JP2005231945A - Production method for woody granular active carbide - Google Patents

Production method for woody granular active carbide Download PDF

Info

Publication number
JP2005231945A
JP2005231945A JP2004043219A JP2004043219A JP2005231945A JP 2005231945 A JP2005231945 A JP 2005231945A JP 2004043219 A JP2004043219 A JP 2004043219A JP 2004043219 A JP2004043219 A JP 2004043219A JP 2005231945 A JP2005231945 A JP 2005231945A
Authority
JP
Japan
Prior art keywords
wood
carbide
granular activated
powder
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004043219A
Other languages
Japanese (ja)
Inventor
Kazunori Yamada
和則 山田
Hirotaka Isomura
弘隆 磯村
Yoshimasa Muraoka
義正 村岡
Norifumi Nagata
憲史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2004043219A priority Critical patent/JP2005231945A/en
Publication of JP2005231945A publication Critical patent/JP2005231945A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a woody granular active carbide having a high strength and a large specific surface area from a woody raw material. <P>SOLUTION: A raw material prepared by adding a binder to a mixture of a woody carbide powder and a coal powder is subjected to kneading, molding, carbonization, and activation, thus producing the woody granular active carbide. Preferably, 100 pts.mass woody carbide powder is compounded with 10-100 pts.mass coal powder. Preferably, 100 pts.mass as the sum of the woody carbide powder and the coal powder is compounded with 40-90 pts.mass binder. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、木質を原料とした木質系粒状活性炭化物の製造方法に関し、特に、廃木材等種々の木質を主原料とすることのできる、吸着特性に優れた高強度の木質系粒状活性炭化物の製造方法に関する。   The present invention relates to a method for producing a wood-based granular activated carbide using wood as a raw material, and in particular, a high-strength wood-based granular activated carbide excellent in adsorption characteristics, which can use various wood such as waste wood as a main raw material. It relates to a manufacturing method.

活性炭は、その製法や用途によって様々な形態があり、一般的には、粉末活性炭、粒状活性炭、繊維状活性炭、シート状活性炭などがよく知られている。このうち、粒状活性炭は使用する際の扱いやすさから、排ガス浄化、水質浄化など、多方面に渡って最も多く利用されているものである。   Activated carbon has various forms depending on its production method and application, and in general, powdered activated carbon, granular activated carbon, fibrous activated carbon, sheet-like activated carbon and the like are well known. Of these, granular activated carbon is most widely used in various fields such as exhaust gas purification and water purification because of its ease of handling when used.

活性炭の原料として最もよく知られているものにヤシガラ、石炭などがあるが、近年、資源有効利用の観点から種々の廃棄物を活用した活性炭製造の研究が盛んに行われている。特に、建築廃材や、製材所から発生する端材、おが粉、あるいは間伐材、伐採木、剪定屑などの木質は、目的外の不純成分を含まないため、活性炭の原料として好適である。   The most well-known raw materials for activated carbon include coconut husk and coal. Recently, active carbon production utilizing various wastes has been actively studied from the viewpoint of effective use of resources. In particular, wood waste such as building wastes, scraps generated from sawmills, sawdust, thinned wood, felled trees, and pruned waste are suitable as raw materials for activated carbon because they do not contain undesired impurities.

しかし、これらの木質から高強度の粒状活性炭を得るのは極めて難しく、粉末活性炭に留まっているのが現状である。これは、木質の細胞構造に空隙が多いため、得られた炭化物の空隙率が大きく低嵩密度となるからである。このような木質の組織を粉砕処理によって破壊することで高強度の粒状活性炭を得る方法も提案されているが、かかる粉砕エネルギーを考慮すると、実用性に乏しいと考えられる。   However, it is extremely difficult to obtain high-strength granular activated carbon from these woods, and the current situation is that it remains in powdered activated carbon. This is because the porosity of the obtained carbide is large and the bulk density is low because the cellular structure of the wood has many voids. A method of obtaining granular activated carbon with high strength by destroying such a woody structure by pulverization has also been proposed, but considering such pulverization energy, it is considered to be impractical.

一方、特許文献1には、廃木材、廃竹材、古紙、トウモロコシ芯部、使用済みプラスチック等の有機系廃棄物を原料とし、破砕、予備乾留、調湿、バインダー添加、混練、成型、乾留の各処理を施すことにより粒状活性炭を製造する方法が開示されている。この粒状活性炭の製造方法では、成型物の冷間強度や乾留後の炭化物の強度を向上させるために、バインダーとして、無機系ではセメント等、有機系ではコールタール系の重質油、ピッチ、石炭液化油、特定の油系からの石油系減圧残油、エチレンボトム油、改質油等から選択し、添加割合を調整している。
特開2003−183667号公報
On the other hand, in Patent Document 1, organic waste such as waste wood, waste bamboo, waste paper, corn core and used plastic is used as a raw material, and crushing, preliminary dry distillation, humidity conditioning, binder addition, kneading, molding, dry distillation A method for producing granular activated carbon by performing each treatment is disclosed. In this method of producing granular activated carbon, in order to improve the cold strength of the molded product and the strength of the carbonized carbon after carbonization, the binder is used as a binder, such as cement for inorganic systems, and coal tar heavy oil, pitch, coal for organic systems. Selection is made from liquefied oil, petroleum-based vacuum residue from a specific oil system, ethylene bottom oil, reformed oil, etc., and the addition ratio is adjusted.
JP 2003-183667 A

しかし、上記方法によって得られた粒状活性炭は、ある程度の強度は確保できるものの、比表面積が250m/g前後と低いため、活性炭としての用途が限られてしまう。 However, although the granular activated carbon obtained by the above method can secure a certain level of strength, its specific surface area is as low as around 250 m 2 / g, so that the use as activated carbon is limited.

