JP2005263547A - Composite activated carbonized material and method for manufacturing the same - Google Patents

Composite activated carbonized material and method for manufacturing the same Download PDF

Info

Publication number
JP2005263547A
JP2005263547A JP2004077222A JP2004077222A JP2005263547A JP 2005263547 A JP2005263547 A JP 2005263547A JP 2004077222 A JP2004077222 A JP 2004077222A JP 2004077222 A JP2004077222 A JP 2004077222A JP 2005263547 A JP2005263547 A JP 2005263547A
Authority
JP
Japan
Prior art keywords
carbide
ash
gehlenite
waste
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004077222A
Other languages
Japanese (ja)
Inventor
Hirotaka Isomura
弘隆 磯村
Kazunori Yamada
和則 山田
Yoshimasa Muraoka
義正 村岡
Norifumi Nagata
憲史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004077222A priority Critical patent/JP2005263547A/en
Publication of JP2005263547A publication Critical patent/JP2005263547A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a granular activated carbon having high strength and high adsorbing performance while using easily available waste as starting material, and to provide a method for manufacturing the same. <P>SOLUTION: The composite activated carbonized material is provided which contains 10-80 mass% of gehlenite-based ash. In a method for manufacturing the composite activated carbonized material, an inorganic substance is added to waste containing an organic substance so that ash of the resulting mixture is set in a composition region in which gehlenite is formed as a base, and they are mixed and passed through the steps of carbonizing the starting material; adding a molding binder; carbonization; and activation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複合活性炭化物及びその製造方法に関し、特にゲーレナイトを含有する複合活性炭化物及び有機質を含有する廃棄物から該複合活性炭化物を製造する製造方法に関する。 The present invention relates to a composite activated carbide and a method for producing the same, and more particularly to a composite activated carbide containing gehlenite and a production method for producing the composite activated carbide from a waste containing organic matter.

近年廃棄物の増大に伴って、様々な処理手段が模索される中で、有機質を含む廃棄物を非酸化雰囲気で加熱することにより炭化物を得て、該炭化物又はそれを賦活処理した活性炭化物を有効活用する試みが行われている。 In recent years, with the increase in waste, various processing means are being sought, and by heating waste containing organic matter in a non-oxidizing atmosphere, carbide is obtained, and activated carbide obtained by activating the carbide or activated carbide is obtained. Attempts to make effective use have been made.

しかしながら、通常活性炭原料として用いられる石炭や椰子殻等と異なり、有機性廃棄物は一般に粗大な空隙の多いものが主体であるため、炭化処理後もその粗大な空隙が残り、必要な強度が得られない傾向があった。したがって、粉状の活性炭として用いることは可能であるが、より用途の広い、成形した粒状の活性炭を得ようとしても、強度の不足により困難であった。 However, unlike coal, coconut shells, etc., which are usually used as raw materials for activated carbon, organic waste is mainly composed of many coarse voids, so that the coarse voids remain after carbonization and the required strength is obtained. There was a tendency not to be able to. Therefore, although it can be used as powdered activated carbon, it has been difficult to obtain shaped granular activated carbon having a wider use because of insufficient strength.

そこで、特許文献1では、有機性廃棄物に、熱可塑性樹脂を含浸して樹脂含浸物を調製し、該樹脂含浸物を非酸化性雰囲気中で炭化することにより強度の向上した炭化物を得て、それを賦活処理し活性炭とする発明が開示されている。 Therefore, in Patent Document 1, an organic waste is impregnated with a thermoplastic resin to prepare a resin impregnated product, and the resin impregnated product is carbonized in a non-oxidizing atmosphere to obtain a carbide with improved strength. An invention for activating it to make activated carbon is disclosed.

特許文献1の発明によれば、有機性廃棄物起因の活性炭が樹脂起因の活性炭によって補強された構造をとるため、従来の有機性廃棄物のみからなる活性炭に比べて著しく強度を増大させることができる。
特開2002−274824号公報
According to the invention of Patent Document 1, since the activated carbon derived from organic waste has a structure reinforced by activated carbon derived from resin, the strength can be remarkably increased as compared with the activated carbon consisting only of conventional organic waste. it can.
JP 2002-274824 A

しかしながら、特許文献1の発明は、原料として熱可塑性樹脂を必須とするため、廃PET等の均一な熱可塑性樹脂原料を継続して入手可能な条件でなければ、実施し得ないものである。ところが、廃PET等の熱可塑性樹脂源には、熱可塑性樹脂としてのリサイクル等、他のより付加価値の高い用途が存在する。したがって有機性廃棄物を活性炭として有効活用しようとする際に常に好適な熱可塑性樹脂源を確保することは困難であった。 However, since the invention of Patent Document 1 requires a thermoplastic resin as a raw material, it cannot be carried out unless conditions for continuously obtaining a uniform thermoplastic resin raw material such as waste PET are available. However, thermoplastic resin sources such as waste PET have other uses with higher added value such as recycling as a thermoplastic resin. Therefore, it has been difficult to always secure a suitable thermoplastic resin source when trying to effectively use organic waste as activated carbon.

そこで、本発明の目的は、入手が容易な廃棄物を原料としながらも、強度の高い粒状の活性炭及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a granular activated carbon having high strength and a method for producing the same while using easily available waste as a raw material.

