JP4571883B2 - Vapor absorption / release materials using salt-containing organic substances - Google Patents

Vapor absorption / release materials using salt-containing organic substances Download PDF

Info

Publication number
JP4571883B2
JP4571883B2 JP2005126627A JP2005126627A JP4571883B2 JP 4571883 B2 JP4571883 B2 JP 4571883B2 JP 2005126627 A JP2005126627 A JP 2005126627A JP 2005126627 A JP2005126627 A JP 2005126627A JP 4571883 B2 JP4571883 B2 JP 4571883B2
Authority
JP
Japan
Prior art keywords
carbide
salt
vapor
containing organic
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005126627A
Other languages
Japanese (ja)
Other versions
JP2006297341A (en
Inventor
智久 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP2005126627A priority Critical patent/JP4571883B2/en
Publication of JP2006297341A publication Critical patent/JP2006297341A/en
Application granted granted Critical
Publication of JP4571883B2 publication Critical patent/JP4571883B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、水、有機溶媒などの蒸気を吸収および放出する材料に関する。さらに詳しくは、含塩有機物の炭化物を用いた蒸気吸放出材料に関する。   The present invention relates to a material that absorbs and releases vapor such as water and organic solvents. More specifically, the present invention relates to a vapor absorption / release material using a salt-containing organic carbide.

蒸気吸放出材料は、例えば水蒸気などの蒸気を吸放出する特性を有しており、冷暖房装置用のヒートポンプ用吸着剤、湿度調整用吸着剤などとして利用されている。このような蒸気吸放出材料としては、金属塩あるいは表面に細孔を有する多孔体が知られている。   The vapor absorbing / releasing material has a characteristic of absorbing / releasing vapor such as water vapor, and is used as a heat pump adsorbent for a cooling / heating device, a humidity adjusting adsorbent, or the like. As such a vapor absorption / release material, a metal salt or a porous body having pores on the surface is known.

細孔を有する金属あるいは金属酸化物を蒸気吸放出材として利用する試みが多くなされている。例えば、特許文献1には、層状のシリカ多孔体あるいは層状のシリカ金属酸化物多孔体が記載されている。この多孔体は、湿度90%時の蒸気吸着量(W90)から湿度50%時の蒸気吸着量(W50)を差し引いた値(W90−W50)が、自重の50%を示す。このことは、自重の50%の水蒸気を吸放出できることを示しており、木炭などに比べると、高い値である。そのため、調湿材料としては優れている。しかし、製造コストが高く、利用されにくい。また、特許文献2には、所定の大きさの細孔を有するメソ多孔体の細孔に塩化ナトリウムなどの金属塩を添着させた蒸気吸放出材が記載されている。この蒸気吸放出材は、W90−W50の値が自重の数%程度と低いため、調湿材よりは、吸湿材としての用途が適している上、製造工程が複雑であり、製造コストが高い。特許文献3は、ケイ素化合物溶液とアルミニウム化合物あるいは遷移金属化合物溶液とを混合し、水熱合成することにより得られる調湿材料を記載している。この調湿材料のW90−W50の値は自重の55%であり、その能力は比較的高いが、製造コストが高くなり、汎用性があるとはいえない。このように、金属あるいは金属酸化物を用いる蒸気吸放出材は、製造工程、製造コストに問題がある。   Many attempts have been made to use a metal or metal oxide having pores as a vapor absorbing / releasing material. For example, Patent Document 1 describes a layered silica porous body or a layered silica metal oxide porous body. In this porous body, a value (W90-W50) obtained by subtracting the vapor adsorption amount (W50) at a humidity of 50% from the vapor adsorption amount (W90) at a humidity of 90% indicates 50% of its own weight. This indicates that 50% of its own weight of water vapor can be absorbed and released, which is higher than charcoal. Therefore, it is excellent as a humidity control material. However, the manufacturing cost is high and it is difficult to use. Patent Document 2 describes a vapor absorbing / releasing material in which a metal salt such as sodium chloride is attached to the pores of a mesoporous body having pores of a predetermined size. This vapor absorption / release material has a W90-W50 value as low as several percent of its own weight. Therefore, the vapor absorption / release material is more suitable for use as a moisture absorption material than a humidity control material, and the production process is complicated and the production cost is high. . Patent Document 3 describes a humidity control material obtained by mixing a silicon compound solution and an aluminum compound or a transition metal compound solution and hydrothermally synthesizing. The value of W90-W50 of this humidity control material is 55% of its own weight and its capacity is relatively high, but the manufacturing cost is high and it cannot be said that it is versatile. As described above, the vapor absorbing / releasing material using metal or metal oxide has a problem in manufacturing process and manufacturing cost.

他方、木炭を始めとする炭化物も細孔を有するため、蒸気吸放出材料として検討されている。特許文献4には、木材チップを原形のまま炭化させた床下調湿材が記載されている。そして、非特許文献1には、木炭の水蒸気に対する調湿能力について、記載がある。それによると、木炭は、湿度が低いときにはあまり水蒸気を吸着しない。その理由は、木炭表面が疎水性であり、水蒸気との親和性が低いことにある。木炭は湿度が40〜50%になると吸着量が急激に増加し、湿度が90%程度になると、吸着量の増加が鈍くなり、一定値に近づく。非特許文献1には、木炭の調湿能(W90−W55)の記載があり、木炭の場合は、調湿能は、2〜3%程度であり、活性炭になると、15〜45%程度であることが示されている。そのため、特許文献5には、木炭を活性炭化する試みが記載されている。   On the other hand, charcoal, including charcoal, has pores, and thus has been studied as a vapor absorption / release material. Patent Document 4 describes an underfloor humidity control material obtained by carbonizing a wood chip in its original form. Non-Patent Document 1 describes the humidity control ability of charcoal with respect to water vapor. According to it, charcoal does not adsorb much water vapor when humidity is low. The reason is that the charcoal surface is hydrophobic and has a low affinity for water vapor. When the humidity becomes 40 to 50%, the amount of adsorption increases rapidly, and when the humidity becomes about 90%, the increase in the amount of adsorption becomes dull and approaches a constant value. Non-Patent Document 1 describes the humidity control ability of charcoal (W90-W55). In the case of charcoal, the humidity control capacity is about 2 to 3%, and when activated charcoal is about 15 to 45%. It is shown that there is. Therefore, Patent Document 5 describes an attempt to activate carbonize charcoal.

ところで、木炭はもろく、扱いにくいため、これを他の材料と組み合わせて調湿材料とする試みがなされている。例えば、特許文献6には、木炭(炭材)、多孔質材および接着剤を混合して建材用のパネルあるいはシートに成形することが記載されている。この材料はもっぱらアルデヒド類の吸着に使用されており、汎用性に乏しい。また、特許文献7には、粉粒炭(例えば、木炭、パルプスラッジ、コーヒー、おから、食物など食品廃棄物炭)と不燃性調湿材(例えば、セピオライト、ゼオライトなど)との造粒物からなる調湿材が記載されている。しかし、その調湿能力は低く、実用的ではない。
特開平6−304437号公報 特開平11−11410号公報 特開2002−95926号公報 特開平4−124343号公報 特開2000−226207号公報 特開平10−305226号公報 特開2000−325733号公報 「炭の力」 2001年、No.8、18〜22頁
By the way, since charcoal is fragile and difficult to handle, attempts have been made to combine it with other materials to make a humidity control material. For example, Patent Document 6 describes that charcoal (charcoal), a porous material, and an adhesive are mixed and formed into a building material panel or sheet. This material is used exclusively for the adsorption of aldehydes and is not very versatile. Patent Document 7 discloses a granulated product of granular coal (for example, charcoal, pulp sludge, coffee, okara, food waste charcoal such as food) and a nonflammable humidity control material (for example, sepiolite, zeolite). A humidity control material consisting of is described. However, its humidity control ability is low and not practical.
JP-A-6-304437 JP 11-11410 A JP 2002-95926 A JP-A-4-124343 JP 2000-226207 A JP-A-10-305226 JP 2000-325733 A “Power of Charcoal” 2001, No. 8, pages 18-22

本発明は、蒸気吸放出能力が改良された炭化物を提供することを目的とする。   An object of this invention is to provide the carbide | carbonized_material with improved vapor | steam absorption / release capability.