本発明は、このような実状に鑑みてなされたものであり、木質を原料とし、強度が高く比表面積の大きい木質系粒状活性炭化物の製造方法を提供することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a method for producing a wood-based granular activated carbide using wood as a raw material and having a high strength and a large specific surface area.

上記課題を解決するために鋭意研究を重ねた結果、本発明者らは、木質炭化物の粉末に、高強度の粒状活性炭の原料として知られている石炭粉末を適当量添加するとともに、その炭化物の混合物に、適宜選択したバインダーを適正割合で配合したものを原料として、成型、炭化及び賦活することにより、強度が高く比表面積の大きい木質系粒状活性炭化物が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors added an appropriate amount of coal powder known as a raw material for high-strength granular activated carbon to the wood carbide powder, We have found that a wood-based granular activated carbide with high strength and a large specific surface area can be obtained by molding, carbonizing and activating, using as a raw material a mixture of an appropriately selected binder in the mixture, and completing the present invention. It came to do.

すなわち、第1に本発明は、粒状の活性炭化物を製造する方法において、木質炭化物粉末と石炭粉末とにバインダーを添加したものを原料として使用することを特徴とする木質系粒状活性炭化物の製造方法を提供する(請求項1)。   That is, the first aspect of the present invention is a method for producing a granular activated carbide, characterized in that, in the method for producing a granular activated carbide, a material obtained by adding a binder to a wood carbide powder and a coal powder is used as a raw material. (Claim 1).

上記発明(請求項1)においては、木質炭化物100質量部に対して石炭粉末10〜100質量部を配合するのが好ましい(請求項2)。   In the said invention (invention 1), it is preferable to mix | blend 10-100 mass parts of coal powder with respect to 100 mass parts of wood carbides (invention 2).

また、上記発明(請求項1,2)においては、木質炭化物粉末及び石炭粉末の合計量100質量部に対して、バインダーを40〜90質量部配合するのが好ましい(請求項3)。   Moreover, in the said invention (invention 1 and 2), it is preferable to mix | blend 40-90 mass parts of binders with respect to 100 mass parts of total amounts of wood carbide powder and coal powder (invention 3).

上記発明(請求項1〜3)において、前記バインダーは、コールタール、無水タール、軟ピッチ、硬ピッチ、クレオソート油、木タール、木タールオイル及び木タールピッチからなる群から選ばれた少なくとも1種のバインダーであるのが好ましい(請求項4)。   In the above invention (Inventions 1 to 3), the binder is at least one selected from the group consisting of coal tar, anhydrous tar, soft pitch, hard pitch, creosote oil, wood tar, wood tar oil and wood tar pitch. A seed binder is preferred (claim 4).

第2に本発明は、上記発明(請求項1〜4)に係る製造方法により製造した木質系粒状活性炭化物を提供する(請求項5)。なお、本発明に係る木質系粒状活性炭化物には、物として同一である限り、上記発明(請求項1〜4)に係る製造方法とは異なる方法により製造した木質系粒状活性炭化物も含まれるものとする。   2ndly this invention provides the wood type granular activated carbide manufactured by the manufacturing method which concerns on the said invention (Invention 1-4) (Invention 5). The wood-based granular activated carbide according to the present invention includes wood-based granular activated carbide produced by a method different from the production method according to the above inventions (inventions 1 to 4) as long as they are the same as the product. And

本発明の木質系粒状活性炭化物の製造方法によれば、木材、建築物解体系廃木材や、製材所より発生する端材、チップ、おが粉、あるいは伐採木、剪定木等の木質を主原料とすることができ、石炭を原料とした粒状活性炭と同等の高い強度及び大きい比表面積を有する木質系粒状活性炭化物を製造することができる。   According to the method for producing a wood-based granular activated carbide of the present invention, wood, building dismantling waste wood, millwood generated from sawmills, chips, sawdust, or wood such as felled trees and pruned trees are mainly used. It can be used as a raw material, and a wood-based granular activated carbide having a high strength and a large specific surface area equivalent to granular activated carbon obtained from coal can be produced.

以下、本発明の実施形態について説明する。
図1は、本発明の木質系粒状活性炭化物の製造方法に係る一実施形態を示す工程フロー図である。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a process flow diagram showing an embodiment according to the method for producing a woody granular activated carbide of the present invention.