本発明者らは上記課題を解決すべく鋭意研究を行った結果、最終生成物である活性炭中に一定鉱物組成の灰分を残留させ、該灰分に炭素質部分を補強させ活性炭と該鉱物組成の灰分の複合活性炭化物とすることにより、強度の高い粒状活性炭を得ることが可能であることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors left ash with a certain mineral composition in the activated carbon, which is the final product, and reinforced the carbonaceous portion of the ash with the activated carbon and the mineral composition. It turned out that it is possible to obtain a granular activated carbon with high strength by using a composite activated carbide of ash, and the present invention has been completed.

すなわち、請求項1の発明は、ゲーレナイトを主成分とする灰分を10〜80質量%含有することを特徴とする複合活性炭化物である。 That is, the invention of claim 1 is a composite activated carbide characterized by containing 10 to 80% by mass of ash mainly composed of gehlenite.

ゲーレナイトを主成分とする灰分とは、X線回折により、メインピークとしてゲーレナイトのピークが観測されるものであるが、目安としては、15〜80質量%のゲーレナイトを含有する灰分をいう。また、該灰分が、複合活性炭化物中に10質量%未満しか含有されていない場合には、炭素質部分の補強効果が不十分で、強度の高い粒状活性炭を得ることができない。80質量%を超えて含有されている場合には、活性炭成分が少なくなるため、本来の機能である吸着能力が不足することになる。 The ash containing gehlenite as a main component is one in which a gehlenite peak is observed as a main peak by X-ray diffraction, and as a guide, it refers to an ash containing 15 to 80% by mass of gehlenite. Further, when the ash content is less than 10% by mass in the composite activated carbide, the reinforcing effect of the carbonaceous portion is insufficient, and a granular activated carbon with high strength cannot be obtained. When the content exceeds 80% by mass, the activated carbon component is reduced, so that the adsorption capability which is an original function is insufficient.

請求項1の発明によれば、灰分中のゲーレナイト鉱物により、炭素質部分の強度が補強された複合活性炭化物が提供され、強度の高い粒状活性炭が得られる。 According to the first aspect of the present invention, the composite activated carbide in which the strength of the carbonaceous portion is reinforced by the gehlenite mineral in the ash is provided, and a granular activated carbon with high strength is obtained.

ゲーレナイトは、CaO−Al2O3−SiO23成分系の鉱物で、化学式2CaO・Al2O3・SiO2で表される。焼成物として、比較的高い強度を示し、水硬性を持たないため、水分の存在下で安定である。また、炭酸ガスの存在下では徐々に炭酸化され、一層強度を増す特性がある。 Gerenite is a CaO—Al 2 O 3 —SiO 2 ternary mineral and is represented by the chemical formula 2CaO · Al 2 O 3 · SiO 2 . As a baked product, it exhibits a relatively high strength and does not have hydraulic properties, and is stable in the presence of moisture. Further, in the presence of carbon dioxide gas, it is gradually carbonated and has a characteristic of further increasing the strength.

請求項2の発明は、有機質を含有する廃棄物に、その混合物の灰分がゲーレナイトを主成分として生成する組成領域となるように無機質を添加して混合し、原料炭化、成形バインダー添加、炭化、賦活の過程を経ることを特徴とする請求項1に記載の複合活性炭化物の製造方法である。 The invention of claim 2 adds and mixes an inorganic substance to a waste containing organic matter so that the ash content of the mixture becomes a composition region that is mainly composed of gehlenite, carbonization of a raw material, addition of a molding binder, carbonization, The method for producing a composite activated carbide according to claim 1, wherein an activation process is performed.

請求項2の発明によれば、有機質を含有する廃棄物中の有機質は一次及び二次の炭化処理を経て炭化され、賦活処理により活性炭となる。また、該廃棄物及び無機質中の灰分が炭化処理、賦活処理をへてゲーレナイト化し、炭素質部分の強度を補強する。結果として廃棄物を有効活用しつつ、請求項1に記載された強度の高い粒状活性炭が得られる複合活性炭化物を製造することが可能となる。 According to invention of Claim 2, the organic substance in the waste containing an organic substance is carbonized through the primary and secondary carbonization processes, and becomes activated carbon by the activation process. In addition, the ash content in the waste and the inorganic material is carbonized and activated to turn into gelenite, thereby reinforcing the strength of the carbonaceous portion. As a result, it is possible to produce a composite activated carbide capable of obtaining a granular activated carbon having high strength described in claim 1 while effectively utilizing waste.

請求項3の発明は、賦活処理が、900〜1200℃で行われることを特徴とする請求項2に記載の複合活性炭化物の製造方法である。 Invention of Claim 3 is a manufacturing method of the composite activated carbide of Claim 2 characterized by performing activation processing at 900-1200 degreeC.

請求項3の発明によれば、灰分のゲーレナイト化を促進し、複合活性炭化物の強度を向上することができる。 According to the invention of claim 3, the ash content of gehlenite can be promoted, and the strength of the composite activated carbide can be improved.

請求項4の発明は、前記灰分の組成が、CaO:Al2O3:SiO2=2:1:1(モル比)となるよう配合することを特徴とする請求項2又は3のいずれか1項に記載の複合活性炭化物の製造方法である。 A fourth aspect of the present invention, the composition of the ash, CaO: Al 2 O 3: SiO 2 = 2: 1: 1 ( molar ratio) so as claim 2 or 3, characterized in that blending 2. A method for producing a composite activated carbide according to item 1.

請求項4の発明によれば、前記灰分中のゲーレナイトの含有量を最大化することができ、複合活性炭化物の強度を向上することができる。 According to invention of Claim 4, content of the gehlenite in the said ash content can be maximized, and the intensity | strength of composite activated carbide can be improved.

