JP2006238047A - High frequency line-waveguide converter - Google Patents

High frequency line-waveguide converter Download PDF

Info

Publication number
JP2006238047A
JP2006238047A JP2005049626A JP2005049626A JP2006238047A JP 2006238047 A JP2006238047 A JP 2006238047A JP 2005049626 A JP2005049626 A JP 2005049626A JP 2005049626 A JP2005049626 A JP 2005049626A JP 2006238047 A JP2006238047 A JP 2006238047A
Authority
JP
Japan
Prior art keywords
conductor
line
waveguide
dielectric layer
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049626A
Other languages
Japanese (ja)
Inventor
Yoshinobu Sawa
義信 澤
Takashi Kimura
貴司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005049626A priority Critical patent/JP2006238047A/en
Publication of JP2006238047A publication Critical patent/JP2006238047A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high frequency line-waveguide converter having an excellent transmission characteristic and high conversion efficiency by effectively preventing the adsorption of electromagnetic waves on a connection part between a high frequency line and a waveguide. <P>SOLUTION: In the high frequency line-waveguide converter provided with the high frequency line 1 comprising a line conductor 3 formed on the upper surface of a dielectric layer 2 and a same side grounding conductor layer 4, a slot 5 electromagnetically coupled with the line conductor 3, and shield conductor parts 7 arranged on the side face or inside of the dielectric layer 2 while leaving spaces from each other so as to surround one-end part of the line conductor 3 and the slot 5; a space between adjacent shield conductor parts 7 on an extended part of the line conductor 3 out of shield conductor parts 7 surrounding the slot 5 is made narrower than a space between adjacent shield conductor parts 7 on the other portions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、マイクロ波やミリ波の領域において使用される、高周波回路を形成するコプレーナ線路またはグランド付きコプレーナ線路等の高周波線路を導波管に変換し、高周波回路とアンテナあるいは高周波回路間の接続を導波管で行なうことにより、システムの実装、評価を容易に行なえる高周波線路−導波管変換器に関するものである。   The present invention converts a high-frequency line such as a coplanar line forming a high-frequency circuit or a coplanar line with a ground used in a microwave or millimeter-wave region into a waveguide, and connecting the high-frequency circuit and the antenna or the high-frequency circuit. The present invention relates to a high-frequency line-waveguide converter that can easily mount and evaluate a system by performing the above-described process using a waveguide.

近年、情報伝達に用いられる高周波信号は、マイクロ波領域からミリ波領域の周波数までを活用することが検討されている。例えば、ミリ波の高周波信号を用いた応用システムとして車間レーダーが提案されている。このような高周波用のシステムにおいては、高周波信号の周波数が高いことにより、回路を構成するマイクロストリップ線路構造等の高周波線路による高周波信号の減衰が大きくなるという問題点がある。   In recent years, high-frequency signals used for information transmission have been studied to utilize frequencies from the microwave region to the millimeter wave region. For example, an inter-vehicle radar has been proposed as an application system using millimeter-wave high-frequency signals. In such a high-frequency system, there is a problem that the high-frequency signal is attenuated by a high-frequency line such as a microstrip line structure constituting the circuit due to the high frequency of the high-frequency signal.

このようなマイクロストリップ線路構造等の高周波線路に比較して、導波管では高周波信号の伝送損失は小さいことが知られている。例えば、マイクロストリップ線路等による通常の高周波線路のインピーダンス(50Ω)に比較して、導波管のインピーダンス(周波数によって変化するが概略500Ωのオーダーで設計される)は大きく、通常の高周波線路では伝送される信号に対して誘電体中を伝送する電界の寄与が大きいのに対し、導波管ではその誘電体として誘電正接がほぼ0の空気を用いていること、相対的に小さい磁気エネルギーのもととなる導波管の管壁を流れる電流が小さくて良いこと、かつその電流が導波管の管壁の比較的広い面積に流れるため電気抵抗が小さくなり導体損が小さくなる構造になっていることによるものである。   It is known that a transmission loss of a high-frequency signal is small in a waveguide as compared with a high-frequency line such as a microstrip line structure. For example, compared to the impedance (50Ω) of a normal high-frequency line such as a microstrip line, the impedance of the waveguide (which varies depending on the frequency but is designed on the order of about 500Ω) is large. The contribution of the electric field transmitted through the dielectric to the generated signal is large, whereas the waveguide uses air having a dielectric loss tangent of almost zero as its dielectric, The current flowing through the waveguide tube wall can be small, and since the current flows in a relatively large area of the waveguide tube wall, the electrical resistance is reduced and the conductor loss is reduced. Is due to being.

また、導波管同士は通常、ねじで接続される。そのため着脱を容易に行なうことができるため、高周波回路モジュールとアンテナとの接続に導波管を用いれば、組み立て前にそれぞれの導波管ポートを用いてそれぞれの検査を行ない、良品同士を組み合わせて高周波フロントエンドを組み立てることができ、その製造の歩留まりを上げることができる。これらのことから従来、特に伝送距離が長くなることが多い高周波回路モジュールとアンテナとの間の伝送に導波管を用いたフロントエンドが多く採用されてきた。   The waveguides are usually connected with screws. Therefore, since it can be easily attached and detached, if a waveguide is used for the connection between the high-frequency circuit module and the antenna, each inspection is performed using each waveguide port before assembly, and non-defective products are combined. A high-frequency front end can be assembled, and the manufacturing yield can be increased. For these reasons, a front end using a waveguide for transmission between a high-frequency circuit module and an antenna, which often has a long transmission distance, has been conventionally used.

このような高周波フロントエンドとしては、誘電体層と、その表面に形成した線路導体およびその両側に配置された同一面接地導体層から成るコプレーナ線路と、このコプレーナ線路の先端に形成したアンテナとして機能するスロットと、誘電体層の裏面のスロットと対向する位置に接続した導波管と、誘電体層の内部に導波管および同一面接地導体層を接続するように形成したシールド導体部とを具備する高周波線路−導波管変換器が提案されている(下記の特許文献1参照)。   Such a high-frequency front end functions as a dielectric layer, a coplanar line composed of a line conductor formed on the surface of the dielectric layer, and a coplanar ground conductor layer disposed on both sides of the dielectric layer, and an antenna formed on the tip of the coplanar line. And a waveguide connected to a position facing the slot on the back surface of the dielectric layer, and a shield conductor portion formed so as to connect the waveguide and the same-surface grounded conductor layer inside the dielectric layer. A high-frequency line-waveguide converter is proposed (see Patent Document 1 below).

この変換器によれば、スロットから誘電体層と導波管内部との界面までの距離を誘電体層を伝送する電磁波の波長の1/4に設定することにより、スロットから放射され、誘電体層と導波管内部との界面で反射して同一面接地導体層で再度反射して界面に到達した反射波と、スロットから直接界面まで伝送してきた電磁波(直接波)との行路差が電磁波の波長の1/2と等しくなり、反射波の磁界が誘電体層と導波管内部との界面で反射する際に位相が反転することから、界面では直接波と反射波が同位相になって強め合い、導波管へ伝播していくこととなる。   According to this converter, by setting the distance from the slot to the interface between the dielectric layer and the inside of the waveguide to be ¼ of the wavelength of the electromagnetic wave transmitted through the dielectric layer, The path difference between the reflected wave reflected at the interface between the layer and the inside of the waveguide, reflected again from the ground conductor layer on the same plane and reaching the interface, and the electromagnetic wave transmitted directly from the slot to the interface (direct wave) Since the phase is inverted when the reflected wave magnetic field is reflected at the interface between the dielectric layer and the inside of the waveguide, the direct wave and the reflected wave are in phase at the interface. Will propagate to the waveguide.

すなわち、スロットと導波管との間に介在する、厚さを電磁波の波長の1/4に設定した誘電体層は、インピーダンスが互いに異なるスロットと導波管との整合器として機能することになる。
特開2004−32321号公報
That is, the dielectric layer interposed between the slot and the waveguide and having a thickness set to ¼ of the wavelength of the electromagnetic wave functions as a matching unit between the slot and the waveguide having different impedances. Become.
JP 2004-32321 A

しかしながら、この従来の高周波線路−導波管変換器は、線路導体を伝送する信号の電磁波の一部が誘電体層に吸収され、インピーダンスの不整合が生じやすく、高周波信号の導波管への伝送を阻害し、その結果、変換効率が低下しやすいという問題点を有していた。   However, in this conventional high-frequency line-waveguide converter, a part of the electromagnetic wave of the signal transmitted through the line conductor is absorbed by the dielectric layer, and impedance mismatching is likely to occur. The transmission was hindered, and as a result, the conversion efficiency was liable to decrease.

本発明は上記問題点に鑑み案出されたもので、その目的は、高周波線路と導波管との接続部での電磁波の吸収を有効に防止して伝送特性に優れ、変換効率が高い高周波線路−導波管変換器を提供することにある。   The present invention has been devised in view of the above problems, and its purpose is to effectively prevent the absorption of electromagnetic waves at the connection portion between the high-frequency line and the waveguide, to have excellent transmission characteristics, and high conversion efficiency. It is to provide a line-waveguide converter.

本発明の高周波線路−導波管変換器は、誘電体層の上面に形成された線路導体および前記誘電体層の上面で前記線路導体の一端部を取り囲むとともに該一端部の先端と短絡するように形成された同一面接地導体層から成る高周波線路と、前記同一面接地導体層に前記線路導体の前記一端部と直交するように形成されて前記線路導体と電磁的に結合されたスロットと、平面透視して前記線路導体の前記一端部および前記スロットを取り囲むように前記誘電体層の側面または内部に互いに間隔をあけて配されたシールド導体部とを具備している高周波線路−導波管変換器であって、前記スロットを取り囲む前記シールド導体部のうち、前記線路導体の延長部において隣接するもの同士の間隔を他の部位において隣接するもの同士の間隔よりも狭くしたことを特徴とする。   The high-frequency line-waveguide converter of the present invention surrounds one end portion of the line conductor with the line conductor formed on the upper surface of the dielectric layer and the upper surface of the dielectric layer, and short-circuits the tip of the one end portion. A high-frequency line composed of the same-surface grounded conductor layer formed on the same-surface grounded conductor layer and a slot that is formed to be orthogonal to the one end of the line conductor and electromagnetically coupled to the line conductor; A high-frequency line-waveguide including a shield conductor portion spaced apart from each other on a side surface or inside of the dielectric layer so as to surround the one end portion and the slot of the line conductor as seen in a plan view Among the shield conductor portions surrounding the slot, the converter is adjacent to each other in the extension portion of the line conductor, and the interval between adjacent ones is narrower than the interval between adjacent portions in other portions. Characterized in that was.

本発明の高周波線路−導波管変換器において好ましくは、前記線路導体の延長部において隣接するシールド導体部を少なくとも3個設けたことを特徴とする。   In the high-frequency line-waveguide converter according to the present invention, preferably, at least three shield conductor portions adjacent to each other in the extension portion of the line conductor are provided.

本発明の高周波線路−導波管変換器において好ましくは、前記線路導体の延長部において隣接するシールド導体部群の長さを前記線路導体の幅の1〜30倍としたことを特徴とする。   In the high-frequency line-waveguide converter of the present invention, preferably, the length of the shield conductor portion group adjacent to the extension portion of the line conductor is 1 to 30 times the width of the line conductor.

本発明の高周波線路−導波管変換器において好ましくは、前記線路導体の延長部において隣接するシールド導体部同士の間隔を前記誘電体層の厚みの2倍以下にしたことを特徴とする。   In the high-frequency line-waveguide converter according to the present invention, preferably, the distance between the shield conductor portions adjacent to each other in the extension portion of the line conductor is set to be twice or less the thickness of the dielectric layer.

本発明の高周波線路−導波管変換器は、スロットを取り囲むシールド導体部のうち、線路導体の延長部において隣接するもの同士の間隔を他の部位において隣接するもの同士の間隔よりも狭くしたことから、線路導体を伝送する信号の電磁波が誘電体層に最も吸収されやすい線路導体の延長部において、シールド導体部間の隙間を通って電磁波がもれるのを有効に防止することができる。よって、線路導体を伝送する信号の電磁波の一部が誘電体層に吸収され、高周波線路と導波管との急激なインピーダンスの変化を抑制することが可能となり高周波信号の導波管への伝送を良好にすることができる。その結果、変換効率の高いものとすることができる。   In the high-frequency line-waveguide converter of the present invention, among the shield conductor parts surrounding the slot, the distance between adjacent ones in the extension part of the line conductor is made narrower than the distance between adjacent ones in other parts. Therefore, it is possible to effectively prevent the electromagnetic wave from leaking through the gap between the shield conductors in the extension of the line conductor in which the electromagnetic wave of the signal transmitted through the line conductor is most easily absorbed by the dielectric layer. Therefore, a part of the electromagnetic wave of the signal transmitted through the line conductor is absorbed by the dielectric layer, and it becomes possible to suppress a rapid impedance change between the high-frequency line and the waveguide, thereby transmitting the high-frequency signal to the waveguide. Can be improved. As a result, the conversion efficiency can be increased.

本発明の高周波線路−導波管変換器は、線路導体の延長部において隣接するシールド導体部を少なくとも3個設けたことから、線路導体を伝送する信号の電磁波の一部が誘電体層に吸収されるのをより有効に防止できる。   In the high-frequency line-waveguide converter of the present invention, at least three shield conductor portions adjacent to each other in the extension portion of the line conductor are provided, so that a part of the electromagnetic wave of the signal transmitted through the line conductor is absorbed by the dielectric layer. Can be prevented more effectively.

本発明の高周波線路−導波管変換器は、線路導体の延長部において隣接するシールド導体部群の長さを線路導体の幅の1〜30倍としたことから、線路導体を伝送する信号の電磁波の一部が誘電体層に吸収されるのをより有効に防止できるとともに、誘電体層とシールド導体部との熱膨張差による応力で誘電体層にクラックが生じるのを有効に防止できる。   In the high-frequency line-waveguide converter of the present invention, the length of the shield conductor part group adjacent in the extension part of the line conductor is set to 1 to 30 times the width of the line conductor. A part of the electromagnetic wave can be more effectively prevented from being absorbed by the dielectric layer, and cracks can be effectively prevented from being generated by a stress due to a difference in thermal expansion between the dielectric layer and the shield conductor.

本発明の高周波線路−導波管変換器は、線路導体の延長部において隣接するシールド導体部同士の間隔を誘電体層の厚みの2倍以下にしたことから、線路導体を伝送する信号の電磁波の一部が誘電体層に吸収されるのをより有効に防止できる。   In the high-frequency line-waveguide converter according to the present invention, the distance between adjacent shield conductors in the extension of the line conductor is set to be twice or less the thickness of the dielectric layer. It is possible to more effectively prevent a part of the material from being absorbed by the dielectric layer.

次に、本発明における第一の発明を添付資料に基づき詳細に説明する。図1(a)は本発明の高周波線路−導波管変換器の実施の形態の一例を示す平面図であり、(b)は図1(a)の高周波線路−導波管変換器のA−A’線断面図である。図1において、1は高周波線路、2は誘電体層、3は線路導体、4は同一面接地導体層、5は同一面接地導体層4に形成されたスロット、6は導波管、7はシールド導体部、8は下部接地導体層、9は上部接地導体層、10は第二の誘電体層であり、これらにより高周波線路−導波管変換器が形成される。   Next, the first invention in the present invention will be described in detail based on the attached material. FIG. 1A is a plan view showing an example of an embodiment of a high-frequency line-waveguide converter according to the present invention, and FIG. 1B is a diagram of A of the high-frequency line-waveguide converter of FIG. FIG. In FIG. 1, 1 is a high-frequency line, 2 is a dielectric layer, 3 is a line conductor, 4 is a ground conductor layer on the same plane, 5 is a slot formed in the ground conductor layer 4 on the same plane, 6 is a waveguide, The shield conductor portion, 8 is a lower ground conductor layer, 9 is an upper ground conductor layer, and 10 is a second dielectric layer, which form a high-frequency line-waveguide converter.

高周波線路1は、誘電体層2の上面に形成された線路導体3と、線路導体3を取り囲むように形成された同一面接地導体層4とによってコプレーナ線路状に形成されている。また、誘電体層2の上面の同一面接地導体層4にはスロット5が設けられており、線路導体3の一端と電磁的に結合されている。これにより、高周波線路1に伝送された高周波信号は、スロット5から電磁波として、下方に延びるように配置された導波管6内に放射される。   The high-frequency line 1 is formed in a coplanar line shape by a line conductor 3 formed on the upper surface of the dielectric layer 2 and a coplanar ground conductor layer 4 formed so as to surround the line conductor 3. Further, a slot 5 is provided in the same grounded conductor layer 4 on the upper surface of the dielectric layer 2 and is electromagnetically coupled to one end of the line conductor 3. Thereby, the high frequency signal transmitted to the high frequency line 1 is radiated from the slot 5 as an electromagnetic wave into the waveguide 6 arranged to extend downward.

また、誘電体層2は、誘電体層2の側面に形成された側面導体または図1のような誘電体層2の内部に配された貫通導体から成るシールド導体部7によりシールドされており、スロット5から誘電体層2中に放射された電磁波が漏れ出すことを防ぎ、変換効率が低下することを防止している。   In addition, the dielectric layer 2 is shielded by a shield conductor portion 7 made of a side conductor formed on the side surface of the dielectric layer 2 or a through conductor disposed inside the dielectric layer 2 as shown in FIG. The electromagnetic wave radiated from the slot 5 into the dielectric layer 2 is prevented from leaking, and the conversion efficiency is prevented from being lowered.

本発明においては、スロット5を取り囲むシールド導体部7のうち、線路導体3の延長部において隣接するもの同士の間隔を他の部位において隣接するもの同士の間隔よりも狭くした。これにより、線路導体3を伝送する信号の電磁波が誘電体層2に最も吸収されやすい線路導体3の延長部において、シールド導体部7間の隙間を通って電磁波がもれるのを有効に防止することができる。よって、線路導体3を伝送する信号の電磁波の一部が誘電体層2に吸収され、高周波線路1と導波管6との急激なインピーダンスの変化を抑制することが可能となり高周波信号の導波管6への伝送を良好にすることができる。その結果、変換効率の高いものとすることができる。   In the present invention, among the shield conductor portions 7 surrounding the slot 5, the interval between the adjacent portions in the extension portion of the line conductor 3 is made narrower than the interval between the adjacent portions in other portions. This effectively prevents the electromagnetic wave from leaking through the gap between the shield conductors 7 in the extension of the line conductor 3 where the electromagnetic wave of the signal transmitted through the line conductor 3 is most easily absorbed by the dielectric layer 2. be able to. Therefore, a part of the electromagnetic wave of the signal transmitted through the line conductor 3 is absorbed by the dielectric layer 2, and it is possible to suppress a rapid impedance change between the high-frequency line 1 and the waveguide 6 and to guide the high-frequency signal. The transmission to the tube 6 can be improved. As a result, the conversion efficiency can be increased.

好ましくは、線路導体3の延長部において隣接するシールド導体部7を少なくとも3個設けるのがよい。これにより、線路導体3を伝送する信号の電磁波がシールド導体部7間の隙間を通ってもれるのをより有効に防止することができる。   Preferably, at least three shield conductor portions 7 adjacent to each other in the extension portion of the line conductor 3 are provided. Thereby, it is possible to more effectively prevent the electromagnetic wave of the signal transmitted through the line conductor 3 from passing through the gap between the shield conductor portions 7.

また好ましくは、線路導体の延長部において隣接するシールド導体部7群の長さを線路導体3の幅の1〜30倍とするのがよい。1倍未満では線路導体3を伝送する信号の電磁波がシールド導体部7間の隙間を通ってもれるのを有効に防止する効果が小さくなりやすい。また、30倍を超えると、シールド導体部7同士の間の壁厚みが薄くなり、シールド導体部7と誘電体層2との熱膨張差による応力が大きくなって誘電体層2にクラックが生じやすくなる。   Preferably, the length of the group of shield conductor portions 7 adjacent to each other in the extension portion of the line conductor is 1 to 30 times the width of the line conductor 3. If it is less than 1 time, the effect of effectively preventing the electromagnetic wave of the signal transmitted through the line conductor 3 from passing through the gap between the shield conductor portions 7 tends to be small. On the other hand, if it exceeds 30 times, the wall thickness between the shield conductor portions 7 becomes thin, the stress due to the difference in thermal expansion between the shield conductor portion 7 and the dielectric layer 2 increases, and a crack occurs in the dielectric layer 2. It becomes easy.

また、線路導体3の延長部において隣接するシールド導体部7同士の間隔を誘電体層2の厚みの2倍以下にするのがよい。2倍より大きくなると、線路導体3を伝送する信号の電磁波の一部が誘電体層2に漏れて、吸収され、かつインピーダンスが、高周波線路1とスロット部のインピーダンスの不整合が大きくなり、高周波信号の導波管への伝送を阻害しやすくなる。   Further, it is preferable that the interval between the shield conductor portions 7 adjacent to each other in the extended portion of the line conductor 3 is set to be twice or less the thickness of the dielectric layer 2. If it is larger than twice, part of the electromagnetic wave of the signal transmitted through the line conductor 3 leaks to the dielectric layer 2 and is absorbed, and the impedance becomes mismatched between the high-frequency line 1 and the slot, resulting in a high frequency It becomes easy to inhibit transmission of the signal to the waveguide.

また、誘電体層2の下面には平面透視でスロット5を取り囲むように形成された枠状の下部接地導体層8が配され、同一面接地導体層4と下部接地導体層8は接続導体7で接続されている。   A frame-like lower ground conductor layer 8 is disposed on the lower surface of the dielectric layer 2 so as to surround the slot 5 in a plan view. The same-surface ground conductor layer 4 and the lower ground conductor layer 8 are connected to the connection conductor 7. Connected with.

好ましくは、この下部接地導体層8に、上側主面に枠状の上部接地導体層9が形成された第二の誘電体層10がAu−Snろう材等によりろう付けされており、この上部接地導体層9の開口と下部接地導体層8の開口が対向している構成とするのがよい。   Preferably, a second dielectric layer 10 having a frame-like upper ground conductor layer 9 formed on the upper main surface is brazed to the lower ground conductor layer 8 with an Au—Sn brazing material or the like. It is preferable that the opening of the ground conductor layer 9 and the opening of the lower ground conductor layer 8 face each other.

このような構造とすることにより、誘電体層に生じる共振モードであるTMモードの最も磁界が強い、導波管6の内部に接している第二の誘電体層10と、高周波線路1が形成された誘電体層2とを上部接地導体層9および下部接地導体層8によって分離することができるので、高周波線路1を伝送する電磁界モードであるTEモードとTMモードとが結合して高周波線路1を伝送する信号エネルギーがTMモードへ移行するのを有効に防止することができる。その結果、共振による信号反射を有効に防止して高周波線路1から導波管6への良好な信号変換を行なうことができる。   By adopting such a structure, the second dielectric layer 10 in contact with the inside of the waveguide 6 having the strongest magnetic field of the TM mode, which is a resonance mode generated in the dielectric layer, and the high-frequency line 1 are formed. Since the dielectric layer 2 formed can be separated by the upper ground conductor layer 9 and the lower ground conductor layer 8, the TE mode and the TM mode, which are the electromagnetic field modes for transmitting the high frequency line 1, are coupled to each other. It is possible to effectively prevent the signal energy transmitting 1 from shifting to the TM mode. As a result, it is possible to effectively prevent signal reflection due to resonance and perform good signal conversion from the high-frequency line 1 to the waveguide 6.

誘電体層2および第二の誘電体層10を形成する誘電体材料としては、酸化アルミニウム,窒化アルミニウム,窒化珪素,ムライト等を主成分とするセラミック材料、ガラス、ガラスとセラミックフィラーとの混合物を焼成して形成されたガラスセラミック材料、エポキシ樹脂,ポリイミド樹脂,四フッ化エチレン樹脂を始めとするフッ素系樹脂等の有機樹脂系材料、有機樹脂−セラミック(ガラスも含む)複合系材料等が用いられる。   Examples of the dielectric material forming the dielectric layer 2 and the second dielectric layer 10 include ceramic materials mainly composed of aluminum oxide, aluminum nitride, silicon nitride, mullite, glass, and a mixture of glass and ceramic filler. Used are glass ceramic materials formed by firing, organic resin materials such as epoxy resins, polyimide resins, fluororesins such as tetrafluoroethylene resin, and organic resin-ceramic (including glass) composite materials. It is done.

線路導体3,同一面接地導体層4,貫通導体等のシールド導体部7,下部接地導体層8ならびに上部接地導体層9を形成する導体材料としては、タングステン,モリブデン,金,銀,銅等を主成分とするメタライズ、あるいは金,銀,銅,アルミニウム等を主成分とする金属箔等が用いられる。   As the conductor material for forming the line conductor 3, the same-surface ground conductor layer 4, the shield conductor portion 7 such as the through conductor, the lower ground conductor layer 8, and the upper ground conductor layer 9, tungsten, molybdenum, gold, silver, copper, etc. Metallization having a main component or metal foil having gold, silver, copper, aluminum or the like as a main component is used.

特に、高周波線路−導波管変換器を、高周波部品を搭載する配線基板に内蔵する場合は、誘電体層2および第二の誘電体層10を形成する誘電体材料として、誘電正接が小さく、かつ気密封止が可能であることが望ましい。このような誘電体材料としては、酸化アルミニウム質焼結体や窒化アルミニウム質焼結体などのセラミックスやガラスセラミック材料が挙げられる。このような硬質系材料で構成すれば、誘電正接が小さく、かつ搭載した高周波部品を気密に封止することができるので、搭載した高周波部品の信頼性を高める上で好ましい。この場合、導体材料としては、誘電体材料との同時焼成が可能なメタライズ導体を用いることが、気密封止性と生産性を高める上で望ましい。   In particular, when the high-frequency line-waveguide converter is built in a wiring board on which high-frequency components are mounted, the dielectric tangent is small as a dielectric material for forming the dielectric layer 2 and the second dielectric layer 10, And it is desirable that airtight sealing is possible. Examples of such a dielectric material include ceramics and glass ceramic materials such as an aluminum oxide sintered body and an aluminum nitride sintered body. Such a hard material is preferable in terms of improving the reliability of the mounted high-frequency component because the dielectric loss tangent is small and the mounted high-frequency component can be hermetically sealed. In this case, it is desirable to use a metallized conductor capable of co-firing with a dielectric material as the conductor material in order to improve hermetic sealing and productivity.

本発明の高周波線路−導波管変換器は以下のようにして作製される。例えば誘電体材料に酸化アルミニウム質焼結体を用いる場合であれば、まず酸化アルミニウム,酸化珪素,酸化マグネシウム,酸化カルシウム等の原料粉末に適当な有機溶剤,溶媒を添加混合してスラリー状にし、これを周知のドクターブレード法やカレンダーロール法によりシート状に成形してセラミックグリーンシートを作製する。また、タングステンやモリブデン等の高融点金属,酸化アルミニウム,酸化珪素,酸化マグネシウム,酸化カルシウム等の原料粉末に適当な溶剤,溶媒を添加混合してメタライズペーストを作製する。   The high-frequency line-waveguide converter of the present invention is manufactured as follows. For example, when an aluminum oxide sintered body is used as a dielectric material, first, an appropriate organic solvent or solvent is added to and mixed with raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide to form a slurry. This is formed into a sheet shape by a known doctor blade method or calendar roll method to produce a ceramic green sheet. Further, a metallized paste is prepared by adding and mixing an appropriate solvent and solvent to a raw material powder such as refractory metal such as tungsten or molybdenum, aluminum oxide, silicon oxide, magnesium oxide, calcium oxide or the like.

次に、誘電体層2および第二の誘電体層10となるセラミックグリーンシートに、例えば打ち抜き法により貫通導体であるシールド導体部7を形成するための貫通孔を形成し、例えば印刷法によりその貫通孔にメタライズペーストを埋め込み、続いて線路導体3や同一面接地導体層4,下部接地導体層8,上部接地導体層9の形状にメタライズペーストを印刷する。また、誘電体層2および第二の誘電体層10が複数の誘電体層の積層構造からなる場合には、同様にメタライズペーストが印刷されたり貫通孔に埋め込まれたセラミックグリーンシートを積層し、加圧して圧着してもよい。   Next, a through hole for forming the shield conductor portion 7 which is a through conductor is formed in the ceramic green sheet to be the dielectric layer 2 and the second dielectric layer 10 by, for example, a punching method. A metallized paste is embedded in the through hole, and then the metallized paste is printed in the shape of the line conductor 3, the same-surface ground conductor layer 4, the lower ground conductor layer 8, and the upper ground conductor layer 9. Further, when the dielectric layer 2 and the second dielectric layer 10 have a laminated structure of a plurality of dielectric layers, similarly, a ceramic green sheet printed with a metallized paste or embedded in a through hole is laminated, You may pressurize and pressure-bond.

そして、これらの誘電体層2および第二の誘電体層10となるセラミックグリーンシートをそれぞれ高温(約1600℃)で焼成する。さらに、必要に応じて、線路導体3や同一面接地導体層4,下部接地導体層8,上部接地導体層9等のように上下面に露出する導体の表面に、例えば、ニッケルめっきおよび金めっきを被着させる。   Then, the ceramic green sheets to be the dielectric layer 2 and the second dielectric layer 10 are fired at a high temperature (about 1600 ° C.). Furthermore, if necessary, the surface of the conductor exposed on the upper and lower surfaces, such as the line conductor 3, the same-surface ground conductor layer 4, the lower ground conductor layer 8, the upper ground conductor layer 9, and the like, for example, nickel plating and gold plating Adhere.

しかる後、誘電体層2の下部接地導体層8と第二の誘電体層10の上部接地導体層9とをろう付けし、下部接地導体層8の外周部に第二の誘電体層10を取り囲むようにして導波管6を接続することにより高周波線路−導波管変換器が完成する。   Thereafter, the lower ground conductor layer 8 of the dielectric layer 2 and the upper ground conductor layer 9 of the second dielectric layer 10 are brazed, and the second dielectric layer 10 is attached to the outer periphery of the lower ground conductor layer 8. By connecting the waveguides 6 so as to surround them, a high-frequency line-waveguide converter is completed.

本発明のシールド導体部7は、スロット5を取り囲むよう誘電体層2の側面または内部に配され、同一面接地導体層4と下部接地導体層8とを電気的に接続している。   The shield conductor portion 7 of the present invention is disposed on the side surface or inside of the dielectric layer 2 so as to surround the slot 5 and electrically connects the same-surface ground conductor layer 4 and the lower ground conductor layer 8.

なお、シールド導体部7は、同一面接地導体層4と下部接地導体層8とを電気的に接続できれば良く、側面導体や貫通導体等、種々の手段が用いられる。例えば、誘電体層2の側面に被着された導体や、誘電体層2の側面の切り欠き部の内壁に導体層が被着されたいわゆるキャスタレーション導体、貫通孔の内壁に導体層が被着されたいわゆるスルーホール導体、貫通孔の内部が導体で充填されたいわゆるビア導体などが挙げられる。   The shield conductor 7 only needs to be able to electrically connect the same-surface ground conductor layer 4 and the lower ground conductor layer 8, and various means such as a side conductor and a through conductor are used. For example, a conductor deposited on the side surface of the dielectric layer 2, a so-called castellation conductor in which a conductor layer is deposited on the inner wall of the notch on the side surface of the dielectric layer 2, or a conductor layer is coated on the inner wall of the through hole. Examples include so-called through-hole conductors attached, and so-called via conductors in which the insides of the through holes are filled with a conductor.

導波管6の形状は特に制約はなく、例えば方形導波管として規格化されているWRシリーズを用いると、測定用校正キットが充実しているので種々の特性評価が容易になるが、使用する高周波信号の周波数に応じてシステムの小型軽量化のために導波管のカットオフが発生しない範囲で小型化した方形導波管を用いてもよい。また、円形導波管を用いてもよい。   The shape of the waveguide 6 is not particularly limited. For example, when a WR series standardized as a rectangular waveguide is used, a variety of measurement calibration kits are available, so that various characteristics can be easily evaluated. In order to reduce the size and weight of the system in accordance with the frequency of the high-frequency signal, a rectangular waveguide that is miniaturized within a range in which the waveguide is not cut off may be used. A circular waveguide may be used.

導波管6は、金属または内面に金属層が形成された誘電体等で構成することができ、例えば、金属を管状に成型したり、セラミックスや樹脂等の誘電体を必要な導波管形状に成型した後に内面を金属で被覆したものが用いられる。なお、電流による導体損低減や腐食防止のために導波管6の内面を金,銀等の貴金属で被覆するとよい。導波管6の下部接地導体層8への取り付けは、ろう材による接合やねじによる締め付け等によって行なわれ、導波管6と下部接地導体層8とが電気的に接続される。   The waveguide 6 can be composed of a metal or a dielectric having a metal layer formed on the inner surface. For example, the waveguide 6 can be formed into a tubular shape or a dielectric such as ceramics or resin is required. In this case, the inner surface is coated with a metal after being molded. The inner surface of the waveguide 6 may be covered with a noble metal such as gold or silver in order to reduce conductor loss due to current or prevent corrosion. The waveguide 6 is attached to the lower ground conductor layer 8 by joining with a brazing material, tightening with a screw or the like, and the waveguide 6 and the lower ground conductor layer 8 are electrically connected.

ろう材によって導波管6を下部接地導体層8へ取り付けるためには、同一面接地導体層4およびシールド導体部7と電気的に接続された下部接続用導体層を、取り付けられる導波管6の開口に合わせて形成しておくとよい。例えば、図1に示したように、誘電体層2の下面に、シールド用貫通導体から成るシールド導体部7と接続されたメタライズ層から成る下部接地導体層8を形成しておくとよい。このような下部接地導体層8を形成しておくと、導波管6を高周波線路−導波管変換器へ取り付けた際の導波管6とシールド導体部7および同一面接地導体層4との電気的接続がより確実なものとなるので、信頼性の高い高周波線路−導波管変換器を構成することができる点で好ましいものとなる。   In order to attach the waveguide 6 to the lower ground conductor layer 8 with the brazing material, the lower connection conductor layer electrically connected to the same-surface ground conductor layer 4 and the shield conductor portion 7 is attached to the waveguide 6. It is good to form it according to the opening. For example, as shown in FIG. 1, a lower ground conductor layer 8 made of a metallized layer connected to a shield conductor portion 7 made of a shield through conductor may be formed on the lower surface of the dielectric layer 2. If such a lower ground conductor layer 8 is formed, the waveguide 6, the shield conductor portion 7 and the coplanar ground conductor layer 4 when the waveguide 6 is attached to the high-frequency line-waveguide converter, Therefore, it is preferable in that a highly reliable high-frequency line-waveguide converter can be configured.

また、第二の誘電体層10の厚みは高周波線路1を伝送する信号の波長の1/2倍以下であるのがよい。これにより、スロット5から放射されて第二の誘電体層10の下側主面と導波管6内部との界面で反射し、上部接地導体層9で再度反射して再び第二の誘電体層10の下側主面と導波管6内部との界面に戻ってきた反射波と、スロット5から直接第二の誘電体層10の下側主面と導波管6内部との界面まで伝送してきた直接波とを同位相にすることができ、反射波と直接波とが強め合うために高周波線路1から導波管6への変換効率をより高めることができる。   The thickness of the second dielectric layer 10 is preferably not more than ½ times the wavelength of the signal transmitted through the high-frequency line 1. As a result, the light is radiated from the slot 5 and reflected at the interface between the lower main surface of the second dielectric layer 10 and the inside of the waveguide 6, reflected again by the upper ground conductor layer 9, and again reflected by the second dielectric. The reflected wave returning to the interface between the lower main surface of the layer 10 and the inside of the waveguide 6, and directly from the slot 5 to the interface between the lower main surface of the second dielectric layer 10 and the inside of the waveguide 6 The transmitted direct wave can be in phase, and the reflected wave and the direct wave are intensified, so that the conversion efficiency from the high-frequency line 1 to the waveguide 6 can be further increased.

(a)は本発明の高周波線路−導波管変換器の実施の形態の例を示す平面図、(b)は、(a)の高周波線路−導波管変換器のA−A’線における断面図である。(A) is a top view which shows the example of embodiment of the high frequency line-waveguide converter of this invention, (b) is in the AA 'line of the high frequency line-waveguide converter of (a). It is sectional drawing.

符号の説明Explanation of symbols

1・・・・・高周波線路
2・・・・・誘電体層
3・・・・・線路導体
4・・・・・同一面接地導体層
5・・・・・スロット
6・・・・・導波管
7・・・・・シールド導体部
DESCRIPTION OF SYMBOLS 1 ... High frequency line 2 ... Dielectric layer 3 ... Line conductor 4 ... Same surface grounding conductor layer 5 ... Slot 6 ... Conduction Wave tube 7: Shield conductor

Claims (4)

誘電体層の上面に形成された線路導体および前記誘電体層の上面で前記線路導体の一端部を取り囲むとともに該一端部の先端と短絡するように形成された同一面接地導体層から成る高周波線路と、前記同一面接地導体層に前記線路導体の前記一端部と直交するように形成されて前記線路導体と電磁的に結合されたスロットと、平面透視して前記線路導体の前記一端部および前記スロットを取り囲むように前記誘電体層の側面または内部に互いに間隔をあけて配されたシールド導体部とを具備している高周波線路−導波管変換器であって、前記スロットを取り囲む前記シールド導体部のうち、前記線路導体の延長部において隣接するもの同士の間隔を他の部位において隣接するもの同士の間隔よりも狭くしたことを特徴とする高周波線路−導波管変換器。 A high-frequency line comprising a line conductor formed on the upper surface of a dielectric layer and a coplanar grounded conductor layer formed so as to surround one end of the line conductor on the upper surface of the dielectric layer and to short-circuit the tip of the one end And a slot that is formed in the same plane ground conductor layer so as to be orthogonal to the one end of the line conductor and electromagnetically coupled to the line conductor, and the one end of the line conductor and the slot in a plan view A high-frequency line-waveguide converter comprising shield conductor portions spaced apart from each other on the side or inside of the dielectric layer so as to surround the slot, wherein the shield conductor surrounds the slot Among the sections, the interval between the adjacent portions in the extension portion of the line conductor is made narrower than the interval between adjacent portions in other portions. Converter. 前記線路導体の延長部において隣接するシールド導体部を少なくとも3個設けたことを特徴とする請求項1記載の高周波線路−導波管変換器。 2. The high-frequency line-waveguide converter according to claim 1, wherein at least three shield conductor portions adjacent to each other in the extension portion of the line conductor are provided. 前記線路導体の延長部において隣接するシールド導体部群の長さを前記線路導体の幅の1〜30倍としたことを特徴とする請求項1または請求項2記載の高周波線路−導波管変換器。 3. The high-frequency line-waveguide conversion according to claim 1, wherein the length of the shield conductor portion group adjacent to the extension portion of the line conductor is 1 to 30 times the width of the line conductor. vessel. 前記線路導体の延長部において隣接するシールド導体部同士の間隔を前記誘電体層の厚みの2倍以下にしたことを特徴とする請求項1乃至請求項3のいずれかに記載の高周波線路−導波管変換器。 4. The high-frequency line-conductor according to claim 1, wherein an interval between adjacent shield conductor portions in the extension portion of the line conductor is set to be not more than twice the thickness of the dielectric layer. 5. Wave tube converter.
JP2005049626A 2005-02-24 2005-02-24 High frequency line-waveguide converter Pending JP2006238047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049626A JP2006238047A (en) 2005-02-24 2005-02-24 High frequency line-waveguide converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049626A JP2006238047A (en) 2005-02-24 2005-02-24 High frequency line-waveguide converter

Publications (1)

Publication Number Publication Date
JP2006238047A true JP2006238047A (en) 2006-09-07

Family

ID=37045215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049626A Pending JP2006238047A (en) 2005-02-24 2005-02-24 High frequency line-waveguide converter

Country Status (1)

Country Link
JP (1) JP2006238047A (en)

Similar Documents

Publication Publication Date Title
EP2211419A1 (en) High frequency module and wiring board
JP2004153415A (en) High frequency line-waveguide converter
JP4199796B2 (en) High frequency line-waveguide converter
JP4937145B2 (en) Waveguide connection structure, waveguide connection plate, and waveguide converter
JP2006279199A (en) High-frequency line/waveguide converter
JP2006262138A (en) High-frequency line/waveguide converter
JP4463000B2 (en) High frequency line-waveguide converter
JP3935082B2 (en) High frequency package
JP4002527B2 (en) High frequency package
JP4247999B2 (en) High frequency line-waveguide converter
JP2006279473A (en) High-frequency line/waveguide converter
JP4243584B2 (en) High frequency line-waveguide converter
JP2006238047A (en) High frequency line-waveguide converter
JP2006238055A (en) High-frequency line/waveguide converter
JP4663351B2 (en) Electronic equipment
JP2006197479A (en) High-frequency line/waveguide converter
JP4606351B2 (en) High frequency line-waveguide converter
JP4749234B2 (en) Aperture antenna
JP2006262137A (en) High-frequency line/waveguide converter and electronic device
JP2005328188A5 (en)
JP2005286435A (en) High-frequency line waveguide converter
JP2003347809A (en) High-frequency line to waveguide converter
JP5004826B2 (en) High frequency line-waveguide converter
JP2006203816A (en) High frequency line-waveguide converter
JP2006279198A (en) High frequency line - waveguide converter