本製造方法で使用する木質炭化物の原料となる木質としては、廃棄物であるかバージン材であるかは一切問わず、木材全般、建築物解体系廃木材や、製材所より発生する端材、チップ、おが粉、あるいは伐採木、剪定木など、あらゆる木質系のものを利用することができる。ただし、本発明によれば、いかなる木質を用いても目的とする木質系粒状活性炭化物を得ることができるので、昨今の資源環境問題を考慮すれば、建築廃木材など利用価値の乏しい廃棄物を活用するのが好ましい。   Regardless of whether it is waste or virgin material, the wood used as the raw material for the wood carbide used in this manufacturing method is all timber, building dismantling waste wood, scraps generated from sawmills, Any woody material such as chips, sawdust, or felled trees or pruned trees can be used. However, according to the present invention, the desired woody granular activated carbide can be obtained by using any woody material. Therefore, considering the recent environmental problems of resources, waste with low utility value such as construction waste wood can be obtained. It is preferable to utilize.

最初に、原料である木質を破砕する(工程1)。このとき、できるだけ細かく破砕した方が均質かつ効率的に木質を炭化させることができるので、木質の大きさ(長辺又は長径)が100mm以下、特に50mm以下になるように破砕することが好ましい。また、木質が著しく含水している場合には、破砕前又は破砕後に木質を乾燥させ(工程2)、木質の含水率を通常は30%以下、好ましくは10%以下とする。   First, the raw material wood is crushed (step 1). At this time, since the wood can be carbonized more uniformly and efficiently if it is crushed as finely as possible, it is preferable to crush the wood so that its size (long side or long diameter) is 100 mm or less, particularly 50 mm or less. In addition, when the wood is extremely hydrated, the wood is dried before crushing or after crushing (step 2), and the moisture content of the wood is usually 30% or less, preferably 10% or less.

上記のように破砕・乾燥した木質が得られたら、当該木質を炭化(一次炭化)させて木質炭化物とする(工程3)。この一次炭化処理は200〜800℃で行うのが好ましく、処理方式は連続式でもよいし、バッチ式でもよい。また、加熱方法は外熱式、内熱式のいずれの方法でもよい。   When the crushed and dried wood is obtained as described above, the wood is carbonized (primary carbonization) to obtain wood carbide (step 3). The primary carbonization treatment is preferably performed at 200 to 800 ° C., and the treatment method may be a continuous method or a batch method. The heating method may be either an external heating method or an internal heating method.

また、炭化処理を行う炉内の雰囲気は、酸素の存在しない嫌気性雰囲気又は酸素濃度が10%以下の部分酸化雰囲気が好ましい。炉内雰囲気を嫌気性とすることで原料の燃焼が抑えられ、木質炭化物の回収率が向上する。一方、部分酸化雰囲気では原料の一部が燃焼するため木質炭化物の回収率は低下するが、原料の燃焼分の熱量を利用できるため、新規に使用する熱量を低く抑えることができる。   Further, the atmosphere in the furnace for performing the carbonization treatment is preferably an anaerobic atmosphere in which oxygen does not exist or a partially oxidized atmosphere having an oxygen concentration of 10% or less. By making the furnace atmosphere anaerobic, combustion of the raw material is suppressed, and the recovery rate of the wood carbide is improved. On the other hand, in the partially oxidized atmosphere, a part of the raw material is combusted, so that the recovery rate of the wood carbide is reduced.

この一次炭化処理では、得られる木質炭化物に含まれる揮発分を30%以下、特に20%以下とするのが好ましい。本製造方法により得られる粒状活性炭化物が工業用炉の排ガス処理用などの高温下で使用されることを考慮すると、製品となる活性炭中の揮発分が高いと活性炭の着火点が下がり、活性炭は着火し易い性質になるため、可能な限り一次炭化工程において木質炭化物中の揮発分を低減しておくことが好ましい。   In the primary carbonization treatment, the volatile content contained in the obtained wood carbide is preferably 30% or less, particularly preferably 20% or less. Considering that the granular activated carbide obtained by this production method is used at high temperatures such as for exhaust gas treatment in industrial furnaces, the activated carbon of the activated carbon that is produced has a low igniting point and the activated carbon is ignited. Therefore, it is preferable to reduce the volatile content in the wood carbide as much as possible in the primary carbonization step.

また、一次炭化処理による木質の炭化度は、木質中の繊維状物質が次の粉砕処理に支障をきたさない程度まで炭化・消失する度合とするのが好ましい。   Further, the carbonization degree of the wood by the primary carbonization treatment is preferably set to such a degree that the fibrous material in the wood is carbonized and disappears to such an extent that the next pulverization treatment is not hindered.

上記一次炭化処理において炉から排出された木質炭化物は、燃焼を防ぐため、速やかに冷却する(工程4)。   The wood carbide discharged from the furnace in the primary carbonization treatment is quickly cooled to prevent combustion (step 4).

木質炭化物を冷却したら、次に粉砕処理を行い、木質炭化物粉末を得る(工程5)。この粉砕処理では、木質炭化物の粒径が通常は50μm以下、好ましくは30μm以下となるように粉砕する。木質炭化物の粒径が小さいほど得られる粒状活性炭化物の強度が高くなるが、粉砕の程度は粉砕コストとの関係で適宜決定すればよい。木質炭化物の粉砕方式は特に限定されず、石炭の粉砕に用いられる一般的なボールミルやローラーミルなどを使用することができる。   After the wood carbide is cooled, a pulverization process is then performed to obtain a wood carbide powder (step 5). In this pulverization treatment, pulverization is performed so that the particle size of the wood carbide is usually 50 μm or less, preferably 30 μm or less. The smaller the particle size of the wood carbide, the higher the strength of the granular activated carbide obtained. The degree of pulverization may be appropriately determined in relation to the pulverization cost. The grinding method of the wood carbide is not particularly limited, and a general ball mill or roller mill used for coal grinding can be used.