本発明によれば、活性炭中に含有される灰分で炭素質部分を補強することにより、活性炭と灰分との複合活性炭化物を形成することができ、入手が容易な廃棄物を原料としながらも、強度の高い粒状の活性炭及びその製造方法を提供することができる。この粒状活性炭は、優れた脱臭機能及び高強度を有した吸着材であり、例えば人体に有害なシックハウス症の原因化学物質の吸着や、排ガス中の有害物質の処理材等に用いることができる。 According to the present invention, by reinforcing the carbonaceous part with the ash contained in the activated carbon, it is possible to form a composite active carbide of activated carbon and ash, while using easily available waste as a raw material, A granular activated carbon having high strength and a method for producing the same can be provided. This granular activated carbon is an adsorbent having an excellent deodorizing function and high strength, and can be used, for example, for adsorption of chemical substances causing sick house disease that is harmful to the human body, treatment of harmful substances in exhaust gas, and the like.

本発明に係る複合活性炭化物の製造方法の工程図の1例を図1に示す。 One example of a process chart of the method for producing a composite activated carbide according to the present invention is shown in FIG.

原料の有機質を含有する廃棄物1としては、紙屑、廃プラスチック、廃布、草木、厨芥類、廃ゴム、各種汚泥等、非酸化雰囲気での加熱により、炭化する成分を持つものであれば用いることができる。 The waste 1 containing organic material is used as long as it has components that carbonize when heated in a non-oxidizing atmosphere, such as paper scrap, waste plastic, waste cloth, vegetation, firewood, waste rubber, and various sludges. be able to.

この廃棄物1に、その混合物の灰分がゲーレナイトを主成分として生成する組成領域となるように無機質2を添加して混合3する。具体的には、該廃棄物1と、添加する無機質2のそれぞれの灰分中のCaO、SiO2、Al2O33成分の各含有量(質量%)を分析し、両者の混合物中の該3成分含有量を計算する。この数値から、次式に従って求めたゲーレナイト含有量が、15〜80質量%となるように、適宜添加する無機質1を選択又は組合わせする。しかし、前記廃棄物1の灰分が、当初よりゲーレナイトを生成する組成領域となっている場合は、必ずしも無機質2を添加する必要はない。また、無機質2の添加・混合を粉砕10のときに行い、混合3を省いてもよい。 To this waste 1, the inorganic substance 2 is added and mixed 3 so that the ash content of the mixture becomes a composition region in which gehlenite is the main component. Specifically, the contents (mass%) of the three components of CaO, SiO 2 and Al 2 O 3 in the ash content of the waste 1 and the inorganic material 2 to be added are analyzed, and the content in the mixture of both is analyzed. Calculate the three component content. From this numerical value, the inorganic material 1 to be appropriately added is selected or combined so that the gehlenite content obtained according to the following formula is 15 to 80% by mass. However, when the ash content of the waste 1 is a composition region that generates gehlenite from the beginning, it is not always necessary to add the inorganic substance 2. Further, the addition and mixing of the inorganic substance 2 may be performed at the time of pulverization 10 and the mixing 3 may be omitted.

ゲーレナイト含有量(質量%)は0.5×CaO-mol値とAl2O3-mol値とSiO2-mol値を計算し、その3つの値の中の最小値から推定される。
(1)0.5×CaO -mol値が3つの値の中で最小値の場合
ゲーレナイト含有量(質量%)=0.5×CaO -mol×274.21
(2)Al2O3-mol値が3つの値の中で最小値の場合
ゲーレナイト含有量(質量%)=Al2O3-mol値×274.21
(3)SiO2-mol値が3つの値の中で最小値の場合
ゲーレナイト含有量(質量%)=SiO2-mol値×274.21
(1)の場合は特段問題がないが、(2)(3)はフリーライムを形成する可能性があるため、Al2O3成分及びSiO2成分を増やし、(1)の状態にしたほうが好ましい。
The gehlenite content (% by mass) is estimated from the minimum value among the three values by calculating 0.5 × CaO-mol value, Al 2 O 3 -mol value and SiO 2 -mol value.
(1) When 0.5 x CaO -mol value is the minimum of the three values Gerenite content (mass%) = 0.5 x CaO -mol x 274.21
(2) When Al 2 O 3 -mol value is the smallest of the three values Geernite content (mass%) = Al 2 O 3 -mol value x 274.21
(3) When the SiO 2 -mol value is the minimum of the three values Geernite content (% by mass) = SiO 2 -mol value x 274.21
In the case of (1), there is no particular problem, but (2) and (3) may form free lime, so it is better to increase the Al 2 O 3 component and the SiO 2 component to the state of (1). preferable.

ここで用いる無機質1としては、土砂、ダスト等の他に、前記4成分を調整するために、石灰粉、珪石粉、粘土、カオリン、アルミナ粉、アルミ灰、石炭灰、都市ごみ焼却灰、その他の焼却灰等も用いることができる。 As the inorganic material 1 used here, in addition to earth and sand, dust, etc., in order to adjust the above four components, lime powder, silica powder, clay, kaolin, alumina powder, aluminum ash, coal ash, municipal waste incineration ash, etc. Incineration ash etc. can also be used.