本発明は、含塩有機物の炭化物を含有する蒸気吸放出材料を提供する。   The present invention provides a vapor absorbing / releasing material containing a salt-containing organic carbide.

一つの実施態様では、上記含塩有機物の炭化物が含塩有機物を300〜1000℃の温度で焼成して得られる炭化物である。   In one embodiment, the carbide of the salt-containing organic material is a carbide obtained by baking the salt-containing organic material at a temperature of 300 to 1000 ° C.

また、別の実施態様では、上記含塩有機物の炭化物が含塩有機物を100〜1000℃の温度で焼成して得られる炭化物を、さらに300〜1000℃の温度で活性化処理して得られる炭化物である。   In another embodiment, the carbide of the above-mentioned salt-containing organic substance is obtained by further activating the carbide obtained by baking the salt-containing organic substance at a temperature of 100 to 1000 ° C. at a temperature of 300 to 1000 ° C. It is.

さらに、別の実施態様では、上記含塩有機物が醤油粕、塩昆布廃棄物、佃煮廃棄物、味噌廃棄物、スープ、出し汁、漬物、都市厨芥、および調理屑からなる群から選択される少なくとも一つの廃棄物である。   Furthermore, in another embodiment, the salt-containing organic material is at least one selected from the group consisting of soy sauce cake, salt kelp waste, boiled waste, miso waste, soup, soup stock, pickles, urban rice cake, and cooking waste. Is one waste.

異なる実施態様では、上記含塩有機物が醤油粕である。   In a different embodiment, the salt-containing organic material is soy sauce cake.

さらに異なる実施態様では、蒸気吸放出材料が添加剤を含有する。   In a further different embodiment, the vapor absorbing / releasing material contains an additive.

別の実施態様では、蒸気吸放出材料が成形されている。   In another embodiment, the vapor absorbing / releasing material is molded.

さらに別の実施態様では、蒸気吸放出材料は、成形後、さらに300〜1000℃の温度で活性化処理して得られる。   In still another embodiment, the vapor absorbing / releasing material is obtained by further activation treatment at a temperature of 300 to 1000 ° C. after molding.

また、異なる実施態様では、上記添加剤が、上記含塩有機物の炭化物1質量部に対して、0.05〜10質量部の割合で添加される。   Moreover, in a different embodiment, the said additive is added in the ratio of 0.05-10 mass parts with respect to 1 mass part of carbides of the said salt-containing organic substance.

さらに別の実施態様では、自重と同量またはそれ以上の水蒸気を吸放出し得る。   In still another embodiment, water vapor can be absorbed and released in the same amount or more than its own weight.

本発明の含塩有機物の炭化物を含有する蒸気吸放出材料は、水蒸気の場合、自重と同程度またはそれ以上の吸放出能力を有している。これは、市販のシリカゲルの3倍の吸放出能力に相当する。そのため、冷暖房装置の吸着ヒートポンプ用吸着剤、湿度調節用吸着剤(調湿剤)として非常に優れている。さらに、この含塩有機物の炭化物は、蒸気吸放出材料に用いられる添加剤との親和性がよいため、種々の形状に成形可能である。さらに、炭自体が有する有機溶媒などの有害物質吸収能力も期待できる。また、含まれている塩分により、木炭以上の抗菌・抗蟻作用がある。そのため、この炭化物の微粉末に添加物を加えて木材に塗布すれば防菌・防黴・防蟻効果も得られる。また、衣類や不織布などの繊維に混ぜ込むあるいは含浸させることにより、脱臭抗菌衣類あるいは床下、押入れの下敷きマットに活用できる。そのため、日用雑貨品、住宅建材、室内インテリアなどに利用できる。本発明の蒸気吸放出材料は、不要となった場合には、熱源として利用できるため、有機性廃棄物の再利用(マテリアルリサイクル)と熱源としての再利用(サーマルリサイクル)が可能であり、2回資源を利用できるという効果を奏する。石膏ボードも発電所などからの再利用品(マテリアルリサイクル)であるが、熱利用ができないため、処理ができず、増え続けるという問題がある。これに対して、含塩有機物の炭化物を含有する蒸気吸放出材料は、熱源として再利用(サーマルリサイクル)が可能であり、かつカーボンニュートラルであるため、二酸化炭素排出抑制という効果も奏する点で、優れている。   In the case of water vapor, the vapor absorbing / releasing material containing the salt-containing organic carbide of the present invention has an absorbing / releasing capability equivalent to or higher than its own weight. This corresponds to an absorption / release capacity three times that of commercially available silica gel. Therefore, it is very excellent as an adsorbent for an adsorption heat pump and an adsorbent for humidity adjustment (humidity adjusting agent) of an air conditioner. Furthermore, since the carbide of the salt-containing organic substance has good affinity with the additive used for the vapor absorption / release material, it can be molded into various shapes. In addition, the ability of charcoal itself to absorb harmful substances such as organic solvents can be expected. In addition, due to the salt content, it has antibacterial and anti-ant activity more than charcoal. Therefore, if an additive is added to the fine powder of carbide and applied to wood, antibacterial / antifungal / anticidal effects can be obtained. Also, by mixing or impregnating fibers such as clothing and non-woven fabrics, it can be used for deodorized antibacterial clothing or mats under floors and closets. Therefore, it can be used for daily goods, house building materials, indoor interiors, etc. Since the vapor absorption / release material of the present invention can be used as a heat source when it is no longer needed, the organic waste can be reused (material recycling) and reused as a heat source (thermal recycling). There is an effect that the recycled resources can be used. Gypsum board is also a reusable product (material recycling) from power plants, etc., but since it cannot use heat, it cannot be processed and continues to increase. On the other hand, the vapor absorption / release material containing the salt-containing organic carbide can be reused as a heat source (thermal recycling) and is carbon neutral, so that it also has the effect of suppressing carbon dioxide emissions. Are better.

A:含塩有機物
(含塩有機物)
本明細書において、含塩有機物とは、塩分を含有する有機性物質をいう。例えば、塩分(食塩)を含有する食品(例えば、味噌、醤油、塩辛、塩昆布など)、塩分を含有する有機性廃棄物(以下、「含塩有機性廃棄物」あるいは、単に「含塩廃棄物」ということがある)などが挙げられるが、これらに制限されない。資源の有効利用という観点からは、含塩有機性廃棄物が好ましく用いられる。含塩有機物は、有価物として購入する、無償で入手する、お金を貰って入手する(逆有償購入)などの方法で入手できる。あるいは、これらの方法を組み合わせて入手してもよい。
A: Salt-containing organic substance (Salt-containing organic substance)
In the present specification, the salt-containing organic substance refers to an organic substance containing a salt content. For example, food containing salt (salt) (for example, miso, soy sauce, salted salt, salt kelp, etc.), organic waste containing salt (hereinafter “salt-containing organic waste” or simply “salt-containing waste” It may be referred to as a “product”), but is not limited thereto. From the viewpoint of effective use of resources, salt-containing organic waste is preferably used. The salt-containing organic substance can be obtained by a method such as purchasing as a valuable resource, obtaining it free of charge, obtaining it with money (reverse purchase). Or you may obtain combining these methods.

含塩有機性廃棄物としては、例えば、都市ごみ、下水汚泥、集落排水汚泥、し尿汚泥、家畜糞尿、食品廃棄物がある。家畜糞尿としては、例えば、牛糞、豚糞、鶏糞などがある。食品廃棄物としては、例えば、醤油の製造過程で生じる醤油の絞り粕(醤油粕)、塩昆布廃棄物、佃煮廃棄物、味噌廃棄物、スープ、出し汁、漬物、調理屑などが例示される。これらの含塩廃棄物は、単独で用いてもよく、2種以上組み合わせて用いてもよい。含塩廃棄物は、炭化物としたときの塩分濃度を考慮して、組み合わせて用いてもよい。例えば、塩分濃度が比較的低い都市ごみ、下水汚泥、集落排水汚泥、し尿汚泥、家畜糞尿、調理屑などを用いる場合は、塩分濃度が比較的高い醤油粕、塩昆布廃棄物、佃煮廃棄物、あるいは味噌廃棄物、または食塩などを混合して用いてもよい。含塩廃棄物を混合物として用いる場合、そのまま炭化処理に用いてもよい。炭化物中に食塩を均一に分散させるために、例えば、ミキサーなどで混合し、均一にしてから焼成することが、より好ましい。   Examples of the salt-containing organic waste include municipal waste, sewage sludge, settlement drainage sludge, human waste sludge, livestock manure, and food waste. Examples of livestock manure include cow dung, pig manure, and chicken manure. Examples of food waste include soy sauce squeezed rice cake (soy sauce cake), salt kelp waste, boiled waste waste, miso waste, soup, soup stock, pickles, cooking scraps, and the like. These salt-containing wastes may be used alone or in combination of two or more. The salt-containing waste may be used in combination in consideration of the salinity when the carbide is used. For example, when using municipal waste, sewage sludge, village drainage sludge, human waste sludge, livestock manure, cooking waste, etc. with relatively low salinity, soy sauce cake, salt kelp waste, boiled waste, Or you may mix and use miso waste or salt. When salt-containing waste is used as a mixture, it may be used as it is for carbonization. In order to uniformly disperse the sodium chloride in the carbide, it is more preferable to mix with a mixer or the like and make the mixture uniform before firing.

B.含塩有機物の炭化物およびその製法
含塩有機物(例えば、含塩廃棄物)の炭化物は、後述する含塩有機物の一次処理で得られた炭化物、および一次処理で得られた炭化物をさらに処理(二次処理)して得られる活性炭化物、並びに含塩有機物を薬品賦活法で処理して得られる活性炭化物など、種々の方法で得られる炭化物が含まれる。含塩炭化物は、粉末であることが好ましい。あるいは、粉末の含塩炭化物を種々の形状に成型したものを用いてもよい。含塩炭化物を粉末にする方法は、当業者に周知の炭化物の粉末化方法が適用される。
B. Carbide of salt-containing organic substance and its production method Carbide of salt-containing organic substance (for example, salt-containing waste) is obtained by further treating carbide obtained by the primary treatment of salt-containing organic substance described later and the carbide obtained by the primary treatment (2) Carbides obtained by various methods such as activated carbides obtained by subsequent treatment) and activated carbides obtained by treating salt-containing organic substances by a chemical activation method are included. The salt-containing carbide is preferably a powder. Alternatively, powdered salt-containing carbides molded into various shapes may be used. As a method for powdering salt-containing carbide, a carbide powdering method known to those skilled in the art is applied.

(一次処理)
含塩有機物の炭化(一次処理)は、含塩有機物を好ましくは100〜1000℃、より好ましくは650〜850℃の温度で焼成することにより、行われる。100℃未満では、この含塩炭化物を含む発熱性混合物の発熱特性が悪くなる傾向にあり、1000℃を超えると炭化物中の食塩が揮発するおそれがある。得られた含塩炭化物は粉末としてもよい。
(Primary processing)
Carbonization (primary treatment) of the salt-containing organic substance is performed by baking the salt-containing organic substance at a temperature of preferably 100 to 1000 ° C, more preferably 650 to 850 ° C. If it is less than 100 degreeC, the exothermic characteristic of the exothermic mixture containing this salt-containing carbide tends to deteriorate, and if it exceeds 1000 degreeC, salt in the carbide may volatilize. The obtained salt-containing carbide may be a powder.

一次処理で得られた含塩炭化物中には、通常、10〜50質量%の食塩が均一に分散された状態で含まれる。この含塩炭化物の比表面積は、用いる含塩有機物によっても異なるが、一般的には、約1m/g〜60m/gの範囲にある場合が多い。 The salt-containing carbide obtained by the primary treatment usually contains 10 to 50% by mass of sodium chloride in a uniformly dispersed state. The specific surface area of the chlorine-carbides varies depending chlorine organic substances used, in general, is often in the range of from about 1m 2 / g~60m 2 / g.

(二次処理)
二次処理は、上記一次処理で得られた含塩炭化物にさらに活性化処理を行う処理である。活性化処理には、大きくガス賦活法と薬品賦活法とがある。どちらの方法を用いてもよい。ガス賦活法は、炭化された原料に、水蒸気、二酸化炭素、酸素(空気)、これらのガスと燃焼ガスとの混合ガス、燃焼ガスなどを高温で接触反応させる方法である。本発明においては、一次処理して得られた含塩炭化物に、例えば、水蒸気、空気(酸素)、二酸化炭素などを添加しながら600〜1000℃、好ましくは800〜900℃の温度で処理する方法(ガス賦活法)を用いて、行われる。あるいは、含塩有機物を、例えば、一次処理を300〜500℃の温度で行い、得られた炭化物を二次処理してもよい。二次処理の温度が600℃未満では炭化物の活性化が不十分となる場合があり、1000℃を超えると活性炭化物中の食塩が揮発するおそれがある。
(Secondary processing)
The secondary treatment is a treatment for further activating the salt-containing carbide obtained by the primary treatment. The activation treatment includes a gas activation method and a chemical activation method. Either method may be used. The gas activation method is a method in which water vapor, carbon dioxide, oxygen (air), a mixed gas of these gases and a combustion gas, a combustion gas, or the like is brought into contact with a carbonized raw material at a high temperature. In the present invention, the salt-containing carbide obtained by the primary treatment is treated at a temperature of 600 to 1000 ° C., preferably 800 to 900 ° C. while adding water vapor, air (oxygen), carbon dioxide, etc., for example. (Gas activation method) is used. Alternatively, for example, the salt-containing organic substance may be subjected to a primary treatment at a temperature of 300 to 500 ° C., and the obtained carbide may be subjected to a secondary treatment. If the temperature of the secondary treatment is less than 600 ° C, the activation of the carbide may be insufficient, and if it exceeds 1000 ° C, the salt in the activated carbide may volatilize.

二次処理で得られる活性炭化物中には、通常、10〜50質量%の食塩が均一に分散された状態で含まれる。活性炭化物の比表面積は、用いる含塩有機物によっても異なるが、一般的には、約100m/g〜300m/gの範囲にある場合が多く、これは一次処理のみの炭化物の5〜100倍の比表面積である。また、二次処理を行うことで、炭化物の均質化、表面洗浄効果もあることから、活性炭化物が、好ましく用いられる場合がある。 The activated carbide obtained by the secondary treatment usually contains 10 to 50% by mass of sodium chloride in a uniformly dispersed state. The specific surface area of activity carbide used varies depending chlorine organic substances, in general, often in the range of from about 100m 2 / g~300m 2 / g, which is a carbide of only primary treatment 5-100 Double specific surface area. Further, by performing the secondary treatment, there are also effects of homogenizing the carbide and cleaning the surface, so that the activated carbide may be preferably used.