上記のようにして木質炭化物粉末が得られたら、その木質炭化物粉末に石炭粉末を添加する(工程6)。石炭としては、特に分類や銘柄等の限定はないが、一般的に灰分は比表面積が小さいので、得られる粒状活性炭化物の比表面積を大きくするためには、灰分の含有量が低い石炭、具体的には灰分含有量が20%以下の石炭を使用するのが好ましい。石炭粉末の粒径は、木質炭化物の粒度と同様に、通常は50μm以下、好ましくは30μm以下とする。   When the wood carbide powder is obtained as described above, coal powder is added to the wood carbide powder (step 6). There are no particular restrictions on the classification or brand of coal, but generally ash has a small specific surface area, so in order to increase the specific surface area of the granular activated carbide obtained, coal with a low ash content, specifically Specifically, it is preferable to use coal having an ash content of 20% or less. The particle size of the coal powder is usually 50 μm or less, preferably 30 μm or less, like the particle size of the wood carbide.

木質炭化物粉末100質量部に対する石炭粉末の添加量は、10〜100質量部であるのが好ましい。石炭粉末の添加量が10質量部未満であると、得られる粒状活性炭化物の強度を向上させる効果が小さい。一方、石炭粉末の添加量が100質量部未満を超えると、得られる粒状活性炭化物の物性が悪化するわけではないが、原料としての木質の使用量が減り、木質の有効活用が図れなくなる。また、木質として廃棄物系のものを使用する場合には、木質の使用量が減ることによりコストが上昇する。   The amount of coal powder added to 100 parts by mass of the wood carbide powder is preferably 10 to 100 parts by mass. The effect which improves the intensity | strength of the granular activated carbide obtained as the addition amount of coal powder is less than 10 mass parts is small. On the other hand, if the amount of coal powder added is less than 100 parts by mass, the physical properties of the obtained granular activated carbide will not be deteriorated, but the amount of wood used as a raw material will be reduced, making it impossible to effectively use the wood. In addition, when a waste material is used as wood, the cost increases due to a decrease in the amount of wood used.

次に、木質炭化物粉末及び石炭粉末の混合物に対して、成型用バインダーを添加し、混練する(工程7)。成型用バインダーとしては、一般的な成型活性炭製造用バインダーである石炭系オイル、例えばコールタール、無水タール、軟ピッチ、硬ピッチ若しくはクレオソート油、又は木質系オイル、例えば木タール、木タールオイル若しくは木タールピッチの1種又は2種以上を使用するのが好ましい。   Next, a molding binder is added to the mixture of the wood carbide powder and the coal powder and kneaded (step 7). As the molding binder, a coal-based oil which is a general binder for producing activated carbon, such as coal tar, anhydrous tar, soft pitch, hard pitch or creosote oil, or wood-based oil such as wood tar, wood tar oil or It is preferable to use one or more of wood tar pitches.

高強度の成型活性炭化物を製造するためには、このバインダーの選択及び添加量の調整が非常に重要となる。一般的に、軟ピッチのように含まれる固定炭素量が高いバインダーほど活性炭化物は高強度化されるが、バインダーが含有する固定炭素量が高くなるに従って粘性が高くなり、混練性や成型性が悪くなるため、炭化物粉末とバインダーとの均一性が低下し、高強度の活性炭化物が得られ難くなる。その改善策として、クレオソート油等の低粘性オイルを粘性調整剤として併用する方法が挙げられる。すなわち、上記各種バインダーは、1種を単独で使用することもできるし、2種以上を適宜混合して使用することもできる。   In order to produce a high-strength molded activated carbide, it is very important to select the binder and adjust the addition amount. In general, a binder with a higher fixed carbon content such as soft pitch increases the strength of the activated carbide, but the viscosity increases as the fixed carbon content of the binder increases, and the kneadability and moldability are increased. Since it worsens, the uniformity of carbide powder and a binder falls, and it becomes difficult to obtain a high-strength activated carbide. As an improvement measure, there is a method in which low viscosity oil such as creosote oil is used as a viscosity modifier. That is, the various binders can be used singly or in a suitable combination of two or more.

成型用バインダーの添加量は、木質炭化物粉末及び石炭粉末の合計量100質量部に対して、40〜90質量部であるのが好ましい。成型用バインダーの添加量が40質量部未満であると、液相分過少により混練物の可塑性が低下し、また成型用バインダーの添加量が90質量部を超えると、液相分過多により逆に流動性が大きくなり、いずれの場合も良好な成型物が得られ難くなる。   The amount of the binder for molding is preferably 40 to 90 parts by mass with respect to 100 parts by mass of the total amount of the wood carbide powder and the coal powder. If the addition amount of the molding binder is less than 40 parts by mass, the plasticity of the kneaded product is lowered due to the liquid phase being excessive, and if the addition amount of the molding binder exceeds 90 parts by mass, the liquid phase is excessive. The fluidity increases, and in any case, it is difficult to obtain a good molded product.

