JP2006229195A - Semiconductor nonvolatile memory and its manufacturing method - Google Patents

Semiconductor nonvolatile memory and its manufacturing method Download PDF

Info

Publication number
JP2006229195A
JP2006229195A JP2005354507A JP2005354507A JP2006229195A JP 2006229195 A JP2006229195 A JP 2006229195A JP 2005354507 A JP2005354507 A JP 2005354507A JP 2005354507 A JP2005354507 A JP 2005354507A JP 2006229195 A JP2006229195 A JP 2006229195A
Authority
JP
Japan
Prior art keywords
oxide film
film
nonvolatile memory
memory device
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005354507A
Other languages
Japanese (ja)
Inventor
Tatsunori Kaneoka
Yoshiteru Maruyama
Toshiya Uenishi
Tomoshi Yamamoto
祥輝 丸山
智志 山本
俊哉 植西
竜範 金岡
Original Assignee
Renesas Technology Corp
株式会社ルネサステクノロジ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005015189 priority Critical
Application filed by Renesas Technology Corp, 株式会社ルネサステクノロジ filed Critical Renesas Technology Corp
Priority to JP2005354507A priority patent/JP2006229195A/en
Publication of JP2006229195A publication Critical patent/JP2006229195A/en
Application status is Pending legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • H01L21/02332Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen into an oxide layer, e.g. changing SiO to SiON
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/112Read-only memory structures [ROM] and multistep manufacturing processes therefor
    • H01L27/115Electrically programmable read-only memories; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • H01L27/112Read-only memory structures [ROM] and multistep manufacturing processes therefor
    • H01L27/115Electrically programmable read-only memories; Multistep manufacturing processes therefor
    • H01L27/11517Electrically programmable read-only memories; Multistep manufacturing processes therefor with floating gate
    • H01L27/11521Electrically programmable read-only memories; Multistep manufacturing processes therefor with floating gate characterised by the memory core region
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor nonvolatile memory in which leakage current is hard to generate in tunnel insulating film, and to provide its manufacturing method. <P>SOLUTION: A silicon nitriding oxide film 2b constituting a tunnel insulating film 2 is formed by processing a surface of silicon nitriding oxide film 2a in radical nitriding. Defect is hard to generate in a film formed by a radical nitriding process in comparison with oxynitride film by CVD method. And, by the radical nitriding process, damage caused by plasma is little compared with a conventional simple plasma nitriding process. Therefore, the semiconductor nonvolatile memory, in which the leakage current is hard to generate in the tunnel insulating film, can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、トンネル絶縁膜を有する半導体不揮発性記憶装置及びその製造方法に関する。 The present invention relates to a semiconductor nonvolatile memory device having a tunnel insulating film.

下記特許文献1のうちその実施の形態3においては、半導体不揮発性記憶装置のトンネル絶縁膜1を、熱酸化膜21とCVD(Chemical Vapor Deposition)法で形成された窒化膜23との積層構造で構成することが記載されている。 In the third of the embodiment of the following patent document 1, the tunnel insulating film 1 of a semiconductor nonvolatile memory device, a stacked structure of a thermal oxide film 21 and the CVD (Chemical Vapor Deposition) method nitride film 23 formed by It has been described to be configured.

また、下記特許文献2のうちその第0026段落においては、半導体不揮発性記憶装置のトンネル絶縁膜15aを、プラズマ酸化膜の上にプラズマ窒化膜を積層した積層膜で構成することが記述されている。 Further, in its first 0026 paragraph of the following Patent Document 2, the tunnel insulating film 15a of a semiconductor nonvolatile memory device, be composed of a laminated film formed by laminating a plasma nitride layer on the plasma oxide film is described .

特開平11−317463号公報 JP 11-317463 discloses 特開2004−47614号公報 JP 2004-47614 JP

半導体不揮発性記憶装置のトンネル絶縁膜のうち窒化膜部分をCVD法で形成すれば、窒化膜中に欠陥が生じやすかった。 By forming the nitride film portion of the tunnel insulating film of a semiconductor nonvolatile memory device by CVD, the defect is likely to occur in the nitride film. また、単純なプラズマ窒化処理によりトンネル絶縁膜の窒化膜部分を形成しただけでは、プラズマによるダメージが窒化膜に発生しやすかった。 Further, only by forming the nitride film portion of the tunnel insulating film by a simple plasma nitriding, plasma damage is likely to occur in the nitride film.

上記のような欠陥やダメージが窒化膜に発生すると、トンネル絶縁膜にリーク電流が生じやすくなり、半導体不揮発性記憶装置のデータ保持能力の低下を招く。 If defects or damage as described above is generated in the nitride film, it becomes easy leak current occurs in the tunnel insulating film, lowering the data retention capability of the semiconductor nonvolatile memory device.

また、シリコン酸化膜の上にシリコン窒化膜を追加しても、酸化膜部分とシリコン基板等の半導体基板との界面の界面準位増大に基づく、半導体不揮発性記憶装置のデータ消去速度低下は改善しなかった。 Moreover, the addition of silicon nitride film on the silicon oxide film, based on the interface state increase in interface between the semiconductor substrate such as an oxide film portion and the silicon substrate, the data erase speed reduction of a semiconductor nonvolatile memory device improving It did not.

この発明は上記の事情に鑑みてなされたもので、トンネル絶縁膜にリーク電流が生じにくい半導体不揮発性記憶装置及びその製造方法を実現することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to realize a leakage current is less likely to cause the semiconductor nonvolatile memory device and a manufacturing method thereof in the tunnel insulating film. また、トンネル絶縁膜と半導体基板との界面の界面準位が増大しにくい半導体不揮発性記憶装置及びその製造方法を実現することを目的とする。 Another object is the interface level of the interface between the tunnel insulating film and the semiconductor substrate to realize a hard semiconductor nonvolatile memory device and a manufacturing method thereof increases.

請求項1に記載の発明は、トンネル絶縁膜を含む半導体不揮発性記憶装置の製造方法であって、(a)前記トンネル絶縁膜を構成するシリコン酸化膜を半導体基板上に形成する工程と、(b)前記トンネル絶縁膜を構成する第1シリコン窒化酸化膜を前記シリコン酸化膜上に形成する工程とを備え、前記工程(b)において、前記シリコン酸化膜の表面をラジカル窒化することにより、前記第1シリコン窒化酸化膜を形成する半導体不揮発性記憶装置の製造方法である。 Invention of claim 1, a manufacturing method of a semiconductor nonvolatile memory device including a tunnel insulating film, forming a silicon oxide film constituting the (a) the tunnel insulating film on a semiconductor substrate, ( b) a step of forming a first silicon nitride oxide film of the tunnel insulating film on the silicon oxide film, in the step (b), by radical nitriding the surface of the silicon oxide film, wherein it is a manufacturing method of a semiconductor nonvolatile memory device which forms a first silicon nitride oxide film.

請求項3に記載の発明は、半導体基板と、前記半導体基板上に形成されたシリコン酸化膜と、前記シリコン酸化膜上に形成されたシリコン窒化酸化膜とを備え、前記シリコン酸化膜および前記シリコン窒化酸化膜は、トンネル絶縁膜を構成し、前記シリコン窒化酸化膜は、前記シリコン酸化膜の表面をラジカル窒化することにより形成された半導体不揮発性記憶装置である。 The invention of claim 3 includes a semiconductor substrate, wherein comprising a silicon oxide film formed on a semiconductor substrate, and a silicon nitride oxide film formed on the silicon oxide film, the silicon oxide film and the silicon nitride oxide film constitutes the tunnel insulating film, the silicon nitride oxide film, the surface of the silicon oxide film as a semiconductor nonvolatile memory device formed by radical nitriding.

請求項4に記載の発明は、半導体基板と、シリコン酸化膜と、前記シリコン酸化膜上に形成された第1シリコン窒化酸化膜と、前記半導体基板と前記シリコン酸化膜との間に形成された第2シリコン窒化酸化膜とを備え、前記シリコン酸化膜、並びに、前記第1及び第2シリコン窒化酸化膜は、トンネル絶縁膜を構成する半導体不揮発性記憶装置である。 The invention of claim 4 includes a semiconductor substrate, a silicon oxide film, a first silicon nitride oxide film formed on the silicon oxide film, which is formed between the semiconductor substrate and the silicon oxide film and a second silicon nitride oxide film, the silicon oxide film, and said first and second silicon nitride oxide film, a semiconductor nonvolatile memory device which constitutes the tunnel insulating film.

請求項1に記載の発明によれば、シリコン酸化膜の表面をラジカル窒化することにより、第1シリコン窒化酸化膜を形成する。 According to the invention described in claim 1, the surface of the silicon oxide film by radical nitriding, to form a first silicon nitride oxide film. ラジカル窒化処理により形成された膜は、CVD法による窒化膜に比べて、膜中に欠陥が生じにくい。 Film formed by the radical nitriding treatment, compared to the nitride film by the CVD method, a defect is unlikely to occur in the film. また、ラジカル窒化処理によれば、従来の単純なプラズマ窒化処理に比べてプラズマによるダメージが少ない。 Further, according to the radical nitriding, less plasma damage compared to conventional simple plasma nitriding process. よって、トンネル絶縁膜にリーク電流が生じにくい半導体不揮発性記憶装置を製造することができる。 Therefore, it is possible to produce a semiconductor nonvolatile memory device leakage current is hardly generated in the tunnel insulating film.

請求項3に記載の発明によれば、トンネル絶縁膜を構成するシリコン窒化酸化膜は、シリコン酸化膜の表面をラジカル窒化することにより形成されている。 According to the invention described in claim 3, a silicon nitride oxide film constituting the tunnel insulating film has a surface of silicon oxide film is formed by radical nitriding. ラジカル窒化処理により形成された膜は、CVD法による窒化膜に比べて、膜中に欠陥が生じにくい。 Film formed by the radical nitriding treatment, compared to the nitride film by the CVD method, a defect is unlikely to occur in the film. また、ラジカル窒化処理によれば、従来の単純なプラズマ窒化処理に比べてプラズマによるダメージが少ない。 Further, according to the radical nitriding, less plasma damage compared to conventional simple plasma nitriding process. よって、トンネル絶縁膜にリーク電流が生じにくい半導体不揮発性記憶装置が得られる。 Therefore, the leak current hardly occurs semiconductor nonvolatile memory device can be obtained in the tunnel insulating film.

請求項4に記載の発明によれば、トンネル絶縁膜は、シリコン酸化膜、並びに、第1及び第2シリコン窒化酸化膜により構成される。 According to the invention described in claim 4, the tunnel insulating film, a silicon oxide film, and composed of first and second silicon nitride oxide film. よって、トンネル絶縁膜を更に強固にすることができ、トンネル絶縁膜にリーク電流が生じにくい半導体不揮発性記憶装置が得られる。 Therefore, it is possible to further strengthen the tunnel insulating film, the leak current hardly occurs semiconductor nonvolatile memory device can be obtained in the tunnel insulating film. また、半導体基板とシリコン酸化膜との間に第2シリコン窒化酸化膜が形成されているので、トンネル絶縁膜と半導体基板との界面の欠陥が生じにくく、トンネル絶縁膜と半導体基板との界面の界面準位が増大しにくい半導体不揮発性記憶装置が得られる。 Further, since the second silicon nitride oxide film is formed between the semiconductor substrate and the silicon oxide film, a defect of the interface is less likely to occur between the tunnel insulating film and the semiconductor substrate, the interface between the tunnel insulating film and the semiconductor substrate interface state is unlikely to increase the semiconductor nonvolatile memory device can be obtained.

<実施の形態1> <Embodiment 1>
本実施の形態は、トンネル絶縁膜を構成するシリコン窒化酸化膜を、シリコン酸化膜の表面をラジカル窒化することにより形成した半導体不揮発性記憶装置及びその製造方法である。 This embodiment is a semiconductor nonvolatile memory device and a manufacturing method thereof formed by a silicon nitride oxide film constituting the tunnel insulating film, the surface of the silicon oxide film to the radical nitriding.

図1は、本実施の形態に係る半導体不揮発性記憶装置を示す図である。 Figure 1 is a diagram showing the configuration of a nonvolatile semiconductor memory device according to this embodiment. 図1に示すように、この半導体不揮発性記憶装置は、シリコン基板等の半導体基板1を含んでいる。 As shown in FIG. 1, the semiconductor nonvolatile memory device includes a semiconductor substrate 1 such as a silicon substrate.

半導体基板1の表面には、シリコン酸化膜を主成分とする素子分離領域3と、半導体不揮発性記憶装置の一構成要素たるソース/ドレイン領域4とが形成されている。 The surface of the semiconductor substrate 1, an element isolation region 3 mainly composed of silicon oxide film, and a component serving source / drain regions 4 of the semiconductor nonvolatile memory device is formed. なお、ソース/ドレイン領域4は、半導体基板1の表面の一部にリンや砒素等のn型不純物が選択的に拡散されることにより形成された活性領域である。 The source / drain regions 4 is an active region formed by n-type impurity such as phosphorus or arsenic is selectively diffused into part of the semiconductor substrate 1 surface.