原料の混合3には、容器回転式混合機、機械撹拌式混合機等、一般的なものを使用できる。混合後の原料は破砕工程に進むが、原料に廃棄物を用いた場合、金属片等の異物が混入している場合があるので、まず、正転逆転の機能がある二軸型破砕機(刃幅5〜7cm)で一次破砕4する。次に二次破砕6する機械の刃の損傷を防止するために、鉄除去機とアルミ除去機に一次破砕物を通す(異物除去5)。二次破砕6においては、破砕物を3〜5cmにサイジングするため一軸型破砕機で破砕する。 For the mixing 3 of the raw materials, a general one such as a container rotary mixer or a mechanical stirring mixer can be used. The raw material after mixing proceeds to the crushing process. However, when waste is used as the raw material, foreign materials such as metal pieces may be mixed. Primary crushing 4 with a blade width of 5-7 cm. Next, in order to prevent damage to the blade of the machine for secondary crushing 6, the primary crushed material is passed through an iron removing machine and an aluminum removing machine (foreign matter removal 5). In the secondary crushing 6, the crushed material is crushed with a uniaxial crusher to size the crushed material to 3 to 5 cm.

乾燥7と原料炭化8は、一度に同時に行っても良いが、原料の含水率が高い場合には別々の工程としたほうが好ましい。乾燥7は100〜400℃の熱風乾燥が良い。炭化炉は内熱型キルンでも可能であるが、非酸化雰囲気を保つためには外熱キルンの方が好ましい。原料炭化8の温度領域は、400〜700℃であり、発生した可燃性ガスは図示しない二次燃焼炉で燃焼させる。炭化炉から排出した炭化物は、空気中で徐冷すると炭素質を損傷するため、空冷又は水冷型の間接熱交換器等により強制的に冷却9することが望ましい。 Although the drying 7 and the raw material carbonization 8 may be performed simultaneously at the same time, when the water content of the raw material is high, it is preferable to use separate steps. Drying 7 is preferably hot air drying at 100 to 400 ° C. The carbonization furnace can be an internal heat kiln, but an external heat kiln is preferable in order to maintain a non-oxidizing atmosphere. The temperature range of the raw material carbonization 8 is 400 to 700 ° C., and the generated combustible gas is burned in a secondary combustion furnace (not shown). Since the carbide discharged from the carbonization furnace is damaged in the air when it is slowly cooled, it is desirable to forcibly cool 9 with an air-cooled or water-cooled indirect heat exchanger or the like.

冷却した炭化物は、ボールミル等で粉砕10し、平均粒子径5〜60μm程度にする。粉砕10した炭化物には異物が混入していることがあるので、篩分け11する。篩分け装置としては、トロンメルや振動篩がよい。篩目は、0.5〜2mm程度が良い。このときの異物は鉄やアルミがほとんどであり、還元雰囲気で処理されているため、これらを金属として回収し有効利用することも可能である。また、この段階の炭化物を、代替燃料として活用することもできる。 The cooled carbide is pulverized 10 with a ball mill or the like to obtain an average particle size of about 5 to 60 μm. Since the foreign substance may be mixed in the pulverized carbide, it is sieved 11. As the sieving device, a trommel or a vibrating sieve is preferable. The sieve mesh is preferably about 0.5 to 2 mm. The foreign substances at this time are mostly iron and aluminum and are treated in a reducing atmosphere, and therefore, these can be recovered as metals and used effectively. Further, the carbide at this stage can be used as an alternative fuel.

異物を除去した炭化物には成形バインダーを添加12して混合13する。高強度の複合活性炭化物を得るには、この成形バインダーの選定が重要である。高強度化には固定炭素の多い成形バインダーが有効であるが、固定炭素が多くなるにつれ、成形バインダーの液粘性が上昇し、ハンドリング性が低下する。そのために、炭化物微粉末と成形バインダーの混合物の均一性が低下し、却って複合活性炭化物の強度を下げてしまう場合がある。 A molding binder is added 12 and mixed 13 to the carbide from which the foreign matter has been removed. In order to obtain a high-strength composite activated carbide, the selection of this molding binder is important. A molded binder with a large amount of fixed carbon is effective for increasing the strength. However, as the amount of fixed carbon increases, the liquid viscosity of the molded binder increases and the handling property decreases. For this reason, the uniformity of the mixture of the carbide fine powder and the molding binder is lowered, and the strength of the composite activated carbide may be lowered on the contrary.

その改善方法として、クレオソート油を成形バインダーの粘性調整剤として使用することにより、ハンドリング性を向上させることができる。具体的には、固定炭素の多い成形バインダーである軟ピッチ又は無水タールに、クレオソート油を添加して液粘性を低下させる。軟ピッチ、無水タール又は両者の混合物100質量部に対し、クレオソート油を10〜100質量部添加することが目安であるが、実際には炭化物微粉末と成形バインダーの混合物の均一性を見ながら調整することが望ましい。 As an improvement method thereof, handling property can be improved by using creosote oil as a viscosity adjusting agent of the molding binder. Specifically, creosote oil is added to soft pitch or anhydrous tar, which is a molding binder with a large amount of fixed carbon, to lower the liquid viscosity. It is a standard to add 10 to 100 parts by mass of creosote oil to 100 parts by mass of soft pitch, anhydrous tar or a mixture of both, but in practice, while looking at the uniformity of the mixture of carbide fine powder and molding binder It is desirable to adjust.

クレオソート油を含めた成形バインダーの混合量としては、炭化物微粉末100質量部に対し、40〜80質量部混合することが良い。混合13方法は、均一に混合できれば特に限定されないが、混合物の粘性が高いため、ニーダーのような混練力の高い混合機が好ましい。 As a mixing amount of the molding binder including creosote oil, it is preferable to mix 40 to 80 parts by mass with respect to 100 parts by mass of the carbide fine powder. The mixing 13 method is not particularly limited as long as it can be uniformly mixed. However, since the viscosity of the mixture is high, a mixer having a high kneading force such as a kneader is preferable.

次に炭化物微粉末と成形バインダーの混合物を粒状等に成形14する。成形方法としては、加圧を伴う成形方法を行うことで高強度化を促進する。具体的には、押出成形機やブリケットマシーンが良い。 Next, the mixture of the carbide fine powder and the molding binder is formed into a granular shape 14. As a molding method, high strength is promoted by performing a molding method with pressurization. Specifically, an extruder or a briquette machine is preferable.

成形物の乾燥15と炭化16は同時に行っても良いが、急激に温度を上昇させると成形物の強度が低下するため、別々に行ったほうが好ましい。乾燥温度は50〜200℃で処理時間は20〜60分が良い。炭化温度は400〜900℃で処理時間は20〜60分が良い。炭化16を終了した炭化物は、賦活を行った活性炭よりは性能が劣るものの、吸着材として使用することができる。 The drying 15 and carbonization 16 of the molded product may be performed at the same time. However, since the strength of the molded product decreases when the temperature is rapidly increased, it is preferable to perform them separately. The drying temperature is preferably 50 to 200 ° C. and the treatment time is preferably 20 to 60 minutes. The carbonization temperature is 400 to 900 ° C., and the treatment time is preferably 20 to 60 minutes. Carbide that has finished carbonization 16 can be used as an adsorbent, although its performance is inferior to activated carbon.

炭化16した成形物は可能であれば連続して空気に接触させること無く賦活炉に投入することが望ましい。一次貯蔵する場合は空気中で徐冷すると炭素質を損傷するため、空冷又は水冷型の間接型熱交換器等により強制的に冷却を行う。 It is desirable to put the carbonized 16 molded article into an activation furnace without contacting the air continuously if possible. In the case of primary storage, the carbonaceous material is damaged if it is slowly cooled in the air. Forcibly cooled by an air-cooled or water-cooled indirect heat exchanger or the like.

賦活17は、賦活炉等で水蒸気、燃焼ガス等を接触させながら前記炭化16した成形物を加熱することで行う。賦活17の温度条件としては、800℃以上で可能であるが、800〜900℃の温度領域で賦活処理すると、灰分のゲーレナイト化が十分に進行しない。900〜1200℃で賦活処理を行うと、灰分のゲーレナイト化が促進されるとともに、炭化物の高比表面積化も促進され、高強度の複合活性炭化物となるとともに、高吸着性能をもつ吸着材となる。賦活時間は、長ければ長いほど炭素質が高比表面積化するが、一方で炭素質の量が減少していく。そのため、賦活時間は30〜180分間が好ましい。 The activation 17 is performed by heating the carbonized 16 molded product while bringing steam, combustion gas, or the like into contact with an activation furnace or the like. The temperature condition of the activation 17 can be 800 ° C. or higher. However, when the activation treatment is performed in the temperature range of 800 to 900 ° C., the ash content is not sufficiently increased. When the activation treatment is performed at 900 to 1200 ° C., ash gehlenite conversion is promoted, and the increase in the specific surface area of the carbide is promoted, resulting in a high-strength composite activated carbide and an adsorbent having high adsorption performance. . The longer the activation time, the higher the specific surface area of the carbonaceous material, while the amount of carbonaceous material decreases. Therefore, the activation time is preferably 30 to 180 minutes.

賦活処理された活性炭化物は活性度が非常に高く、燃えやすいので、賦活17が終了したら直ちに空冷又は水冷型の間接型熱交換器等により強制的に冷却18する。冷却18された活性炭化物は微粉末と粒状の成形物が混在しているので、篩分け19を行う。篩分け装置としてはトロンメルや振動篩が良い。篩目は0.5〜2mm程度が良い。篩分けされた成形物は、高強度でかつ高吸着性能をもつ吸着材である複合活性炭化物20となる。 Since the activated carbonized activated carbon is very high in activity and easily burns, immediately after the activation 17 is completed, it is forcibly cooled 18 by an air-cooled or water-cooled indirect heat exchanger or the like. Since the activated carbide that has been cooled 18 contains a mixture of fine powder and granular molding, sieving 19 is performed. As the sieving device, a trommel or a vibrating sieve is preferable. The sieve mesh is preferably about 0.5 to 2 mm. The shaped product thus sieved becomes a composite activated carbide 20 which is an adsorbent having high strength and high adsorption performance.

1)試験検体の製造
(1)有機質を含有する廃棄物としての、紙屑、廃プラスチック、廃布、草木、厨芥類と、無機質としての建設発生土、石灰粉とを、表1の配合で混合した。混合物のサンプルを900℃に加熱して得た灰分を化学分析し、前記の式により求めたゲーレナイト含有量(計算値)を表1に示した。
実施例7及び8は、灰分の組成がCaO:Al2O3:SiO2=2:1:1(モル比)となり、特にゲーレナイト含有量(計算値)が高い値となった。
(2)前記各混合物を、二軸型破砕機で破砕し、空缶等の異物を除去し、一軸型破砕機で約3cm程度に大きさを整えた。該破砕物は含水率が50%程度あるため、熱風乾燥機で約200℃、30分間乾燥し、水分10質量%程度の乾燥物とした。該乾燥物を外熱式炭化炉で600℃、30分の条件で、原料炭化した。得られた炭化物を押込通風式空冷間接型熱交換器により強制冷却した後、ボールミルで30分程度粉砕した。粉砕物には異物が混入しているため、0.5mmの篩にかけ、異物と炭化物を分別し、炭化物を回収した。該炭化物は平均粒子径10μmに粉砕されていた。
(3)前記炭化物に成形バインダーを表1に示す水準で添加し、加熱しながらニーダーで混合した。その混合物を押出成形機で5mmφ×15mmLに成形し、100℃、60分で乾燥処理後、600℃、30分で炭化処理した。
(4)得られた炭化物を表1に示す条件で賦活処理した後、押込通風式空冷関接型熱交換器により強制冷却し、0.5mm篩で篩分けし、複合活性炭化物を回収し、各試験検体とした。
(5)比較例4のみは、市販の無機鉱物系吸着材であるセピオライト粒状物そのものを、試験検体とした。
1) Manufacture of test specimens (1) Paper waste, waste plastics, waste cloth, vegetation, moss as waste containing organic substances, and construction generated soil and lime powder as inorganic substances are mixed in the composition shown in Table 1. did. The ash content obtained by heating the sample of the mixture to 900 ° C. was chemically analyzed, and the gehlenite content (calculated value) obtained by the above formula is shown in Table 1.
In Examples 7 and 8, the ash composition was CaO: Al 2 O 3 : SiO 2 = 2: 1: 1 (molar ratio), and the gehlenite content (calculated value) was particularly high.
(2) Each mixture was crushed with a biaxial crusher to remove foreign substances such as empty cans, and the size was adjusted to about 3 cm with a uniaxial crusher. Since the crushed product has a water content of about 50%, it was dried with a hot air dryer at about 200 ° C. for 30 minutes to obtain a dried product having a water content of about 10% by mass. The dried product was carbonized in an external heating carbonization furnace at 600 ° C. for 30 minutes. The obtained carbide was forcibly cooled by a forced draft air-cooled indirect heat exchanger and then pulverized by a ball mill for about 30 minutes. Since foreign matters were mixed in the pulverized product, the particles were passed through a 0.5 mm sieve to separate the foreign matters and carbides, and the carbides were recovered. The carbide was pulverized to an average particle size of 10 μm.
(3) A molding binder was added to the carbide at the level shown in Table 1, and mixed with a kneader while heating. The mixture was formed into 5 mmφ × 15 mmL with an extruder, dried at 100 ° C. for 60 minutes, and then carbonized at 600 ° C. for 30 minutes.
(4) After the activation treatment of the obtained carbide under the conditions shown in Table 1, it was forcibly cooled by a forced draft air-cooled tangential heat exchanger and sieved with a 0.5 mm sieve to recover the composite activated carbide, Each test specimen was used.
(5) In Comparative Example 4 only, a sepiolite granular material that is a commercially available inorganic mineral-based adsorbent was used as a test specimen.

(表1)

Figure 2005263547
(Table 1)
Figure 2005263547

2)試験検体の評価
(1)灰分量の測定
比較例4を除く各試験検体をるつぼに入れ、電気炉で空気中にて900℃、60分間加熱し、灰分量を求めた。結果を表1に示す。
(2)鉱物組成の分析
各試験検体の鉱物組成をX線回折で確認した。結果を表1に示す。
(3)強度の測定
各試験検体の強度を、圧かい試験機を用いて評価した。測定誤差、試料誤差をなくすため、10個の試料の平均値を強度とし、結果を表1に示す。
(4)吸着性能試験
吸着性能は、JIS K 1474:溶剤蒸気の吸着性能(トルエン) に準拠し、トルエンの飽和吸着量を測定し、性能を評価した。結果を表1に示す。
2) Evaluation of test specimen (1) Measurement of ash content Each test specimen except for Comparative Example 4 was put in a crucible and heated in air in an electric furnace at 900 ° C for 60 minutes to determine the ash content. The results are shown in Table 1.
(2) Analysis of mineral composition The mineral composition of each test specimen was confirmed by X-ray diffraction. The results are shown in Table 1.
(3) Measurement of strength The strength of each test specimen was evaluated using a pressure tester. In order to eliminate measurement errors and sample errors, the average value of 10 samples is taken as the intensity, and the results are shown in Table 1.
(4) Adsorption performance test The adsorption performance was evaluated in accordance with JIS K 1474: Solvent vapor adsorption performance (toluene) by measuring the saturated adsorption amount of toluene. The results are shown in Table 1.

表1から分かるように、灰分がゲーレナイトを主成分とするものであり、該灰分が複合活性炭化物中の10〜80質量%の範囲に入る、実施例1〜11の試験検体では、いずれもその強度、吸着性能が両立し、市販の吸着材であるセピオライトと比較して遜色ない数値を示した。 As can be seen from Table 1, the ash content is mainly composed of gehlenite, and the ash content falls within the range of 10 to 80% by mass in the composite activated carbide. Both strength and adsorption performance are compatible, and the numerical values are comparable to those of sepiolite, a commercially available adsorbent.

その中でも、灰分の組成がCaO:Al2O3:SiO2=2:1:1(モル比)となり、ゲーレナイト含有量(計算値)が多かった実施例7及び8は、特に強度が高い数値を示した。
実施例9も強度が高いが、これは1150℃という高めの賦活温度のため、複合活性炭化物中の灰分量が多いことによるもので、逆に活性炭化物量が少なくなることから吸着性能はやや低目であった。
Among them, Examples 7 and 8 in which the composition of ash is CaO: Al 2 O 3 : SiO 2 = 2: 1: 1 (molar ratio) and the gehlenite content (calculated value) is large are numerical values with particularly high strength. showed that.
Example 9 is also high in strength, but this is due to the high activation temperature of 1150 ° C., which is due to the large amount of ash in the composite activated carbide. Conversely, the amount of activated carbide decreases, so the adsorption performance is somewhat low. It was an eye.

実施例11では、無機質を配合しなかったが、草木及び厨芥類中の灰分が40質量%に達し、強度、吸着性能とも良好であった。 In Example 11, the inorganic substance was not blended, but the ash content in the plants and moss reached 40% by mass, and both the strength and the adsorption performance were good.

一方、比較例1では、賦活温度が800℃と低いため、灰分のゲーレナイト化が進行しなかったものと思われ、X線回折の結果よりゲーレナイト含有量は0と推定される。このため、灰分による炭素質部分の補強効果が不十分で、強度は10kg/cm2という低い値を示した。また、賦活が十分ではないため、吸着性能も低かった。 On the other hand, in Comparative Example 1, since the activation temperature is as low as 800 ° C., it is considered that ash gehlenite did not progress, and the gehlenite content is estimated to be 0 from the result of X-ray diffraction. For this reason, the reinforcing effect of the carbonaceous part by ash was insufficient, and the strength showed a low value of 10 kg / cm 2 . Moreover, since activation was not enough, adsorption | suction performance was also low.

逆に賦活温度が1300℃と高かった比較例2では、炭素質部分が一部失われたため、灰分量は非常に高くなり、その結果強度は著しく高いものの、吸着性能は低い値であった。更に、無機質を配合せず、廃プラスチックと厨芥類を原料とした比較例3では、灰分量が非常に少なくなり、強度が著しく低くなった。 On the contrary, in Comparative Example 2 where the activation temperature was as high as 1300 ° C., a part of the carbonaceous portion was lost, so the amount of ash became very high. As a result, the strength was remarkably high, but the adsorption performance was low. Furthermore, in Comparative Example 3 in which inorganic materials were not blended and waste plastics and moss were used as raw materials, the amount of ash was very small and the strength was remarkably lowered.

以上述べてきたとおり、本発明に係る複合活性炭化物の製造方法では、ゲーレナイトを主成分とする灰分で炭素質部分を補強することにより、強度の高い複合活性炭化物を形成することができ、入手が容易な廃棄物を原料としながらも、高強度、高吸着性能の粒状の活性炭が得られる。 As described above, in the method for producing a composite activated carbide according to the present invention, it is possible to form a composite active carbide having high strength by reinforcing the carbonaceous portion with ash containing gehlenite as a main component, and it is available. Granular activated carbon with high strength and high adsorption performance can be obtained while using easy waste as a raw material.

本発明に係る複合活性炭化物の製造方法の工程図の1例である。It is an example of the process drawing of the manufacturing method of the composite activated carbide which concerns on this invention.

Claims (4)

ゲーレナイトを主成分とする灰分を10〜80質量%含有することを特徴とする複合活性炭化物。 A composite activated carbide comprising 10 to 80% by mass of ash mainly composed of gehlenite. 有機質を含有する廃棄物に、その混合物の灰分がゲーレナイトを主成分として生成する組成領域となるように無機質を添加して混合し、原料炭化、成形バインダー添加、炭化、賦活の過程を経ることを特徴とする請求項1に記載の複合活性炭化物の製造方法。 Inorganic waste is added and mixed so that the ash content of the mixture is in the composition region where gehlenite is the main component, and the raw material is carbonized, the binder added, carbonized, and activated. The method for producing a composite activated carbide according to claim 1, wherein 賦活処理が、900〜1200℃で行われることを特徴とする請求項2に記載の複合活性炭化物の製造方法。 The method for producing a composite activated carbide according to claim 2, wherein the activation treatment is performed at 900 to 1200 ° C. 前記灰分の組成が、CaO:Al2O3:SiO2=2:1:1(モル比)となるよう配合することを特徴とする請求項2又は3のいずれか1項に記載の複合活性炭化物の製造方法。
The composite activity according to any one of claims 2 and 3 , wherein the composition of the ash is blended so that CaO: Al 2 O 3 : SiO 2 = 2: 1: 1 (molar ratio). A method for producing carbide.
JP2004077222A 2004-03-17 2004-03-17 Composite activated carbonized material and method for manufacturing the same Pending JP2005263547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077222A JP2005263547A (en) 2004-03-17 2004-03-17 Composite activated carbonized material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077222A JP2005263547A (en) 2004-03-17 2004-03-17 Composite activated carbonized material and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2005263547A true JP2005263547A (en) 2005-09-29