混練に使用する混練機としては、炭化物粉末と成型用バインダーとの混合物の粘度が高いため、ニーダーのような混練力の強いものが好ましいが、均質に混合できるものであれば特に限定されるものではない。   As the kneading machine used for kneading, since the viscosity of the mixture of the carbide powder and the molding binder is high, a kneader-like strong kneading force is preferable, but it is particularly limited as long as it can be homogeneously mixed. is not.

上記のようにして混練した混合物は、次に成型機により成型する(工程8)。成型機としては、高強度の粒状活性炭化物を得るためには、押出成型機のような加圧成型機が適しているが、粒状活性炭化物の用途に応じた形状や寸法に成型することができれば特に限定されるものではない。   The mixture kneaded as described above is then molded by a molding machine (step 8). As a molding machine, a pressure molding machine such as an extrusion molding machine is suitable for obtaining a high-strength granular activated carbide, but if it can be molded into a shape and size according to the use of the granular activated carbide. It is not particularly limited.

得られた成型物は、成型物同士の付着を防ぐために、通常200℃以下で乾燥させてから(工程9)、二次炭化させる(工程10)。乾燥と二次炭化は同一の設備で連続して行ってもよいが、成型物同士の付着や急加熱による炭化物の強度低下を防ぐためにも、別々に行った方が好ましい。   The obtained molded product is usually dried at 200 ° C. or less (step 9) and then secondary carbonized (step 10) in order to prevent adhesion between the molded products. Drying and secondary carbonization may be performed continuously in the same equipment, but it is preferable to perform them separately in order to prevent adhesion of molded products and a decrease in strength of the carbide due to rapid heating.

二次炭化処理は、上記一次炭化処理と同様にして行えばよいが、得られる二次炭化物に含まれる揮発分を20%以下、特に15%以下とするのが好ましい。理由は前述した通りであり、最後の熱処理工程である賦活の前までに、可能な限り炭化物中の揮発分を低減しておくことが好ましい。   The secondary carbonization treatment may be performed in the same manner as the primary carbonization treatment, but the volatile content contained in the obtained secondary carbide is preferably 20% or less, particularly preferably 15% or less. The reason is as described above, and it is preferable to reduce the volatile matter in the carbide as much as possible before the activation which is the final heat treatment step.

上記のようにして二次炭化物が得られたら、当該二次炭化物を賦活して粒状活性炭化物とする(工程11)。強度が高く比表面積の大きい粒状活性炭化物を安定して得るために、賦活処理は800〜1000℃の温度で行うのが好ましい。賦活処理温度が800℃未満であると、賦活反応が遅くなるため時間がかかり、賦活処理温度が1000℃を超えると、賦活反応が早くなるため活性炭化物が不均質なものになるなど、物性のコントロールが難しくなる。   When the secondary carbide is obtained as described above, the secondary carbide is activated to form a granular activated carbide (step 11). In order to stably obtain a granular activated carbide having a high strength and a large specific surface area, the activation treatment is preferably performed at a temperature of 800 to 1000 ° C. If the activation treatment temperature is less than 800 ° C., the activation reaction is delayed, so it takes time. If the activation treatment temperature exceeds 1000 ° C., the activation reaction is accelerated and the activated carbide becomes inhomogeneous. Control becomes difficult.

賦活処理の処理方式は、連続式、バッチ式を問わず、また、加熱方法は外熱式及び内熱式のいずれであってもよい。さらに、賦活処理の雰囲気は、通常、酸素の存在しない嫌気性雰囲気とし、一般的に知られている水蒸気、炭酸ガス又はこれらの複合ガスによるガス賦活法で行う。   The treatment method of the activation treatment may be a continuous method or a batch method, and the heating method may be either an external heat method or an internal heat method. Further, the activation treatment atmosphere is usually an anaerobic atmosphere in which oxygen is not present, and is performed by a generally known gas activation method using water vapor, carbon dioxide gas, or a composite gas thereof.

この賦活処理では、得られる活性炭化物に含まれる揮発分を10%以下、特に7.5%以下とするのが好ましく、理由は前述した通りである。   In this activation treatment, the volatile content contained in the obtained activated carbide is preferably 10% or less, particularly 7.5% or less, and the reason is as described above.

上記のように賦活処理して得られた活性炭化物は、着火を防ぐために、速やかに冷却する(工程12)。   The activated carbide obtained by the activation treatment as described above is rapidly cooled to prevent ignition (step 12).

最後に、得られた活性炭化物には、粒状物の他に、製造過程で発生した粉末が含まれるので、適宜篩い分けを行う(工程13)。篩い分けられた粉末は、原料に戻して再度使用することができる。   Finally, since the obtained activated carbide contains powder generated in the manufacturing process in addition to the granular material, it is appropriately sieved (step 13). The sieved powder can be returned to the raw material and used again.

以上のようにして得られた木質系粒状活性炭化物は、木質を原料として使用しながらも、強度が高く、比表面積が大きい。   The wood-based granular activated carbide obtained as described above has high strength and large specific surface area while using wood as a raw material.

以下、実施例を示して本発明を具体的に説明するが、本発明は下記の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to the following Example at all.

〔実施例1〜12,比較例1〜2〕
家屋の廃木材(含水率:5%)を原料とし、大きさが50mm以下となるように原料を破砕した後、内熱式ロータリーキルンを使用して、600〜700℃の温度下で20分間炭化処理を行った。得られた炭化物を冷却した後、バッチ式ボールミルにより粉砕して、粒径30μm以下の木質炭化物粉末とした。この一次炭化処理に使用した設備及び処理条件を以下に示す。
[Examples 1 to 12, Comparative Examples 1 and 2]
Waste wood from the house (water content: 5%) is used as a raw material. After crushing the raw material so that the size is 50 mm or less, carbonization is performed at a temperature of 600 to 700 ° C. for 20 minutes using an internal heat rotary kiln. Processed. The obtained carbide was cooled and then pulverized by a batch type ball mill to obtain a wood carbide powder having a particle size of 30 μm or less. The equipment and treatment conditions used for this primary carbonization treatment are shown below.

処理炉:内熱式ロータリーキルン(572mmφ×7000mmL)
熱源:バーナーによるA重油の燃焼
処理温度:600〜700℃
処理時間:20分
処理量:180kg/h
炉内酸素濃度:1〜5%
Processing furnace: Internal heat type rotary kiln (572mmφ × 7000mmL)
Heat source: Combustion of A heavy oil by burner Processing temperature: 600-700 ° C
Processing time: 20 minutes Processing amount: 180 kg / h
In-furnace oxygen concentration: 1-5%

上記方法により得られた木質炭化物粉末の性状を表1に示す。なお、分析値はJIS M8812「石炭類及びコークス類−工業分析法」に準拠して測定した結果である。   Table 1 shows the properties of the wood carbide powder obtained by the above method. The analysis value is a result of measurement according to JIS M8812 “Coal and cokes—industrial analysis method”.

一方、石炭粉末としては、燃料用石炭をバッチ式ボールミルにより粉砕して粒径30μm以下にしたものを用意した。この石炭粉末の性状を表1に示す。   On the other hand, as coal powder, the coal for fuel was pulverized by a batch type ball mill so as to have a particle size of 30 μm or less. Table 1 shows the properties of the coal powder.

Figure 2005231945
Figure 2005231945

上記木質炭化物粉末及び石炭粉末と、成型用バインダーとを表2に示す割合で混練した。実施例1〜5は木質炭化物粉末に対する石炭粉末の添加割合を徐々に増やした例であり、実施例6〜8は炭化物混合物に対するバインダーの添加割合を徐々に増やした例であり、実施例9〜12はバインダーの種類や添加割合を変化させた例である。また、比較例1は木質炭化物粉末を単独で用いた例であり、比較例2は石炭粉末を単独で用いた例である。   The wood carbide powder and coal powder and the molding binder were kneaded at the ratio shown in Table 2. Examples 1 to 5 are examples in which the addition ratio of coal powder to the wood carbide powder is gradually increased, and Examples 6 to 8 are examples in which the addition ratio of the binder to the carbide mixture is gradually increased. No. 12 is an example in which the type and addition ratio of the binder are changed. Comparative Example 1 is an example using a wood carbide powder alone, and Comparative Example 2 is an example using a coal powder alone.

Figure 2005231945
Figure 2005231945

混練は、擂潰機によって混練物が均質な状態になるまで行った。得られた混練物は、押出成型機を想定し、成型物が直径5mm、高さ10mmの円柱状となるように、金型を用いて20atmの圧力で成型した。得られた成型物は、絶乾になるまで100℃で乾燥させた。   Kneading was performed until the kneaded material became homogeneous by a grinder. The obtained kneaded product was molded at a pressure of 20 atm using a mold so that the molded product was a cylindrical shape having a diameter of 5 mm and a height of 10 mm, assuming an extrusion molding machine. The obtained molded product was dried at 100 ° C. until it became absolutely dry.

次いで、上記成型物について、管状炉を使用して、窒素雰囲気下、600℃で1時間、二次炭化処理を行った。この二次炭化処理に使用した設備及び処理条件を以下に示す。なお、二次炭化処理によって得られた二次炭化物に含まれる揮発分は、いずれも10%以下であった。   Next, the molded product was subjected to secondary carbonization treatment at 600 ° C. for 1 hour in a nitrogen atmosphere using a tubular furnace. The equipment and processing conditions used for this secondary carbonization treatment are shown below. In addition, the volatile matter contained in the secondary carbide obtained by the secondary carbonization treatment was 10% or less in all cases.

処理炉:磁性管炉(100mmφ×500mmL)
熱源:外熱式電気炉
処理温度:600℃
処理時間:1時間
処理量:50g(1バッチ)
雰囲気:窒素流通雰囲気
Processing furnace: Magnetic tube furnace (100mmφ × 500mmL)
Heat source: Externally heated electric furnace Processing temperature: 600 ° C
Processing time: 1 hour Processing amount: 50 g (1 batch)
Atmosphere: Nitrogen circulation atmosphere

続いて、得られた二次炭化物に対し、水蒸気賦活処理を行った後、冷却した。この賦活処理は、900℃で120分、水蒸気濃度26%(窒素雰囲気中)の条件下で行った。   Subsequently, the obtained secondary carbide was cooled after being subjected to a steam activation treatment. This activation treatment was performed at 900 ° C. for 120 minutes under a water vapor concentration of 26% (in a nitrogen atmosphere).

このようにして得られた木質系粒状活性炭化物(直径5mm、高さ10mmの円柱状)の比表面積、圧縮強度及び揮発分含有量を測定した。比表面積はBET法により測定し、圧縮強度は一軸圧縮強度試験により測定した。結果を表3に示す。   The specific surface area, compressive strength, and volatile content of the wood-based granular activated carbide thus obtained (a cylindrical shape having a diameter of 5 mm and a height of 10 mm) were measured. The specific surface area was measured by the BET method, and the compressive strength was measured by a uniaxial compressive strength test. The results are shown in Table 3.

Figure 2005231945
Figure 2005231945

上記測定・試験結果より、以下のことが分かった。すなわち、石炭粉末のみを原料とする比較例2の活性炭化物は、強度が高く比表面積も大きいが、木質炭化物粉末のみを原料とする比較例1の活性炭化物については、比表面積は比較例2と同程度ながらも、強度は極めて低く、表面も崩れ易い状態であった。   From the above measurement / test results, the following was found. That is, the activated carbide of Comparative Example 2 using only coal powder as a raw material has high strength and a large specific surface area. However, for the activated carbide of Comparative Example 1 using only wood carbide powder as a raw material, the specific surface area is the same as that of Comparative Example 2. Although the strength was the same, the strength was extremely low, and the surface was in a state of being easily broken.

実施例1〜5の活性炭化物については、比表面積はいずれも同程度であるが、石炭粉末の添加割合がより多い活性炭化物の方が高強度化している。特に、実施例3〜5の活性炭化物は、比較例2の活性炭化物と比べても遜色のない強度及び比表面積を有する。それに対し、石炭粉末の添加割合が少ない実施例1及び実施例2の活性炭化物は、強く触ると表面が崩れるような状態であった。   As for the activated carbides of Examples 1 to 5, the specific surface areas are almost the same, but activated carbides with a higher proportion of coal powder added have higher strength. In particular, the activated carbides of Examples 3 to 5 have the same strength and specific surface area as those of the activated carbide of Comparative Example 2. On the other hand, the activated carbides of Examples 1 and 2 with a small addition ratio of coal powder were in a state where the surface collapsed when strongly touched.

実施例6〜8の活性炭化物についても、強度及び比表面積は比較例2の活性炭化物と同等であった。ただし、実施例6では、炭化物混合物に対するバインダーの添加割合が少ないため、混練物の可塑性が低く、成型処理が若干困難であった。それに対し、実施例7では、液相分が少なめで混練物の可塑性が失われつつあり、実施例8では、液相分が多めで流動性が付与されつつあるものの、いずれも良好な混練性、成型性を示した。   For the activated carbides of Examples 6 to 8, the strength and specific surface area were the same as those of the activated carbide of Comparative Example 2. However, in Example 6, since the addition ratio of the binder with respect to the carbide mixture was small, the plasticity of the kneaded material was low and the molding process was slightly difficult. On the other hand, in Example 7, the plasticity of the kneaded product is being lost due to a small liquid phase content, and in Example 8, the liquid phase content is high and fluidity is being imparted, but both have good kneadability. , Showed moldability.

実施例9〜12の活性炭化物については、強度及び比表面積のいずれも比較例2の活性炭化物と比較して遜色ないものであった。   As for the activated carbides of Examples 9 to 12, both the strength and the specific surface area were comparable to those of the activated carbide of Comparative Example 2.

本発明の木質系粒状活性炭化物の製造方法は、木質、特に廃木材や、製材所より発生する端材、チップ、おが粉、あるいは伐採木、剪定木等の廃棄対象となる木質の有効利用に貢献できる。   The method for producing a wood-based granular activated carbide of the present invention is effective for the use of wood, especially waste wood, wood from scraps, chips, sawdust, or felled trees, pruned wood, etc. Can contribute.

本発明の木質系粒状活性炭化物の製造方法に係る一実施形態を示す工程フロー図である。It is a process flow figure showing one embodiment concerning a manufacturing method of wood type granular activated carbide of the present invention.

Claims (5)

粒状の活性炭化物を製造する方法において、木質炭化物粉末と石炭粉末とにバインダーを添加したものを原料として使用することを特徴とする木質系粒状活性炭化物の製造方法。   In the method for producing granular activated carbide, a method for producing a wood-based granular activated carbide comprising using wood carbide powder and coal powder with a binder added as a raw material. 木質炭化物100質量部に対して石炭粉末10〜100質量部を配合することを特徴とする請求項1に記載の木質系粒状活性炭化物の製造方法。   The method for producing a wood-based granular activated carbide according to claim 1, wherein 10 to 100 parts by mass of coal powder is blended with 100 parts by mass of the wood carbide. 木質炭化物粉末及び石炭粉末の合計量100質量部に対して、バインダーを40〜90質量部配合することを特徴とする請求項1又は2に記載の木質系粒状活性炭化物の製造方法。   The method for producing a wood-based granular activated carbide according to claim 1 or 2, wherein 40 to 90 parts by mass of a binder is blended with respect to 100 parts by mass of the total amount of the wood carbide powder and the coal powder. 前記バインダーが、コールタール、無水タール、軟ピッチ、硬ピッチ、クレオソート油、木タール、木タールオイル及び木タールピッチからなる群から選ばれた少なくとも1種のバインダーであることを特徴とする請求項1〜3のいずれかに記載の木質系粒状活性炭化物の製造方法。   The binder is at least one binder selected from the group consisting of coal tar, anhydrous tar, soft pitch, hard pitch, creosote oil, wood tar, wood tar oil, and wood tar pitch. The manufacturing method of the wood type granular activated carbide in any one of claim | item 1-3. 請求項1〜4のいずれかに記載の製造方法により製造した木質系粒状活性炭化物。
A wood-based granular activated carbide produced by the production method according to claim 1.
JP2004043219A 2004-02-19 2004-02-19 Production method for woody granular active carbide Pending JP2005231945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043219A JP2005231945A (en) 2004-02-19 2004-02-19 Production method for woody granular active carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043219A JP2005231945A (en) 2004-02-19 2004-02-19 Production method for woody granular active carbide

Publications (1)

Publication Number Publication Date
JP2005231945A true JP2005231945A (en) 2005-09-02

Family

ID=35015289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043219A Pending JP2005231945A (en) 2004-02-19 2004-02-19 Production method for woody granular active carbide

Country Status (1)

Country Link
JP (1) JP2005231945A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253127A (en) * 2006-03-24 2007-10-04 Kochi Univ Method for removing allergy-initiating substance
CN111847449A (en) * 2020-05-14 2020-10-30 内蒙古浦瑞芬环保科技有限公司 Preparation method of low-ash high-specific surface area activated carbon
CN112191225A (en) * 2020-08-31 2021-01-08 成都达奇环境科技有限公司 Activated carbon-based material, flue gas desulfurizing agent, preparation method of flue gas desulfurizing agent and flue gas desulfurizing method
CN113636552A (en) * 2020-05-11 2021-11-12 中冶长天国际工程有限责任公司 Method for preparing high-performance activated carbon by classified milling and classified kneading

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253127A (en) * 2006-03-24 2007-10-04 Kochi Univ Method for removing allergy-initiating substance
CN113636552A (en) * 2020-05-11 2021-11-12 中冶长天国际工程有限责任公司 Method for preparing high-performance activated carbon by classified milling and classified kneading
CN111847449A (en) * 2020-05-14 2020-10-30 内蒙古浦瑞芬环保科技有限公司 Preparation method of low-ash high-specific surface area activated carbon
CN112191225A (en) * 2020-08-31 2021-01-08 成都达奇环境科技有限公司 Activated carbon-based material, flue gas desulfurizing agent, preparation method of flue gas desulfurizing agent and flue gas desulfurizing method

Similar Documents

Publication Publication Date Title
JP6684298B2 (en) Solid fuel manufacturing method and solid fuel
JP5741585B2 (en) SOLID FUEL AND METHOD FOR MANUFACTURING THE SAME
JP6606845B2 (en) Method for producing solid fuel and solid fuel
US20120017498A1 (en) System and Method for Obtaining Combinations of Coal and Biomass Solid Fuel Pellets with High Caloric Content
JP6328901B2 (en) Method for producing solid fuel and solid fuel
JP2014040552A (en) Method for producing mixed fuel and molded product
JP6185699B2 (en) Method for producing solid fuel and solid fuel
JP6639075B2 (en) Method for producing solid fuel and solid fuel
JP5625320B2 (en) Manufacturing method of coal
KR101595502B1 (en) Dispose of used mushroom medium and a method of manufacturing the pellets
JP6430691B2 (en) Method for producing solid fuel and solid fuel
JP2006213547A (en) Wood-based granular activated carbon and its manufacturing method
JP2005263547A (en) Composite activated carbonized material and method for manufacturing the same
JP2005231945A (en) Production method for woody granular active carbide
JP6910546B2 (en) Molded fuel and its manufacturing method
JP4136772B2 (en) Fuel containing wood and coal and method for producing the same
KR101995756B1 (en) Wood Briquet Using Wooden Wastes and Manufacturing Method Thereof
CN101735873B (en) Magnesium slag-based sectional carbon composite bonding agent
JP2008303305A (en) Woody pellet fuel, and production method and production system for woody pellet fuel
JP6079412B2 (en) Manufacturing method of high strength coke for blast furnace
JP2017039932A (en) Manufacturing method of molded article for mixed fuel
Yustanti et al. The effects of hot briquetting on the coke strength in the biocoke making process with coal blending method
KR102203754B1 (en) Method for preparation of reduced iron with high iron content and the reduced iron prepared by the same
JP7474750B2 (en) Method for producing solid fuel
JP6691508B2 (en) Solid fuel manufacturing method and solid fuel