半導体基板1の上には、シリコン酸化膜2aが形成され、シリコン酸化膜2a上にはシリコン窒化酸化膜2bが形成されている。 On the semiconductor substrate 1 is formed a silicon oxide film 2a, it is on the silicon oxide film 2a silicon nitride oxide film 2b is formed. このシリコン窒化酸化膜2bは、後述するように、シリコン酸化膜2aの表面をラジカル窒化することにより形成されたものである。 The silicon nitride oxide film 2b, as described below, in which the surface of the silicon oxide film 2a is formed by radical nitriding. そして、シリコン酸化膜2aおよびシリコン窒化酸化膜2bで構成される積層膜が、半導体不揮発性記憶装置の1メモリセルのトンネル絶縁膜2として機能する。 Then, the laminated film composed of a silicon oxide film 2a and the silicon nitride oxide film 2b functions as a tunnel insulating film 2 of one memory cell of a semiconductor nonvolatile memory device.

トンネル絶縁膜2上には、リン等の不純物が添加されたポリシリコンを主成分とする浮遊ゲート電極5が形成されている。 On the tunnel insulating film 2, the floating gate electrode 5 composed mainly of polysilicon to which an impurity is added such as phosphorus is formed. また、浮遊ゲート電極5上には、シリコン酸化膜6、シリコン窒化膜7およびシリコン酸化膜8の積層膜が形成されている。 Further, on the floating gate electrode 5, silicon oxide film 6, a stacked film of the silicon nitride film 7 and the silicon oxide film 8 is formed. この積層膜は、半導体不揮発性記憶装置の1メモリセルの電荷保持膜15として機能する。 The multilayer film functions as a charge holding film 15 of the first memory cell of a semiconductor nonvolatile memory device.

電荷保持膜15上には、リン等の不純物が添加されたポリシリコンを主成分とする制御ゲート電極9が形成されている。 On the charge holding film 15, control gate electrode 9 composed mainly of poly-silicon with impurities such as phosphorus is added are formed. そして、制御ゲート電極9の上面及び側面、並びに、電荷保持膜15、浮遊ゲート電極5およびトンネル絶縁膜2の側面を覆うように、シリコン酸化膜を主成分とする電気的絶縁膜10が形成されている。 Then, the upper and side surfaces of the control gate electrode 9, and the charge holding film 15, so as to cover the side surfaces of the floating gate electrode 5 and the tunnel insulating film 2, an electrical insulating film 10 composed mainly of silicon oxide film is formed ing. 電気的絶縁膜10は、隣接する半導体不揮発性記憶装置のメモリセル間の電気的絶縁を図るため、設けられている。 Electrically insulating film 10 is for electrical isolation between memory cells adjacent semiconductor nonvolatile memory device which is provided.

半導体基板1上には、素子分離領域3、電気的絶縁膜10およびソース/ドレイン領域4を覆うように、シリコン酸化膜等を主成分とする層間絶縁膜12が形成されている。 On the semiconductor substrate 1, an element isolation region 3, so as to cover the electrically insulating film 10 and the source / drain regions 4, an interlayer insulating film 12 composed mainly of silicon oxide film or the like is formed. また、層間絶縁膜12上には、より上層の層間絶縁膜14が形成されている。 Further, on the interlayer insulating film 12 is more upper interlayer insulating film 14 is formed.

層間絶縁膜12内および層間絶縁膜12表面には、ソース/ドレイン領域4に導通するコンタクト金属配線11が形成されている。 The interlayer insulating film 12 and the interlayer insulating film 12 surface is formed a contact metal wire 11 electrically connected to the source / drain region 4. また、層間絶縁膜14内および層間絶縁膜14表面には、コンタクト金属配線11に導通するコンタクト金属配線13が形成されている。 The interlayer insulating film 14 and in the interlayer insulating film 14 surface, the contact metal wire 13 electrically connected to the contact metal wiring 11 is formed.

次に、本実施の形態に係る半導体不揮発性記憶装置の製造方法について、図2〜図5を用いて説明する。 Next, a manufacturing method of semiconductor nonvolatile memory device according to the present embodiment will be described with reference to FIGS.

まず、図2に示すように、半導体基板1の表面の所定の領域に、熱酸化法等により素子分離領域3を形成する。 First, as shown in FIG. 2, in a predetermined region of the surface of the semiconductor substrate 1, an element isolation region 3 by a thermal oxidation method or the like.

次に、図3に示すように、トンネル絶縁膜2を構成するシリコン酸化膜2aを半導体基板1上に形成する。 Next, as shown in FIG. 3, a silicon oxide film 2a constituting the tunnel insulating film 2 on the semiconductor substrate 1. このシリコン酸化膜2aは、例えば熱酸化法により形成すればよい。 The silicon oxide film 2a, for example, may be formed by thermal oxidation. より具体的には、例えば650〜900℃での水素と酸素との燃焼反応を利用したパイロジェニック酸化法や、あるいは、650〜1150℃の温度、50Torr以下の圧力下で生じる酸素と水素との反応により生成される酸化ラジカルを利用したラジカル酸化法等により、シリコン酸化膜2aを形成すればよい。 More specifically, for example, 650-900 pyrogenic oxidation method or utilizing combustion reaction of hydrogen and oxygen at ° C., or a temperature of 650-1150 ° C., the oxygen and hydrogen produced at a pressure equal to or smaller than 50Torr by radical oxidation method using an oxidizing radicals generated by the reaction, it may be formed a silicon oxide film 2a.

次に、図4に示すように、トンネル絶縁膜2を構成するシリコン窒化酸化膜2bをシリコン酸化膜2a上に形成する。 Next, as shown in FIG. 4, a silicon nitride oxide film 2b constituting the tunnel insulating film 2 on the silicon oxide film 2a. このシリコン窒化酸化膜2bは、シリコン酸化膜2aの表面をラジカル窒化(Radical Nitridation)することにより形成する。 The silicon nitride oxide film 2b is the surface of the silicon oxide film 2a is formed by radical nitriding (Radical Nitridation). 具体的には、アルゴンで希釈した窒素をプラズマ分解する過程で得られる、窒素ラジカルを利用すればよい。 Specifically, to obtain a nitrogen diluted with argon plasma decomposes the process, it may be utilized nitrogen radicals.

従来のプラズマ窒化法では、窒素を含むガスの直流グロー放電によって高いエネルギー状態のプラズマを発生させ、このプラズマ生成で得られる窒素分子などのイオンが、処理物を加熱昇温すると同時に表面を活性化させていた。 In the conventional plasma nitridation process, nitrogen plasma is generated in the high energy state by a DC glow discharge gas containing, ions such as nitrogen molecule obtained in this plasma generation, activate the surface at the same time heated to raise the temperature of the treated product I had to. 一方、ラジカル窒化法では、窒素を含むガスのグロー放電を精密に制御する。 On the other hand, in the radical nitriding method, to precisely control the glow discharge of a gas containing nitrogen. これにより、イオン密度が小さく、かつ、低いエネルギー状態のプラズマを発生させながら、高活性なラジカル(活性種)を有効に生成させて窒化処理を行うことができる。 Thus, the ion density is small and low while generating plasma energy state, effectively to produce a highly active radicals (active species) can perform nitriding treatment.

ラジカル窒化の条件としては例えば、窒素をプラズマ分解するためのラジカル窒化装置のマイクロ波パワーを1〜4kWとし、アルゴンガスと窒素ガスとの流量比をアルゴン:窒素=1:0.02〜0.1とし、温度を250〜600℃とし、圧力を0.1〜5Torrとすればよい。 The conditions for the radical nitriding example, the microwave power of the radical nitriding device for plasma decomposition of nitrogen and 1~4KW, the flow ratio of argon gas and nitrogen gas argon: nitrogen = 1: 0.02 to 0. 1, and a temperature of 250 to 600 ° C., may be the pressure and 0.1~5Torr. また、マイクロ波により発生した高密度プラズマ領域からシリコン酸化膜2a表面を充分に離せばよい。 Further, it fully releases the silicon oxide film 2a from the surface high-density plasma region generated by the microwave. それにより、シリコン酸化膜2a表面にはプラズマダメージの原因の一つである窒素イオンの数を少なくし、窒素ラジカルの数を増やすことができ、欠陥の少ないシリコン窒化酸化膜2bを形成することができる。 Thereby, be in the silicon oxide film 2a surface to reduce the number of nitrogen ions is one of the causes of plasma damage, it is possible to increase the number of nitrogen radicals, to form a small silicon nitride oxide film 2b defects it can.

なお、この条件下にて発明者らが実際に形成したシリコン窒化酸化膜2bを、X線光電子分光分析法(XPS)にて解析したところ、1nm程度の膜厚となっていた。 Incidentally, the silicon nitride oxide film 2b which we have actually formed in these conditions, was analyzed by X-ray photoelectron spectroscopy (XPS), it has been a thickness of about 1 nm. また、シリコン窒化酸化膜2b内の窒素含有量は、アルゴンガスと窒素ガスの流量比や、圧力、窒化時間等、ラジカル窒化の条件を適宜設定することにより、調節することができる。 The nitrogen content in the silicon nitride oxide film 2b is and the flow ratio of argon gas and nitrogen gas, the pressure, nitriding time and the like, by appropriately setting the conditions for the radical nitridation can be adjusted.

次に、図5に示すように、シリコン窒化酸化膜2b上に浮遊ゲート電極5となる導電膜を形成する。 Next, as shown in FIG. 5, a conductive film serving as a floating gate electrode 5 on the silicon nitride oxide film 2b. 浮遊ゲート電極5となる導電膜は、例えばモノシラン(SiH 4 )とホスフィン(PH 3 )を用いたCVD法により形成可能である。 The conductive film to be the floating gate electrode 5 can be formed by, for example, monosilane (SiH 4) and CVD method using phosphine (PH 3). 形成時の温度を例えば500〜550℃とすることにより、浮遊ゲート電極5は、リンが添加されたポリシリコン膜として形成される。 With the temperature of the formation example 500-550 ° C., the floating gate electrode 5 is formed as a polysilicon film to which phosphorus is added. なお、リンの添加濃度は、モノシラン(SiH 4 )とホスフィン(PH 3 )とのガス流量比の設定により制御可能である。 The addition concentration of the phosphorus can be controlled by setting the gas flow ratio of monosilane (SiH 4) and phosphine (PH 3).

次に、CVD法により浮遊ゲート電極5となる導電膜上に、シリコン酸化膜6、シリコン窒化膜7およびシリコン酸化膜8を形成し、さらに、浮遊ゲート電極5となる導電膜と同様の製法により制御ゲート電極9となる導電膜を形成する。 Then, over the conductive film serving as a floating gate electrode 5 by CVD, a silicon oxide film 6, a silicon nitride film 7 and the silicon oxide film 8, further by the same procedure as the conductive film serving as a floating gate electrode 5 forming a conductive film to be a control gate electrode 9.

この後、フォトリソグラフィ及びエッチング技術を用いて、上記制御ゲート電極9となる導電膜までの積層構造をパターニングすることにより、図1における、トンネル絶縁膜2、浮遊ゲート電極5、電荷保持膜15および制御ゲート電極9の積層構造が形成される。 Thereafter, using photolithography and etching techniques, by patterning the laminated structure to a conductive film to be the above-mentioned control gate electrode 9, in Fig. 1, the tunnel insulating film 2, the floating gate electrode 5, the charge holding film 15 and layered structure of the control gate electrode 9 is formed.

本実施の形態に係る半導体不揮発性記憶装置及びその製造方法によれば、シリコン酸化膜2aの表面をラジカル窒化することにより、トンネル絶縁膜2を構成するシリコン窒化酸化膜2bを形成する。 According to the semiconductor nonvolatile memory device and a manufacturing method thereof according to the present embodiment, the surface of the silicon oxide film 2a by radical nitriding, to form a silicon nitride oxide film 2b constituting the tunnel insulating film 2. ラジカル窒化処理により形成された膜は、CVD法による窒化膜に比べて、膜中に欠陥が生じにくい。 Film formed by the radical nitriding treatment, compared to the nitride film by the CVD method, a defect is unlikely to occur in the film. また、ラジカル窒化処理によれば、従来の単純なプラズマ窒化処理に比べてプラズマによるダメージが少ない。 Further, according to the radical nitriding, less plasma damage compared to conventional simple plasma nitriding process. よって、トンネル絶縁膜2にリーク電流が生じにくい半導体不揮発性記憶装置を製造することができる。 Therefore, it is possible to produce a semiconductor nonvolatile memory device leakage current is hardly generated in the tunnel insulating film 2.

図6は、本実施の形態に係る半導体不揮発性記憶装置のデータ保持特性を、従来の半導体不揮発性記憶装置のデータ保持特性と比較することにより、本実施の形態に係る半導体不揮発性記憶装置の効果を示した図である。 6, the data retention characteristics of a semiconductor nonvolatile memory device according to this embodiment, by comparing the data retention characteristics of the conventional semiconductor non-volatile memory device, the semiconductor nonvolatile memory device according to this embodiment is a diagram showing the effect.

図6では、縦軸に不良品割合が10ppb(Parts Per Billion)となるまでのデータ保持時間をとり、横軸にトンネル絶縁膜2の膜厚をとっている。 In Figure 6, a defective ratio on the vertical axis takes the data retention time until the 10ppb (Parts Per Billion), taking the thickness of the tunnel insulating film 2 on the horizontal axis. このうち、グラフGH1が従来の半導体不揮発性記憶装置のデータ保持特性であり、グラフGH2が本実施の形態に係る半導体不揮発性記憶装置のデータ保持特性である。 Among them, a data retention characteristic of the graph GH1 conventional semiconductor non-volatile memory device, the graph GH2 is data retention characteristic of the semiconductor nonvolatile memory device according to this embodiment.

グラフGH2の値から判るように、本実施の形態に係る半導体不揮発性記憶装置のデータ保持特性は、従来の特性に比べて一桁以上、データ保持時間が長い。 As can be seen from the values ​​in the graph GH2, data retention characteristics of a semiconductor nonvolatile memory device according to the present embodiment, an order of magnitude or more compared to the conventional characteristics, the data retention time is longer. これは、トンネル絶縁膜2にリーク電流が生じにくいことから、本実施の形態に係る半導体不揮発性記憶装置の電荷保持能力がきわめて高いことを意味している。 This means the fact that the leakage current is less likely to occur in the tunnel insulating film 2, it charge retention performance of a semiconductor nonvolatile memory device according to this embodiment is extremely high.

<実施の形態2> <Embodiment 2>
本実施の形態は、実施の形態1に係る半導体不揮発性記憶装置及びその製造方法の変形例であって、実施の形態1におけるシリコン酸化膜2aと半導体基板1の間に、トンネル絶縁膜2を構成する他のシリコン窒化酸化膜を形成するようにしたものである。 This embodiment is a modification of the semiconductor nonvolatile memory device and a manufacturing method thereof according to the first embodiment, between the silicon oxide film 2a and the semiconductor substrate 1 in the first embodiment, the tunnel insulating film 2 it is obtained so as to form another silicon nitride oxide film forming.

図7は、本実施の形態に係る半導体不揮発性記憶装置を示す図である。 Figure 7 is a diagram showing the configuration of a nonvolatile semiconductor memory device according to this embodiment. 図7に示すように、この半導体不揮発性記憶装置は、図1の半導体不揮発性記憶装置に比べて、半導体基板1とシリコン酸化膜2aとの間に形成された他のシリコン窒化酸化膜2cを備えている点のみが異なる。 As shown in FIG. 7, the semiconductor nonvolatile memory device, compared to the semiconductor nonvolatile memory device of FIG. 1, another silicon nitride oxide film 2c formed between the semiconductor substrate 1 and the silicon oxide film 2a only that it includes is different. そして、シリコン酸化膜2aおよびシリコン窒化酸化膜2b,2cで構成される積層膜が、半導体不揮発性記憶装置の1メモリセルのトンネル絶縁膜2として機能する。 Then, the silicon oxide film 2a and the silicon nitride oxide film 2b, the stacked film composed of 2c functions as a tunnel insulating film 2 of one memory cell of a semiconductor nonvolatile memory device.

このように、トンネル絶縁膜2が、シリコン酸化膜2a、及び、シリコン窒化酸化膜2b,2cにより構成されるので、トンネル絶縁膜2を更に強固にすることができ、トンネル絶縁膜2にリーク電流がより生じにくい半導体不揮発性記憶装置が得られる。 Thus, the tunnel insulating film 2, a silicon oxide film 2a, and the silicon nitride oxide film 2b, since it is composed of 2c, it is possible to further strengthen the tunnel insulating film 2, the leakage current in the tunnel insulating film 2 It is more hardly occurs semiconductor nonvolatile memory device can be obtained. また、半導体基板1とシリコン酸化膜2aとの間にシリコン窒化酸化膜2cが形成されているので、トンネル絶縁膜2と半導体基板1との界面の欠陥が生じにくく、トンネル絶縁膜2と半導体基板1との界面の界面準位が増大しにくい半導体不揮発性記憶装置が得られる。 Further, since the silicon nitride oxide film 2c is formed between the semiconductor substrate 1 and the silicon oxide film 2a, defects in the interface is less likely to occur between the tunnel insulating film 2 and the semiconductor substrate 1, a tunnel insulating film 2 and the semiconductor substrate 1 and the interface state is increased hardly semiconductor nonvolatile memory device of the interface is obtained.

その他の点については、実施の形態1に係る半導体不揮発性記憶装置と同様のため、説明を省略する。 In all other respects, the same as those in the semiconductor nonvolatile memory device according to the first embodiment, the description thereof is omitted.

次に、本実施の形態に係る半導体不揮発性記憶装置の製造方法について、図8〜図10を用いて説明する。 Next, a manufacturing method of semiconductor nonvolatile memory device according to the present embodiment will be described with reference to FIGS.

まず、実施の形態1の図2および図3と同様にして、半導体基板1の表面に熱酸化法等により素子分離領域3を形成し、その後、熱酸化法等によりおよびシリコン酸化膜2aを半導体基板1上に形成する。 First, as in FIGS. 2 and 3 of the first embodiment, forming an isolation region 3 by a thermal oxidation method or the like on the surface of the semiconductor substrate 1, followed by thermal oxidation or the like and the silicon oxide film 2a semiconductor formed on the substrate 1.

次に、図8に示すように、シリコン酸化膜2aと半導体基板1との間に、シリコン窒化酸化膜2cを形成する。 Next, as shown in FIG. 8, between the silicon oxide film 2a and the semiconductor substrate 1, a silicon nitride oxide film 2c. このシリコン窒化酸化膜2cは、一酸化窒素(NO)、亜酸化窒素(N 2 O)またはアンモニア(NH 3 )の雰囲気中でアニール処理(処理温度は、例えば800〜1150℃)を行うことにより形成する。 The silicon nitride oxide film 2c is nitric oxide (NO), annealed in an atmosphere of nitrous oxide (N 2 O) or ammonia (NH 3) (treatment temperature, for example 800-1150 ° C.) by performing Form.

次に、図9に示すように、シリコン酸化膜2aの表面をラジカル窒化することにより、シリコン窒化酸化膜2bをシリコン酸化膜2a上に形成する。 Next, as shown in FIG. 9, the surface of the silicon oxide film 2a by radical nitriding, to form a silicon nitride oxide film 2b is formed on the silicon oxide film 2a. ラジカル窒化の条件は、実施の形態1の場合と同様とすればよい。 Conditions of the radical nitriding may be the same as the first embodiment.

次に、図10に示すように、シリコン窒化酸化膜2b上に浮遊ゲート電極5となる導電膜を、実施の形態1の場合と同様に形成する。 Next, as shown in FIG. 10, a conductive film to be the floating gate electrode 5 on the silicon nitride oxide film 2b, it is formed in the same manner as in the first embodiment.

次に、CVD法により浮遊ゲート電極5となる導電膜上に、シリコン酸化膜6、シリコン窒化膜7およびシリコン酸化膜8を形成し、さらに、浮遊ゲート電極5となる導電膜と同様の製法により制御ゲート電極9となる導電膜を形成する。 Then, over the conductive film serving as a floating gate electrode 5 by CVD, a silicon oxide film 6, a silicon nitride film 7 and the silicon oxide film 8, further by the same procedure as the conductive film serving as a floating gate electrode 5 forming a conductive film to be a control gate electrode 9.

この後、フォトリソグラフィ及びエッチング技術を用いて、上記制御ゲート電極9となる導電膜までの積層構造をパターニングすることにより、図7における、トンネル絶縁膜2、浮遊ゲート電極5、電荷保持膜15および制御ゲート電極9の積層構造が形成される。 Thereafter, using photolithography and etching techniques, by patterning the laminated structure to a conductive film to be the above-mentioned control gate electrode 9, in FIG. 7, the tunnel insulating film 2, the floating gate electrode 5, the charge holding film 15 and layered structure of the control gate electrode 9 is formed.

本実施の形態に係る半導体不揮発性記憶装置においても、シリコン窒化酸化膜2bは、シリコン酸化膜2aの表面をラジカル窒化することにより形成される。 In the semiconductor nonvolatile memory device according to this embodiment, a silicon nitride oxide film 2b is the surface of the silicon oxide film 2a is formed by radical nitriding. よって、トンネル絶縁膜2にリーク電流がより生じにくい半導体不揮発性記憶装置が得られる。 Accordingly, leakage current is more less likely to cause semiconductor nonvolatile memory device can be obtained in the tunnel insulating film 2.

また、本実施の形態に係る半導体不揮発性記憶装置の製造方法は、一酸化窒素、亜酸化窒素またはアンモニア雰囲気中でアニール処理を行い、シリコン酸化膜2aと半導体基板1との間に、トンネル絶縁膜2を構成するシリコン窒化酸化膜2cを形成する工程をさらに備える。 A method of manufacturing a semiconductor nonvolatile memory device according to the present embodiment, nitrogen monoxide, annealing is performed with nitrous oxide or ammonia atmosphere, between the silicon oxide film 2a and the semiconductor substrate 1, a tunnel insulating further comprising the step of forming a silicon nitride oxide film 2c constituting the membrane 2. よって、さらにトンネル絶縁膜2を強固にすることができ、リーク電流がより生じにくい半導体不揮発性記憶装置を製造することができる。 Therefore, it is possible to further be able to strengthen the tunnel insulating film 2, leakage current is produced more hardly generated a semiconductor nonvolatile memory device. また、トンネル絶縁膜2と半導体基板1との界面の欠陥が生じにくく、トンネル絶縁膜2と半導体基板1との界面の界面準位が増大しにくい半導体不揮発性記憶装置を製造することができる。 Further, it is possible to produce defects at the interface is less likely to occur between the tunnel insulating film 2 and the semiconductor substrate 1, the interface state is increased hardly semiconductor nonvolatile memory device of the interface between the tunnel insulating film 2 and the semiconductor substrate 1.

図11は、本実施の形態に係る半導体不揮発性記憶装置のデータ消去速度の低下によるデータ消去動作不良率を、シリコン窒化酸化膜2cを有しない、シリコン酸化膜2a及びシリコン窒化膜2bの二層からなるトンネル絶縁膜2を備える半導体不揮発性記憶装置のデータ消去動作不良率と比較することにより、本実施の形態に係る半導体不揮発性記憶装置の効果を示す図である。 11, the data erasing operation failure rate due to reduced data erase speed of a semiconductor nonvolatile memory device according to this embodiment, no silicon nitride oxide film 2c, two layers of silicon oxide film 2a and the silicon nitride film 2b by comparing the data erasing operation failure rate of a semiconductor nonvolatile memory device including a tunnel insulating film 2 and made of a diagram showing the effect of the semiconductor nonvolatile memory device according to this embodiment.

図11では、縦軸にデータ消去動作不良の累積の割合を採り、横軸にデータ書き込み動作及びデータ消去動作の繰り返し回数を採っている。 In Figure 11, taking the ratio of the accumulation of data erasing operation failure on the vertical axis, and take the number of repetitions of data write operation and data erase operation on the horizontal axis. このうちグラフGH3が、シリコン窒化酸化膜2cを有しない、シリコン酸化膜2a及びシリコン窒化膜2bの二層からなるトンネル絶縁膜2を備える半導体不揮発性記憶装置のデータ消去動作不良率であり、一方、グラフGH4が、本実施の形態に係る半導体不揮発性記憶装置のデータ消去動作不良率である。 Among graph GH3 is no silicon nitride oxide film 2c, a data erasing operation failure rate of a semiconductor nonvolatile memory device including a tunnel insulating film 2 made of two layers of silicon oxide film 2a and the silicon nitride film 2b, whereas graph GH4 is the data erasing operation failure rate of a semiconductor nonvolatile memory device according to this embodiment.

グラフGH4の値から分かるように、本実施の形態に係る半導体不揮発性記憶装置のデータ消去動作不良率は、シリコン酸化膜2a及びシリコン窒化膜2bの二層からなるトンネル絶縁膜2を備える半導体不揮発性記憶装置のデータ消去動作不良率よりも低い。 As can be seen from the values ​​in the graph GH4, data erasing operation failure rate of a semiconductor nonvolatile memory device according to the present embodiment, a semiconductor nonvolatile comprising a tunnel insulating film 2 made of two layers of silicon oxide film 2a and the silicon nitride film 2b lower than the data erase operation failure rate of sexual storage device. これは、データ書き込み動作とデータ消去動作の繰り返しによる、トンネル絶縁膜2と半導体基板1との間の界面準位の増大が起こりにくいため、本実施の形態に係る半導体不揮発性記憶装置のデータ消去速度の劣化が極めて少ないことを意味している。 This is due to repetitive data write operation and a data erasure operation, since the increase in the interface state is unlikely to occur between the tunnel insulating film 2 and the semiconductor substrate 1, the data erasure of a semiconductor nonvolatile memory device according to this embodiment speed of deterioration means that very few.

本実施の形態に係る半導体不揮発性記憶装置のデータ保持特性についても、本願発明者らは、図6の場合と同様、良好な結果を得ることができた。 For even data retention characteristics of the nonvolatile semiconductor memory device according to the present embodiment, the inventors have, as in the case of FIG. 6, it was possible to obtain good results.

実施の形態1に係る半導体不揮発性記憶装置を示す図である。 Is a diagram showing the configuration of a nonvolatile semiconductor memory device according to the first embodiment. 実施の形態1に係る半導体不揮発性記憶装置の製造方法を示す図である。 It is a diagram showing a manufacturing method of a semiconductor nonvolatile memory device according to the first embodiment. 実施の形態1に係る半導体不揮発性記憶装置の製造方法を示す図である。 It is a diagram showing a manufacturing method of a semiconductor nonvolatile memory device according to the first embodiment. 実施の形態1に係る半導体不揮発性記憶装置の製造方法を示す図である。 It is a diagram showing a manufacturing method of a semiconductor nonvolatile memory device according to the first embodiment. 実施の形態1に係る半導体不揮発性記憶装置の製造方法を示す図である。 It is a diagram showing a manufacturing method of a semiconductor nonvolatile memory device according to the first embodiment. 実施の形態1に係る半導体不揮発性記憶装置の効果を示す図である。 It shows the effect of a semiconductor nonvolatile memory device according to the first embodiment. 実施の形態2に係る半導体不揮発性記憶装置を示す図である。 Is a diagram showing the configuration of a nonvolatile semiconductor memory device according to the second embodiment. 実施の形態2に係る半導体不揮発性記憶装置の製造方法を示す図である。 It is a diagram showing a manufacturing method of a semiconductor nonvolatile memory device according to the second embodiment. 実施の形態2に係る半導体不揮発性記憶装置の製造方法を示す図である。 It is a diagram showing a manufacturing method of a semiconductor nonvolatile memory device according to the second embodiment. 実施の形態2に係る半導体不揮発性記憶装置の製造方法を示す図である。 It is a diagram showing a manufacturing method of a semiconductor nonvolatile memory device according to the second embodiment. 実施の形態2に係る半導体不揮発性記憶装置の効果を示す図である。 It shows the effect of a semiconductor nonvolatile memory device according to the second embodiment.

符号の説明 DESCRIPTION OF SYMBOLS

1 半導体基板、2 トンネル絶縁膜、2a シリコン酸化膜、2b,2c シリコン窒化酸化膜。 1 semiconductor substrate, 2 a tunnel insulating film, 2a silicon oxide film, 2b, 2c silicon nitride oxide film.

Claims (5)

  1. トンネル絶縁膜を含む半導体不揮発性記憶装置の製造方法であって、 A manufacturing method of a semiconductor nonvolatile memory device including a tunnel insulating film,
    (a)前記トンネル絶縁膜を構成するシリコン酸化膜を半導体基板上に形成する工程と、 (A) forming on the tunnel silicon oxide film on a semiconductor substrate forming the insulating film,
    (b)前記トンネル絶縁膜を構成する第1シリコン窒化酸化膜を前記シリコン酸化膜上に形成する工程とを備え、 (B) a first silicon nitride oxide film of the tunnel insulating film and forming on the silicon oxide film,
    前記工程(b)において、前記シリコン酸化膜の表面をラジカル窒化することにより、前記第1シリコン窒化酸化膜を形成する半導体不揮発性記憶装置の製造方法。 Wherein in step (b), by radical nitriding the surface of the silicon oxide film, a manufacturing method of a semiconductor nonvolatile memory device which forms the first silicon nitride oxide film.
  2. 請求項1に記載の半導体不揮発性記憶装置の製造方法であって、 A manufacturing method of a semiconductor nonvolatile memory device according to claim 1,
    (c)前記工程(a)の後であって前記工程(b)の前に、一酸化窒素、亜酸化窒素またはアンモニア雰囲気中でアニール処理を行い、前記シリコン酸化膜と前記半導体基板との間に、前記トンネル絶縁膜を構成する第2シリコン窒化酸化膜を形成する工程をさらに備える半導体不揮発性記憶装置の製造方法。 (C) prior to said step the step even after the (a) (b), annealing is performed in nitric, nitrous oxide or ammonia atmosphere, between the semiconductor substrate and the silicon oxide film the manufacturing method of semiconductor nonvolatile memory device further comprising a step of forming a second silicon nitride oxide film of the tunnel insulating film.
  3. 半導体基板と、 And the semiconductor substrate,
    前記半導体基板上に形成されたシリコン酸化膜と、 A silicon oxide film formed on the semiconductor substrate,
    前記シリコン酸化膜上に形成されたシリコン窒化酸化膜とを備え、 And a silicon nitride oxide film formed on the silicon oxide film,
    前記シリコン酸化膜および前記シリコン窒化酸化膜は、トンネル絶縁膜を構成し、 The silicon oxide film and the silicon nitride oxide film constitutes the tunnel insulating film,
    前記シリコン窒化酸化膜は、前記シリコン酸化膜の表面をラジカル窒化することにより形成された半導体不揮発性記憶装置。 The silicon nitride oxide film, a semiconductor nonvolatile memory device of the surface of the silicon oxide film is formed by radical nitriding.
  4. 半導体基板と、 And the semiconductor substrate,
    シリコン酸化膜と、 And a silicon oxide film,
    前記シリコン酸化膜上に形成された第1シリコン窒化酸化膜と、 A first silicon nitride oxide film formed on the silicon oxide film,
    前記半導体基板と前記シリコン酸化膜との間に形成された第2シリコン窒化酸化膜とを備え、 And a second silicon oxynitride film formed between said silicon oxide film and the semiconductor substrate,
    前記シリコン酸化膜、並びに、前記第1及び第2シリコン窒化酸化膜は、トンネル絶縁膜を構成する半導体不揮発性記憶装置。 The silicon oxide film, and said first and second silicon nitride oxide film, a semiconductor nonvolatile memory device which constitutes the tunnel insulating film.
  5. 請求項4に記載の半導体不揮発性記憶装置であって、 A semiconductor nonvolatile memory device according to claim 4,
    前記第1シリコン窒化酸化膜は、前記シリコン酸化膜の表面をラジカル窒化することにより形成された半導体不揮発性記憶装置。 It said first silicon nitride oxide film, a semiconductor nonvolatile memory device of the surface of the silicon oxide film is formed by radical nitriding.
JP2005354507A 2005-01-24 2005-12-08 Semiconductor nonvolatile memory and its manufacturing method Pending JP2006229195A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005015189 2005-01-24
JP2005354507A JP2006229195A (en) 2005-01-24 2005-12-08 Semiconductor nonvolatile memory and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005354507A JP2006229195A (en) 2005-01-24 2005-12-08 Semiconductor nonvolatile memory and its manufacturing method
US11/335,504 US20060166440A1 (en) 2005-01-24 2006-01-20 Semiconductor nonvolatile memory device, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006229195A true JP2006229195A (en) 2006-08-31

Family

ID=36697382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005354507A Pending JP2006229195A (en) 2005-01-24 2005-12-08 Semiconductor nonvolatile memory and its manufacturing method

Country Status (2)

Country Link
US (1) US20060166440A1 (en)
JP (1) JP2006229195A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008053266A (en) * 2006-08-22 2008-03-06 Sony Corp Nonvolatile semiconductor memory device and its manufacturing method
US7400009B2 (en) 2001-06-28 2008-07-15 Samsung Electronics Co., Ltd. Floating trap non-volatile semiconductor memory devices including high dielectric constant blocking insulating layers
US7473959B2 (en) 2001-06-28 2009-01-06 Samsung Electronics Co., Ltd. Non-volatile semiconductor memory devices and methods of fabricating the same
KR100905276B1 (en) 2006-09-26 2009-06-30 삼성전자주식회사 Flash memory device including multylayer tunnel insulator and method of fabricating the same
US8330207B2 (en) 2006-09-26 2012-12-11 Samsung Electronics Co., Ltd. Flash memory device including multilayer tunnel insulator and method of fabricating the same
US8525275B2 (en) 2007-07-16 2013-09-03 Samsung Electronics Co., Ltd. Methods of forming non-volatile memory devices
US9761314B2 (en) 2001-06-28 2017-09-12 Samsung Electronics Co., Ltd. Non-volatile memory devices and methods of operating the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8008214B2 (en) * 2005-12-16 2011-08-30 Samsung Electronics Co., Ltd. Method of forming an insulation structure and method of manufacturing a semiconductor device using the same
KR100941863B1 (en) * 2008-01-02 2010-02-11 주식회사 하이닉스반도체 Tunnel insulating film of flash memory device and method of manufacturing thereof
KR100933840B1 (en) * 2008-01-17 2009-12-24 주식회사 하이닉스반도체 Method for manufacturing a flash memory device
JP5356005B2 (en) * 2008-12-10 2013-12-04 株式会社東芝 Nonvolatile semiconductor memory device and manufacturing method thereof
WO2014031153A1 (en) 2012-08-23 2014-02-27 Sixpoint Materials, Inc. Composite substrate of gallium nitride and metal oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002368122A (en) * 2001-06-12 2002-12-20 Nec Corp Semiconductor device and producing method therefor
JP4358504B2 (en) * 2002-12-12 2009-11-04 シャープ株式会社 Method of manufacturing a nonvolatile semiconductor memory device
KR100602322B1 (en) * 2004-04-20 2006-07-14 에스티마이크로일렉트로닉스 엔.브이. A method for manufacturing a flash memory device and a flash memory device manufactured by the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9761314B2 (en) 2001-06-28 2017-09-12 Samsung Electronics Co., Ltd. Non-volatile memory devices and methods of operating the same
US7400009B2 (en) 2001-06-28 2008-07-15 Samsung Electronics Co., Ltd. Floating trap non-volatile semiconductor memory devices including high dielectric constant blocking insulating layers
US7473959B2 (en) 2001-06-28 2009-01-06 Samsung Electronics Co., Ltd. Non-volatile semiconductor memory devices and methods of fabricating the same
JP2008053266A (en) * 2006-08-22 2008-03-06 Sony Corp Nonvolatile semiconductor memory device and its manufacturing method
KR100905276B1 (en) 2006-09-26 2009-06-30 삼성전자주식회사 Flash memory device including multylayer tunnel insulator and method of fabricating the same
US8330207B2 (en) 2006-09-26 2012-12-11 Samsung Electronics Co., Ltd. Flash memory device including multilayer tunnel insulator and method of fabricating the same
US8525275B2 (en) 2007-07-16 2013-09-03 Samsung Electronics Co., Ltd. Methods of forming non-volatile memory devices

Also Published As

Publication number Publication date
US20060166440A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US6303481B2 (en) Method for forming a gate insulating film for semiconductor devices
KR100949227B1 (en) Semiconductor device and manufacturing method thereof
CN100499171C (en) Semiconductor memory device and method of manufacturing the same
CN1291461C (en) Dielectric film, semiconductor device and manufacture methods thereof
US6461949B1 (en) Method for fabricating a nitride read-only-memory (NROM)
US7300833B2 (en) Process for producing semiconductor integrated circuit device
JP4917142B2 (en) A method of manufacturing an electronic device material
KR960012298B1 (en) Method of manufacturing semiconductor devices
JP5103056B2 (en) A method of manufacturing a semiconductor device
JP5479437B2 (en) The method forming a silicon oxide film, a method of forming a silicon nitride film, the method of forming a silicon oxynitride film
US8946021B2 (en) Nonvolatile semiconductor memory device and method for manufacturing the same
JP5105627B2 (en) Formation of silicon oxynitride gate dielectric using a plurality of annealing steps
KR100628875B1 (en) Sonos non-volatile memory device and method of manufacturing the same
CN1905213B (en) Nonvolatile semiconductor memory device, and manufacturing method of nonvolatile semiconductor memory device
JP3451943B2 (en) A capacitor forming a semiconductor element
US20070218606A1 (en) Semiconductor device and method of manufacture thereof
KR100586020B1 (en) Method for forming a gate in semiconductor device
US6627494B2 (en) Method for forming gate electrode of flash memory
KR100493022B1 (en) Method for fabricating nonvolatile memory device having a structure of silicon-oxide-nitride-oxide-silicon
US20040110390A1 (en) Semiconductor memory device and method of fabricating the same
JP5122059B2 (en) The method of manufacturing a semiconductor device having a metal gate pattern
KR20010040515A (en) Method of forming a semiconductor device
JP2633571B2 (en) Ultraviolet erasable nonvolatile semiconductor device
JP2008028403A (en) Method for forming first oxide layer, and second oxide layer
US6037205A (en) Method of forming capacitor for semiconductor device using N2 O gas