JP2006226618A - Heat exchanger, heat pump type hot water supply device, and heat pump type hot water supply heating system - Google Patents

Heat exchanger, heat pump type hot water supply device, and heat pump type hot water supply heating system Download PDF

Info

Publication number
JP2006226618A
JP2006226618A JP2005041550A JP2005041550A JP2006226618A JP 2006226618 A JP2006226618 A JP 2006226618A JP 2005041550 A JP2005041550 A JP 2005041550A JP 2005041550 A JP2005041550 A JP 2005041550A JP 2006226618 A JP2006226618 A JP 2006226618A
Authority
JP
Japan
Prior art keywords
hot water
heat
refrigerant
heat exchanger
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005041550A
Other languages
Japanese (ja)
Other versions
JP4436771B2 (en
Inventor
Shigeo Tsukue
重男 机
Kiyoshi Koyama
清 小山
Satoshi Hoshino
聡 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Air Conditioners Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005041550A priority Critical patent/JP4436771B2/en
Publication of JP2006226618A publication Critical patent/JP2006226618A/en
Application granted granted Critical
Publication of JP4436771B2 publication Critical patent/JP4436771B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To attain the further improvement of heat exchange efficiency by enlarging a heat transfer area, reducing a heat loss, and providing uniform heat exchange. <P>SOLUTION: A multiplex pipe 62 of a first water-refrigerant heat exchanger 9 of the this pump type hot water supply heating system is composed of three copper heat exchange pipes 70 (each composing a refrigerant passage 9A) passing a refrigerant through interiors, a copper heat transfer tube 71 covering and holding the heat exchange pipes 70 in separated states, and a copper outer pipe 73 arranged around the heat transfer pipe 71 with a slight interval between to form a water passage 9B so as to pass hot water between the copper outer pipe and the heat transfer pipe 71. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱交換器、詳述すれば水対冷媒用の熱交換器、この熱交換器を備えたヒートポンプ式給湯装置及びヒートポンプ式給湯暖房装置に関する。   The present invention relates to a heat exchanger, more specifically, a heat exchanger for water-to-refrigerant, a heat pump type hot water supply apparatus and a heat pump type hot water supply and heating apparatus provided with the heat exchanger.

従来のこの種の熱交換器は、例えば特許文献1に開示されており、この冷媒対水用熱交換器は、内部に循環ポンプから送られた水(被熱交換液)が流れる1本の第1熱交換パイプと、並列に分岐されて内部に過熱ガス冷媒(熱媒体)が流れる2本の第2熱交換パイプとが、熱交換関係に設けられている。即ち、前記第1熱交換パイプは、それの周壁の対称位置に軸方向に沿って延びる2条の窪み部がそれぞれ連続的に形成され、これら各窪み部内に、前記各第2熱交換パイプが第1熱交換パイプと熱交換関係に圧着固定されている。
特開2003−14383号公報
A conventional heat exchanger of this type is disclosed in, for example, Patent Document 1, and this refrigerant-to-water heat exchanger has a single water (heat exchange liquid) sent from a circulation pump. The first heat exchange pipe and two second heat exchange pipes that are branched in parallel and through which the superheated gas refrigerant (heat medium) flows are provided in a heat exchange relationship. That is, the first heat exchange pipe has two recesses extending continuously along the axial direction at symmetrical positions on the peripheral wall thereof, and the second heat exchange pipes are formed in the recesses. The first heat exchange pipe and the heat exchange relation are crimped and fixed.
JP 2003-14383 A

しかし、前述した構造の熱交換器は伝熱面積が少なく、また熱ロス(逃げ)もあり、伝熱効率が悪く、尚一層の熱交換率の向上を図ることが望まれる。   However, the heat exchanger having the above-described structure has a small heat transfer area and also has a heat loss (escape), so that the heat transfer efficiency is poor and it is desired to further improve the heat exchange rate.

そこで本発明は、伝熱面積を多くし、熱ロス少なく、均一に熱交換できるようにして、尚一層の熱交換率の向上を図ることを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to further improve the heat exchange rate by increasing the heat transfer area, reducing heat loss, and enabling uniform heat exchange.

このため第1の熱交換器に係る発明は、内部に熱媒体が流れる複数の熱交換パイプと、この複数の熱交換パイプを被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に被熱交換液が流れるように流路を形成する外管とから成ることを特徴とする。   For this reason, the invention relating to the first heat exchanger includes a plurality of heat exchange pipes through which a heat medium flows, a heat transfer pipe that covers and holds the plurality of heat exchange pipes, and an outer position of the heat transfer pipe. And an outer tube that forms a flow path so that the heat exchange liquid flows between the heat transfer tube and the heat transfer tube.

第2の熱交換器に係る発明は、内部に熱媒体が流れる複数の熱交換パイプと、この各熱交換パイプを離れた状態で被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に被熱交換液が流れるように流路を形成する外管とから成ることを特徴とする。   The invention relating to the second heat exchanger includes a plurality of heat exchange pipes through which a heat medium flows, a heat transfer pipe that covers and holds the heat exchange pipes in a separated state, and an outside of the heat transfer pipe. It is characterized by comprising an outer tube that forms a flow path so that the heat exchange liquid flows between the heat transfer tube.

第3のヒートポンプ式給湯装置に係る発明は、圧縮機、減圧装置、貯湯用の水冷媒熱交換器及び空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、前記水冷媒熱交換器と貯湯タンクとの間で循環ポンプにより温水を循環させる温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯装置において、前記水冷媒熱交換器を、内部に冷媒が流れる複数の熱交換パイプと、この複数の熱交換パイプを被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に水が流れるように流路を形成する外管とから構成したことを特徴とする。   The invention relating to the third heat pump type hot water supply apparatus includes a heat pump unit including a compressor, a decompression device, a water refrigerant heat exchanger for hot water storage, and an air heat exchanger sequentially connected in an annular manner, and the water In a heat pump hot water supply apparatus comprising a tank unit having a hot water circulation path for circulating hot water between a refrigerant heat exchanger and a hot water storage tank by a circulation pump, a plurality of refrigerant flows through the water refrigerant heat exchanger. A heat exchange pipe, a heat transfer pipe that covers and holds the plurality of heat exchange pipes, and an external passage that is positioned outside the heat transfer pipe so that water flows between the heat transfer pipes. It is characterized by comprising a tube.

第4のヒートポンプ式給湯装置に係る発明は、圧縮機、減圧装置、貯湯用の水冷媒熱交換器及び空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、前記水冷媒熱交換器と貯湯タンクとの間で循環ポンプにより温水を循環させる温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯装置において、前記水冷媒熱交換器を、内部に冷媒が流れる複数の熱交換パイプと、この各熱交換パイプを離れた状態で被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に水が流れるように流路を形成する外管とから構成したことを特徴とする。   The invention relating to the fourth heat pump hot water supply apparatus includes a heat pump unit comprising a compressor, a decompression device, a water refrigerant heat exchanger for hot water storage, and an air heat exchanger, which are sequentially connected in an annular shape, and the water In a heat pump hot water supply apparatus comprising a tank unit having a hot water circulation path for circulating hot water between a refrigerant heat exchanger and a hot water storage tank by a circulation pump, a plurality of refrigerant flows through the water refrigerant heat exchanger. A heat exchange pipe, a heat transfer pipe that covers and holds each heat exchange pipe in a separated state, and a flow path that allows water to flow between the heat transfer pipe and outside the heat transfer pipe. It is characterized by comprising an outer tube to be formed.

第5のヒートポンプ式給湯暖房装置に係る発明は、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置において、前記第1水冷媒熱交換器又は第2水冷媒熱交換器を、内部に冷媒が流れる複数の熱交換パイプと、この複数の熱交換パイプを被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に水が流れるように流路を形成する外管とから構成したことを特徴とする。   The invention relating to the fifth heat pump type hot water supply and heating device includes a compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompression device, air Heat water is circulated by operating the first circulation pump between the heat pump unit having a refrigerant circuit in which the heat exchangers are sequentially connected in an annular form, the expansion tank, the first water refrigerant heat exchanger, and the hot water heater. In a heat pump hot water supply and heating apparatus, comprising: a first hot water circulation path and a tank unit having a second hot water circulation path for circulating hot water between the second water refrigerant heat exchanger and the hot water storage tank by a second circulation pump. , The first water refrigerant heat exchanger or the second water refrigerant heat exchanger, a plurality of heat exchange pipes through which the refrigerant flows, a heat transfer pipe that covers and holds the plurality of heat exchange pipes, and the heat transfer pipe Located outside Characterized by being composed of an outer tube to form a flow path so that water flows between the heat transfer tubes.

第6のヒートポンプ式給湯暖房装置に係る発明は、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置において、前記第1水冷媒熱交換器又は第2水冷媒熱交換器を、内部に冷媒が流れる複数の熱交換パイプと、この各熱交換パイプを離れた状態で被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に水が流れるように流路を形成する外管とから構成したことを特徴とする。   The invention relating to the sixth heat pump type hot water supply and heating device includes a compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompression device, air Heat water is circulated by operating the first circulation pump between the heat pump unit having a refrigerant circuit in which the heat exchangers are sequentially connected in an annular form, the expansion tank, the first water refrigerant heat exchanger, and the hot water heater. In a heat pump hot water supply and heating apparatus, comprising: a first hot water circulation path and a tank unit having a second hot water circulation path for circulating hot water between the second water refrigerant heat exchanger and the hot water storage tank by a second circulation pump. A plurality of heat exchange pipes through which the refrigerant flows, and a heat transfer pipe that covers and holds each of the heat exchange pipes in a separated state, Outside this heat transfer tube And location characterized by being composed of an outer tube to form a flow path so that water flows between the heat transfer tube.

本発明の熱交換器、ヒートポンプ式給湯装置及びヒートポンプ式給湯暖房装置によれば、伝熱面積を多くし、熱ロス少なく、均一に熱交換できるようにして、尚一層の熱交換率の向上を図ることができる。   According to the heat exchanger, heat pump type hot water supply apparatus, and heat pump type hot water supply / room heating apparatus of the present invention, the heat transfer area is increased, heat loss is reduced, heat can be uniformly exchanged, and the heat exchange rate is further improved. Can be planned.

以下、本発明の第1の実施の形態を図面に基づき説明する。図1はヒートポンプ式給湯暖房装置の全体システムを示す系統図である。図1において、Aはヒートポンプユニット、Bはタンクユニット、C1は温水暖房用の第1温水循環路、C2は貯湯用の第2温水循環路、Rは前記ヒートポンプユニットAに内蔵された冷媒回路である。この冷媒回路Rには、HFCやCO等の冷媒を用いることができるが、本実施形態ではCOを用いる。 A first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram showing an overall system of a heat pump hot water supply / room heating system. In FIG. 1, A is a heat pump unit, B is a tank unit, C1 is a first hot water circuit for hot water heating, C2 is a second hot water circuit for hot water storage, and R is a refrigerant circuit built in the heat pump unit A. is there. In the refrigerant circuit R, a refrigerant such as HFC or CO 2 can be used, but CO 2 is used in the present embodiment.

1及び2は前記第1温水循環路C1に設けられた床暖房パネル、3及び4は床暖房パネル1及び2に対応して設けられた床暖房リモートコントローラ(以下、「床暖房リモコン」という)であり、前記第1温水循環路C1には、熱動弁5及び6、循環ポンプ7、膨張タンク8、暖房用の第1水冷媒熱交換器9の水流路9B、バイパス管10の途中に設けられた流量調整弁であるバイパス弁11などが設けられている。   1 and 2 are floor heating panels provided in the first hot water circulation path C1, and 3 and 4 are floor heating remote controllers provided corresponding to the floor heating panels 1 and 2 (hereinafter referred to as "floor heating remote control"). In the first hot water circulation path C1, thermal valves 5 and 6, a circulation pump 7, an expansion tank 8, a water flow path 9B of the first water refrigerant heat exchanger 9 for heating, and a bypass pipe 10 are provided. A bypass valve 11 which is a provided flow rate adjusting valve is provided.

前記バイパス管10は前記第1温水循環路C1のバイパス路となるもので、例えば電動弁で構成されたバイパス弁11が開いた場合には、前記第1水冷媒熱交換器9の水流路9Bを介する戻り温水がバイパス管10を介して膨張タンク8に戻ることとなる。この膨張タンク8には水位検出センサを構成する水位電極19、20が配設されている。   The bypass pipe 10 serves as a bypass path of the first hot water circulation path C1, and when the bypass valve 11 configured by, for example, an electric valve is opened, the water flow path 9B of the first water refrigerant heat exchanger 9 is opened. The return warm water passing through is returned to the expansion tank 8 via the bypass pipe 10. The expansion tank 8 is provided with water level electrodes 19 and 20 constituting a water level detection sensor.

また、前記温水循環路C1には、暖房用の第1水冷媒熱交換器9の水流路9Bから流出した暖房用温水の温度を検出するサーミスタ12、浴室暖房装置としてのファンコイル13が設けられている。14は浴室暖房リモートコントローラ(以下、「浴室暖房リモコン」という)、15は前記ファンコイル13の入口部に設けられた熱動弁、16は前記循環ポンプ7によって膨張タンク8から流出した温水の一部を床暖房パネル1、2に供給するための混合熱動弁、18は床暖房パネル1、2に流入する温水温度を検知するサーミスタである。   The hot water circuit C1 is provided with a thermistor 12 for detecting the temperature of the hot water flowing out from the water flow path 9B of the first water refrigerant heat exchanger 9 for heating, and a fan coil 13 as a bathroom heating device. ing. 14 is a bathroom heating remote controller (hereinafter referred to as “bathroom heating remote controller”), 15 is a thermal valve provided at the inlet of the fan coil 13, and 16 is one of hot water flowing out from the expansion tank 8 by the circulation pump 7. The mixed heat valve 18 for supplying a part to the floor heating panels 1 and 2 is a thermistor 18 for detecting the temperature of hot water flowing into the floor heating panels 1 and 2.

前記冷媒回路Rは、CO冷媒を用いた能力調整が可能な2段圧縮式の圧縮機21と、共に一端が前記圧縮機21に接続される暖房用の第1開閉弁23及び貯湯用の第2開閉弁24と、前記第1開閉弁23の他端に接続される前記第1水冷媒熱交換器9の冷媒流路9A、前記第2開閉弁24の他端に接続される貯湯用の第2水冷媒熱交換器22の一次流路22A、冷媒流路9Aが接続される内部熱交換器25の一次流路25A、この一次流路25Aの他端が接続される暖房用の流量調整弁である膨張弁(減圧装置)26、一次流路22Aの他端が接続される流量調整弁である貯湯用の膨張弁(減圧装置)27、空気熱交換器28と、内部熱交換器25の二次流路25Bと、アキュムレーター29とが順次環状に配管接続されている。 The refrigerant circuit R includes a two-stage compression compressor 21 capable of capacity adjustment using a CO 2 refrigerant, a heating first on-off valve 23 whose one end is connected to the compressor 21, and a hot water storage For the hot water storage connected to the second on-off valve 24, the refrigerant passage 9A of the first water refrigerant heat exchanger 9 connected to the other end of the first on-off valve 23, and the other end of the second on-off valve 24. The primary flow path 22A of the second water refrigerant heat exchanger 22, the primary flow path 25A of the internal heat exchanger 25 to which the refrigerant flow path 9A is connected, and the heating flow rate to which the other end of the primary flow path 25A is connected. An expansion valve (pressure reducing device) 26 that is a regulating valve, an expansion valve (pressure reducing device) 27 for hot water storage that is a flow rate regulating valve to which the other end of the primary flow path 22A is connected, an air heat exchanger 28, and an internal heat exchanger The 25 secondary flow paths 25B and the accumulator 29 are sequentially connected in a circular pipe.

前記第2温水循環路C2において、第2水冷媒熱交換器22の水流路22Bの一端と貯湯タンク31の下部とが循環ポンプ32を介して接続されると共に、水流路22Bの他端と貯湯タンク31の上部とが接続されており、また第2水冷媒熱交換器22の水流路22Bから流出した温水の温度を検知するサーミスタ33が水流路22Bの他端と貯湯タンク31の上部との間の第2温水循環路C2に設けられている。   In the second hot water circulation path C2, one end of the water flow path 22B of the second water refrigerant heat exchanger 22 and the lower part of the hot water storage tank 31 are connected via a circulation pump 32, and the other end of the water flow path 22B and the hot water storage capacity. The thermistor 33 is connected to the upper part of the tank 31 and detects the temperature of the hot water flowing out from the water flow path 22B of the second water refrigerant heat exchanger 22 between the other end of the water flow path 22B and the upper part of the hot water storage tank 31. It is provided in the 2nd warm water circulation path C2.

前記貯湯タンク31には追焚用の水々熱交換器34の一次流路34Aが循環ポンプ35を介して接続されている。また、水々熱交換器34の二次流路34Bには循環ポンプ36を介して浴槽37が接続されている。40は貯湯タンク31の上部に接続された給湯管であり、この給湯管40にはミキシングバルブ41が設けられている。42は減圧弁43が配設され水道管に接続された給水管であり、この給水管42は貯湯タンク31の下部とミキシングバルブ41とに分岐接続され、更に補給水開閉弁44を介して前記膨張タンク8に接続されている。   The hot water storage tank 31 is connected with a primary flow path 34 </ b> A for reheating water heat exchanger 34 through a circulation pump 35. A bathtub 37 is connected to the secondary flow path 34 </ b> B of the water heat exchanger 34 via a circulation pump 36. A hot water supply pipe 40 is connected to the upper part of the hot water storage tank 31, and a mixing valve 41 is provided in the hot water supply pipe 40. 42 is a water supply pipe provided with a pressure reducing valve 43 and connected to a water pipe. This water supply pipe 42 is branched and connected to the lower part of the hot water storage tank 31 and the mixing valve 41, and further via the replenishing water opening / closing valve 44. It is connected to the expansion tank 8.

そして、前記貯湯タンク31には、湯温検出センサ45が設けられ、沸き上げ可能温度が85℃までのため、前記湯温検出センサ45の検出湯温が55℃以上の場合には残湯ありと判断し、55℃未満の場合には湯切れ寸前の緊急事態と判断される。このとき、湯温検出センサ45の配置箇所は使用できる残湯量が例えば50リットルの位置である。   The hot water storage tank 31 is provided with a hot water temperature detection sensor 45. Since the boiling temperature is up to 85 ° C., there is residual hot water when the hot water temperature detected by the hot water temperature detection sensor 45 is 55 ° C. or higher. If the temperature is lower than 55 ° C., it is determined that the emergency is about to run out. At this time, the location where the hot water temperature detection sensor 45 is disposed is a position where the amount of remaining hot water that can be used is 50 liters, for example.

なお、部屋が暖まってくると、床暖房パネル1、2ではそれほど放熱されなくなり、膨張タンク8から第1水冷媒熱交換器9へは50〜60℃の高温水が供給されることとなるため、第1水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となり、圧縮機21に高負荷が掛かることとなる。そこで、高温となった冷媒の冷却機構として前記第1水冷媒熱交換器9の他に設けたのが前記内部熱交換器25である。この内部熱交換器25での放熱分は同じ冷媒回路R内の空気熱交換器28を通過した後の冷媒に取込まれるので、冷媒回路Rの吸熱効率をも向上させている。さらに、サーミスタ50は冷媒が所定の高温度に達したことを検知すると、圧縮機21の保護のため、この圧縮機21を停止させるように制御するためのものである。   When the room is warmed up, the floor heating panels 1 and 2 do not radiate much heat, and high temperature water of 50 to 60 ° C. is supplied from the expansion tank 8 to the first water refrigerant heat exchanger 9. The first water refrigerant heat exchanger 9 does not exchange much heat, the refrigerant temperature becomes high, and a high load is applied to the compressor 21. Therefore, the internal heat exchanger 25 is provided in addition to the first water refrigerant heat exchanger 9 as a cooling mechanism for the refrigerant having reached a high temperature. Since the heat radiation in the internal heat exchanger 25 is taken into the refrigerant after passing through the air heat exchanger 28 in the same refrigerant circuit R, the heat absorption efficiency of the refrigerant circuit R is also improved. Further, the thermistor 50 is for controlling the compressor 21 to be stopped in order to protect the compressor 21 when detecting that the refrigerant has reached a predetermined high temperature.

なお、46は台所リモートコントローラ(以下、「台所リモコン」という)、47は風呂リモートコントローラ(以下、「風呂リモコン」という)である。   Reference numeral 46 is a kitchen remote controller (hereinafter referred to as “kitchen remote control”), and 47 is a bath remote controller (hereinafter referred to as “bath remote control”).

また、ヒートポンプユニットAとタンクユニットBにはそれぞれプリント基板K1、K2が配設され、このプリント基板K1にはマイクロコンピュータから成る制御装置(制御手段)S1が搭載され、またプリント基板K2にはタイマTが接続されたマイクロコンピュータから成る制御装置(制御手段)S2が搭載されている。   The heat pump unit A and the tank unit B are provided with printed circuit boards K1 and K2, respectively. The printed circuit board K1 is equipped with a control device (control means) S1 composed of a microcomputer, and the printed circuit board K2 has a timer. A control device (control means) S2 comprising a microcomputer to which T is connected is mounted.

次に、前記第1水冷媒熱交換器9について、図2乃至図5に基づき説明する。57は前記ヒートポンプユニット本体51の裏面に設けられたタンクユニットBとの間で前記第1温水循環路C1を形成するための温水入口継手で、58は同じく温水出口継手である。前記温水入口継手57に連通する温水往き管60と内部熱交換器25の一次流路25Aに連通する複数本の冷媒戻り管64とはジョイント61で連結されて多重管62を構成し、この多重管62の他端部はジョイント63を介して温水出口継手58に連通する温水戻り管67と前記第1開閉弁23を介して圧縮機21に一端が連通する複数本の冷媒往き管65とに分岐する。   Next, the first water refrigerant heat exchanger 9 will be described with reference to FIGS. 57 is a hot water inlet joint for forming the first hot water circulation path C1 with the tank unit B provided on the back surface of the heat pump unit main body 51, and 58 is a hot water outlet joint. A hot water outlet pipe 60 communicating with the hot water inlet joint 57 and a plurality of refrigerant return pipes 64 communicating with the primary flow path 25A of the internal heat exchanger 25 are connected by a joint 61 to form a multiple pipe 62. The other end of the pipe 62 is connected to a hot water return pipe 67 that communicates with the hot water outlet joint 58 via the joint 63 and a plurality of refrigerant forward pipes 65 that communicate with the compressor 21 via the first on-off valve 23. Branch.

前記ジョイント63のA−A断面図である図4に示すように、この多重管は内部に冷媒(熱媒体)が流れる例えば3本(複数)の銅製の熱交換パイプ70(各冷媒流路9Aを構成する)と、この各熱交換パイプ70を離れた状態で被覆して保持する銅製の伝熱管71と、この伝熱管71の外方に比較的大きな間隔を存して配設されこの伝熱管71との間に温水(被熱交換液)が流れるように水流路9Bを形成する銅製の外管72とから構成され、冷媒の流れと温水の流れは逆であって向流(対向流)である。この場合、並流(平行流)とすると冷媒と温水との平均温度差が対向流よりも小さく過熱部が長くなり、熱交換率が向流(対向流)に対して良好でないため、向流(対向流)としたものである。   As shown in FIG. 4, which is a cross-sectional view taken along the line AA of the joint 63, for example, three (a plurality) copper heat exchange pipes 70 (each refrigerant flow path 9A) through which the refrigerant (heat medium) flows are disposed in the multiple pipe. And a heat transfer pipe 71 made of copper that covers and holds the heat exchange pipes 70 in a separated state, and the heat transfer pipe 71 is disposed outside the heat transfer pipe 71 with a relatively large interval. It is composed of a copper outer pipe 72 that forms a water flow path 9B so that hot water (heat exchange liquid) flows between the heat pipe 71 and the refrigerant flow and the hot water flow are opposite to each other. ). In this case, if the parallel flow (parallel flow) is used, the average temperature difference between the refrigerant and the hot water is smaller than the counter flow and the superheated part becomes longer, and the heat exchange rate is not good with respect to the counter flow (counter flow). (Opposite flow).

前記多重管62も図5に示すように、内部に冷媒(熱媒体)が流れる例えば3本(複数)の銅製の熱交換パイプ70(各冷媒流路9Aを構成する)と、この各熱交換パイプ70を離れた状態で被覆して保持する銅製の伝熱管71と、この伝熱管71の外方に僅かな間隔を存して配設されこの伝熱管71との間に温水(被熱交換液)が流れるように水流路9Bを形成する銅製の外管73とから構成され、冷媒の流れと温水の流れは逆であって向流(対向流)である。   As shown in FIG. 5, for example, three (plural) copper heat exchange pipes 70 (which constitute each refrigerant flow path 9 </ b> A) through which the multiple pipes 62 flow (refrigerant (heat medium)) and the respective heat exchanges. A copper heat transfer tube 71 that covers and holds the pipe 70 in a separated state, and hot water (heat exchange) is provided between the heat transfer tube 71 and the heat transfer tube 71. The copper outer tube 73 forms the water flow path 9B so that the liquid flows, and the refrigerant flow and the hot water flow are opposite to each other and are countercurrent (counterflow).

なお、前記外管72、73は断面が中空円筒形状ではあるが、これに限らず中空楕円筒形状などのその他の形状でもよい。   The outer tubes 72 and 73 have a hollow cylindrical shape in cross section, but are not limited to this and may have other shapes such as a hollow elliptical cylindrical shape.

そして、前記制御装置S1、S2は床暖房リモコン3、4、浴室暖房リモコン14、台所リモコン46、風呂リモコン47からの運転信号やサーミスタ12、17、18、33、50の温度信号とに応じて、圧縮機21の運転及び周波数制御、循環ポンプ7、32の運転制御、熱動弁5、6、16の開閉制御、膨張弁26、27の開度制御などを行うものであり、以下その動作を説明する。   The control devices S1 and S2 correspond to the operation signals from the floor heating remote controllers 3 and 4, the bathroom heating remote controller 14, the kitchen remote controller 46 and the bath remote controller 47 and the temperature signals of the thermistors 12, 17, 18, 33 and 50. The operation and frequency control of the compressor 21, the operation control of the circulation pumps 7 and 32, the opening and closing control of the thermal valves 5, 6 and 16, the opening degree control of the expansion valves 26 and 27, etc. Will be explained.

〈給湯運転〉
台所リモコン46や風呂リモコン47からの運転信号が制御装置S2に入力されると、その信号が制御装置S2から制御装置S1に伝達され、貯湯タンク31への貯湯が行なわれる。即ち、制御装置S1により循環ポンプ32が運転し、第2温水循環路C2では、貯湯タンク31→循環ポンプ32→第2水冷媒熱交換器22の水流路22B→貯湯タンク31の順に給湯用の温水が流れ、貯湯タンク31内に貯湯される。
<Hot-water supply operation>
When an operation signal from the kitchen remote controller 46 or the bath remote controller 47 is input to the control device S2, the signal is transmitted from the control device S2 to the control device S1, and hot water is stored in the hot water storage tank 31. That is, the circulation pump 32 is operated by the control device S1, and in the second hot water circulation path C2, the hot water storage tank 31 → the circulation pump 32 → the water flow path 22B of the second water refrigerant heat exchanger 22 → the hot water storage tank 31 in this order. Hot water flows and the hot water is stored in the hot water storage tank 31.

一方、ヒートポンプユニットAでは制御装置S1が圧縮機21を運転させて、第2開閉弁24及び貯湯用の膨張弁27を開かせ、冷媒回路Rでは、圧縮機21→第2開閉弁24→貯湯用の第2水冷媒熱交換器22の冷媒流路22A→貯湯用の膨張弁27→空気熱交換器28→内部熱交換器25のニ次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。このとき、暖房は行われないので、第1開閉弁23及び暖房用の膨張弁26は閉じている。   On the other hand, in the heat pump unit A, the control device S1 operates the compressor 21 to open the second opening / closing valve 24 and the hot water storage expansion valve 27. In the refrigerant circuit R, the compressor 21 → second opening / closing valve 24 → hot water storage. Refrigerant flow path 22A of the second water refrigerant heat exchanger 22 for hot water → expansion valve 27 for hot water storage → air heat exchanger 28 → secondary flow path 25B of the internal heat exchanger 25 → accumulator 29 → compressor 21 in this order. The refrigerant flows. At this time, since heating is not performed, the first on-off valve 23 and the heating expansion valve 26 are closed.

貯湯タンク31へ供給される温水温度は65℃〜85℃であるが、サーミスタ33が検知する温度がこの温度になるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。   The temperature of the hot water supplied to the hot water storage tank 31 is 65 ° C. to 85 ° C. The frequency of the compressor 21 is controlled so that the temperature detected by the thermistor 33 becomes this temperature, and the valve opening of the expansion valve 27 for hot water storage. Control is performed by the control device S1.

貯湯タンク31に貯湯された高温水は給水管42からの15℃程度の水道水が加えられミキシングバルブ41にて適度な温度に調整され、給湯管40から台所や浴槽37へのお湯張り等に利用される。そして、給湯が行われると、給水管42から貯湯タンク31に給水が行われる。また、循環ポンプ35、36を運転することにより、貯湯タンク31の高温水と浴槽37の温水を追焚用の水々熱交換器34で熱交換し、浴槽37の温水の追焚きを行うこともできる。   The hot water stored in the hot water storage tank 31 is added with tap water of about 15 ° C. from the water supply pipe 42, adjusted to an appropriate temperature by the mixing valve 41, and filled with hot water from the hot water supply pipe 40 to the kitchen or bathtub 37. Used. When hot water is supplied, water is supplied from the water supply pipe 42 to the hot water storage tank 31. In addition, by operating the circulation pumps 35 and 36, the hot water in the hot water storage tank 31 and the hot water in the bathtub 37 are exchanged by the water heat exchanger 34 for replenishment, and the hot water in the bathtub 37 is replenished. You can also.

以上のような通常の給湯運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば効率の良い6.0kW程度となるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。しかし、使用できる残湯量が50リットルとなって、前記湯温検出センサ45による検出湯温が55℃未満となって湯切れ寸前の緊急事態と判断され場合には、ヒートポンプユニットAの圧縮機21の能力が、9.0kWとなるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。   In the case of the normal hot water supply operation as described above, the frequency control of the compressor 21 is performed so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW becomes, for example, about 6.0 kW which is efficient. The valve opening control of the hot water storage expansion valve 27 is performed by the control device S1. However, if the amount of remaining hot water that can be used is 50 liters, the hot water temperature detected by the hot water temperature detection sensor 45 is less than 55 ° C., and it is determined that there is an emergency just before the hot water runs out, the compressor 21 of the heat pump unit A The control device S1 performs frequency control of the compressor 21 and control of the opening degree of the expansion valve 27 for hot water storage so that the capacity becomes 9.0 kW.

〈床暖房運転〉
次に、床暖房パネル1又は2による床暖房を行う場合、その部屋の壁面等に取り付けられた床暖房リモコン3又は4の運転スイッチをオンにする。すると、運転信号を受けた制御装置S2によりこれに対応した熱動弁5又は6が徐々に開かれ、循環ポンプ7が運転する。従って、この熱動弁5又は6が完全に開かれるまでの間は(全開までの間)、制御装置S2はバイパス弁11を例えば半開状態となるように制御する。
<Floor heating operation>
Next, when performing floor heating by the floor heating panel 1 or 2, the operation switch of the floor heating remote control 3 or 4 attached to the wall surface or the like of the room is turned on. Then, the control valve S2 that has received the operation signal gradually opens the corresponding thermal valve 5 or 6 and the circulation pump 7 operates. Therefore, until the thermal valve 5 or 6 is fully opened (until fully opened), the control device S2 controls the bypass valve 11 to be in a half-open state, for example.

即ち、前記熱動弁5又は6は開き動作を開始してから全開状態となるのに所定時間が掛かるので、タイマTにその時間を設定して、この設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。   That is, since it takes a predetermined time for the thermal valve 5 or 6 to be fully opened after starting the opening operation, the time is set in the timer T, and the timer T determines the elapse of the set predetermined time. When the time is counted, the control device S2 controls the bypass valve 11 so as to be changed from the half-open state to the closed state.

このため、前記タイマTが計時を開始して所定時間を経過するまでの間は、制御装置S2はバイパス弁11を半開状態となるように制御し、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→バイパス弁(半開状態)11→膨張タンク8の順に温水が流れる。   For this reason, the control device S2 controls the bypass valve 11 to be in a half-open state until the predetermined time elapses after the timer T starts counting, and in the first hot water circulation path C1, the expansion tank 8 The hot water flows in the order of the circulation pump 7, the water flow path 9 B of the first water refrigerant heat exchanger 9, the bypass valve (half-open state) 11, and the expansion tank 8.

そして、設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。このため、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に温水が流れ、高温水全てを床暖房パネル1又は2に供給することができる。   Then, when the timer T counts the set predetermined time, the control device S2 controls the bypass valve 11 so as to change from the half-open state to the closed state. Therefore, in the first hot water circulation path C1, the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water refrigerant heat exchanger 9 → the thermal valve 5 or 6 → the floor heating panel 1 or 2 → the expansion tank 8 Hot water flows in sequence, and all of the hot water can be supplied to the floor heating panel 1 or 2.

一方、前記床暖房リモコン3又は4の運転スイッチをオンにした際に、制御装置S2から運転信号が伝達された制御装置S1によりヒートポンプユニットAの圧縮機21が運転すると共に第1開閉弁23が開き、冷媒回路Rでは、圧縮機21→第1開閉弁23→暖房用の第1水冷媒熱交換器9の冷媒流路9A→内部熱交換器25の一次流路25A→暖房用の膨張弁26→空気熱交換器28→内部熱交換器25の二次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。このとき、貯湯は行われないので、第2開閉弁24及び貯湯用の膨張弁27は閉じており、貯湯用の水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   On the other hand, when the operation switch of the floor heating remote controller 3 or 4 is turned on, the compressor 21 of the heat pump unit A is operated by the control device S1 to which the operation signal is transmitted from the control device S2, and the first on-off valve 23 is In the refrigerant circuit R, the compressor 21 → the first on-off valve 23 → the refrigerant flow path 9A of the first water / refrigerant heat exchanger 9 for heating → the primary flow path 25A of the internal heat exchanger 25 → the expansion valve for heating The refrigerant flows in the order of 26 → air heat exchanger 28 → secondary flow path 25B of internal heat exchanger 25 → accumulator 29 → compressor 21. At this time, since hot water is not stored, the second on-off valve 24 and the hot water expansion valve 27 are closed, and no refrigerant flows through the primary flow path 22A of the hot water water refrigerant heat exchanger 22.

上記の場合、前記第1水冷媒熱交換器9において、前記多重管62は内部に冷媒が流れる複数の熱交換パイプ70(各冷媒流路9Aを構成する)と、この各熱交換パイプ70を離れた状態で被覆して保持する伝熱管71と、この伝熱管71の外方に僅かな間隔を存して配設されこの伝熱管71との間に温水が流れるように水流路9Bを形成する外管73とから構成され、伝熱面積を多くし、熱ロス少なく、均一に熱交換できるようにして、尚一層の熱交換率の向上を図ることができ、前記循環ポンプ7の消費電力が減少し、省エネとなる。   In the above case, in the first water refrigerant heat exchanger 9, the multiple pipe 62 includes a plurality of heat exchange pipes 70 (which constitute each refrigerant flow path 9 </ b> A) through which the refrigerant flows, and the heat exchange pipes 70. The heat transfer pipe 71 that is covered and held in a separated state and the water flow path 9B is formed so that warm water flows between the heat transfer pipe 71 and the heat transfer pipe 71 with a slight space therebetween. The outer heat pump 73 is configured to increase heat transfer area, reduce heat loss and allow uniform heat exchange, and further improve the heat exchange rate. Is reduced and energy is saved.

前記床暖房パネル1又は2に供給される温水の温度は60〜70℃であるが、サーミスタ12が検知する温水温度がこの温度になるように圧縮機21の周波数制御、暖房用の膨張弁26の弁開度制御が制御装置S1により行われる。   The temperature of the hot water supplied to the floor heating panel 1 or 2 is 60 to 70 ° C., but the frequency control of the compressor 21 and the heating expansion valve 26 are performed so that the temperature of the hot water detected by the thermistor 12 becomes this temperature. Is controlled by the control device S1.

また、床暖房制御は、床暖房リモコン3又は4に搭載された室温サーミスタ(図示せず)により室温を検知し、設定温度と室温との偏差に基づき熱動弁5又は6を開閉制御し、床暖房パネル1又は2への温水量を制御装置S2が制御する。   In addition, the floor heating control detects the room temperature by a room temperature thermistor (not shown) mounted on the floor heating remote controller 3 or 4, and controls the opening or closing of the thermal valve 5 or 6 based on the deviation between the set temperature and the room temperature. The control device S2 controls the amount of hot water to the floor heating panel 1 or 2.

また、床暖房パネル1及び2で同時に床暖房を行う場合、床暖房リモコン3及び4の運転スイッチをオンにすることにより、同様に熱動弁5及び6が開閉制御され、床暖房パネル1及び2に温水が供給され、床暖房パネル1及び2への温水量を個別に制御することにより、床暖房の個別制御が可能となっている。   In addition, when floor heating is simultaneously performed on the floor heating panels 1 and 2, the operation valves of the floor heating remote controllers 3 and 4 are turned on to similarly control the opening and closing of the thermal valves 5 and 6, so that the floor heating panel 1 and Warm water is supplied to 2 and individual control of floor heating is possible by individually controlling the amount of warm water to the floor heating panels 1 and 2.

このような床暖房運転を行う場合、床暖房する部屋が暖まってくると、床暖房パネル1、2からの放熱量が小さくなり、膨張タンク8から水冷媒熱交換器9の水流路9Bへは50〜60℃の温水が供給されることとなる。このため、水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となって圧縮機21に負荷がかかる。このような場合の冷媒の冷却機構として設けたのが内部熱交換器25であり、内部熱交換器25の一次流路25Aでの放熱分は同じ冷媒回路Rにある内部熱交換器25の二次流路25Bで再度吸収されるため、無駄なく、効率を落とすことなく、冷媒回路Rを構成できる。   When such a floor heating operation is performed, when the floor heating room is warmed, the amount of heat released from the floor heating panels 1 and 2 is reduced, and the expansion tank 8 to the water flow path 9B of the water refrigerant heat exchanger 9 50-60 degreeC warm water will be supplied. For this reason, the water refrigerant heat exchanger 9 does not exchange much heat, and the refrigerant temperature becomes high and a load is applied to the compressor 21. The internal heat exchanger 25 is provided as a cooling mechanism for the refrigerant in such a case, and the heat release in the primary flow path 25A of the internal heat exchanger 25 is two of the internal heat exchanger 25 in the same refrigerant circuit R. Since it is absorbed again by the next flow path 25B, the refrigerant circuit R can be configured without waste and without reducing efficiency.

〈浴室暖房運転〉
次に、ファンコイル13による浴室の温風暖房を行う場合、浴室暖房リモコン14の運転スイッチをオンにする。すると、制御装置S2はファンコイル13入口部の熱動弁15を開くと共に前記バイパス弁11を半開状態となるように制御し、循環ポンプ7を運転させるように制御する。従って、第1温水循環路C1では、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→バイパス弁11(半開状態)→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。
<Bathroom heating operation>
Next, when performing hot air heating of the bathroom by the fan coil 13, the operation switch of the bathroom heating remote controller 14 is turned on. Then, the control device S2 opens the thermal valve 15 at the inlet of the fan coil 13 and controls the bypass valve 11 to be in a half-open state, thereby controlling the circulation pump 7 to operate. Accordingly, in the first hot water circulation path C1, the hot water flows in the order of the expansion tank 8, the circulation pump 7, the water flow path 9B of the first water refrigerant heat exchanger 9 for heating, the bypass valve 11 (half-open state), and the expansion tank 8. At the same time, the hot water flows in the order of the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water-refrigerant heat exchanger 9 for heating → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転と同様であり、貯湯は行われないので、第2開閉弁24及び熱動弁27は閉じており、水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as in the floor heating operation, and hot water is not stored. Therefore, the second on-off valve 24 and the thermal valve 27 are closed, and the primary flow path 22A of the water-refrigerant heat exchanger 22 is closed. Does not flow refrigerant.

前記ファンコイル21に供給される温水の温度は80℃であるが、そのための温水制御は床暖房運転の場合と同様である。また、制御装置S2による浴室暖房制御はファンコイル13に搭載された室温サーミスタ(図示せず)により室温を検知し、ファン回転数を制御し、熱動弁15を開閉制御することにより行われる。   The temperature of the hot water supplied to the fan coil 21 is 80 ° C., and the hot water control for that is the same as in the floor heating operation. Further, the bathroom heating control by the control device S2 is performed by detecting the room temperature by a room temperature thermistor (not shown) mounted on the fan coil 13, controlling the fan rotational speed, and controlling the opening and closing of the thermal valve 15.

以上のような床暖房運転又は浴室暖房運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、暖房用の膨張弁26の弁開度制御が制御装置S1により行われる。   In the case of floor heating operation or bathroom heating operation as described above, the frequency control of the compressor 21 is performed so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW is, for example, about 7.0 kW. The valve opening control of the heating expansion valve 26 is performed by the control device S1.

〈床暖房と浴室暖房の同時運転〉
床暖房パネル1、2による床暖房と、ファンコイル13による浴室温風暖房を同時に行う場合、それぞれのリモコン3、4、14の運転スイッチをオンにする。すると、運転信号を受けた制御装置S2によりこれに対応した熱動弁5又は6が徐々に開かれると共に熱動弁15が開き、循環ポンプ7が運転する。従って、制御装置S2は前記熱動弁5又は6が完全に開かれるまでの間、即ち前記タイマTによる所定時間が経過するまでの間はバイパス弁11を半開状態となるように制御する。
<Simultaneous operation of floor heating and bathroom heating>
When floor heating by the floor heating panels 1 and 2 and bath room temperature heating by the fan coil 13 are performed simultaneously, the operation switches of the respective remote controllers 3, 4 and 14 are turned on. Then, the control valve S2 that has received the operation signal gradually opens the corresponding thermal valve 5 or 6 and opens the thermal valve 15 so that the circulation pump 7 operates. Therefore, the control device S2 controls the bypass valve 11 to be in a half-open state until the thermal valve 5 or 6 is completely opened, that is, until a predetermined time by the timer T elapses.

このため、前記タイマTが計時を開始して所定時間を経過するまでの間は、制御装置S2はバイパス弁11を半開状態となるように制御し、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→バイパス弁(半開状態)11→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。   For this reason, the control device S2 controls the bypass valve 11 to be in a half-open state until the predetermined time elapses after the timer T starts counting, and in the first hot water circulation path C1, the expansion tank 8 The hot water flows in the order of the circulation pump 7 → the water flow path 9B of the first water / refrigerant heat exchanger 9 → the bypass valve (half-open state) 11 → the expansion tank 8 and the expansion tank 8 → the circulation pump 7 → the first water for heating. Hot water flows in the order of the water flow path 9B of the refrigerant heat exchanger 9 → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

そして、設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。このため、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。   Then, when the timer T counts the set predetermined time, the control device S2 controls the bypass valve 11 so as to change from the half-open state to the closed state. Therefore, in the first hot water circulation path C1, the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water refrigerant heat exchanger 9 → the thermal valve 5 or 6 → the floor heating panel 1 or 2 → the expansion tank 8 While warm water flows in order, the warm water flows in the order of the expansion tank 8 → the circulation pump 7 → the water flow path 9 </ b> B of the first water refrigerant heat exchanger 9 for heating → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

このときのサーミスタ12による温水温度制御は80℃であるが、これでは床暖房パネル1、2用の温水としては温度が高すぎることになる。これを解決するために、混合熱動弁16を開くことで80℃の温水に膨張タンク8からの中温水を混ぜ、サーミスタ18にて検知される温水の温度が60〜70℃になるように制御している。また、中温水を混ぜすぎて低温になった場合は混合熱動弁16を閉じ、サーミスタ18の検知温度に基づく熱動弁16の開閉制御を制御装置S2が行う。   Although the hot water temperature control by the thermistor 12 at this time is 80 ° C., the temperature is too high as hot water for the floor heating panels 1 and 2. In order to solve this problem, the mixing heat valve 16 is opened to mix the warm water from the expansion tank 8 with the warm water at 80 ° C. so that the temperature of the warm water detected by the thermistor 18 is 60 to 70 ° C. I have control. Further, when the temperature of the medium temperature water becomes excessively low and the temperature becomes low, the mixing heat valve 16 is closed, and the control device S2 performs opening / closing control of the heat valve 16 based on the temperature detected by the thermistor 18.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転又は浴室暖房運転と同様であり、貯湯は行われないので、第2開閉弁24及び貯湯用の熱動弁27は閉じており、貯湯用の水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as the floor heating operation or the bathroom heating operation, and no hot water is stored. Therefore, the second on-off valve 24 and the thermal valve 27 for hot water storage are closed, and the hot water storage water is stored. The refrigerant does not flow in the primary flow path 22A of the refrigerant heat exchanger 22.

以上のような床暖房及び浴室暖房の同時運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、貯湯用の膨張弁26の弁開度制御が制御装置S1により行われる。   In the case of the simultaneous operation of floor heating and bathroom heating as described above, the frequency of the compressor 21 is set so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW is, for example, about 7.0 kW. Control and control of the opening degree of the expansion valve 26 for hot water storage are performed by the control device S1.

更には、図6のような第2の実施形態のように、前記多重管62を内部に冷媒が流れる複数の銅製の熱交換パイプ70(各冷媒流路9Aを構成する)と、この各熱交換パイプ70が夫々接した状態で被覆して保持する銅製の伝熱管74と、この伝熱管74の外方に所定間隔を存して配設されこの伝熱管74との間に温水が流れるように水流路9Bを形成する銅製の外管75とから構成してもよい。   Furthermore, as in the second embodiment as shown in FIG. 6, a plurality of copper heat exchange pipes 70 (which constitute each refrigerant flow path 9 </ b> A) through which refrigerant flows through the multiple pipe 62, and each of these heats. A copper heat transfer tube 74 that is covered and held in a state where the exchange pipes 70 are in contact with each other, and a predetermined interval is provided outside the heat transfer tube 74 so that hot water flows between the heat transfer tubes 74. Alternatively, a copper outer tube 75 that forms the water flow path 9B may be used.

この実施形態は、第1の実施形態よりは伝熱面積は小さくなるが、熱ロスも少なく、均一に熱交換でき、尚一層の熱交換率の向上を図ることができる。   Although this embodiment has a smaller heat transfer area than the first embodiment, the heat loss is also small, heat can be uniformly exchanged, and the heat exchange rate can be further improved.

なお、第1及び第2の実施形態では、第1水冷媒熱交換器9について、上述したような構成にしたが、これに限らず第2水冷媒熱交換器22も同様な構成にすることができる。この場合、従来は本実施形態の伝熱管71が無く、特別な漏れ検知用管を設けて、冷媒が熱交換パイプ70から漏れて外管72、73、75との間の給湯水が流れる水流路9B中に混入するという問題について対処していたが、かかる問題も伝熱管71で解消することができる。   In the first and second embodiments, the first water refrigerant heat exchanger 9 is configured as described above. However, the present invention is not limited to this, and the second water refrigerant heat exchanger 22 is configured similarly. Can do. In this case, conventionally, there is no heat transfer tube 71 of this embodiment, a special leak detection tube is provided, and the coolant leaks from the heat exchange pipe 70 so that hot water flows between the outer tubes 72, 73, and 75. Although the problem of being mixed in the passage 9B has been dealt with, such a problem can also be solved by the heat transfer tube 71.

以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。   Although the embodiments of the present invention have been described above, various alternatives, modifications, and variations can be made by those skilled in the art based on the above description, and the various alternatives and modifications described above are within the scope of the present invention. Or a modification is included.

ヒートポンプ式給湯暖房装置の全体系統図である。It is a whole system diagram of a heat pump type hot water supply and heating device. 第1水冷媒熱交換器の正面図である。It is a front view of the 1st water refrigerant heat exchanger. 第1水冷媒熱交換器の右側面図である。It is a right view of a 1st water refrigerant | coolant heat exchanger. 図3のA−A断面図である。It is AA sectional drawing of FIG. 多重管の断面図である。It is sectional drawing of a multiple tube. 第2の実施形態の多重管の断面図である。It is sectional drawing of the multiple tube of 2nd Embodiment.

符号の説明Explanation of symbols

7 循環ポンプ
9 第1水冷媒熱交換器
21 圧縮機
22 第2水冷媒熱交換器
26 暖房用の膨張弁
27 貯湯用の膨張弁
31 貯湯タンク
32 循環ポンプ
62 多重管
70 熱交換パイプ
71 伝熱管
72、73、75 外管
A ヒートポンプユニット
B タンクユニット
C1 温水暖房用の第1温水循環路
C2 貯湯用の第2温水循環路
R 冷媒回路
7 Circulation Pump 9 First Water Refrigerant Heat Exchanger 21 Compressor 22 Second Water Refrigerant Heat Exchanger 26 Heating Expansion Valve 27 Hot Water Storage Expansion Valve 31 Hot Water Storage Tank 32 Circulation Pump 62 Multiple Tube 70 Heat Exchange Pipe 71 Heat Transfer Tube 72, 73, 75 Outer pipe A Heat pump unit B Tank unit C1 First hot water circuit for hot water heating C2 Second hot water circuit for hot water storage R Refrigerant circuit

Claims (6)

内部に熱媒体が流れる複数の熱交換パイプと、この複数の熱交換パイプを被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に被熱交換液が流れるように流路を形成する外管とから成ることを特徴とする熱交換器。   A plurality of heat exchange pipes through which a heat medium flows, a heat transfer pipe that covers and holds the plurality of heat exchange pipes, and a heat exchange liquid between the heat transfer pipes that are located outside the heat transfer pipes A heat exchanger comprising an outer tube that forms a flow path so as to flow. 内部に熱媒体が流れる複数の熱交換パイプと、この各熱交換パイプを離れた状態で被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に被熱交換液が流れるように流路を形成する外管とから成ることを特徴とする熱交換器。   A plurality of heat exchange pipes through which a heat medium flows, a heat transfer pipe that covers and holds the heat exchange pipes in a separated state, and a cover between the heat transfer pipes that are located outside the heat transfer pipes. A heat exchanger comprising an outer tube that forms a flow path so that the heat exchange liquid flows. 圧縮機、減圧装置、貯湯用の水冷媒熱交換器及び空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、前記水冷媒熱交換器と貯湯タンクとの間で循環ポンプにより温水を循環させる温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯装置において、前記水冷媒熱交換器を、内部に冷媒が流れる複数の熱交換パイプと、この複数の熱交換パイプを被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に水が流れるように流路を形成する外管とから構成したことを特徴とするヒートポンプ式給湯装置。   A heat pump unit having a refrigerant circuit in which a compressor, a pressure reducing device, a hot water refrigerant heat exchanger and an air heat exchanger are sequentially connected in an annular shape, and circulated between the water refrigerant heat exchanger and the hot water storage tank In a heat pump hot water supply apparatus comprising a tank unit having a hot water circulation path for circulating hot water by a pump, the water refrigerant heat exchanger includes a plurality of heat exchange pipes through which refrigerant flows, and the plurality of heat exchange pipes A heat pump type comprising: a heat transfer tube that covers and holds the heat transfer tube, and an outer tube that is located outside the heat transfer tube and forms a flow path so that water flows between the heat transfer tube and the heat transfer tube Hot water supply device. 圧縮機、減圧装置、貯湯用の水冷媒熱交換器及び空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、前記水冷媒熱交換器と貯湯タンクとの間で循環ポンプにより温水を循環させる温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯装置において、前記水冷媒熱交換器を、内部に冷媒が流れる複数の熱交換パイプと、この各熱交換パイプを離れた状態で被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に水が流れるように流路を形成する外管とから構成したことを特徴とするヒートポンプ式給湯装置。   A heat pump unit having a refrigerant circuit in which a compressor, a pressure reducing device, a hot water refrigerant heat exchanger and an air heat exchanger are sequentially connected in an annular shape, and circulated between the water refrigerant heat exchanger and the hot water storage tank In a heat pump hot water supply apparatus comprising a tank unit having a hot water circulation path for circulating hot water by a pump, the water refrigerant heat exchanger includes a plurality of heat exchange pipes through which refrigerant flows, and each of the heat exchange pipes. A heat transfer tube that is covered and held in a separated state, and an outer tube that is located outside the heat transfer tube and forms a flow path so that water flows between the heat transfer tube and the heat transfer tube. Heat pump type hot water supply device. 圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置において、前記第1水冷媒熱交換器又は第2水冷媒熱交換器を、内部に冷媒が流れる複数の熱交換パイプと、この複数の熱交換パイプを被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に水が流れるように流路を形成する外管とから構成したことを特徴とするヒートポンプ式給湯暖房装置。   A compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompressor, and a refrigerant circuit formed by sequentially connecting an air heat exchanger in an annular shape A heat pump unit comprising: an expansion tank; a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operating a first circulation pump; and the second water refrigerant heat exchange In the heat pump hot water supply and heating device comprising a tank unit having a second hot water circulation path for circulating hot water between the water heater and the hot water storage tank by the second circulation pump, the first water refrigerant heat exchanger or the second water The refrigerant heat exchanger includes a plurality of heat exchange pipes through which the refrigerant flows, a heat transfer pipe that covers and holds the plurality of heat exchange pipes, and a heat transfer pipe that is positioned outside the heat transfer pipe. Form a flow path so that water flows through Heat pump water heater heating apparatus characterized by being configured and an outer tube. 圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置において、前記第1水冷媒熱交換器又は第2水冷媒熱交換器を、内部に冷媒が流れる複数の熱交換パイプと、この各熱交換パイプを離れた状態で被覆して保持する伝熱管と、この伝熱管の外方に位置してこの伝熱管との間に水が流れるように流路を形成する外管とから構成したことを特徴とするヒートポンプ式給湯暖房装置。   A compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompressor, and a refrigerant circuit formed by sequentially connecting an air heat exchanger in an annular shape A heat pump unit comprising: an expansion tank; a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operating a first circulation pump; and the second water refrigerant heat exchange In the heat pump hot water supply and heating device comprising a tank unit having a second hot water circulation path for circulating hot water between the water heater and the hot water storage tank by the second circulation pump, the first water refrigerant heat exchanger or the second water The heat exchanger pipe includes a plurality of heat exchange pipes through which the refrigerant flows, a heat transfer pipe that covers and holds the heat exchange pipes in a separated state, and the heat transfer pipe located outside the heat transfer pipe. Flow path so that water flows between Heat pump water heater heating apparatus characterized by being configured and an outer tube forming.
JP2005041550A 2005-02-18 2005-02-18 Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device Expired - Fee Related JP4436771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005041550A JP4436771B2 (en) 2005-02-18 2005-02-18 Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005041550A JP4436771B2 (en) 2005-02-18 2005-02-18 Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device

Publications (2)

Publication Number Publication Date
JP2006226618A true JP2006226618A (en) 2006-08-31
JP4436771B2 JP4436771B2 (en) 2010-03-24

Family

ID=36988142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005041550A Expired - Fee Related JP4436771B2 (en) 2005-02-18 2005-02-18 Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device

Country Status (1)

Country Link
JP (1) JP4436771B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112683A (en) * 2008-11-10 2010-05-20 Denso Corp Heat pump cycle device
JP2010210157A (en) * 2009-03-11 2010-09-24 Hitachi Appliances Inc Water heater
JP2011501089A (en) * 2007-10-12 2011-01-06 スカンジナビアン エナジー エフィシェンシー カンパニー シーク エービー Heat pump equipment
CN102878834A (en) * 2012-10-11 2013-01-16 张伟 Open type communication and heat-absorption heat exchanger with headers and double-channel cold water pipes and manufacturing process for heat exchanger
CN103954152A (en) * 2014-05-03 2014-07-30 张伟 Inner multi-tube heating exchanger of round tube type header shell tube water storage and production process thereof
KR20150031578A (en) * 2013-09-16 2015-03-25 엘지전자 주식회사 An air conditioner
CN104879914A (en) * 2015-05-26 2015-09-02 谭长清 Multifunctional horizontal type hot blast stove
CN104990262A (en) * 2015-07-21 2015-10-21 河南巨烽生物能源开发有限公司 Biological particle hot-blast stove
CN105299902A (en) * 2015-12-12 2016-02-03 于希敏 Heat exchange coil pipe type efficient heating furnace allowing scales to be removed easily
CN104266360B (en) * 2014-09-26 2017-02-08 海门黄海创业园服务有限公司 Twin coiled tube type heat exchange water tank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758231B (en) * 2016-05-02 2017-08-25 山东利能换热器有限公司 Pipe communicating portion package water storage is heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8950203B2 (en) 2007-10-12 2015-02-10 Scandinavian Energy Efficiency Co. Seec Ab Heat pump device
JP2011501089A (en) * 2007-10-12 2011-01-06 スカンジナビアン エナジー エフィシェンシー カンパニー シーク エービー Heat pump equipment
JP2010112683A (en) * 2008-11-10 2010-05-20 Denso Corp Heat pump cycle device
JP2010210157A (en) * 2009-03-11 2010-09-24 Hitachi Appliances Inc Water heater
CN102878834A (en) * 2012-10-11 2013-01-16 张伟 Open type communication and heat-absorption heat exchanger with headers and double-channel cold water pipes and manufacturing process for heat exchanger
KR20150031578A (en) * 2013-09-16 2015-03-25 엘지전자 주식회사 An air conditioner
KR102136878B1 (en) * 2013-09-16 2020-07-23 엘지전자 주식회사 An air conditioner
CN103954152A (en) * 2014-05-03 2014-07-30 张伟 Inner multi-tube heating exchanger of round tube type header shell tube water storage and production process thereof
CN104266360B (en) * 2014-09-26 2017-02-08 海门黄海创业园服务有限公司 Twin coiled tube type heat exchange water tank
CN104879914A (en) * 2015-05-26 2015-09-02 谭长清 Multifunctional horizontal type hot blast stove
CN104879914B (en) * 2015-05-26 2017-05-10 谭长清 Multifunctional horizontal type hot blast stove
CN104990262A (en) * 2015-07-21 2015-10-21 河南巨烽生物能源开发有限公司 Biological particle hot-blast stove
CN105299902A (en) * 2015-12-12 2016-02-03 于希敏 Heat exchange coil pipe type efficient heating furnace allowing scales to be removed easily

Also Published As

Publication number Publication date
JP4436771B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP4436771B2 (en) Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device
JP4893070B2 (en) Return hot water recovery method and hot water supply system
JP4215699B2 (en) Heat pump water heater / heater
JP4715439B2 (en) Heat pump water heater
JP2005345006A (en) Heat pump type hot water heating device
JP2004218912A (en) Heat pump type hot water heating device
JP3869804B2 (en) Heat pump water heater / heater
JP2006046877A (en) Heat pump type hot water supply/heating system
JP3869798B2 (en) Heat pump water heater / heater
JP4045352B2 (en) Water heater
JP4215661B2 (en) Heat pump water heater / heater
JP5423558B2 (en) Hot water storage water heater
JP2016164472A (en) Heat source device
JP2005257161A (en) Heat pump type hot water supply heater
JP3869801B2 (en) Heat pump water heater / heater
JP4279725B2 (en) Heat pump water heater / heater
JP2004218911A (en) Heat pump type hot-water supply heating device
JP4148909B2 (en) Heat pump water heater / heater
JP2008082633A (en) Hot water supply device and plate type heat exchanger
JP2007003188A (en) Hot-water storage type hot-water supply device
JP2005274021A (en) Heat pump hot water supply heating device
JP6036579B2 (en) Water heater
JP4155162B2 (en) Hot water storage water heater
JP7235502B2 (en) Heat source device
JP2005055094A (en) Heat pump hot water supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091228

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees