exothermic composition can be performed smoothly. The process is simplified. Furthermore, since an effective utilization method of the salt-containing organic material that has been simply discarded is also provided, it is useful in terms of recycling. Since it is a waste utilization, the manufacturing cost of the additive for chemical exothermic compositions of the present invention is also reduced. Therefore, the chemical exothermic composition additive of the present invention and the chemical exothermic composition of the present invention are very suitable for the production of chemical exothermic compositions including chemical warmers (disposable warmers).

本発明の醤油粕炭化物を用いたカイロ1〜4および市販の化学カイロ1〜3の発熱特性を示すグラフである。It is a graph which shows the exothermic characteristic of Cairo 1-4 using the soy sauce koji carbide | carbonized_material of this invention, and commercially available chemical Cairo 1-3. 本発明の醤油粕炭化物を用いたカイロ5〜10および市販の化学カイロ4〜5の発熱特性を示すグラフである。It is a graph which shows the heat_generation | fever characteristic of Cairo 5-10 using the soy sauce lees carbide of this invention, and the commercially available chemical Cairo 4-5. みそ炭化物を用いたカイロ11〜14および市販の化学カイロ6の発熱特性を示すグラフである。It is a graph which shows the heat_generation | fever characteristic of the warmers 11-14 using the miso carbide, and the commercially available chemical warmer 6. 都市ごみ炭化物を用いたカイロ15〜19および市販の化学カイロ7の発熱特性を示すグラフである。It is a graph which shows the heat_generation | fever characteristic of the warmers 15-19 using the municipal waste carbide, and the commercially available chemical warmer 7.

Claims (12)

含塩有機物の炭化物からなる、化学発熱組成物用添加剤。   An additive for a chemical exothermic composition comprising a carbide of a salt-containing organic substance. 前記含塩有機物の炭化物が、含塩有機物を400〜1000℃の温度で焼成して得られる炭化物である、請求項1に記載の化学発熱組成物用添加剤。   The additive for chemical exothermic composition according to claim 1, wherein the carbide of the salt-containing organic substance is a carbide obtained by baking the salt-containing organic substance at a temperature of 400 to 1000 ° C. 前記含塩有機物の炭化物が、含塩有機物を100〜1000℃の温度で焼成して得られる炭化物を、さらに300〜1000℃の温度で活性化処理して得られる炭化物である、請求項1または2に記載の化学発熱組成物用添加剤。   The carbide of the salt-containing organic substance is a carbide obtained by further activating a carbide obtained by baking the salt-containing organic substance at a temperature of 100 to 1000 ° C at a temperature of 300 to 1000 ° C. 2. The additive for chemical exothermic composition according to 2. 前記含塩有機物が、食品廃棄物、都市ごみ、下水汚泥、集落排水汚泥、し尿汚泥、および家畜ふん尿からなる群から選択される、請求項1から3のいずれかの項に記載の化学発熱組成物用添加剤。   The chemical exothermic composition according to any one of claims 1 to 3, wherein the salt-containing organic substance is selected from the group consisting of food waste, municipal waste, sewage sludge, settlement drainage sludge, human waste sludge, and livestock manure. Additives for products. 前記食品廃棄物が、醤油粕、塩昆布廃棄物、佃煮廃棄物、味噌廃棄物、スープ、出し汁、漬物、都市厨芥、および調理屑からなる群から選択される少なくとも一つの廃棄物である、請求項4に記載の化学発熱組成物用添加剤。   The food waste is at least one waste selected from the group consisting of soy sauce cake, salt kelp waste, boiled waste waste, miso waste, soup, soup stock, pickles, municipal waste, and cooking waste. Item 5. The additive for chemical exothermic composition according to Item 4. 請求項1から5のいずれかに記載の含塩有機物の炭化物、および金属粉を含有する、化学発熱組成物。   A chemical exothermic composition containing the carbide of the salt-containing organic substance according to any one of claims 1 to 5 and metal powder. さらに水を含有する、請求項6に記載の化学発熱組成物。   The chemical exothermic composition according to claim 6, further comprising water. さらに保水材および/または含塩有機物の炭化物以外の炭素粉末を含有する、請求項6または7に記載の化学発熱組成物。   Furthermore, the chemical exothermic composition of Claim 6 or 7 containing carbon powder other than the water retention material and / or the carbide | carbonized_material of a salt-containing organic substance. 金属粉25質量部に対して、前記含塩有機物の炭化物を0.1〜25質量部の割合で含む、請求項6から8のいずれかの項に記載の化学発熱組成物。   The chemical exothermic composition according to any one of claims 6 to 8, wherein the salt-containing organic carbide is contained in an amount of 0.1 to 25 parts by mass with respect to 25 parts by mass of the metal powder. 金属粉25質量部に対して、前記含塩有機物の炭化物を0.1〜25質量部および前記炭素粉末を0.1〜15質量部含む、請求項6から9のいずれかの項に記載の化学発熱組成物。   The metal salt powder according to any one of claims 6 to 9, comprising 0.1 to 25 parts by mass of the carbide of the salt-containing organic substance and 0.1 to 15 parts by mass of the carbon powder with respect to 25 parts by mass of the metal powder. Chemical exothermic composition. 前記炭素粉末が、石炭系炭化物または木質系炭化物、これらの活性炭あるいは再生活性炭である、請求項10に記載の化学発熱組成物。   The chemical exothermic composition according to claim 10, wherein the carbon powder is coal-based carbide or wood-based carbide, activated carbon thereof, or regenerated activated carbon. 請求項6から11のいずれかの項に記載の化学発熱組成物を含む、化学カイロ。   A chemical warmer comprising the chemical exothermic composition according to any one of claims 6 to 11.
JP2005126625A 2005-02-03 2005-04-25 Chemical exothermic composition Expired - Fee Related JP4713931B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005126625A JP4713931B2 (en) 2005-02-03 2005-04-25 Chemical exothermic composition
KR1020060010709A KR20060089170A (en) 2005-02-03 2006-02-03 Chemical body warmer and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005028065 2005-02-03
JP2005028065 2005-02-03
JP2005126625A JP4713931B2 (en) 2005-02-03 2005-04-25 Chemical exothermic composition

Publications (2)

Publication Number Publication Date
JP2006241426A true JP2006241426A (en) 2006-09-14
JP4713931B2 JP4713931B2 (en) 2011-06-29

Family

ID=37048141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126625A Expired - Fee Related JP4713931B2 (en) 2005-02-03 2005-04-25 Chemical exothermic composition

Country Status (1)

Country Link
JP (1) JP4713931B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142507A (en) * 2007-12-14 2009-07-02 Kao Corp Steam generator
WO2024014177A1 (en) * 2022-07-11 2024-01-18 Jfeスチール株式会社 Iron-based powder for oxygen reactant and oxygen reactant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835706B2 (en) * 1979-04-19 1983-08-04 株式会社 ケミツク A chemical pot that generates heat by adding water during use.
JPS58225193A (en) * 1982-06-22 1983-12-27 Sumitomo Bakelite Co Ltd Carbon powder for chemical body warmer
JPH06241575A (en) * 1993-02-15 1994-08-30 Kiribai Kagaku Kk Method for manufacturing chemical pocket heater
JP2000060887A (en) * 1998-08-19 2000-02-29 Fumakilla Ltd Exothermic composition for throw-away body warmer
JP2003000633A (en) * 2001-06-21 2003-01-07 Dainippon Jochugiku Co Ltd Disposable body warmer and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835706B2 (en) * 1979-04-19 1983-08-04 株式会社 ケミツク A chemical pot that generates heat by adding water during use.
JPS58225193A (en) * 1982-06-22 1983-12-27 Sumitomo Bakelite Co Ltd Carbon powder for chemical body warmer
JPH06241575A (en) * 1993-02-15 1994-08-30 Kiribai Kagaku Kk Method for manufacturing chemical pocket heater
JP2000060887A (en) * 1998-08-19 2000-02-29 Fumakilla Ltd Exothermic composition for throw-away body warmer
JP2003000633A (en) * 2001-06-21 2003-01-07 Dainippon Jochugiku Co Ltd Disposable body warmer and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009142507A (en) * 2007-12-14 2009-07-02 Kao Corp Steam generator
WO2024014177A1 (en) * 2022-07-11 2024-01-18 Jfeスチール株式会社 Iron-based powder for oxygen reactant and oxygen reactant

Also Published As

Publication number Publication date
JP4713931B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
Meski et al. Synthesis of hydroxyapatite from mussel shells for effective adsorption of aqueous Cd (II)
CN105036256A (en) Novel microelectrolysis filler, and preparation method and application thereof
CN101224972A (en) Lightweight ceramicite and preparation method thereof
CN107794050A (en) A kind of preparation method and application of charcoal base cadmium pollution soil conditioner
CN105396551B (en) Rice root prepares iron content charcoal and its application in absorption solidification heavy metal ion
CN105688820A (en) Method for processing sludge in urban sewage treatment plant to synthesize mesoporous carbon material through template-like method
CN105195092A (en) Sludge-based charcoal and preparation method thereof
CN105217716A (en) Absorbent charcoal composite material of one way of life sewage disposal and preparation method thereof
JP4713931B2 (en) Chemical exothermic composition
JP4460484B2 (en) Method for producing chemical warmer
CN104773784B (en) Printing and dyeing wastewater treatment agent
JP2005263547A (en) Composite activated carbonized material and method for manufacturing the same
JP4571883B2 (en) Vapor absorption / release materials using salt-containing organic substances
CN110540364B (en) Method for performing gelation treatment on sulfate-containing electroplating wastewater and preparing foam glass ceramics from obtained gel and product
JPH11349320A (en) Production of activated carbon
KR101614498B1 (en) Manufacturing method for a oxidation resistant carbon heating element generating heat by a microwave
TW201914953A (en) Method for preparing high specific surface area sewage sludge carbon material, active carbon material and the use thereof
JP2006061756A (en) Method of manufacturing carbonized deodorant
JP2022190642A (en) Fertilizer and production method of the same
JP5266471B2 (en) Method for producing activated carbon from chicken manure
JP4840846B2 (en) Phosphorus recovery material, production method thereof, and fertilizer using phosphorus recovery material
KR930005301B1 (en) Process for preparation of adsorbent
JPH05202350A (en) Water content-regulating material
JPH11349319A (en) Production of activated carbon
JPH11181433A (en) Carbonization apparatus and production of refractory to be used for the apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

LAPS Cancellation because of no payment of annual fees