Family

ID=35088478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077222A Pending JP2005263547A (en) 2004-03-17 2004-03-17 Composite activated carbonized material and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2005263547A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2490670A (en) * 2011-05-09 2012-11-14 Sibelco Uk Ltd An activated carbon composite material
JP2014524824A (en) * 2011-04-15 2014-09-25 バイオジェニック リージェンツ エルエルシー System and apparatus for the production of high carbon bioreagents
JP2020185549A (en) * 2019-05-16 2020-11-19 株式会社オメガ Wastewater treatment method
US11213801B2 (en) 2013-10-24 2022-01-04 Carbon Technology Holdings, LLC Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates
US11285454B2 (en) 2012-05-07 2022-03-29 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
US11358119B2 (en) 2014-01-16 2022-06-14 Carbon Technology Holdings, LLC Carbon micro-plant
US11413601B2 (en) 2014-10-24 2022-08-16 Carbon Technology Holdings, LLC Halogenated activated carbon compositions and methods of making and using same
US11458452B2 (en) 2014-02-24 2022-10-04 Carbon Technology Holdings, LLC Highly mesoporous activated carbon
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11965139B2 (en) 2022-05-19 2024-04-23 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286440B2 (en) 2011-04-15 2022-03-29 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
US10982161B2 (en) 2011-04-15 2021-04-20 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
US11891582B2 (en) 2011-04-15 2024-02-06 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US10167437B2 (en) 2011-04-15 2019-01-01 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US10174267B2 (en) 2011-04-15 2019-01-08 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
JP2019131831A (en) * 2011-04-15 2019-08-08 カーボン テクノロジー ホールディングス, エルエルシー System and apparatus for formation of high carbon living body reagent
US10611977B2 (en) 2011-04-15 2020-04-07 Carbon Technology Holdings, LLC Methods and apparatus for enhancing the energy content of carbonaceous materials from pyrolysis
JP2014524824A (en) * 2011-04-15 2014-09-25 バイオジェニック リージェンツ エルエルシー System and apparatus for the production of high carbon bioreagents
US10889775B2 (en) 2011-04-15 2021-01-12 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11674101B2 (en) 2011-04-15 2023-06-13 Carbon Technology Holdings, LLC Process for producing high-carbon biogenic reagents
US11091716B2 (en) 2011-04-15 2021-08-17 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
US11879107B2 (en) 2011-04-15 2024-01-23 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
JP2017148798A (en) * 2011-04-15 2017-08-31 バイオジェニック リージェンツ エルエルシー System and device for generating high-carbon biogenic reagent
US11359154B2 (en) 2011-04-15 2022-06-14 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents
US11959038B2 (en) 2011-04-15 2024-04-16 Carbon Technology Holdings, LLC High-carbon biogenic reagents and uses thereof
GB2490670A (en) * 2011-05-09 2012-11-14 Sibelco Uk Ltd An activated carbon composite material
US11285454B2 (en) 2012-05-07 2022-03-29 Carbon Technology Holdings, LLC Biogenic activated carbon and methods of making and using same
US11213801B2 (en) 2013-10-24 2022-01-04 Carbon Technology Holdings, LLC Methods and apparatus for producing activated carbon from biomass through carbonized ash intermediates
US11358119B2 (en) 2014-01-16 2022-06-14 Carbon Technology Holdings, LLC Carbon micro-plant
US11458452B2 (en) 2014-02-24 2022-10-04 Carbon Technology Holdings, LLC Highly mesoporous activated carbon
US11413601B2 (en) 2014-10-24 2022-08-16 Carbon Technology Holdings, LLC Halogenated activated carbon compositions and methods of making and using same
JP2020185549A (en) * 2019-05-16 2020-11-19 株式会社オメガ Wastewater treatment method
JP7079557B2 (en) 2019-05-16 2022-06-02 株式会社オメガ Wastewater treatment method
US11753698B2 (en) 2020-09-25 2023-09-12 Carbon Technology Holdings, LLC Bio-reduction of metal ores integrated with biomass pyrolysis
US11851723B2 (en) 2021-02-18 2023-12-26 Carbon Technology Holdings, LLC Carbon-negative metallurgical products
US11932814B2 (en) 2021-04-27 2024-03-19 Carbon Technology Holdings, LLC Biocarbon blends with optimized fixed carbon content, and methods for making and using the same
US11965139B2 (en) 2022-05-19 2024-04-23 Carbon Technology Holdings, LLC Systems and apparatus for production of high-carbon biogenic reagents

Similar Documents

Publication Publication Date Title
Aprianti A huge number of artificial waste material can be supplementary cementitious material (SCM) for concrete production–a review part II
JP2005263547A (en) Composite activated carbonized material and method for manufacturing the same
Anagnostopoulos et al. Utilization of lignite power generation residues for the production of lightweight aggregates
Janbuala et al. Effect of rice husk and rice husk ash on properties of lightweight clay bricks
CN1413174A (en) Method for producing glass and glass produced thereby
Li et al. Biochar for sustainable construction industry
JPH0648817A (en) Production of brick and said brick
JP2008163280A (en) Method and apparatus for treating chlorine-containing organic waste
JP4908029B2 (en) Waste-containing fuel, method for producing the same, and method for using waste-containing fuel
JP2018135237A (en) Method of producing phosphorous silicate fertilizer
JP2008126185A (en) Calcined object and its manufacturing method
RU2571061C1 (en) Method of producing energy from organic material-containing wastes
WO2013128786A1 (en) Rising heat material for converter
KR101530552B1 (en) Refused Derived Fuel Produced by Mixing Chaff Powder and Paper Sludge
KR101888829B1 (en) Adsorption carrier using silica fume and calcium hydroxide, and method of manufacturing there of
KR101006235B1 (en) Asphalt concrete using aggregate manufactured for general waste
JP2005231945A (en) Production method for woody granular active carbide
JP2008137820A (en) Method for production of artificial aggregate
JP6672052B2 (en) Manufacturing method of molten product
JP2000034179A (en) Production of water-holding granular sintered compact
KR100601083B1 (en) Method of preparing porous soil modifier with good permeability
KR100592918B1 (en) Fuel solid containing charcoal from sewage or food garbage and method producing the same
JP2005270696A (en) Recycle method of sewage sludge
KR102272614B1 (en) Solidifying agent composition for sludge comprising sludge dry-fuel and manufacturing method thereof
JP2006088044A (en) Sludge carbonized matter and carbonization method of sludge