(薬品賦活法)
薬品賦活法は、原料に賦活薬品を均等に含浸させて、不活性ガス雰囲気中で加熱(焼成)し、薬品による脱水および酸化反応により、活性炭化する方法である。賦活薬品としては、塩化亜鉛、リン酸、塩化カルシウム、硫化カルシウム、水酸化カリウムなどの脱水性、酸化性あるいは侵食性を有する化合物が挙げられる。最も好ましくは、塩化亜鉛である。薬品賦活法によって含塩有機物の活性炭化物を得る方法は、例えば、100〜200℃で数時間乾燥した含塩有機物に、上記記載の賦活薬品(例えば、塩化亜鉛)の飽和水溶液を添加、混合し、賦活薬品を含塩有機物に含浸させ、さらに不活性ガス雰囲気中で100〜200℃で数時間乾燥(焼成)させる方法である。薬剤賦活法における賦活薬品と乾燥含塩有機物との質量比(賦活薬品含浸質量/乾燥含塩有機物質量)は、使用する賦活薬品および含塩有機物により異なるが、一般的には、0.5〜5であり、好ましくは、1〜4である。なお、質量比は以下の式で表される。
(Chemical activation method)
The chemical activation method is a method in which a raw material is uniformly impregnated with an activation chemical, heated (baked) in an inert gas atmosphere, and activated carbonized by dehydration and oxidation reaction with the chemical. Examples of the activator include compounds having dehydrating properties, oxidizing properties, and erosive properties such as zinc chloride, phosphoric acid, calcium chloride, calcium sulfide, and potassium hydroxide. Most preferred is zinc chloride. A method for obtaining an activated carbide of a salt-containing organic substance by a chemical activation method is, for example, adding and mixing a saturated aqueous solution of the activation chemical (for example, zinc chloride) described above to a salt-containing organic substance dried at 100 to 200 ° C. for several hours. In this method, the salt-containing organic substance is impregnated with an activation chemical, and further dried (baked) at 100 to 200 ° C. for several hours in an inert gas atmosphere. In the drug activation method, the mass ratio between the active chemical and the dry salt-containing organic substance (the active chemical impregnation mass / the dry salt-containing organic substance amount) varies depending on the active chemical and the salt-containing organic substance to be used. 5, preferably 1-4. In addition, mass ratio is represented with the following formula | equation.

質量比=(Y−X)/X
X:賦活薬品を含浸する前の含塩有機物の乾燥質量
Y:賦活薬品を含浸した後の含塩有機物の乾燥質量
Mass ratio = (Y−X) / X
X: Dry mass of the salt-containing organic substance before impregnating the activation chemical Y: Dry mass of the salt-containing organic substance after impregnating the activation chemical

賦活薬品として塩化亜鉛を用いる場合、含塩有機物を110℃で乾燥し、塩化亜鉛を含浸させた後、約110℃で乾燥させることが好ましい。塩化亜鉛の質量比は約3であることが好ましい。   When using zinc chloride as an activating chemical, it is preferable to dry the salt-containing organic substance at 110 ° C., impregnate with zinc chloride, and then dry at about 110 ° C. The mass ratio of zinc chloride is preferably about 3.

この薬品賦活化法で処理して得られた含塩炭化物は、賦活薬品による脱水および酸化反応により、微細な多孔質を有しており、比表面積が大きくなるため、本発明における含塩炭化物として、好適に用いられる。薬品賦活化した炭化物を、さらに、300〜1000℃の温度で、活性化処理(二次処理)してもよい。この処理により、さらに活性炭としての機能が向上する。二次処理の温度が300℃未満では活性炭化物の活性化が不十分となるおそれがあり、1000℃を超えると、活性炭化物中の食塩が揮発する恐れがある。   The salt-containing carbide obtained by the treatment with this chemical activation method has fine porosity due to dehydration and oxidation reaction with the activation chemical, and has a large specific surface area. Are preferably used. The activated carbon (chemical treatment) may be further activated (secondary treatment) at a temperature of 300 to 1000 ° C. This treatment further improves the function as activated carbon. If the temperature of the secondary treatment is less than 300 ° C, activation of the activated carbide may be insufficient, and if it exceeds 1000 ° C, salt in the activated carbide may volatilize.

炭化処理(一次処理および二次処理)あるいは薬品賦活処理に用いる方法に特に制限はなく、バッチ処理でもよく、連続処理でもよい。炭化処理装置としては、バッチ炉、キルン型処理装置、流動層型処理装置、スクリュー型処理装置など、その装置は問わない。   There is no restriction | limiting in particular in the method used for a carbonization process (a primary process and a secondary process) or a chemical activation process, A batch process may be sufficient and a continuous process may be sufficient. The carbonization treatment apparatus may be any apparatus such as a batch furnace, a kiln type treatment apparatus, a fluidized bed type treatment apparatus, or a screw type treatment apparatus.

C.蒸気吸放出材料
得られた含塩炭化物は、そのまま、本発明の蒸気吸放出材料として用いられる。例えば、通気性を有する容器、袋などに収容して、蒸気吸放出材料として、さらに、調湿用品、脱臭用品、有害物質除去用品などに利用される。そして、炭化物を、添加剤を用いて所望の形状に成形し、必要に応じてさらに上記二次処理と同様の処理(例えば、活性化処理)を行って、蒸気吸放出材料として、調湿用品、脱臭用品、有害物質除去用品などに利用してもよい。なお、「含塩有機物の炭化物を含有する」とは、「含塩有機物の炭化物からなる」場合を包含する。
C. Vapor absorption / release material The obtained salt-containing carbide is directly used as the vapor absorption / release material of the present invention. For example, it is housed in a breathable container or bag, and is used as a vapor absorbing / releasing material, as well as a humidity control product, a deodorizing product, a hazardous substance removing product, and the like. Then, the carbide is formed into a desired shape by using an additive, and if necessary, a treatment similar to the above-described secondary treatment (for example, activation treatment) is further performed as a vapor absorption / release material. It may be used as a deodorizing article, a hazardous substance removing article, and the like. The phrase “containing a carbide of a salt-containing organic substance” includes a case of “consisting of a carbide of a salt-containing organic substance”.

(含塩炭化物の成形)
含塩炭化物は、また、種々の添加物を組み合わせて、用途に応じて、所望の形状に成形することができる。本発明に用いる添加剤として、無機系添加剤、有機系添加剤などが挙げられる。添加剤およびその配合割合は、主に用途に応じた形状への成形あるいは成形物の強度付与を考慮して、決定すればよい。本発明で用いる含塩炭化物は、添加剤との親和性がよいため、成形性に優れている。
(Salt-containing carbide molding)
The salt-containing carbide can also be formed into a desired shape according to the application by combining various additives. Examples of the additive used in the present invention include inorganic additives and organic additives. The additive and the blending ratio thereof may be determined mainly in consideration of molding into a shape according to the application or imparting strength of the molded product. The salt-containing carbide used in the present invention is excellent in moldability because of its good affinity with additives.

無機系添加剤としては、石膏あるいはセメントのいずれかを主成分とする水硬化性材料からなる建材;セラミック、発泡セラミックおよびタイルからなる群から選択される少なくとも1つを主成分とする焼成材料建材;ロックウール、スラグウール、グラスウール、およびパルプからなる群から選択される少なくとも1つを主成分とする繊維材料建材;珪藻土、パーライト、および土壁などの建材からなる群から選択される材料;などが挙げられる。   As an inorganic additive, a building material made of a water-curable material mainly containing either gypsum or cement; a fired material building material mainly containing at least one selected from the group consisting of ceramic, foamed ceramic and tile A fiber material building material mainly composed of at least one selected from the group consisting of rock wool, slag wool, glass wool, and pulp; a material selected from the group consisting of building materials such as diatomaceous earth, perlite, and earth wall; etc. Is mentioned.

有機系添加剤としては、ピッチ、コールタール、クレオソートなどの直鎖あるいは環状炭化物のいずれかを含む石油系材料;植物に由来するバイオマスタール、クレオソートなどの直鎖あるいは環状成分;バイオマスを炭化した炭化物、または炭化物を活性化処理して得られる活性炭化物;でんぷん糊、カルボキシメチルセルロース(CMC)、膠などの水溶性高分子材料;あるいは、これらを組み合わせて得られる材料;などが挙げられる。   Organic additives include petroleum-based materials containing either linear or cyclic carbides such as pitch, coal tar, and creosote; linear or cyclic components such as biomass tar and creosote derived from plants; carbonizing biomass Or activated carbon obtained by activating the carbide; water-soluble polymer materials such as starch paste, carboxymethyl cellulose (CMC) and glue; or materials obtained by combining these materials.

その他の添加剤として、水道水、純水、超純水、工業用水、蒸留水、イオン交換水が挙げられる。   Other additives include tap water, pure water, ultrapure water, industrial water, distilled water, and ion exchange water.

添加剤は、上記のように用途、形状などによって、用いる種類、量などが決定されるが、一般的には、含塩炭化物1質量部に対して、0.05〜10質量部の割合で、好ましくは0.1〜5質量部の割合で添加される。   As described above, the type and amount of the additive to be used are determined depending on the application, shape and the like as described above. Generally, the additive is in a ratio of 0.05 to 10 parts by mass with respect to 1 part by mass of the salt-containing carbide. Preferably, it is added at a ratio of 0.1 to 5 parts by mass.

さらに、染料、顔料などを添加しても良く、表面に塗布してもよい。   Furthermore, dyes, pigments, and the like may be added or applied to the surface.

上記含塩炭化物、添加剤などを混合して、所望の形状に成形する。成形方法に特に制限はなく、用いる添加剤の種類や量に応じて、例えば、塗布、熱(加熱あるいは冷却)、加圧、化学反応、磁力、放射線照射、紫外線照射、爆砕、超臨界状態あるいは亜臨界状態などにおける水熱反応などの方法を利用することができる。   The above salt-containing carbides, additives and the like are mixed and formed into a desired shape. There is no particular limitation on the molding method, and depending on the type and amount of additive used, for example, coating, heat (heating or cooling), pressurization, chemical reaction, magnetic force, radiation irradiation, ultraviolet irradiation, explosion, supercritical state or A method such as a hydrothermal reaction in a subcritical state can be used.

蒸気吸放出材料の形状に特に制限はなく、用途、使用場所などに応じた形状が選択される。例えば、球状、円柱、円板、円錐、立方体、三角柱、多角柱、多面体、星型、板状、人型、動物型、植物型などが例示されるが、これらに限定されない。これらの成形体の破砕物もまた、利用できる。   There is no restriction | limiting in particular in the shape of a vapor | steam absorption / release material, The shape according to a use, a use place, etc. is selected. Examples include, but are not limited to, a sphere, a cylinder, a disc, a cone, a cube, a triangular prism, a polygonal column, a polyhedron, a star shape, a plate shape, a human shape, an animal shape, and a plant shape. These crushed products can also be used.

さらに、蒸気吸放出材料あるいは必要に応じて成形された蒸気吸放出材料と他の部材、例えば建築用材料と積層してもよい。   Further, the vapor absorbing / releasing material or the vapor absorbing / releasing material formed as necessary may be laminated with another member such as a building material.

所望の形状に成形された含塩炭化物を含有する成形体は、各種蒸気との接触が妨げられることから、蒸気吸放出能力が低下する場合がある。この場合、さらに、活性化処理を行うことが好ましい。特に、有機系の添加剤を用いた場合、含塩炭化物および添加剤がともに活性化される。   Since the molded body containing the salt-containing carbide formed into a desired shape is prevented from coming into contact with various vapors, the vapor absorption / release capability may be reduced. In this case, it is preferable to perform an activation process. In particular, when an organic additive is used, both the salt-containing carbide and the additive are activated.

さらに、蒸気吸放出材料は、液状でもあり得る。例えば、含塩炭化物と、水および有機溶媒以外の添加剤とを、水あるいは有機溶媒中に分散させ、これを所望の形状の所望の部位に塗布、あるいは含浸させることもできる。例えば、木材上に塗布する、あるいは繊維材料に塗布あるいは含浸させ、乾燥することにより、蒸気吸放出材料としてのみならず、防菌・防黴・防蟻剤として、さらに消臭剤としても使用できる。特に、本発明の蒸気吸放出材料は塩分を高濃度に含んでいるため、防菌・防黴・防蟻剤としても優れている。   Further, the vapor absorbing / releasing material may be liquid. For example, a salt-containing carbide and an additive other than water and an organic solvent can be dispersed in water or an organic solvent, and this can be applied or impregnated in a desired portion of a desired shape. For example, it can be used not only as a vapor absorption / release material, but also as an antibacterial / antifungal / anticidal agent and also as a deodorant by applying it on wood, or applying or impregnating it to a fiber material and drying it. . In particular, since the vapor absorbing / releasing material of the present invention contains a high concentration of salt, it is also excellent as an antibacterial / antifungal / anticidal agent.

以下に含塩有機物として醤油粕を用いる実施例について本発明を説明するが、本発明はこれらの実施例に制限されるものではない。   Hereinafter, the present invention will be described with respect to examples using soy sauce cake as a salt-containing organic substance, but the present invention is not limited to these examples.

(実施例1:醤油粕炭化物(炭化物A)の調製)
水分を含有する生醤油粕を無酸素条件下、450℃の連続式炭化炉で炭化し、炭化物Aを得た。生醤油粕の処理量は19kg/hであった。炭化物Aの食塩含量は21.7質量%であった。なお、ナトリウム濃度(Na濃度)は、JIS K0102.48.1に基づくフレーム光度法で測定した。塩素濃度(Cl濃度)は、ポンプ燃焼法による塩素濃度とJIS K0102.35.3に基づくイオンクロマトグラフ法による燃焼性塩素濃度の加算値である。醤油粕炭化物中の食塩濃度は、Na濃度とCl濃度を加算した値である。
Example 1 Preparation of Soy Sauce Carbide (Carbide A)
Raw soy sauce cake containing water was carbonized in a continuous carbonization furnace at 450 ° C. under oxygen-free conditions to obtain a carbide A. The amount of raw soy sauce cake processed was 19 kg / h. The salt content of the carbide A was 21.7% by mass. The sodium concentration (Na concentration) was measured by a flame photometric method based on JIS K0102.48.1. The chlorine concentration (Cl concentration) is an added value of the chlorine concentration by the pump combustion method and the combustible chlorine concentration by the ion chromatography method based on JIS K0102.35.3. The salt concentration in the soy sauce cake carbide is a value obtained by adding the Na concentration and the Cl concentration.

得られた炭化物Aを約0.1g秤量し、120℃で10時間、真空下で脱気を行った。その後、自動蒸気吸着量測定装置(日本ベル製 BELSORP 28)を用いて、25℃における水蒸気の吸着量を相対平衡圧0.95までの範囲(25℃における水の飽和蒸気圧が23.76mmHgであるので、平衡圧が22.57mmHg以下の範囲)で測定した。相対平衡圧が0.95を超えた時点から、水蒸気の脱着量の測定を開始した。吸着過程における相対平衡圧が0.90のときの水蒸気の吸着量(質量:W90)と脱着過程における相対平衡圧が0.55のときの水蒸気の吸着量(質量:W55)との差(W90−W55)を炭化物Aの質量で除した値の百分率を調湿能(%)として評価した。表1に炭化物Aの調湿能を、図1(a)に炭化物Aの吸着等温線および脱着等温線を示す。   About 0.1 g of the obtained carbide A was weighed and degassed under vacuum at 120 ° C. for 10 hours. Then, using an automatic vapor adsorption measuring device (BELSORP 28, manufactured by Nippon Bell), the adsorption amount of water vapor at 25 ° C. is within a range up to a relative equilibrium pressure of 0.95 (the saturated vapor pressure of water at 25 ° C. is 23.76 mmHg). Therefore, the equilibrium pressure was measured in a range of 22.57 mmHg or less. When the relative equilibrium pressure exceeded 0.95, the measurement of the desorption amount of water vapor was started. The difference (W90) between the adsorption amount of water vapor (mass: W90) when the relative equilibrium pressure in the adsorption process is 0.90 and the adsorption amount (mass: W55) of water vapor when the relative equilibrium pressure in the desorption process is 0.55. The percentage of the value obtained by dividing -W55) by the mass of the carbide A was evaluated as the humidity control ability (%). Table 1 shows the humidity control ability of the carbide A, and FIG. 1A shows the adsorption isotherm and desorption isotherm of the carbide A.

(実施例2:醤油粕炭化物(炭化物B)の調製)
炭化温度を600℃としたこと以外は調整例1と同様にして、炭化物Bを得た。炭化物Bの食塩含量は28.2質量%であった。
(Example 2: Preparation of soy sauce cake carbide (carbide B))
Carbide B was obtained in the same manner as in Adjustment Example 1 except that the carbonization temperature was 600 ° C. The salt content of the carbide B was 28.2% by mass.

炭化物Aの代わりに炭化物Bを用いたこと以外は実施例1と同様にして、炭化物Bの調湿能を求めた。表1に炭化物Bの調湿能を、図1(b)に吸着等温線および脱着等温線を示す。   The humidity control ability of the carbide B was determined in the same manner as in Example 1 except that the carbide B was used instead of the carbide A. Table 1 shows the humidity control ability of the carbide B, and FIG. 1B shows the adsorption isotherm and desorption isotherm.

(実施例3:活性化醤油粕炭化物(活性化炭化物C)の調製)
実施例1で調製した炭化物Aを、再度炭化炉に投入し、800℃の温度で、水蒸気を導入して、1時間反応させた。これにより、活性化炭化物Cを得た。活性化炭化物Cの食塩含量は29.4質量%であった。
(Example 3: Preparation of activated soy sauce lees carbide (activated carbide C))
Carbide A prepared in Example 1 was charged again into the carbonization furnace, and steam was introduced at a temperature of 800 ° C. to react for 1 hour. Thereby, activated carbide C was obtained. The salt content of the activated carbide C was 29.4% by mass.

炭化物Aの代わりに活性化炭化物Cを用いたこと以外は実施例1と同様にして、活性化炭化物Cの調湿能を求めた。表1に活性化炭化物Cの調湿能を、図1(c)に吸着等温線および脱着等温線を示す。   The humidity control ability of the activated carbide C was determined in the same manner as in Example 1 except that the activated carbide C was used instead of the carbide A. Table 1 shows the humidity control ability of the activated carbide C, and FIG. 1 (c) shows the adsorption isotherm and desorption isotherm.

(実施例4:醤油粕炭化物の成形体(成形体D)の調製)
実施例1で調製した炭化物A1500gに、添加剤としてピッチを450g、クレオソートを75g、水を225g添加、混合した。不二パウダル製ディスクペレッターF−5を用いて、150〜200kg/cmの加圧下で、円柱状に成形して、成形体Dを得た。成形体Dの食塩含量は16.0質量%であった。
(Example 4: Preparation of molded body of soy sauce koji carbide (molded body D))
To 1500 g of the carbide A prepared in Example 1, 450 g of pitch, 75 g of creosote and 225 g of water were added and mixed as additives. Using a Fuji Paudal disk pelleter F-5, it was molded into a cylindrical shape under a pressure of 150 to 200 kg / cm 2 to obtain a molded product D. The salt content of the molded body D was 16.0% by mass.

炭化物Aの代わりに成形体Dを用いたこと以外は実施例1と同様にして、成形体Dの調湿能を求めた。表1に成形体Dの調湿能を、図1(d)に吸着等温線および脱着等温線を示す。   The humidity control ability of the molded body D was determined in the same manner as in Example 1 except that the molded body D was used instead of the carbide A. Table 1 shows the humidity control ability of the molded body D, and FIG. 1 (d) shows the adsorption isotherm and desorption isotherm.

(実施例5:活性化成形体(成形体E)の調製)
実施例4で調製した醤油粕炭化物の成形体Dを、再度炭化炉に投入し、800℃の温度で、水蒸気を導入して、1時間反応させた。これにより、活性化成形体Eを得た。活性化成形体Eの食塩含量は35.2質量%であった。
(Example 5: Preparation of activated molded body (molded body E))
The soy sauce cake carbide molded body D prepared in Example 4 was again put into a carbonization furnace, and steam was introduced at a temperature of 800 ° C. to react for 1 hour. Thereby, the activated molded body E was obtained. The salt content of the activated molded body E was 35.2% by mass.

炭化物Aの代わりに活性化成形体Eを用いたこと以外は実施例1と同様にして、活性化成形体Eの調湿能を求めた。表1に活性化成形体Eの調湿能を、図1(e)に吸着等温線および脱着等温線を示す。   The humidity control ability of the activated molded body E was determined in the same manner as in Example 1 except that the activated molded body E was used instead of the carbide A. Table 1 shows the humidity control ability of the activated molded body E, and FIG. 1 (e) shows the adsorption isotherm and desorption isotherm.

(比較例1〜3)
炭化物Aの代わりに、市販の3種類のシリカゲル(比較例1〜3)を用いたこと以外は実施例1と同様にして、調湿能を求めた。表1に各シリカゲルの調湿能を、図2(a)〜2(c)に各シリカゲルの吸着等温線および脱着等温線を示す。
(Comparative Examples 1-3)
Humidity control ability was determined in the same manner as in Example 1 except that three types of commercially available silica gel (Comparative Examples 1 to 3) were used instead of the carbide A. Table 1 shows the humidity control ability of each silica gel, and FIGS. 2 (a) to 2 (c) show the adsorption isotherm and desorption isotherm of each silica gel.

(比較例4〜5)
炭化物Aの代わりに、市販の備長炭(比較例4)、市販の竹炭(比較例5)を用いたこと以外は実施例1と同様にして、調湿能を求めた。表1に備長炭および竹炭の調湿能を、図2(d)〜2(e)にそれぞれ備長炭および竹炭の吸着等温線および脱着等温線を示す。
(Comparative Examples 4-5)
Humidity control ability was calculated | required like Example 1 except having used commercial Bincho charcoal (comparative example 4) and commercial bamboo charcoal (comparative example 5) instead of carbide A. Table 1 shows the humidity control capacity of Bincho charcoal and bamboo charcoal, and FIGS. 2 (d) to 2 (e) show the adsorption isotherm and desorption isotherm of Bincho charcoal and bamboo charcoal, respectively.

Figure 0004571883
Figure 0004571883

図1(a)からわかるように、炭化物Aは、湿度が上昇するにつれて吸着量が増加し、相対平衡圧(P/P〔-〕)0.9で1759ml/g炭化物A(1.41g/g炭化物A)の水蒸気を吸着した。そして、相対平衡圧0.55では、88ml/g炭化物A(0.7g/g炭化物A)の水蒸気を吸着していた。従って、W90−W55は、1.34g/g炭化物Aであり、調湿能は、134%であった(表1参照)。図1(b)に示す炭化物Bもまた、図1(a)と同様の挙動を示した。炭化物Bの調湿能は133%であった。このことから、塩分を含有する醤油粕炭化物は、自重の1.3倍以上の水蒸気を吸収−放出できることがわかった。 As can be seen from FIG. 1 (a), the adsorption amount of the carbide A increases as the humidity increases, and 1759 ml / g of the carbide A (1.41 g) at a relative equilibrium pressure (P / P 0 [−]) of 0.9. / G of carbide A) was adsorbed. At a relative equilibrium pressure of 0.55, 88 ml / g of carbide A (0.7 g / g of carbide A) was adsorbed. Therefore, W90-W55 was 1.34 g / g carbide A, and the humidity control ability was 134% (see Table 1). Carbide B shown in FIG. 1 (b) also showed the same behavior as FIG. 1 (a). The humidity control ability of the carbide B was 133%. From this, it was found that the soy sauce charcoal containing salt can absorb and release water vapor 1.3 times or more of its own weight.

これに対して、表1に示すように、市販のシリカゲルの調湿能は6〜46%であり、通常の炭化物(備長炭、竹炭)の調湿能は1〜3%と低かった。この結果は、本願発明の含塩炭化物からなる蒸気吸放出材料は、従来にない、優れた調湿能を有する非常優れた蒸気吸放出材料であることを示している。   On the other hand, as shown in Table 1, the humidity control ability of commercially available silica gel was 6 to 46%, and the humidity control ability of ordinary carbides (Bincho charcoal and bamboo charcoal) was as low as 1 to 3%. This result shows that the vapor absorbing / releasing material made of the salt-containing carbide of the present invention is an unprecedented vapor absorbing / releasing material having an excellent humidity control ability.

また、図1(c)に示す活性化炭化物Cは、湿度が上昇するにつれて吸着量が増加し、相対平衡圧0.9で1436ml/g炭化物C(1.15g/g炭化物C)の水蒸気を吸着した。調湿能は105%と、炭化物Aおよび炭化物Bには劣るものの、自重と同程度またはそれ以上の水蒸気を吸着できることがわかった。従って、従来の炭化物よりもはるかに優れた調湿能を有している。   In addition, the activated carbide C shown in FIG. 1 (c) has an increased amount of adsorption as the humidity increases, and 1436 ml / g carbide C (1.15 g / g carbide C) of water vapor is obtained at a relative equilibrium pressure of 0.9. Adsorbed. The humidity control ability was 105%, which was inferior to the carbides A and B, but was able to adsorb water vapor equivalent to or higher than its own weight. Therefore, it has a much better humidity control ability than conventional carbides.

図1(d)に示す成形体Dは、炭化物Aに有機系添加剤を添加して成形したものであるが、調湿能は14%と低かった。これは、添加物により、活性炭が水蒸気と接触することを妨げられたことによると考えられる。   Molded body D shown in FIG. 1 (d) was formed by adding an organic additive to carbide A, but its humidity control ability was as low as 14%. This is considered due to the fact that the additive prevented the activated carbon from coming into contact with water vapor.

図1(e)に示す活性化成形体Eは、成形体Dをさらに活性化処理したものである。湿度が上昇するにつれて吸着量が増加し、相対平衡圧0.9で1591ml/g成形体E(1.27g/g成形体E)の水蒸気を吸着した。調湿能は115%と、炭化物Aおよび炭化物Bには劣るものの、自重以上の水蒸気を吸着できることがわかった。従って、従来の炭化物よりもはるかに優れた調湿能を有している。   An activated molded body E shown in FIG. 1 (e) is obtained by further activating the molded body D. As the humidity increased, the amount of adsorption increased and 1591 ml / g molded body E (1.27 g / g molded body E) of water vapor was adsorbed at a relative equilibrium pressure of 0.9. The humidity control ability was 115%, which was inferior to the carbide A and the carbide B, but was able to adsorb water vapor more than its own weight. Therefore, it has a much better humidity control ability than conventional carbides.

さらに、図1と図2とを比較すると、含塩炭化物を含有する蒸気吸放出材料の吸着等温線および脱着等温線は、相対平衡圧0.7を超えると大きく吸脱着能力が増大するという特徴を有している。このことは、湿度が高いときにのみ、吸脱着が起こることを意味している。従って、必要なときに吸湿するという、非常に効率のよい調湿ができることがわかる。   Further, when FIG. 1 is compared with FIG. 2, the adsorption isotherm and desorption isotherm of the vapor adsorption / desorption material containing salt-containing carbides are characterized in that the adsorption / desorption capability greatly increases when the relative equilibrium pressure exceeds 0.7. have. This means that adsorption / desorption occurs only when the humidity is high. Therefore, it can be seen that the humidity can be adjusted very efficiently by absorbing moisture when necessary.

本発明の含塩有機物の炭化物を含有する蒸気吸放出材料は、非常に高い蒸気吸放出能力を有しており、市販のシリカゲルの3倍の水蒸気の吸放出能力を有する。そのため、冷暖房装置の吸着ヒートポンプ用吸着剤、湿度調節用吸着剤(調湿剤)として、非常に優れている。さらに炭自体が持つ有機溶媒などの有害物質吸収能力が優れている。本発明の蒸気吸放出材料は、不要となった場合には、熱源として利用できるため、有機性廃棄物の再利用(マテリアルリサイクル)と熱源としての再利用(サーマルリサイクル)が可能であり、2回資源を利用できるので、環境に配慮した蒸気吸放出材料として、産業上有用である。   The vapor absorbing / releasing material containing the salt-containing organic carbide of the present invention has a very high vapor absorbing / releasing capability, and has a water vapor absorbing / releasing capability three times that of commercially available silica gel. Therefore, it is very excellent as an adsorbent for an adsorption heat pump and an adsorbent for humidity adjustment (humidity adjusting agent) of an air conditioner. In addition, charcoal itself has an excellent ability to absorb harmful substances such as organic solvents. Since the vapor absorption / release material of the present invention can be used as a heat source when it is no longer needed, the organic waste can be reused (material recycling) and reused as a heat source (thermal recycling). Since recycled resources can be used, it is industrially useful as a vapor absorption / release material that is environmentally friendly.

本発明の含塩有機物の炭化物を含有する蒸気吸放出材料の吸着等温線および脱着等温線を示す図である。It is a figure which shows the adsorption isotherm and desorption isotherm of the vapor | steam absorption / release material containing the carbide | carbonized_material of the salt containing organic substance of this invention. 比較例であるシリカゲル(図2(a)〜(c))、備長炭(図2(d))および竹炭(図2(e))の吸着等温線および脱着等温線を示す図である。It is a figure which shows the adsorption isotherm and desorption isotherm of the silica gel (FIG.2 (a)-(c)) which is a comparative example, Bincho charcoal (FIG.2 (d)), and bamboo charcoal (FIG.2 (e)).

Claims (8)

含塩有機物の炭化物を含有する、蒸気吸放出材料であって、該含塩有機物が、醤油粕および味噌廃棄物からなる群から選択される少なくとも一つの廃棄物であり、そして、該炭化物が、10〜50質量%の食塩を含有する、蒸気吸放出材料。 Containing carbide chlorine organic substances, a vapor absorbing and releasing material, the hydrated salt organic matter, at least one waste selected from soy sauce cake and miso waste or Ranaru group and is the carbide Vapor absorption / release material containing 10 to 50% by mass of sodium chloride. 前記含塩有機物の炭化物が、含塩有機物を300〜1000℃の温度で焼成して得られる炭化物である、請求項1に記載の蒸気吸放出材料。   The vapor absorption / release material according to claim 1, wherein the carbide of the salt-containing organic substance is a carbide obtained by firing the salt-containing organic substance at a temperature of 300 to 1000 ° C. 前記含塩有機物の炭化物が、含塩有機物を100〜1000℃の温度で焼成して得られる炭化物を、さらに300〜1000℃の温度で活性化処理して得られる炭化物である、請求項1または2に記載の蒸気吸放出材料。   The carbide of the salt-containing organic substance is a carbide obtained by further activating a carbide obtained by baking the salt-containing organic substance at a temperature of 100 to 1000 ° C at a temperature of 300 to 1000 ° C. 2. The vapor absorbing / releasing material according to 2. 前記含塩有機物が醤油粕である、請求項1から3のいずれかの項に記載の蒸気吸放出材料。   The vapor absorption / release material according to any one of claims 1 to 3, wherein the salt-containing organic substance is soy sauce cake. さらに、添加剤を含有する、請求項1から4のいずれかの項に記載の蒸気吸放出材料。   The vapor absorbing / releasing material according to any one of claims 1 to 4, further comprising an additive. 成形されている、請求項5に記載の蒸気吸放出材料。   The vapor absorbing / releasing material according to claim 5, wherein the vapor absorbing / releasing material is molded. 成形後、さらに300〜1000℃の温度で活性化処理して得られる、請求項6に記載の蒸気吸放出材料。   The vapor absorbing / releasing material according to claim 6, which is obtained by further activation treatment at a temperature of 300 to 1000 ° C after molding. 前記添加剤が、前記含塩有機物の炭化物1質量部に対して0.05〜10質量部の割合で添加される、請求項5から7のいずれかの項に記載の蒸気吸放出材料。   The vapor absorption / release material according to any one of claims 5 to 7, wherein the additive is added at a ratio of 0.05 to 10 parts by mass with respect to 1 part by mass of the carbide of the salt-containing organic substance.
JP2005126627A 2005-04-25 2005-04-25 Vapor absorption / release materials using salt-containing organic substances Expired - Fee Related JP4571883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005126627A JP4571883B2 (en) 2005-04-25 2005-04-25 Vapor absorption / release materials using salt-containing organic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005126627A JP4571883B2 (en) 2005-04-25 2005-04-25 Vapor absorption / release materials using salt-containing organic substances

Publications (2)

Publication Number Publication Date
JP2006297341A JP2006297341A (en) 2006-11-02
JP4571883B2 true JP4571883B2 (en) 2010-10-27

Family

ID=37466065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005126627A Expired - Fee Related JP4571883B2 (en) 2005-04-25 2005-04-25 Vapor absorption / release materials using salt-containing organic substances

Country Status (1)

Country Link
JP (1) JP4571883B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5695147B2 (en) * 2013-09-06 2015-04-01 東洋炭素株式会社 Porous carbon, humidity-adsorbing adsorbent, adsorption heat pump, and fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095512A (en) * 1998-09-21 2000-04-04 Hitachi Techno Eng Co Ltd Production of soybean activated carbon
JP2001106517A (en) * 1999-10-01 2001-04-17 Tetsuo Shimotaki Carbonized material of japanese apricot seed and dehumidifying agent, deodorizing agent and its producing method
JP2001252558A (en) * 2000-03-10 2001-09-18 Clay Baan Gijutsu Kenkyusho:Kk Carbonized material of agricultural and marine resources and manufacturing method therefor
JP2002274824A (en) * 2001-03-22 2002-09-25 Ito En Ltd Method for producing carbonized material and activated carbon using organic waste
JP2003002624A (en) * 2001-06-15 2003-01-08 Kaneko:Kk Active carbon, method and apparatus for manufacturing the same, and method for using the same
JP2003012314A (en) * 2001-06-29 2003-01-15 Azuma Noen:Kk Plum charcoal and product using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095512A (en) * 1998-09-21 2000-04-04 Hitachi Techno Eng Co Ltd Production of soybean activated carbon
JP2001106517A (en) * 1999-10-01 2001-04-17 Tetsuo Shimotaki Carbonized material of japanese apricot seed and dehumidifying agent, deodorizing agent and its producing method
JP2001252558A (en) * 2000-03-10 2001-09-18 Clay Baan Gijutsu Kenkyusho:Kk Carbonized material of agricultural and marine resources and manufacturing method therefor
JP2002274824A (en) * 2001-03-22 2002-09-25 Ito En Ltd Method for producing carbonized material and activated carbon using organic waste
JP2003002624A (en) * 2001-06-15 2003-01-08 Kaneko:Kk Active carbon, method and apparatus for manufacturing the same, and method for using the same
JP2003012314A (en) * 2001-06-29 2003-01-15 Azuma Noen:Kk Plum charcoal and product using the same

Also Published As

Publication number Publication date
JP2006297341A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
Lu et al. Characterisation of sewage sludge-derived adsorbents for H2S removal. Part 2: Surface and pore structural evolution in chemical activation
JP5066766B2 (en) Geopolymer high-strength cured product containing calcined kaolin as active filler and method for producing the same
KR101440943B1 (en) Incombustible panel for interior decoration and facing of architectures and method thereof
KR101570130B1 (en) Multiple odor absorbents by using mixing the natural zeolite and method of fabricating the same
CN104888736A (en) Modified sludge composite adsorbent
CN104923179A (en) Removable and reusable activated carbon adsorbent
CN104888530A (en) Active carbon air-conditioner filter core material and preparation method thereof
CN107876005A (en) A kind of adsorbent for removing chlorinated contaminants and its preparation method and application
CN104888703A (en) Phytoncide essential oil-added modified sludge activated carbon adsorbent
CN104888702A (en) Bacteriostatic deodorizing modified active carbon adsorbent
JP4571883B2 (en) Vapor absorption / release materials using salt-containing organic substances
CN104888729A (en) Active carbon adsorbent with meerschaum added
CN104923180A (en) Activated carbon adsorbent for adsorbing gasoline vapor
Xin et al. Synthesis and properties of zeolite/N-doped porous carbon for the efficient removal of chemical oxygen demand and ammonia-nitrogen from aqueous solution
CN104888727A (en) Anti-pollution active carbon adsorbent
RU2597400C1 (en) Method of producing composite sorbent based on mineral and vegetable carbon-containing material
CN104923181A (en) Active carbon absorbent containing rare earth element
CN104888726A (en) Active carbon adsorbent with excellent dedusting sterilizing performance
JP4713931B2 (en) Chemical exothermic composition
JP2005230729A (en) Adsorbent for formaldehyde and housing interior material containing the same
CN104888735A (en) Environmentally friendly and energy-saving activated carbon adsorbent with long service life
KR20050046213A (en) Manufacturing method and its material of painting medium having bio-ceramics
CN104888711A (en) Active carbon adsorbent with function of purifying and refreshing air
JP4469683B2 (en) Method for producing carbonized deodorizing material
Jadhav et al. Evaluation of Kinetic Models of Lead Uptake from Wastewater by Activated Carbon Derived from Coconut Leaves.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees