JP2016164472A - Heat source device - Google Patents
Heat source device Download PDFInfo
- Publication number
- JP2016164472A JP2016164472A JP2015044777A JP2015044777A JP2016164472A JP 2016164472 A JP2016164472 A JP 2016164472A JP 2015044777 A JP2015044777 A JP 2015044777A JP 2015044777 A JP2015044777 A JP 2015044777A JP 2016164472 A JP2016164472 A JP 2016164472A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- hot water
- water supply
- heat exchanger
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 728
- 238000010438 heat treatment Methods 0.000 claims abstract description 546
- 239000007788 liquid Substances 0.000 claims description 219
- 238000003303 reheating Methods 0.000 claims description 50
- 239000002131 composite material Substances 0.000 claims description 40
- 239000000567 combustion gas Substances 0.000 claims description 36
- 238000011084 recovery Methods 0.000 claims description 10
- 239000008236 heating water Substances 0.000 claims description 3
- 238000002485 combustion reaction Methods 0.000 description 175
- 239000007789 gas Substances 0.000 description 56
- 238000005192 partition Methods 0.000 description 11
- 238000009835 boiling Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000003287 bathing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241000233855 Orchidaceae Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Details Of Fluid Heaters (AREA)
Abstract
Description
本発明は、暖房用と給湯用の液体流通管路を共通のバーナにより加熱する構成を備えた熱源装置に関するものである。 The present invention relates to a heat source device having a configuration in which a liquid circulation pipe for heating and hot water supply is heated by a common burner.
従来、例えば給湯交換器と風呂の追い焚き用の熱交換器とが一体化された一缶二水路型の熱交換器を備えて、その一缶二水路型の熱交換器を共通のバーナで加熱するタイプの熱源装置が用いられており、図13には、その一缶二水路型の熱交換器の断面構成が模式的に示されている(例えば特許文献1、参照)。 Conventionally, for example, a single-can two-water channel heat exchanger in which a hot-water supply exchanger and a heat exchanger for bathing are integrated is provided, and the single-can two-water channel heat exchanger is used with a common burner. A heating type heat source device is used, and FIG. 13 schematically shows a cross-sectional configuration of the single-can two-water channel heat exchanger (see, for example, Patent Document 1).
同図に示されるように、この一缶二水路型の熱交換器201は、給湯熱交換器を形成する給湯用伝熱管141が追い焚き用の熱交換器を形成する循環加熱用伝熱管142を上下に挟む態様で互いに接して設けられており、同図においては、これらの伝熱管141,142の外周側に共通のフィン43が設けられている。この一缶二水路型の熱交換器1においては、同図の矢印Aに示されるように、最下段に配置された給湯用伝熱管141の一端側から水が導入され、バーナによって加熱された水が最上段に配置された給湯用伝熱管141を通って導出されて給湯が行われると共に、風呂の追い焚き時には、中央段の循環加熱用伝熱管142を通る湯水が前記バーナによって加熱される。
As shown in the figure, this one-can two-water channel
このような一缶二水路型の熱交換器201を設けて熱源装置を形成すると、風呂用の熱交換器と給湯用の熱交換器とを個別に形成する場合に比べて熱源装置の小型化が図れるといった利点がある。
When the heat source device is formed by providing such a can-two-water channel
ところで、近年、温水マットや浴室乾燥機等の暖房装置に例えば温水等の液体の熱媒体を供給するために、暖房装置に接続される暖房回路を設けた熱源装置が広く用いられるようになってきている。このような暖房回路を有する熱源装置において、熱源装置の小型化を図るために、特許文献1に提案されているような構成において、風呂の追い焚き用の熱交換器の代わりに暖房装置に液体の熱媒体を供給するための暖房用の熱交換器を設けて一缶二水路型の熱交換器を形成することが考えられる。
Incidentally, in recent years, in order to supply a liquid heat medium such as hot water to a heating device such as a hot water mat or a bathroom dryer, a heat source device provided with a heating circuit connected to the heating device has been widely used. ing. In the heat source device having such a heating circuit, in order to reduce the size of the heat source device, in the configuration proposed in
つまり、例えば図13の構成にける追い焚き用の熱交換器を形成する循環加熱用伝熱管142の代わりに暖房用の熱交換器の伝熱管を設けることが考えられ、この場合、給湯用伝熱管141が暖房用の熱交換器の伝熱管を上下に挟む態様で設けられることになるが、そうすると、暖房能力は追い焚き能力と同程度しか得られないことになる。しかしながら、暖房に必要な能力は追い焚き能力よりも高い能力であるため、暖房の必要能力が不足してしまうといった問題が生じることになる。
That is, for example, it is conceivable to provide a heat transfer tube of a heat exchanger for heating instead of the
なお、給湯機能を備えた熱源装置においては、利用者は、台所や洗面所等での給湯利用や浴室でのシャワーを用いた給湯利用等を行うことになるが、特にシャワー利用時においては、利用者が設定した給湯設定温度の湯が利用者の操作に応じた十分な量だけシャワーノズルから出湯されることを強く望むものであり、湯の温度が低すぎたり湯の流量が少なすぎたりすると非常に不快に感じるものである。しかも、台所や洗面所等での給湯利用に比べ、浴室でのシャワーを用いた給湯利用時の流量は多めであるため、このような多めの給湯流量での給湯(出湯)時にも給湯設定温度の湯を給湯できるようにすることも、熱源装置において重要である。 In addition, in a heat source device equipped with a hot water supply function, the user will use hot water supply in the kitchen, washroom, etc. or hot water use using a shower in the bathroom, etc. It is strongly hoped that the hot water at the set temperature set by the user is discharged from the shower nozzle by a sufficient amount according to the user's operation, and the hot water temperature is too low or the hot water flow rate is too low. Then it feels very uncomfortable. Moreover, compared to using hot water in the kitchen or washroom, the flow rate when using hot water using a shower in the bathroom is larger, so the hot water supply temperature is set even when hot water is supplied with such a large hot water flow rate (outflow). It is also important in the heat source device to be able to supply hot water.
本発明は、上記課題を解決するためになされたものであり、その目的は、小型でも給湯能力と暖房能力とを十分に得ることができ、利用者が快適に利用できる熱源装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heat source device that can sufficiently obtain hot water supply capability and heating capability even in a small size and can be comfortably used by a user. It is in.
本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、給湯熱交換器と該給湯熱交換器によって液体の熱媒体である水を加熱して給湯先に給湯する機能を備えた給湯回路と、暖房用熱交換器と該暖房用熱交換器を通して液体の熱媒体を循環させる暖房用循環ポンプとを備えて暖房装置に接続される暖房回路とを有し、前記給湯熱交換器は該給湯熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの給湯熱交換器と前記燃焼ガスの潜熱を回収する潜熱回収用の給湯熱交換器とを有し、前記暖房用熱交換器は該暖房用熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの暖房用熱交換器と前記燃焼ガスの潜熱を回収する潜熱回収用の暖房用熱交換器とを有し、前記メインの給湯熱交換器の液体流通管路が前記メインの暖房用熱交換器の液体流通管路によって上下に挟まれる態様で互いに接して配設された二種管路配設部を少なくとも一部有して該二種管路配設部の二種の液体流通管路が共通のバーナ装置により加熱される構成を有する複合熱交換器を有し、前記メインの暖房用熱交換器の出側を前記潜熱回収用の給湯熱交換器と前記メインの給湯熱交換器との間と該メインの給湯熱交換器の出側とのいずれかに熱的に接続する給湯暖房熱的接続用液−水熱交換器が設けられ、前記暖房回路には熱媒体を前記潜熱回収用の暖房用熱交換器には通さずに循環させるための潜熱熱交バイパス通路が設けられて、前記暖房用循環ポンプの駆動により熱媒体を前記潜熱熱交バイパス通路と前記メインの暖房用熱交換器と前記給湯暖房熱的接続用液−水熱交換器とを通して循環させるバイパス経路が形成され、前記暖房回路の熱媒体の前記暖房装置への供給を行わずに給湯運転を行う給湯単独運転時に予め定められる経路切り替え条件が満たされたときには、前記暖房用循環ポンプの駆動による前記暖房回路の熱媒体循環経路を前記バイパス経路と前記潜熱回収用の暖房用熱交換器を通す経路との両方の経路に通して循環させる潜熱熱交経由経路とする経路切り替え制御手段が設けられている構成をもって課題を解決する手段としている。 In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention includes a hot water supply heat exchanger, a hot water supply circuit having a function of heating water that is a liquid heat medium by the hot water supply heat exchanger and supplying hot water to a hot water supply destination, a heating heat exchanger, And a heating circuit connected to a heating device, wherein the hot water supply heat exchanger is a liquid circulation forming the hot water supply heat exchanger. A main hot water supply heat exchanger for recovering sensible heat of the combustion gas of the burner device by a pipe line, and a hot water supply heat exchanger for recovering latent heat of the combustion gas, the heating heat exchanger comprising: A main heating heat exchanger for recovering sensible heat of the combustion gas of the burner device by a liquid flow line forming a heating heat exchanger, and a heating heat exchanger for recovering latent heat for recovering the latent heat of the combustion gas; A liquid circulation pipe of the main hot water supply heat exchanger Having at least a part of a two-type pipe arrangement part arranged in contact with each other in a mode sandwiched vertically by the liquid circulation pipe of the main heating heat exchanger. A liquid heat exchanger for the latent heat recovery is provided on the outlet side of the main heating heat exchanger. There is provided a liquid-water heat exchanger for hot water supply heating thermal connection that is thermally connected to either the main hot water supply heat exchanger or the outlet side of the main hot water heat exchanger, and the heating circuit Is provided with a latent heat exchange bypass passage for circulating the heat medium without passing through the heating heat exchanger for collecting latent heat, and the latent heat exchange bypass is provided by driving the circulation pump for heating. Passage, main heating heat exchanger and hot water heating / heating liquid-water When a bypass switching path that circulates through the exchanger is formed and a predetermined path switching condition is satisfied during hot water supply single operation in which hot water supply operation is performed without supplying the heating medium of the heating circuit to the heating device, The heat medium circulation path of the heating circuit driven by the heating circulation pump is a latent heat exchange path that is circulated through both the bypass path and the path through the latent heat recovery heating heat exchanger. A configuration in which route switching control means is provided serves as means for solving the problem.
また、第2の発明は、前記第1の発明の構成に加え、前記経路切り替え条件は、給湯単独運転時に要求される給湯要求能力が予め定められている経路切り替え基準値を超えたときとしたことを特徴とする。 Further, in the second invention, in addition to the configuration of the first invention, the route switching condition is set when the hot water supply request capability required at the time of hot water single operation exceeds a predetermined route switching reference value. It is characterized by that.
さらに、第3の発明は、前記第1または第2の発明の構成に加え、浴槽に接続されて浴槽の水を循環させる機能を備えた追い焚き循環回路を有し、該追い焚き循環回路の水の流通管路が追い焚き用液−水熱交換器を介して暖房回路の液体流通管路と熱的に接続されており、前記暖房回路には該暖房回路を循環する熱媒体の前記追い焚き用液−水熱交換器への導入の有無を弁の開閉により切り替える熱媒体導入切り替え弁が設けられ、前記暖房回路の前記熱媒体を潜熱熱交経由経路によって循環させるときに前記追い焚き循環回路における水の循環動作を停止したまま前記経路切り替え手段によって前記熱媒体導入切り替え弁を開いて前記追い焚き用液−水熱交換器に前記熱媒体を通して前記暖房回路に循環させる構成としたことを特徴とする。 Further, the third invention has a recirculation circuit connected to the bathtub and having a function of circulating water in the bathtub in addition to the configuration of the first or second invention, A water circulation line is thermally connected to the liquid circulation line of the heating circuit via a reheating liquid-water heat exchanger, and the heating medium is circulated through the heating circuit. A heating medium introduction switching valve is provided for switching presence / absence of introduction into the liquid / water heat exchanger for opening / closing by opening / closing a valve, and the recirculation circulation is performed when the heating medium in the heating circuit is circulated through a latent heat exchange route. The heat medium introduction switching valve is opened by the path switching means while the water circulation operation in the circuit is stopped, and the heating liquid is circulated to the heating circuit through the heat medium through the reheating liquid-water heat exchanger. Characterize
さらに、第4の発明は、前記第1または第2または第3の発明の構成に加え、前記給湯回路には該給湯回路を通って給湯される給湯の総水量を可変調節するための水量サーボが設けられていることを特徴とする。 Furthermore, the fourth aspect of the invention includes a water amount servo for variably adjusting the total amount of hot water supplied through the hot water supply circuit in the hot water supply circuit in addition to the configuration of the first, second or third invention. Is provided.
本発明によれば、給湯回路に設けられるメインの給湯熱交換器の液体流通管路が暖房回路に設けられるメインの暖房用熱交換器の液体流通管路によって上下に挟まれる態様で互いに接して配設された二種管路配設部を少なくとも一部有し、該二種管路配設部の二種の液体流通管路が共通のバーナ装置により加熱される複合熱交換器を有することから、メインの給湯熱交換器とメインの暖房用熱交換器をそれぞれ別々に形成して設ける場合に比べて熱源装置の小型化が可能となり、二種管路配設部においてメインの給湯熱交換器の液体流通管路の上下に設けられた暖房用熱交換器の液体流通管路をバーナ装置によって加熱して、十分な暖房能力を得られるようにすることができる。 According to the present invention, the liquid circulation pipes of the main hot water supply heat exchanger provided in the hot water supply circuit are in contact with each other in a manner sandwiched up and down by the liquid circulation pipes of the main heating heat exchanger provided in the heating circuit. It has a composite heat exchanger having at least a part of the arranged two-type pipe arrangement part and heating the two kinds of liquid circulation pipes of the two-type pipe arrangement part by a common burner device. Therefore, it is possible to reduce the size of the heat source device as compared with the case where the main hot water supply heat exchanger and the main heating heat exchanger are separately formed, and the main hot water supply heat exchange is performed in the two-type pipe arrangement portion. It is possible to heat the liquid flow conduits of the heat exchanger for heating provided above and below the liquid flow conduit of the heater by the burner device so that sufficient heating capacity can be obtained.
また、本発明においては、二種管路配設部における最下段(最下位置)の通路は暖房用の液体流通管路であり、この管路を流れる液体(熱媒体)は、加熱されて循環されている状態であれば温かく、また、その循環が停止されていても、給水側から冷たい水が導入される給湯用の液体流通管路のように冷たい状態であることは殆どないことから、複合熱交換器の液体流通管路に結露が発生することを防止できる。 In the present invention, the lowermost (lowermost position) passage in the two-type conduit arrangement portion is a liquid circulation conduit for heating, and the liquid (heat medium) flowing through the conduit is heated. Since it is warm if it is in a circulating state, and even if the circulation is stopped, it is rare that it is in a cold state like a liquid circulation pipe for hot water supply in which cold water is introduced from the water supply side. It is possible to prevent dew condensation from occurring in the liquid flow conduit of the composite heat exchanger.
なお、本発明においては、メインの給湯熱交換器の液体流通管路は、メインの暖房用熱交換器の液体流通管路によって上下に挟まれて設けられている構成部分においては、メインの給湯熱交換器の液体流通管路の配設割合がメインの暖房用熱交換器の液体流通管路の配設割合より少ないので、この構成部分の加熱のみでは給湯能力が不足することもあるが、それに対し、以下のような構成によって、その不足を十分に補うことができる。 In the present invention, the liquid flow conduit of the main hot water supply heat exchanger is disposed between the liquid flow conduits of the main heating heat exchanger so that the main hot water supply Since the arrangement ratio of the liquid circulation pipe of the heat exchanger is smaller than the arrangement ratio of the liquid circulation pipe of the main heating heat exchanger, the heating capacity may be insufficient only by heating of this component part, On the other hand, the shortage can be sufficiently compensated by the following configuration.
つまり、本発明では、給湯回路における潜熱回収用の給湯熱交換器とメインの給湯熱交換器との間と該メインの給湯熱交換器の出側のいずれかと、暖房回路のメインの暖房用熱交換器の出側とを熱的に接続する給湯暖房熱的接続用液−水熱交換器が設けられているので、必要に応じ、この給湯暖房熱的接続用液−水熱交換器を介して暖房回路の熱を給湯回路側に伝えることによって給湯能力の不足を補充することができる。 That is, in the present invention, either the hot water supply heat exchanger for recovering latent heat in the hot water supply circuit and the main hot water supply heat exchanger, the outlet side of the main hot water supply heat exchanger, or the main heating heat of the heating circuit. Since a liquid-water heat exchanger for hot water heating / heating is connected to the outlet side of the exchanger thermally, the liquid / water heat exchanger for hot water heating / heating is connected as necessary. By transmitting the heat of the heating circuit to the hot water supply circuit side, the lack of hot water supply capacity can be replenished.
なお、本発明では、暖房回路には暖房用熱交換器の潜熱回収用の熱交換器に熱媒体を通さずに循環させるための潜熱熱交バイパス通路を設けており、暖房用循環ポンプの駆動によって暖房回路を循環する熱媒体の循環経路として、前記潜熱熱交バイパス通路と、複合熱交換器を形成する暖房用の液体流通管路と、給湯暖房熱的接続用液−水熱交換器とを通して暖房回路の熱媒体を循環させるバイパス経路が形成されている。 In the present invention, the heating circuit is provided with a latent heat exchange bypass passage for circulating through the heat exchanger for recovering the latent heat of the heating heat exchanger without passing through the heat medium. As a circulation path of the heat medium that circulates through the heating circuit, the latent heat heat exchange bypass passage, a heating liquid circulation line forming a composite heat exchanger, a hot water heating / thermal connection liquid-water heat exchanger, and A bypass path for circulating the heat medium in the heating circuit is formed.
そして、前記暖房回路の熱媒体の前記暖房装置への供給を行わずに給湯運転を行う給湯単独運転時に予め定められる経路切り替え条件が満たされたときには、暖房用循環ポンプの駆動によって循環させる前記暖房回路の熱媒体の経路を、前記バイパス経路と前記潜熱回収用の暖房用熱交換器を通す経路との両方の経路に通して循環させる潜熱熱交経由経路とする経路切り替え制御手段が設けられているので、この経路切り替え制御手段の制御によって、以下の効果を奏することができる。 Then, when a predetermined path switching condition is satisfied during a hot water supply independent operation in which a hot water supply operation is performed without supplying the heating medium of the heating circuit to the heating device, the heating is circulated by driving a heating circulation pump. There is provided a path switching control means for making the path of the heat medium of the circuit a latent heat exchange route that circulates through both the bypass path and the path through the heating heat exchanger for recovering latent heat. Therefore, the following effects can be obtained by the control of the path switching control means.
つまり、前記の如く、給湯暖房熱的接続用液−水熱交換器を有する構成においては、給湯単独運転時に、暖房回路の熱媒体を給湯暖房熱的接続用液−水熱交換器に通して給湯暖房熱的接続用液−水熱交換器から給湯回路側へ熱を供給することにより、給湯能力の向上(足りない場合の補充も含む)を図ることができるが、その供給熱量は、給湯暖房熱的接続用液−水熱交換器に通して流れる熱媒体の温度が高くて流量が大きい方が大きくなる。 That is, as described above, in the configuration having the liquid-water heat exchanger for hot water supply / heating, when the hot water supply is operated alone, the heating medium of the heating circuit is passed through the liquid / water heat exchanger for hot water supply / heating thermal connection. By supplying heat to the hot water supply circuit from the liquid / water heat exchanger for hot water heating / heating thermal connection, it is possible to improve the hot water supply capacity (including replenishment in the case of a shortage). The temperature of the heat medium that flows through the heating-heat connection liquid-water heat exchanger is higher and the flow rate is larger.
そこで、例えば、前記経路切り替え条件を、暖房装置への熱媒体供給を行わずに給湯動作を行う給湯単独運転時に要求される給湯要求能力が予め定められている経路切り替え基準値を超えたときとし、暖房回路の熱媒体の循環経路を潜熱熱交経由経路として、バイパス経路と潜熱回収用の暖房用熱交換器を通して循環させる経路との両方を通して熱媒体を循環させるようにすると、給湯暖房熱的接続用液−水熱交換器を通る熱媒体の温度を高め、流量も大きくできる。 Therefore, for example, the route switching condition is when the hot water supply request capability required during hot water supply independent operation in which hot water supply operation is performed without supplying the heat medium to the heating device exceeds a predetermined route switching reference value. If the circulation path of the heating medium in the heating circuit is used as a latent heat exchange path, the heating medium is circulated through both the bypass path and the circulation path through the heating heat exchanger for latent heat recovery. The temperature of the heat medium passing through the connecting liquid-water heat exchanger can be increased and the flow rate can be increased.
つまり、暖房回路の熱媒体の経路を潜熱熱交経由経路として潜熱回収用の暖房用熱交換器にも通して循環させることによって、潜熱回収用の暖房用熱交換器によるバーナ装置の潜熱回収によって熱媒体の温度を高めることができることに加え、熱媒体の循環経路を、バイパス経路と潜熱回収用の暖房用熱交換器を通る経路との両方を通して循環させることにより、熱媒体をバイパス経路のみで循環させる場合に比べ、熱媒体の循環流量を大きくできる。 That is, by circulating the heat medium path of the heating circuit as a latent heat exchange path through the heating heat exchanger for recovering latent heat, the latent heat recovery of the burner device by the heating heat exchanger for recovering latent heat is performed. In addition to increasing the temperature of the heat medium, the heat medium can be circulated only through the bypass path by circulating the heat medium circulation path through both the bypass path and the path through the heating heat exchanger for latent heat recovery. The circulating flow rate of the heat medium can be increased as compared with the case of circulation.
そのため、例えば給湯単独運転時に暖房回路の加熱された熱媒体を循環させるときには暖房回路の熱媒体を潜熱熱交経由経路で循環させることを経路切り替え条件として定め、給湯単独運転時に暖房用のバーナ装置も燃焼させ、暖房回路の熱媒体を循環させるときには、その熱媒体の循環経路を潜熱熱交経由経路とすることによって、給湯暖房熱的接続用液−水熱交換器を介して暖房回路側から給湯回路側へ多くの熱を供給することができるようになる。 Therefore, for example, when circulating the heated heat medium of the heating circuit during the hot water supply single operation, it is determined as a route switching condition that the heat medium of the heating circuit is circulated through the latent heat exchange route, and the burner device for heating during the hot water supply single operation When the heating medium is circulated and the heating medium is circulated, the circulation path of the heating medium is used as a latent heat exchange path, so that from the heating circuit side through the liquid-water heat exchanger for hot water heating and thermal connection. A lot of heat can be supplied to the hot water supply circuit side.
このように、給湯単独運転時に暖房回路の加熱された熱媒体を潜熱熱交経由経路で循環させる構成を設けることにより、熱源装置に設ける給湯暖房熱的接続用液−水熱交換器を小型のものとしても給湯能力をより一層確実に発揮できるようになる。つまり、例えば給湯暖房熱的接続用液−水熱交換器を、液体を通過させる二重管路を有する熱交換器とする場合は、その二重管路の長さをより短くしても給湯能力を確実に発揮できるようになり、給湯暖房熱的接続用液−水熱交換器をプレート式熱交換器とする場合にはプレートの枚数をより少なくしても給湯能力を確実に発揮できるようになり、熱源装置の小型化や低コスト化を図ることができる。 In this way, by providing a configuration in which the heating medium heated in the heating circuit is circulated through the latent heat exchange path during the hot water supply single operation, the hot water heating / heating thermal connection liquid-water heat exchanger provided in the heat source device is reduced in size. As a matter of fact, the hot water supply capacity can be more reliably exhibited. That is, for example, when the liquid-water heat exchanger for hot water heating / heating thermal connection is a heat exchanger having a double pipe that allows liquid to pass through, the hot water can be supplied even if the length of the double pipe is shortened. If the plate-type heat exchanger is used as the liquid / water heat exchanger for hot water heating / heating thermal connection, the hot water supply capability can be reliably exhibited even if the number of plates is reduced. Thus, the heat source device can be reduced in size and cost.
なお、例えば給湯単独運転時に暖房用のバーナ装置も燃焼させて暖房回路の熱媒体を循環させるときであっても、例えば給湯暖房熱的接続用液−水熱交換器を介して暖房回路側から給湯回路側へ供給すべき熱量が小さいときには、暖房回路内の熱媒体の温度がそれ程高くなくてもよいし、熱媒体の循環流量も多くなくてもよい。そこで、このようなときは、熱媒体を潜熱回収用の暖房用熱交換器には通さずにバイパス経路で熱媒体を循環させれば、熱媒体を循環させるための負荷を小さくできるので暖房用循環ポンプの消費電力を小さくできることから省エネ化を図ることができる。 Note that, for example, even when a heating burner device is also burned during circulating hot water supply operation and the heating medium of the heating circuit is circulated, for example, from the heating circuit side via a liquid-water heat exchanger for hot water heating / heating thermal connection When the amount of heat to be supplied to the hot water supply circuit is small, the temperature of the heat medium in the heating circuit may not be so high, and the circulation flow rate of the heat medium may not be large. Therefore, in such a case, if the heat medium is circulated through the bypass path without passing the heat medium through the heat exchanger for recovering latent heat, the load for circulating the heat medium can be reduced, so that Since the power consumption of the circulation pump can be reduced, energy saving can be achieved.
そのため、前記経路切り替え基準値を設定する際に、暖房回路側から給湯回路側に与える熱量が予め定められる基準熱量に達する値に対応するように設定し、その値以下のときには暖房用のバーナ装置を燃焼さながら暖房回路の熱媒体をバイパス経路で循環させ、前記経路切り替え基準値を超えるときには潜熱熱交経由経路で熱媒体を循環させることができるようにすると、要求される給湯能力に対応させて、給湯要求能力が小さめのときには省エネ化を図れ、大きいときには的確に対応させて給湯能力を高めることができる。 Therefore, when setting the path switching reference value, the amount of heat given from the heating circuit side to the hot water supply circuit side is set so as to correspond to a value that reaches a predetermined reference heat amount, and when it is equal to or less than that value, the burner device for heating If the heat medium in the heating circuit is circulated in the bypass path while the heat is being burned, and the heat medium can be circulated in the path through the latent heat exchange when the path switching reference value is exceeded, the required hot water supply capacity is supported. When the required hot water supply capacity is small, energy saving can be achieved, and when the required hot water capacity is large, the hot water supply capacity can be increased by accurately responding.
さらに、浴槽に接続されて浴槽の水を循環させる機能を備えた追い焚き循環回路を有し、該追い焚き循環回路の水の流通管路が追い焚き用液−水熱交換器を介して暖房回路の液体流通管路と熱的に接続することによって、浴槽の追い焚き動作を良好にできる熱源装置を形成できる。 Furthermore, it has a recirculation circuit that is connected to the bathtub and has a function of circulating the water in the bathtub, and the water circulation line of the recirculation circuit is heated via the reheating liquid-water heat exchanger. By thermally connecting to the liquid flow conduit of the circuit, a heat source device that can improve the reheating operation of the bathtub can be formed.
そして、前記潜熱熱交経由経路と前記バイパス経路とを切り替える経路切り替え制御手段を設ける構成において、暖房回路の熱媒体を潜熱熱交経由経路によって循環させるときに、追い焚き循環回路における水の循環動作を停止したまま熱媒体導入切り替え弁を開いて前記追い焚き用液−水熱交換器に前記熱媒体を通して前記暖房回路に循環させるようにすると、熱媒体導入切り替え弁を開くだけで、容易に、潜熱熱交経由経路によって熱媒体を循環させて、その循環流量を多くすることができ、前記効果を容易に発揮することができる。 Then, in the configuration in which the path switching control means for switching between the latent heat exchange route and the bypass route is provided, when the heat medium of the heating circuit is circulated by the latent heat exchange route, the water circulation operation in the recirculation circuit When the heating medium introduction switching valve is opened while the heating medium is stopped and the circulation liquid-water heat exchanger is circulated through the heating medium to the heating circuit, the heating medium introduction switching valve can be easily opened. The heat medium can be circulated through the latent heat exchange route, the circulation flow rate can be increased, and the above effects can be easily achieved.
さらに、給湯回路に、該給湯回路を通って給湯される給湯の総水量を可変調節するための水量サーボを設けることにより、例えば必要に応じて給湯の総水量を少なく絞って給湯能力を抑えることによって給湯温度を迅速に上昇させて安定化できるので、給湯温度の安定化をより一層良好に行うことができる。なお、給湯の総水量を絞ることによって給湯温度が安定化したら、その後に給湯の総水量を増やすことにより給湯能力も上げることができるので、要求されている給湯能力に合わせることができるし、必要のないときには給湯の総水量を絞る動作を行わないことで、要求されている給湯能力に応じた給湯が行えるようにできる。 Furthermore, by providing a water amount servo for variably adjusting the total amount of hot water supplied through the hot water supply circuit in the hot water supply circuit, for example, if necessary, the total amount of hot water is reduced to reduce the hot water supply capacity. Thus, the hot water temperature can be quickly raised and stabilized, so that the hot water temperature can be stabilized even better. In addition, if the hot water supply temperature is stabilized by reducing the total amount of hot water, the hot water supply capacity can be increased by increasing the total amount of hot water after that, so it can be adjusted to the required hot water supply capacity. By not performing the operation of reducing the total amount of hot water supply when there is no hot water supply, hot water supply according to the required hot water supply capacity can be performed.
以下、本発明の実施の形態を図面に基づき実施例によって説明する。なお、本実施例の説明において、これまでの説明の例と同一名称部分には同一符号を付し、その重複説明は省略または簡略化する。 Embodiments of the present invention will be described below with reference to the drawings. Note that, in the description of the present embodiment, the same reference numerals are given to the same name portions as those in the examples described so far, and the duplicate description is omitted or simplified.
図1には、本発明に係る熱源装置の第1実施例のシステム構成が模式的に示されている。同図に示されるように、本実施例の熱源装置は、器具ケース80内に、給湯回路45と暖房回路7とを設けて形成される複合型の熱源装置である。この熱源装置は燃焼室100を有し、燃焼室100内には給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ装置5とが設けられている。
FIG. 1 schematically shows a system configuration of a first embodiment of the heat source apparatus according to the present invention. As shown in the figure, the heat source device of the present embodiment is a composite heat source device formed by providing a hot
給湯用のバーナ装置2は複数のバーナ装置2a,2b,2cを有し、バーナ装置2aの燃焼面とバーナ装置2bの燃焼面とバーナ装置2cの燃焼面によって区分される態様で形成された区分燃焼面を有している。言い換えれば、バーナ装置2a,2b,2cの各燃焼面によって区分された区分燃焼面が形成されており、熱源装置には、給湯用のバーナ装置2に要求される燃焼能力が一段アップする毎に前記区分燃焼面を予め定められた順番(バーナ装置2a,2b,2cの順)で選択的に順次追加燃焼させる燃焼制御手段(図1には図示せず)が設けられている。給湯用のバーナ装置2と暖房用のバーナ装置5の下方側には、これらのバーナ装置2,5の給排気用の燃焼ファン15が設けられている。
The hot water
また、燃焼室100には、給湯用のバーナ装置2と暖房用のバーナ装置5の上側に、給湯と暖房の複合熱交換器1が設けられており、この複合熱交換器1は、図1、図2に示されるように、メインの給湯熱交換器を形成する給湯用の液体流通管路13のみが配設された一種管路配設部(一種流路配設部)111と、給湯用の液体流通管路13がメインの暖房用熱交換器を形成する暖房用の液体流通管路12によって上下に挟まれる態様で(図2、参照)互いに接して配設された二種管路配設部112とを有しており、二種管路配設部(二種流路配設部)112と一種管路配設部111とは隣り合わせに配設されている。
Further, the
このように、本実施例では、複合熱交換器1の二種管路配設部112がメインの給湯熱交換器の液体流通管路13をメインの暖房用熱交換器の液体流通管路12によって上下に挟む態様で互いに接して配設された構成と成して、この構成の二種管路配設部112が複合熱交換器1の一部と成している。二種管路配設部112の下方側には、二種管路配設部112を加熱するための暖房用のバーナ装置5が設けられ、二種管路配設部112の液体流通管路12,13は共通(1つ)のバーナ装置(暖房用のバーナ装置5)により加熱される構成と成している。
As described above, in the present embodiment, the two-type
一方、一種管路配設部111の下方側には、該一種管路配設部111を加熱するための給湯用のバーナ装置2が配設されているが、図2に示されるように、二種管路配設部112において一種管路配設部111に隣接する側の一部分に配設されている液体流通管路12,13が、給湯用のバーナ装置2の上方側にはみ出す態様で配設されている。
On the other hand, a
本実施例では、この構成によって、暖房用のバーナ装置5のみの燃焼時に暖房用のバーナ装置5の燃焼ガスが一種管路配設部111側に広がっても、その広がり部分には給湯用のバーナ装置2の上方側にはみ出す態様で配設された二種管路配設部112の液体流通管路12,13が配設されているので、広がった燃焼ガスによって加熱されるのは、この二種管路配設部112の液体流通管路12,13となる。
In this embodiment, with this configuration, even when only the
そして、二種管路配設部112は、暖房用の液体流通管路12によって給湯用の液体流通管路13を上下に挟む態様で配設されているので、暖房用のバーナ装置5の燃焼ガスの広がりによって加熱されるのは、給湯用の液体流通管路13の下側に配設されている暖房用の液体流通管路12である。したがって、一種管路配設部111側に配設されている給湯用の液体流通管路13が暖房単独運転時に暖房用のバーナ装置5によって加熱されてしまうことを防ぐことができ、一種管路配設部111側に配設されている給湯用の液体流通管路13内に滞留している水等の熱媒体が沸騰してしまうことを抑制できる。
Further, since the two-type
複合熱交換器1はフィン43を有しており、このフィン43は、給湯用のバーナ装置2と暖房用のバーナ装置5の上側に立ち上がる態様で設けられて、図2の紙面に垂直な方向に(図1では左右方向に)互いに間隔を介して複数配設されており、図2に示されているように、各フィン43の面方向が給湯用のバーナ装置2a,2b,2cの配列方向とは直交(または略直交)する方向となるような態様と成している。一種管路配設部111の液体流通管路13と二種管路配設部112の液体流通管路12,13は共に、これらの複数の共通のフィン43に形成された対応する管路挿入孔103,104に挿入され(液体流通管路13は管路挿入孔103に、液体流通管路12は管路挿入孔104に挿入され)ており、複合熱交換器1をこのような態様に形成すると非常に製造しやすい。
The
また、二種管路配設部112において、上下方向に配設される3つの管路(暖房用の液体流通管路12と給湯用の液体流通管路13)のうち、真ん中の管路を、低温の水が導入される液体流通管路13とすることにより、以下の効果を奏することができる。つまり、二種管路配設部112における暖房用の液体流通管路12と給湯用の液体流通管路13の配列態様によって、暖房用の液体流通管路12の吸熱量と給湯用の液体流通管路13側の吸熱量とに違いが生じ、二種管路配設部112において上下方向の真ん中の管路を給湯用の液体流通管路13として互いに接する態様で設けることにより、給湯用の液体流通管路13の1本あたりの吸熱量を高くできる構成と成している。
Further, in the two-type
なお、図1はシステム図であるために、図2の態様と異なるように示されているが、実際には図2に示される断面構成図のような態様で一種管路配設部111の液体流通管路13と二種管路配設部112の液体流通管路12,13等が配設されている。ただし、図2も模式的な構成図であるために、液体流通管路12,13等の本数等は正確に示されているとは限らず、液体流通管路12,13の本数や配設間隔等は図1に示されるものに限定されるものではなく、適宜設定されるものである。
Since FIG. 1 is a system diagram, it is shown to be different from the aspect of FIG. 2, but actually, a kind of the
本実施例において、メインの給湯熱交換器を形成する給湯用の液体流通管路13には、バーナ装置2,5の燃焼ガスの潜熱を回収する潜熱回収用の給湯熱交換器4が接続されており、メインの暖房用熱交換器を形成する暖房用の液体流通管路12には、バーナ装置2,5の燃焼ガスの潜熱を回収する潜熱回収用の暖房用熱交換器6が接続されている。なお、これらの潜熱回収用の給湯熱交換器4と暖房用熱交換器6は、それぞれの熱交換器を形成する液体流通管路を通る熱媒体(ここでは水)によりバーナ装置2,5の燃焼ガスの潜熱を回収するものであるが、潜熱回収用の給湯熱交換器4と暖房用熱交換器6は共に、バーナ装置2,5の燃焼ガスの潜熱のみならず顕熱も回収するものである。
In the present embodiment, a hot water
また、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6は共に、複合熱交換器1の上部側に配設され、潜熱回収用の給湯熱交換器4の配設空間と潜熱回収用の暖房用熱交換器6の配設空間とを仕切る仕切り115が複合熱交換器1の上部側に設けられている。この仕切り115によって、暖房用のバーナ装置5の燃焼ガス(排気ガス)が複合熱交換器1を通った後に潜熱回収用の暖房用熱交換器6の配設空間を通り、その後、潜熱回収用の給湯熱交換器4の配設空間を通って排気口116から排出される態様と成している。つまり、複合熱交換器1を通った暖房用のバーナ装置5の燃焼ガスが流れる流れの上流側に潜熱回収用の暖房用熱交換器6が配設され、流れの下流側に潜熱回収用の給湯熱交換器4が配設されている。
Further, both the hot water
このような構成によって、暖房用のバーナ装置5の燃焼時の燃焼ガスが、複合熱交換器1を通った後に約160〜約250℃で潜熱回収用の暖房用熱交換器6の配設領域を通って潜熱回収されて冷やされた後、潜熱回収用の給湯熱交換器4の配設領域を通ることになるため、暖房用のバーナ装置5の単独燃焼時であっても、潜熱回収用の給湯熱交換器4内の水が沸騰することを抑制できる。また、潜熱回収用の暖房用熱交換器6は、仕切り115を介して潜熱回収用の給湯熱交換器4の上側に配設されており、給湯用のバーナ装置2の単独燃焼時であっても、潜熱回収用の暖房用熱交換器6内の水の沸騰は抑制できる。
With such a configuration, the combustion gas at the time of combustion of the
なお、図1および後述する図8は、システム図であるために、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の配設構成も図2の態様と異なるように示されているが、実際には図2に示される模式的な断面構成図のような態様で潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6等が配設されている。ただし、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の本数や配設間隔等は図2に示されるものに限定されるものではなく、適宜設定されるものである。
Since FIG. 1 and FIG. 8 to be described later are system diagrams, the arrangement configuration of the hot water
図4(a)、(b)に示されるように、本実施例において、給湯用のバーナ装置2(2a,2b,2c)は、複数の炎口110が長手方向に沿って配列配置された炎口列を一列以上(ここでは一列)配設して成る燃焼面を備えたバーナ107が、前記炎口列と直交する方向に並ぶ態様で複数配置されて形成されている。バーナ装置2aは4本のバーナ107によって形成され、バーナ装置2bは3本のバーナ107によって形成され、バーナ装置2cは6本のバーナ107によって形成されており、したがって、それぞれのバーナ装置2a,2b,2cの燃焼面により形成される区分燃焼面の面積比はおおよそ、4:3:6と成している。暖房用のバーナ装置5は、給湯用のバーナ装置2を形成するバーナ107と同方向に炎口110を配列配置したバーナ109を9本配置して形成されている。
As shown in FIGS. 4 (a) and 4 (b), in this embodiment, the hot water supply burner device 2 (2a, 2b, 2c) has a plurality of
これらの給湯用のバーナ装置2と暖房用のバーナ装置5には、図1に示されるガス供給通路16を通して燃料ガスが供給されるものであり、図1の図中、符号14,17はガス電磁弁、符号18はガス比例弁をそれぞれ示す。
Fuel gas is supplied to the hot-water
また、図4と図2とを共に参照すると分かるように、給湯用バーナ装置2(2a,2b,2c)および暖房用のバーナ装置5の各燃焼面の上側に設けられている複合熱交換器1の給湯用の液体流通管路13と複合熱交換器1の暖房用の液体流通管路12は、これらの液体流通管路12,13の下方側に配設されている対応する暖房用のバーナ装置5と給湯用のバーナ装置2(2a,2b,2c)の炎口110の列と平行または略平行に伸長した管路部位を有して配設されている。潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の液体流通管路もバーナ装置2,5の炎口110の列と平行または略平行に伸長した管路部位を有して配設されており、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の液体流通管路は、全体としては両方のバーナ装置2,5の上面側に配設されている。
Further, as can be seen by referring to FIG. 4 and FIG. 2 together, the composite heat exchanger provided above each combustion surface of the hot water supply burner device 2 (2a, 2b, 2c) and the
なお、図11には、特許文献2に提案されている複合型の熱交換器を有する熱源装置の構成が模式的な説明図により示されており、この熱源装置においては、給湯用のバーナ装置2と風呂の追い焚き用のバーナ装置102とを並設して形成されている。給湯用のバーナ装置2と追い焚き用のバーナ装置102の上側には、給湯用と追い焚き用との複合型の熱交換器101が設けられており、給湯用のバーナ装置2と追い焚き用のバーナ装置102の下側には、それぞれ、バーナ装置の給排気用の燃焼ファン15が設けられている。
FIG. 11 schematically shows the structure of a heat source device having a composite heat exchanger proposed in
複合型の熱交換器101は、給湯用のバーナ装置2の上側と追い焚き用のバーナ装置102の上側とに渡るように設けられたフィン43を有しており、このフィン43は紙面に垂直な方向に互いに間隔を介して複数配設されている。それぞれのフィン43には管路挿入孔103,113が形成され、それぞれの管路挿入孔103,113を貫通する態様で、給湯用の液体流通管路(通水管路)13と追い焚き用の液体流通管路(通水管路)105が設けられている。
The
このような複合型の熱交換器101を有する熱源装置においては、給湯用の熱交換器と追い焚き用の熱交換器を別々に形成して熱源装置内に配設する場合に比べ、熱源装置の製造コストを安くできるといった利点があるが、例えば図12(a)に示されるように、追い焚き用のバーナ装置102の単独燃焼時に、例えば追い焚き用のバーナ装置102の燃焼ガスが膨張し、図の矢印に示されるように追い焚き用の液体流通管路105近傍側に隣接されている給湯用の液体流通管路13も加熱されてしまうことから、その液体流通管路13内に滞留している水が沸騰してしまうといった問題が生じた。
In the heat source device having such a
また、図12(b)に示されるように、給湯用のバーナ装置2の単独燃焼時に給湯用のバーナ装置2の燃焼ガスが膨張し、図の矢印に示されるように、給湯用の液体流通管路13側に隣接されている追い焚き用の液体流通管路105も加熱されてしまい、その液体流通管路105内に滞留している水が沸騰してしまうといった問題もあった。したがって、例えば図10に示されるように、一種管路配設部111を給湯用のバーナ装置2の燃焼面と対応する位置に配置し、二種管路配設部112を暖房用のバーナ装置5の燃焼面と対応する位置に配置すると、同様の問題が生じる可能性がある。
Further, as shown in FIG. 12B, the combustion gas of the hot water
なお、特許文献2に記載されている発明においては、図11に示されているように、例えば給湯用のバーナ装置2の上側の空間と追い焚き用のバーナ装置102の上側の空間とを仕切る仕切り106を設け、仕切り106は例えば2枚のステンレス板106a,106bの板面同士を互いに間隔を介して対向配置して形成しており、その間隔に風を通すようにすることが提案されている。このようにすると、バーナ装置2,102の単独燃焼時に燃焼ガスの体積が膨張しても、各バーナ装置2,102の上側に設けられている液体流通管路13,104のみが対応するバーナ装置2,102の燃焼ガスによって加熱され、隣接する液体流通管路104,13には燃焼ガスが当たらないようにできるとされている。
In the invention described in
しかしながら、そのような仕切りを設ける構成においては、仕切りを設けたり風を通すための構成を設けたりすることによって、その分だけ構造が複雑化し、製造コストも高くなってしまうことになるといった問題が生じることになる。 However, in the configuration in which such a partition is provided, there is a problem that the structure is complicated and the manufacturing cost is increased by providing the partition or the configuration for allowing the air to pass through. Will occur.
それに対し、本実施例では、図2に示されるように、一種管路配設部111の下方側に給湯用のバーナ装置が配設され、二種管路配設部112の下方側には、暖房用のバーナ装置5が配設されているが、二種管路配設部112の一種管路配設部111に隣接する側の一部分に配設されている液体流通管路12,13が、給湯用のバーナ装置2の上方側にはみ出す態様で配設されているので、特許文献2に提案されている発明のような仕切りを設けなくても、一種管路配設部111の液体流通管路13内の水が沸騰することを抑制できるものである。
On the other hand, in this embodiment, as shown in FIG. 2, a burner device for hot water supply is disposed below the one-type
つまり、バーナ装置2,5の燃焼時にはバーナ装置2,5の燃焼ガスの体積が膨張するため、二種管路配設部112の下方側に配設されている暖房用のバーナ装置5が単独で燃焼する際に、その燃焼ガスが一種管路配設部111側にも広がるが、二種管路配設部112の一種管路配設部111に隣接する側の一部分に配設されている液体流通管路12,13が給湯用のバーナ装置2の上方側にはみ出す態様で配設されているので、広がった燃焼ガスによって加熱されるのは、はみ出し配設された液体流通管路12,13となる。
That is, since the volume of the combustion gas in the
そして、二種管路配設部112は、暖房用の液体流通管路12によって給湯用の液体流通管路13を上下に挟む態様で配設されているので、暖房用のバーナ装置5の燃焼ガスの広がりによって加熱されるのは、給湯用の液体流通管路13の下側に配設されている暖房用の液体流通管路12である。したがって、一種管路配設部111側に配設されている給湯用の液体流通管路13が暖房単独運転時に暖房用のバーナ装置5によって加熱されてしまうことを防ぐことができ、一種管路配設部111側に配設されている給湯用の液体流通管路13内に滞留している水等の熱媒体が沸騰してしまうことを抑制できる。
Further, since the two-type
そのため、暖房単独運転時(給湯用のバーナ装置2を停止して暖房用のバーナ装置5のみを燃焼させ、給湯用の液体流通管路13内の熱媒体の流通は停止している場合)に連続して暖房用のバーナ装置5を燃焼させることができたり、暖房単独運転時に暖房用のバーナ装置5のオンとオフとを繰り返す間欠運転を行う場合でも、燃焼オフの時間を短くできたりするので、暖房能力の向上を図ることができる。また、暖房用のバーナ装置5の上方側空間と給湯用のバーナ装置2の上方側空間との間に仕切りを設ける構成と異なり、構造を簡略化でき、部品点数も少なくできるのでコストも安くできる。
Therefore, in the heating independent operation (when the hot water
なお、本実施例に適用されている複合熱交換器1において、一種管路配設部111の下方側に配設されている給湯用のバーナ装置2のみが燃焼する際に、給湯側のバーナ装置2の燃焼ガスの体積が膨張して燃焼ガスが二種管路配設部112側にも広がり、給湯用のバーナ2の上側にはみ出し配設されている暖房用の液体流通管路12や、そのはみ出し配設されている暖房用の液体流通管路12に隣接する暖房用の液体流通管路12も給湯用のバーナ装置2の燃焼ガスにより加熱される。
In the
そのため、それらの暖房用の液体流通管路12に滞留している液体の熱媒体が給湯用のバーナ装置2の燃焼ガスによって加熱されることになるが、二種管路配設部112側には、給湯用の液体流通管路13が暖房用の液体流通管路12に挟まれて設けられているので、この給湯用の液体流通管路13を通る水によって暖房用の液体流通管路12内の熱媒体の熱が放熱されることから、暖房用の液体流通管路12に滞留している熱媒体が沸騰することを防ぐことができる。
Therefore, the liquid heat medium staying in the heating
さらに、複合熱交換器1の二種管路配設部112における最下段(最下位置)の通路は暖房用の液体流通管路12であり、この管路を流れる液体(熱媒体)は、加熱されて循環されている状態であれば温かく、また、その循環が停止されていても、給水側から冷たい水が導入される給湯用の液体流通管路13のように冷たい状態であることは殆どないことから、複合熱交換器1の液体流通管路12に結露が発生することを防止できる。
Further, the lowermost (lowermost position) passage in the two-type
図1に示されるように、本実施例において、前記給湯回路45は、潜熱回収用の給湯熱交換器4と、潜熱回収用の給湯熱交換器4の入水側に設けられた給水通路46と、潜熱回収用の給湯熱交換器4の出水側に設けられた通路34と、複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)と、複合熱交換器1の給湯用の液体流通管路13の出水側に設けられた給湯通路47とを有して形成されている。
As shown in FIG. 1, in this embodiment, the hot
給湯回路45は、給水通路46から導入されて潜熱回収用の給湯熱交換器4を通って加熱された液体の熱媒体であるを複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)に導入して加熱した後、その加熱した水を、給湯通路47を介して給湯先に導く回路である。給湯回路45において、給水通路46には、該給水通路46を通る水の水量を検出する水量センサ19が設けられており、通路34には給湯ハイリミットスイッチ36が設けられ、複合熱交換器1の給湯用の液体流通管路13の途中部には給湯水管サーミスタ151が設けられている。
The hot
また、給湯通路47には、複合熱交換器1の給湯用の液体流通管路13の出側の温度を検出する熱交出側サーミスタ23と、給湯温度を検出する出湯サーミスタ24とが設けられている。なお、本実施例では、給湯用の入水温度を検出する入水温検出手段を設けずに入水温度を演算によって求める方式を適用しており、例えば給湯バーナ装置2の安定燃焼時に燃焼量と水量と出湯温度から入水温度を逆算し、これを記憶するようにしている。演算によって給湯用の入水温度を求める方式の熱源装置については周知であるので、その説明は省略するが、適宜の方法により給湯用の入水温度を求めることができるものである。
Further, the hot
給湯通路47には給湯回路45を通って給湯される給湯の総水量を可変調節するための水量サーボ20が設けられており、給湯通路47は、給湯バイパス通路22を介して給水通路46に接続され、該バイパス通路22の給水通路46との接続部にはバイパスサーボ21が設けられている。
The hot
前記暖房回路7は暖房用液体循環通路8を有し、暖房用液体循環通路8には、前記潜熱回収用の暖房用熱交換器6と、暖房用循環ポンプ(暖房用液体循環ポンプ)9と、シスターン10と、暖房高温サーミスタ40、暖房ハイリミットスイッチ77、暖房水管サーミスタ52、暖房低温サーミスタ41が設けられており、暖房用循環ポンプ9は、潜熱回収用の暖房用熱交換器6と複合熱交換器1の暖房用の液体流通管路12とを通して液体の熱媒体(例えば水)を循環させる機能を備えている。
The
暖房用液体循環通路8は、通路59〜65,108を有しており、通路108は、暖房回路7内の熱媒体(例えば水)を潜熱回収用の暖房用熱交換器6には通さずに循環させるための潜熱熱交バイパス通路として機能する。暖房高温サーミスタ40は、暖房用熱交換器11の出側の熱媒体の温度を検出するものであり、暖房低温サーミスタ41は、暖房用熱交換器11の入側の熱媒体の温度を検出するものである。
The heating
シスターン10の容量は例えば1800ccであり、シスターン10には水位電極44とオーバーフロー通路66とが設けられている。シスターン10は、補給水電磁弁42と水補給用通路165を介して給水通路46に接続されている。
The capacity of the
また、本実施例において、給湯回路45と暖房回路7とは給湯暖房熱的接続用液−水熱交換器33を介して熱的に接続されており、給湯暖房熱的接続用液−水熱交換器33は、複合熱交換器1を形成する暖房用の液体流通管路12の出側を給湯回路45における潜熱回収用の給湯熱交換器4と複合熱交換器1を形成する給湯用の液体流通管路13(メインの給湯熱交換器)との間に熱的に接続する。
Further, in the present embodiment, the hot
この給湯暖房熱的接続用液−水熱交換器33には、暖房用循環ポンプ9の駆動によって、複合熱交換器1の暖房用の液体流通管路12から出た熱い熱媒体(ここでは水)が導入されて図1の矢印Bに示すように流通し、給湯動作時に、潜熱回収用の給湯熱交換器4からは、矢印Bとは逆方向(矢印B’の方向)を流れるように水が給湯暖房熱的接続用液−水熱交換器33に導入されて流通する。
The hot water heating / heating thermal connection liquid-
つまり、暖房用の液体流通管路12側から給湯暖房熱的接続用液−水熱交換器33に導入される熱媒体は給湯暖房熱的接続用液−水熱交換器33の給水側出口から流入し、潜熱回収用の給湯熱交換器4から給湯暖房熱的接続用液−水熱交換器33に導入される水は給湯暖房熱的接続用液−水熱交換器33の熱媒体出口(水出口)から流入し、この水と液体流通管路12からの前記熱媒体とが互いに逆方向に流通するという対向熱交換器により給湯暖房熱的接続用液−水熱交換器33が形成されている。例えば暖房用の液体流通管路12から加熱された熱い熱媒体(ここでは熱い湯)を給湯暖房熱的接続用液−水熱交換器33に導入しながら潜熱回収用の給湯熱交換器4から給湯暖房熱的接続用液−水熱交換器33に温めの湯や水を導入すると暖房回路側の熱を給湯回路側に移動させる(給湯側が暖房側の熱を吸熱する)ことができる。
That is, the heat medium introduced into the hot water heating / heating thermal connection liquid-
なお、暖房回路7には適宜の暖房装置が接続されるものである。この図では、暖房回路7には、暖房装置70,71が外部通路72,73,74を介して接続されており、暖房回路7は、暖房装置70,71への熱媒体の供給機能を有する。暖房装置70は例えば浴室乾燥機等の高温暖房装置であり、暖房装置70には熱動弁76が設けられている。一方、暖房装置71は温水マット71等の低温暖房装置であり、暖房用液体循環通路8の器具ケース80内の通路と外部通路73との接続を選択的に切り替える熱動弁48が設けられて、暖房装置71への熱媒体の供給が制御される。
Note that an appropriate heating device is connected to the
また、本実施例の熱源装置において、暖房回路7の暖房用液体循環通路8は、追い焚き用液−水熱交換器25を介して風呂の追い焚き循環通路26と熱的に接続されている。追い焚き循環通路26には、追い焚き循環ポンプ27と風呂サーミスタ28、流水スイッチ29、水位センサ30、風呂往きサーミスタ31が設けられており、追い焚き循環通路26は、循環金具81を介して浴槽75に接続されている。
In the heat source device of the present embodiment, the heating
暖房用液体循環通路8には、追い焚き用液−水熱交換器25において追い焚き循環通路26を循環する水と熱交換を行う際に、暖房用液体循環通路8から追い焚き用液−水熱交換器25側に通す液体流量を制御する追い焚き用液体流量制御弁32が設けられており、この追い焚き用液体流量制御弁32は、暖房回路7を循環する熱媒体(ここでは水)の追い焚き用液−水熱交換器25への導入の有無を弁の開閉により切り替える熱媒体導入切り替え弁として機能する。
In the heating
追い焚き用液体流量制御弁32を開いて追い焚き用液−水熱交換器25への水(温水)の導入を行いながら追い焚き循環ポンプ27を駆動することによって風呂の追い焚きが行われるが、追い焚き循環ポンプ27を停止していれば暖房回路7を通る熱媒体と追い焚き循環通路26内の水との熱交換は行われない(正確に言えば追い焚き循環通路26に滞留している水の一部は熱交換されるが殆ど熱交換は行われない)。
The reheating liquid
なお、図1の図中、符号49は注湯通路、符号50は注湯電磁弁、符号79は注湯量センサ、符号37はドレン回収手段、符号38はドレン通路、符号39はドレン中和器、符号76は熱動弁をそれぞれ示している。
In FIG. 1,
また、図1にはリモコン装置が図示されていないが、熱源装置の制御装置にはリモコン装置が信号接続されており、以下の説明において、リモコン装置には、適宜、符号53を付して説明する。また、家庭等の住居において、給湯を行う台所や浴室には、給湯温度設定、追い焚きスイッチ、自動スイッチ(自動湯張りのための操作スイッチ)等の付いたリモコン装置53が設けられ、洗面所には浴室乾燥(暖房装置)を行うスイッチ等の付いたリモコン装置53が設けられ、居間には床暖房(暖房装置)スイッチ等の付いたリモコン装置53が設けられる等、異なる機能をもったリモコンが複数設けられることが多いが、本明細書では、それらを総称してリモコン装置53と称する。
Although the remote control device is not shown in FIG. 1, the remote control device is signal-connected to the control device of the heat source device. In the following description, the remote control device is described with
本実施例において、給湯動作は例えば以下のようにして行われる。つまり、リモコン装置53の運転がオンの状態において、例えば熱源装置の利用者によって、給湯通路47の先端側に設けられている給湯栓(図示せず)が開かれると、給水通路46から導入される水が、潜熱回収用の給湯熱交換器4と複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)とを通って給湯通路47に導入され、水量センサ19が予め定められている給湯の作動流量に達するとバーナ装置2の燃焼制御および燃焼ファン15の回転制御等が制御手段によって適宜行われ、予めリモコン装置53に設定されている給湯設定温度の湯が形成されて給湯先に供給される。なお、必要に応じ、暖房用のバーナ装置5の燃焼も行われるが、この動作についての詳細説明は後述する。
In the present embodiment, the hot water supply operation is performed as follows, for example. That is, when the operation of the
また、リモコン装置53に設けられている自動スイッチがオンとなると、前記給湯動作時と同様にして、予めリモコン装置53に設定されている給湯設定温度の湯が形成され、その湯が、注湯電磁弁50が開かれることにより、給湯通路47から注湯通路49を通して浴槽75への注湯による湯張りが行われる。
When the automatic switch provided in
一方、給湯は行わずに、暖房用液体循環通路8から暖房装置70、71に暖房用の熱媒体(液体)を供給する際(例えば衣類乾燥機、浴室暖房乾燥機、床暖房等の運転による暖房単独運転時)には、暖房用循環ポンプ9の駆動によって、液体(ここでは温水)を循環させるものであり、暖房用循環ポンプ9の吐出側から吐出される液体が、図1の矢印Aに示されるように、通路59を通って複合熱交換器1の暖房用の液体流通管路12(メインの暖房用熱交換器)に導入される。このときには暖房用のバーナ装置5の燃焼および燃焼ファン15の回転制御等が適宜行われて液体の加熱が行われる。
On the other hand, when a heating medium (liquid) is supplied from the heating
複合熱交換器1の暖房用の液体流通管路12を通った液体は、その後、給湯暖房熱的接続用液−水熱交換器33に導入され、該給湯暖房熱的接続用液−水熱交換器33を通った液体は、矢印Cに示されるように、通路60を通り、その後、通路64で分岐して、その一方は、矢印Dに示されるように、例えば暖房用液体循環通路8に接続されている高温側の暖房装置70が作動する際には高温側の暖房装置に供給され、高温側の暖房装置70を通った後に、矢印D’に示されるように通路61側に戻ってくる。このとき、例えば浴室暖房乾燥機の暖房スイッチ(SW)がオン(ON)されると、それに対応する高温側の暖房装置70内の熱動弁76が開弁され、高温側の暖房装置10内の制御装置からの信号を受けて暖房用の熱媒体の往き温度は(例えば80℃といった)高温に維持される。
The liquid that has passed through the
高温側の暖房装置が作動していないときには、高温側の暖房装置70内の熱動弁76が閉弁され、矢印Dに示されるようにして通路64を通った液体は、潜熱熱交バイパス通路108を通り、シスターン10に導入され、矢印Gに示されるように通路62を通って暖房用循環ポンプ9の吸入側に戻る。
When the high temperature side heating device is not in operation, the
また、例えば浴室で追い焚きスイッチ(SW)がオン(ON)されると、それに対応する追い焚き用液体流量制御弁32が開状態となり、通路60を通った後に通路64で分岐された液体(熱媒体)は、矢印Eに示されるように追い焚き用液−水熱交換器25を通り、矢印E’に示されるように、通路65を通って通路61側に向かう。このように、高温に維持される液体を追い焚き用液−水熱交換器25に通しながら、追い焚き循環通路26において浴槽の湯水を循環させることにより、風呂の追い焚きが適宜行われる。なお、通路61を通った液体は、前記の如く、シスターン10と通路62を通って暖房用循環ポンプ9の吸入側に戻ってくる。
Further, for example, when the reheating switch (SW) is turned on (ON) in a bathroom, the corresponding reflowing liquid flow
また、暖房用循環ポンプ9の吐出側には、例えば温水マット等の低温側の暖房装置71に液体を供給するための通路63も接続されており、例えば居室にあるリモコン装置53で床暖房がONされると、それに対応する熱動弁48の開閉に応じて適宜の低温側暖房装置71(例えば温水マット等)に暖房用の(例えば往き温度60℃といった)低温に維持された液体が供給される。
Further, a passage 63 for supplying a liquid to a low-temperature
なお、高温側の暖房装置70に液体を供給する際の温度制御と低温側の暖房装置71に液体を供給する際の温度制御、暖房用液体循環通路8の通路が冷えている状態で作動するコールドスタート時の温度制御、風呂の追い焚き時の制御等、必要に応じて暖房用のバーナ装置5の燃焼制御や燃焼ファン15の回転制御等の適宜の制御が行われるが、これらの制御方法については公知であるために、その詳細説明は省略するが、本発明においては、公知の適宜の制御方法および、今後提案される適宜の制御方法が適用されるものである。
Note that the temperature control when supplying the liquid to the high temperature
また、本実施例においては、図7(a)の実線に示されるように、暖房回路7の熱媒体を、暖房回路7に接続される暖房装置70,71と潜熱回収用の暖房用熱交換器6には通さずに、暖房用循環ポンプ9の駆動によって潜熱熱交バイパス通路108と複合熱交換器1を形成する暖房用の液体流通管路12と給湯暖房熱的接続用液−水熱交換器33とを通して循環させるバイパス経路が形成されている。
Further, in this embodiment, as shown by the solid line in FIG. 7A, the heating medium of the
つまり、暖房装置70,71が稼動していない状態(暖房運転が行われていない状態)において暖房回路7の熱媒体(温水)を循環させようとすると、複合熱交換器1を形成する暖房用の液体流通管路12で加熱された熱媒体が通路60,64を通った後に潜熱熱交バイパス通路108を通ってシスターン10に導入され、通路62と暖房用循環ポンプ9と通路59を順に通って液体循環通路12に戻る。
That is, when the heating medium (warm water) of the
なお、図7(a)において、破線で示す経路は暖房回路7において熱媒体が通過しない通路であり、図7(b)に示されている経路については後述するが、図7(b)においても同様に熱媒体が通過する経路を実線により示し、通過しない通路は破線で示している。また、図7(a)、(b)において、暖房装置70,71は図の簡略化のために1つずつ示しており、本実施例の熱源装置において、シスターン10内を熱媒体が通る通路は実際には形成されていないが、図7(a)、(b)においては、シスターン10内を通る熱媒体の経路が曲線により模式的に示されている。
In FIG. 7A, the path indicated by the broken line is a path through which the heat medium does not pass in the
図3には、本実施例の熱源装置の制御構成がブロック図により示されており、同図に示されるように、熱源装置の制御装置54は、経路切り替え制御手段51、燃焼制御手段52、ポンプ駆動制御手段55を有している。制御装置54は、リモコン装置53と、出湯サーミスタ24、水量センサ(流量センサ)19、追い焚き用液体流量制御弁32、ガス電磁弁14,17、ガス比例弁18、燃焼ファン15、暖房用循環ポンプ9、暖房高温サーミスタ40、暖房低温サーミスタ41、熱交出側サーミスタ23に信号接続されている。
FIG. 3 is a block diagram showing the control configuration of the heat source device of this embodiment. As shown in FIG. 3, the
経路切り替え制御手段51は、暖房回路7の熱媒体を暖房装置70,71に供給することなく給湯運転を行う給湯単独運転時に、予め定められる経路切り替え条件が満たされたときには、暖房用循環ポンプの駆動によって循環する暖房回路7の熱媒体の循環経路を、図7(b)の実線に示されるような潜熱熱交経由経路とする。つまり、暖房回路7の熱媒体の循環経路を、図7(b)に示されるように、図7(a)の実線に示したバイパス経路と図7(b)の太実線で示されている潜熱回収用の暖房用熱交換器6を通す経路との両方の経路に通して循環させる潜熱熱交経由経路とする。なお、熱媒体の循環のための暖房用循環ポンプ9の駆動は、燃焼制御手段52を介してポンプ駆動制御手段55により制御される。
The route switching control means 51 is configured to switch the heating circulation pump when a predetermined route switching condition is satisfied during a hot water supply single operation in which a heating medium is supplied without supplying the heat medium of the
本実施例において、経路切り替え条件としては、例えば給湯単独運転時に要求される給湯要求能力が予め定められている経路切り替え基準値を超えたときに、図7(b)の実線に示されるような潜熱熱交経由経路で熱媒体を循環させるようにする、といった条件が与えられている。経路切り替え基準値は、本実施例では、燃焼制御手段52に与えられている後述する水路配設部切り替え基準能力と同じ値に設定されており、この値(能力値)は、給湯単独運転時に給湯用のバーナ装置2と暖房用のバーナ装置5とを全て燃焼させることが必要な能力であり、例えば16.5号に設定されている。なお、16.5号の給湯能力とは、給水温度より25℃高い温度の湯を1分間に16.5リットル給湯可能な能力である。
In the present embodiment, as the route switching condition, for example, when the hot water supply request capability required at the time of a single hot water supply operation exceeds a predetermined route switching reference value, a solid line in FIG. Conditions are provided such that the heat medium is circulated through the latent heat exchange route. In the present embodiment, the route switching reference value is set to the same value as the later-described water channel arrangement portion switching reference capability given to the combustion control means 52, and this value (ability value) is the value during the hot water supply single operation. It is necessary capacity to burn all of the hot water
経路切り替え制御手段51は、前記経路切り替え条件に基づき、給湯単独運転時に給湯要求能力が例えば16.5号を超えて燃焼制御手段52が給湯用のバーナ装置2と暖房用のバーナ装置5とを全て燃焼させることが生じたときに、追い焚き用液体流量制御弁32を開くようにし、それ以外の時には追い焚き用液体流量制御弁32を閉じておく(なお、浴槽湯水の追い焚き時には燃焼制御手段52により追い焚き用液体流量制御弁32が開かれる)。
On the basis of the path switching condition, the path switching control means 51 has a hot water supply request capacity exceeding, for example, 16.5 when the hot water supply is operated alone, and the combustion control means 52 causes the hot
追い焚き用液体流量制御弁32が閉じられた状態において、仮に暖房用循環ポンプ9を駆動させて暖房回路7内の熱媒体(温水)を循環させると、その循環経路は、図7(a)の実線に示されているようなバイパス経路となって、その長さは短く、このときには熱媒体が例えば4.8ml/分程度で給湯暖房熱的接続用液−水熱交換器33をして流れる。
When the reheating liquid flow
それに対し、経路切り替え制御手段51は、前記経路切り替え条件に基づき、給湯単独運転時に前記給湯要求能力の値が前記経路切り替え基準値を超えたとき、(給湯単独運転時に給湯用のバーナ装置2と暖房用のバーナ装置5とを全て燃焼させることが必要となったとき)には、追い焚き用液体流量制御弁32を開き、図7(b)の実線に示されるような潜熱熱交経由経路で熱媒体を循環させるようする。
On the other hand, the route switching control means 51, based on the route switching condition, when the value of the hot water supply request capacity exceeds the route switching reference value during the hot water supply single operation (with the
そうすると、暖房用循環ポンプ9の駆動によって循環する暖房回路7内の熱媒体(温水)は、図7(b)の実線(細実線と太実線)に示されているように、図7(a)の実線に示したバイパス経路を通ることに加え、図7(b)の太実線に示されているように、通路60から通路64に導入される熱媒体が、追い焚き用液体流通制御弁32が開かれることによって、追い焚き用液−水熱交換器25を経由して通路64を通り、通路61を通って潜熱回収用の暖房用熱交換器6を通ってシスターン10に導入される経路を通ることになるため(バイパス経路とバイパス経路に並列な経路の両方の経路を通ることになるため)、熱媒体の循環経路は図7(a)の実線に示したバイパス経路に比べて格段に長くなる。
Then, the heat medium (warm water) in the
そのため、暖房回路7内の熱媒体は、例えば9.6ml/分程度の大流量で流れ、給湯暖房熱的接続用液−水熱交換器33を通る熱媒体の流量も多くなる。また、潜熱熱交経由経路で暖房回路7の熱媒体を循環させると熱媒体は潜熱回収用の暖房用熱交換器6を通って循環するので、熱媒体が潜熱回収用の暖房用熱交換器6でも加熱されることから、熱媒体の温度をより高めることもできる。つまり、暖房回路7の熱媒体を潜熱熱交経由経路で循環させると、給湯暖房熱的接続用液−水熱交換器33を通る熱媒体の温度を高め、流量も多くできるので、給湯暖房熱的接続用液−水熱交換器33と給湯回路45側との熱交換によって給湯回路45を通る湯水の温度を高める能力を向上させることができ、給湯能力を高めることができる。
Therefore, the heat medium in the
なお、本実施例において、暖房回路7の熱媒体(温水)を潜熱熱交経由経路によって循環させるときには、追い焚き循環回路26における水の循環動作を停止したまま、経路切り替え制御手段51によって追い焚き用液体流量制御弁32を開いて熱媒体を暖房回路7に循環させるようにしており、このようにすることによって、暖房回路7の熱媒体から追い焚き循環回路26側に熱を殆ど移動させることなく暖房回路7の熱媒体の熱を給湯側に伝えて給湯能力の補充を行うことができる。
In the present embodiment, when the heat medium (warm water) of the
燃焼制御手段52は、リモコン装置53の信号(指令や設定温度の値等)に基づき、出湯サーミスタ24、水量センサ(流量センサ)19、熱交出側サーミスタ23、暖房高温サーミスタ40、暖房低温サーミスタ41等の検出信号を参照し、ガス電磁弁14,17の開閉制御とガス比例弁18の開弁量制御とを行って、給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ5の燃焼制御を行うものである。また、燃焼制御手段52は、これらのバーナ装置2,5の燃焼時には燃焼ファン15を駆動させ、例えばその回転数をバーナ装置2,5の燃焼量に対応させる等して適宜の制御を行う。
Combustion control means 52 is based on a signal (command, set temperature value, etc.) of
本実施例の熱源装置は、前記の如く、給湯回路45を通して給湯設定温度の湯の給湯を行う給湯運転と、暖房回路7を通して加熱した熱媒体(温水)を暖房装置70,71に供給しながら熱媒体を暖房装置70,71に循環させる暖房運転を行う機能を有しており、燃焼制御手段52は、それぞれの単独運転時(給湯単独運転時と暖房単独運転時)と、給湯と暖房の同時運転時とで、以下のように給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ5の燃焼面を切り替える燃焼制御を行う。
As described above, the heat source device according to the present embodiment supplies a hot water supply operation of supplying hot water at a hot water supply set temperature through the hot
つまり、燃焼制御手段52は、給湯単独運転時には、給湯運転動作に必要な給湯要求能力が予め定められる水路配設部切り替え基準能力(例えば16.5号)未満の時には一種管路配設部111の下方側の給湯用のバーナ装置2(2a,2b,2c)のみを燃焼させ、水路配設部切り替え基準能力(例えば16.5号)を超えたときには給湯用のバーナ装置2(2a,2b,2c)と二種管路配設部112の下方側の暖房用のバーナ装置5とを燃焼させる。また、燃焼制御手段52は、給湯運転動作に必要な給湯要求能力の値を逐次、経路切り替え制御手段51に加える。
That is, the combustion control means 52 is a kind of
燃焼制御手段52によって行われる給湯用のバーナ装置2(2a,2b,2c)の燃焼制御は、図4に示したような給湯用のそれぞれのバーナ装置2a,2b,2cを形成する複数本ずつのバーナ107によって区分された燃焼面(区分燃焼面)を、給湯用のバーナ装置2に要求される燃焼能力が一段アップする毎に予め定められた順番で選択的に順次追加燃焼させるものである。
The combustion control of the hot water supply burner device 2 (2a, 2b, 2c) performed by the combustion control means 52 is performed in a plurality of units to form each of the hot water
例えば給湯単独運転におけるバーナ燃焼において、表1の切り替え段数(1)の蘭に示されているように、最初に燃焼させる燃焼面は給湯用のバーナ装置2aの4本のバーナ107の燃焼面である。なお、表1においては、図1に示されるように、給湯用のバーナ装置2aの燃焼面をA、給湯用のバーナ装置2bの燃焼面をB、給湯用のバーナ装置2cの燃焼面をC、暖房用のバーナ装置5の燃焼面をDと示している。
For example, in burner combustion in hot water supply single operation, as shown in the orchid of the number of switching stages (1) in Table 1, the combustion surface to be burned first is the combustion surface of the four
給湯用のバーナ装置2aのみの燃焼により得られる給湯特性(出湯特性)は、例えば給湯回路45への入水温度が15℃の場合には、給湯設定温度に応じて、図5の特性線a1と特性線a2とに挟まれた領域内の給湯が可能となる。つまり、給湯用のバーナ装置2aのみを燃焼させる場合でも、ガス比例弁18の開弁量に応じて給湯特性が異なる態様となり、ガス比例弁18の開弁量が最小開度のときには図5の特性線a1の特性となり、ガス比例弁18の開弁量が多くなるにつれて図5の特性線a2側に近づき、最大開度のときに特性線a2の特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。
A hot water supply characteristic (hot water output characteristic) obtained by combustion of only the hot water
燃焼制御手段52は、給湯要求能力に対応する燃焼能力が一段アップすると、バーナ装置2aの4本のバーナ107の燃焼面に加えてバーナ装置2bの3本のバーナ107の、合計7本のバーナ107の燃焼面の燃焼を行う(表1の給湯単独燃焼、切り替え段数(2)を参照)。バーナ装置2a,2bの燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図5の特性線b1と特性線b2とに挟まれた領域内の給湯が可能となる。
When the combustion capacity corresponding to the required hot water supply capacity is further increased, the combustion control means 52 includes a total of seven burners including the four
つまり、バーナ装置2a,2bの燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図5の特性線b1の特性となり、ガス比例弁18の開弁量が多くなるにつれて図5の特性線b2側に近づき、最大開度のときに特性線b2の特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。
That is, hot water characteristic obtained
また、燃焼制御手段52は、給湯要求能力に対応する燃焼能力がさらに一段アップすると、バーナ装置2aの4本のバーナ107の燃焼面とバーナ装置2bの3本のバーナ107とバーナ装置2cの7本のバーナ107の合計13本のバーナ107の燃焼面燃焼面の燃焼を行う(表1の給湯単独燃焼、切り替え段数(3)、を参照)。これらのバーナ装置2a,2b,2cの燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図5の特性線c1と特性線c2とに挟まれた領域内の給湯が可能となる。
Further, when the combustion capacity corresponding to the hot water supply request capacity is further increased, the combustion control means 52 further increases the combustion surface of the four
つまり、バーナ装置2a,2b,2cの燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図5の特性線c1の特性となり、ガス比例弁18の開弁量が多くなるにつれて図5の特性線c2側に近づき、最大開度のときに特性線c2の特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。
That is, the hot water supply characteristic obtained by the combustion of the
さらに、燃焼制御手段52は、給湯単独運転時に、給湯要求能力に対応する燃焼能力が前記水路配設部切り替え基準能力(例えば16.5号)以上となったときには給湯用のバーナ装置2(2a,2b,2c)に加えて二種管路配設部112の下方側の暖房用のバーナ装置5を燃焼させる(表1の給湯単独燃焼、切り替え段数(4)を参照)。また、このとき、燃焼制御手段52は、ポンプ駆動制御手段55に指令を加えて暖房用循環ポンプ9を駆動させる。
Furthermore, the combustion control means 52, when the hot water supply independent operation, has a hot water supply burner device 2 (2a) when the combustion capacity corresponding to the hot water supply request capacity becomes equal to or higher than the water channel arrangement portion switching reference capacity (for example, 16.5) , 2b, 2c), the
給湯用のバーナ装置2a,2b,2cと暖房用のバーナ装置5の燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図5の特性線d1と特性線d2とに挟まれた領域内の給湯が可能となる。つまり、バーナ装置2a,2b,2cと暖房用のバーナ装置5の燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図5の特性線d1の特性となり、ガス比例弁18の開弁量が多くなるにつれて図5の特性線d2側に近づき、最大開度のときに特性線d2の特性が得られるので、燃焼制御手段52は給湯設定温度と給湯流量に対応させてガス比例弁18を制御する。
また、給湯単独運転時であっても、暖房用のバーナ装置5の燃焼を行う時には液体循環ポンプ9を駆動させて暖房回路7内の熱媒体(温水)を循環させ、給湯暖房熱的接続用液−水熱交換器33を介して暖房回路7側の熱を給湯側に吸熱させて回収することにより、図5の特性線d1と特性線d2とに挟まれた領域内の高い給湯能力による給湯を行うことができるものである。
Further, even when the hot water supply is operated alone, when the
つまり、本実施例では、給湯用のバーナ装置2と暖房用のバーナ装置5の全ての燃焼面を燃焼させ、ガス比例弁18の開弁量制御を行うことに加え、暖房回路7の熱媒体を循環させて、前記の如く、給湯暖房熱的接続用液−水熱交換器33を介して暖房回路7側の熱を給湯側に吸熱させることができ、しかも、このとき、経路切り替え制御手段51が暖房回路7の熱媒体循環経路を潜熱熱交経由経路とすることで、給湯暖房熱的接続用液−水熱交換器33を介しての暖房回路7側から給湯回路45側への熱の移動量を多くできるため、図5の特性線d1と特性線d2とに挟まれた領域内の高い給湯能力による給湯を行うことができる。
That is, in this embodiment, all the combustion surfaces of the hot water
燃焼制御手段52は、暖房単独運転時には、暖房運転動作に必要な必要燃焼能力が予め定められる暖房制御切り替え基準能力(例えば7.3kw)未満の時には、二種管路配設部112の下方側の暖房用のバーナ装置5の9本のバーナ109をオンオフ制御し(予め定められるオンオフタイミング毎にオンとオフとを繰り返すオンオフ燃焼(間欠燃焼)を行い)、このとき、ガス比例弁18の開弁量を最小とする。
Combustion control means 52 is located on the lower side of
一方、暖房運転動作に必要な必要燃焼能力が前記暖房制御切り替え基準能力以上の時には、暖房用のバーナ装置5の9本のバーナ109の燃焼を継続して行い、このときには、前記必要燃焼能力に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。
On the other hand, when the required combustion capacity necessary for the heating operation is equal to or higher than the heating control switching reference capacity, the nine
本実施例において、燃焼制御手段52は、図示されていない給湯暖房同時動作制御手段を有しており、給湯と暖房の同時運転時には、この給湯暖房同時動作制御手段による制御を以下のように行う。つまり、給湯暖房同時動作制御手段は、給湯側の温度調節を優先させる運転とし、暖房側は、その給湯側の温度調節によって得られるままの状態(つまり、暖房側に対応させての温度調節を特に行わない)か、あるいは待機とする。 In the present embodiment, the combustion control means 52 has a hot water supply / heating simultaneous operation control means (not shown), and during the simultaneous operation of hot water supply and heating, the control by the hot water supply / heating simultaneous operation control means is performed as follows. . That is, the hot water and heating simultaneous operation control means prioritizes the temperature adjustment on the hot water supply side, and the heating side performs the temperature adjustment corresponding to the heating side as it is obtained by the temperature adjustment on the hot water supply side. No special action) or stand by.
具体的には、熱源装置に要求される給湯要求能力(給湯動作に必要な必要燃焼能力)が予め定められる同時燃焼時燃焼面切り替え基準能力(例えば4.6号)以下のときには、暖房用のバーナ装置5の燃焼を停止したまま給湯用のバーナ装置2の燃焼制御のみを行い、給湯要求能力が前記同時燃焼時燃焼面切り替え基準能力(例えば4.6号)よりも大きいときには、暖房用のバーナ装置5を燃焼させながら、給湯要求能力に対応させて前記給湯用のバーナ装置の燃焼制御を行う。
Specifically, when the required hot water supply capacity required for the heat source device (required combustion capacity necessary for hot water supply operation) is equal to or less than a predetermined simultaneous combustion surface switching reference capacity (for example, No. 4.6) for heating, Only the combustion control of the hot water
つまり、図6の特性線a1上または特性線a1よりも左側に示される領域においては暖房用のバーナ装置5の燃焼を行わない待機状態として給湯単独運転時と同様に、例えば給湯用のバーナ装置2aの燃焼を行い、特性線a1よりも右側に示される領域においては、以下に述べるように、給湯要求能力に対応させてガス電磁弁14,17とガス比例弁18の開弁量制御を行う。例えば、必要燃焼能力が前記同時燃焼時燃焼面切り替え基準能力(例えば4.6号)よりも小さい状態から最初に前記切り替え基準能力を超えたときには、まず、暖房用のバーナ装置5の9本のバーナ107の燃焼面を燃焼させる(表1の給湯暖房同時燃焼、切り替え段数(1)を参照)。
That is, in the region shown on the characteristic line a 1 in FIG. 6 or on the left side of the characteristic line a 1, as in the stand-by state in which the combustion of the
本実施例では、暖房用のバーナ装置5の上側に二種管路配設部112が設けられているので、暖房用のバーナ装置5のみの燃焼によっても給湯側の加熱が行われ、ガス比例弁18の開弁量に応じて給湯側の能力も変化し、例えば給湯回路45への入水温度が15℃の場合に、給湯設定温度に応じて図6の特性線a1と特性線a2側との間の領域の給湯特性が得られる。つまり、ガス比例弁18の開弁量が最小開度のときに図6の特性線a1の特性となり、ガス比例弁18の開弁量が多くなるにつれて図6の特性線a2側に近づき最大開度のときに特性線a2の特性が得られるので、燃焼制御手段52の給湯暖房同時動作制御手段は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。
In the present embodiment, since the two-type
また、燃焼制御手段52の給湯暖房同時動作制御手段は、給湯要求能力に応じて要求される燃焼能力が一段アップすると、暖房用のバーナ装置5に加えてバーナ装置2bの3本のバーナ107を燃焼させ、合計12本のバーナ107,109の燃焼面の燃焼を行う(表1の給湯暖房同時燃焼、切り替え段数(2)を参照)。このとき、ガス比例弁18の開弁量に応じ、例えば給湯回路45への入水温度が15℃の場合には、給湯設定温度に応じて、図6の特性線b1と特性線b2側との間の領域の給湯特性が得られる。
Further, the hot water supply / heating simultaneous operation control means of the combustion control means 52, when the combustion capacity required according to the hot water supply required capacity is further increased, adds the three
つまり、ガス比例弁18の開弁量が最小開度のときには図6の特性線b1の特性となり、ガス比例弁18の開弁量が多くなるにつれて図6の特性線b2側に近づき、最大開度のときに特性線b2の特性が得られる。そのため、燃焼制御手段52の給湯暖房同時動作制御手段は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。
That is, when the amount of opening of the gas
なお、燃焼制御手段52の給湯暖房同時動作制御手段は、給湯要求能力が前記同時燃焼時燃焼面切り替え基準能力より大きい状態から切り替え基準能力以下の状態に変化し、その後で、給湯要求能力が前記切り替え基準能力以下の状態から切り替え基準能力より大きい状態に変化したときには、同時燃焼時燃焼面切り替え基準能力を超えても直ぐには暖房用のバーナ装置5の燃焼を開始させず(暖房用のバーナ装置5への点火を行わず)、同時燃焼時燃焼面切り替え基準能力よりも大きい値に設定されている上乗せ含み切り替え基準能力(例えば、ここでは、図6の特性線b1に対応する能力であり、暖房用のバーナ装置5と給湯用のバーナ装置2bを、ガス比例弁18の最小開弁量で燃焼させる能力)に達したときに暖房用のバーナ装置を燃焼させて暖房用のバーナ装置5と給湯用のバーナ装置2の燃焼制御を行うようにする。
Note that the hot water supply / heating simultaneous operation control means of the combustion control means 52 changes from a state where the hot water supply request capability is larger than the combustion surface switching reference capability during simultaneous combustion to a state below the switch reference capability, and thereafter the hot water supply request capability is When the state changes from the state below the switching reference capability to a state larger than the switching reference capability, the combustion of the
そして、燃焼制御手段52の給湯暖房同時動作制御手段は、給湯要求能力が前記切り替え基準能力より大きい状態から切り替え基準能力以下の状態に変化したときには、暖房用のバーナ装置5の燃焼を停止して(暖房待機として)給湯用のバーナ装置2の燃焼制御のみを行う。
Then, the hot water supply / heating simultaneous operation control means of the combustion control means 52 stops the combustion of the
以上のように、本実施例では、燃焼制御手段52の給湯暖房同時動作制御手段の制御によって、給湯動作に必要な給湯要求能力が予め定められる切り替え基準能力よりも大きいときには、前記給湯要求能力に対応させて暖房用のバーナ装置5の燃焼制御を行うか該暖房用のバーナ装置5と給湯用のバーナ装置2の燃焼制御を行うかすることにより、一種管路配設部111と二種管路配設部112との両方に配設されている給湯用の液体流通管路13を適切に加熱して給湯設定温度の湯を適切な流量で給湯することができる。
As described above, in this embodiment, when the hot water supply request capability required for the hot water supply operation is larger than the predetermined switching reference capability by the control of the hot water supply / heating simultaneous operation control unit of the
一方、給湯動作に必要な給湯要求能力が前記切り替え基準能力以下のときには暖房用のバーナ装置5の燃焼を停止したまま給湯用のバーナ装置2の燃焼制御のみを行うことにより、一種管路配設部111に配設されている給湯用の液体流通管路13と、一種管路配設部111に隣接する一部の二種管路配設部112の給湯用の液体流通管路13とを適切に加熱し、二種管路配設部112に配設されている給湯用の液体流通管路13の加熱は殆ど行わずに、給湯設定温度の湯を適切な流量で給湯することができる。
On the other hand, when the required hot water supply capacity required for the hot water supply operation is equal to or less than the switching reference capacity, the combustion control of the
なお、本実施例では、このように、給湯動作に必要な給湯要求能力が前記切り替え基準能力以下のときには、暖房用のバーナ装置5の燃焼停止によって暖房回路7内の熱媒体の加熱は行われないため暖房側の熱媒体の温度の低下が生じる可能性があるが、暖房側では利用者が直接熱媒体に触れるわけではないため熱媒体の温度の低下を敏感には感じにくい。また、給湯動作に必要な給湯要求能力が前記切り替え基準能力以下のときとは、例えば台所や洗面所等で小流量での給湯を行っている可能性が高く、この時間は長く続かない可能性が高いために、給湯要求能力が前記切り替え基準能力以下での暖房と給湯との同時運転時間は短めであると考えられる。
In the present embodiment, when the required hot water supply capacity required for the hot water supply operation is equal to or less than the switching reference capacity, the heating medium in the
したがって、例えば給湯と暖房の同時運転(動作)中の給湯要求能力が前記切り替え基準能力以下での給湯が停止されれば暖房単独運転となって暖房用のバーナ装置5の燃焼が行われるようになるため、利用者が暖房運転を望んでいるにもかかわらず暖房用バーナ装置5の燃焼が行われない状態が長く続く可能性は非常に低く、暖房装置70,71の運転に対する利用者の使い勝手に支障が生じることはない。
Therefore, for example, if hot water supply is stopped when the hot water supply request capacity during the simultaneous operation (operation) of hot water supply and heating is equal to or less than the switching reference capacity, the
また、本実施例では、給湯暖房同時動作時に、給湯動作に必要な給湯要求能力が切り替え基準能力より大きい状態から該切り替え基準能力以下に変化した後に、該切り替え基準能力以下の状態から該切り替え基準能力を超える状態に変化したときには、該切り替え基準能力よりも大きい値に設定されている上乗せ含み切り替え基準能力に達したときに、暖房用のバーナ装置5を燃焼させて給湯用のバーナ装置2の燃焼制御も行い、前記給湯動作に必要な給湯要求能力が前記切り替え基準能力よりも大きい値から該切り替え基準能力以下に変化したときには、暖房用のバーナ装置5の燃焼を停止して給湯用のバーナ装置2の燃焼制御のみを行うようにすることにより、以下の効果を奏することができる。
Further, in the present embodiment, at the time of hot water heating and simultaneous operation, after the hot water supply required capacity required for the hot water supply operation is changed from the state larger than the switching reference capacity to the switching reference capacity or less, the switching reference capacity is changed from the state below the switching reference capacity. When the state changes to a state exceeding the capacity, the
本実施例では、暖房回路7から暖房装置70,71への熱媒体供給の有無を切り替える切り替え手段が熱媒体の温度に対応して開閉する熱動弁48,76によって形成されており、熱動弁の開閉制御は電磁弁のように迅速には行われずにゆっくりと行われ、暖房回路7から暖房装置70,71への熱媒体供給の有無の切り替え信号に対して熱動弁48,76の開閉動作が迅速には追従しない。
In this embodiment, the switching means for switching the presence or absence of the supply of the heat medium from the
それに対し、前記のように、給湯暖房同時動作時に暖房用のバーナ装置5を停止する基準とするための切り替え基準能力と暖房用のバーナ装置5の燃焼を再開する基準とするための上乗せ含み切り替え基準能力の2つの互いに異なる値を与え、上乗せ含みきりか液順応力を切り替え基準能力より高い値に設定し、給湯暖房同時動作時に、これらの基準能力と給湯要求能力とに応じて暖房用のバーナ装置5の停止と燃焼再開(再点火)を行うことにより、熱動弁48,76の開閉動作に適応した制御を行って暖房用のバーナ装置5の停止と燃焼再開(オンオフ)を頻繁に行うことを防ぐことができ、暖房用のバーナ装置5の寿命を長くできる。
On the other hand, as described above, the switching reference ability for making the heating burner device 5 a reference for stopping the heating and the
また、燃焼制御手段52の給湯暖房同時動作制御手段は、給湯要求能力がさらに一段アップすると、暖房用のバーナ装置5と全ての給湯用のバーナ装置2a,2b,2cの合計22本のバーナ107を燃焼させる(表1の給湯暖房同時燃焼、切り替え段数(3)を参照)。
Further, the hot water supply and heating simultaneous operation control means of the combustion control means 52, when the hot water supply request capability is further increased, the
このとき、ガス比例弁18の開弁量に応じ、例えば給湯回路45への入水温度が15℃の場合には、給湯設定温度に応じ、図6の特性線d1と特性線d2側との間の領域の給湯特性が得られる。つまり、ガス比例弁18の開弁量が最小開度のときには図6の特性線d1の特性となり、ガス比例弁18の開弁量が多くなるにつれて図6の特性線d2側に近づき、最大開度のときに特性線d2の特性が得られる。そのため、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。
At this time, according to the valve opening amount of the gas
なお、図6の特性線cには、暖房用のバーナ装置5と全ての給湯用のバーナ装置2a,2b,2cの合計22本のバーナ107,109を最大燃焼させた(ガス比例弁18の開度を最大にして燃焼を行った)場合において、暖房用のバーナ装置5の燃焼熱量を暖房用の液体流通管路12が全て吸熱してしまって給湯用の液体流通管路13による吸熱が行えない場合の給湯特性が示されている。
In the characteristic line c in FIG. 6, the 22
図6の特性線d2と特性線cとを比較すると分かるように、暖房用のバーナ装置5と全ての給湯用のバーナ装置2a,2b,2cの合計22本のバーナ107を最大燃焼させて、これらのバーナ装置5,2a,2b,2cの燃焼熱量を給湯用の液体流通管路13が全て吸熱すれば、図6の特性線d2の特性が得られて24号給湯器の能力が得られるが、暖房用のバーナ装置5の燃焼熱量を暖房用の液体流通管路12が全て吸熱した場合には図6の特性線cの特性が得られて給湯能力は16.5号給湯器の給湯能力となる。
As can be seen by comparing the characteristic line d 2 and the characteristic line c in FIG. 6, the
このようなことから、例えば図6の破線枠E内の領域においては、給湯と暖房の同時燃焼時において、暖房用のバーナ装置5の燃焼熱量を暖房用の液体流通管路12が吸熱する量によっては給湯能力が低下する可能性があるが、本実施例では、給湯暖房熱的接続用液−水熱交換器33を設け、暖房回路7内の熱媒体(温水)から給湯回路45内の熱媒体(水)への熱移動を行うことにより、そのような給湯能力低下を補充することもできる。
For this reason, for example, in the area within the broken line frame E in FIG. 6, the amount of heat absorbed by the heating
ところで、本実施例のように、1つの燃焼ファン15を設けて給湯と暖房の運転を行う装置においては、その燃焼ファン15を、給湯単独運転時であっても暖房単独運転時であっても駆動する。そのため、給湯用のバーナ装置2と暖房用のバーナ装置5とを並設し、給湯用のバーナ装置2の上側には給湯熱交換器を設けて暖房用のバーナ装置5の上側には暖房用熱交換器を設ける構成として、給湯運転を断続的に行いながら暖房運転を行うと、給湯運転停止期間において給湯熱交換器内に滞留している湯が燃焼ファン15からの送風によって冷やされることになり、このことに起因して給湯温度が変動する冷水サンドイッチ現象が生じてしまう。
By the way, in this embodiment, in the apparatus in which one
それに対し、本実施例では、給湯用のバーナ装置2の上側には給湯用の液体流通管路13が配設された一種管路配設部111を設け、給湯用のバーナ装置2と並設された暖房用のバーナ装置5の上側には、暖房用の液体流通管路12によって給湯用の液体流通管路13を上下に挟む態様で接して配設された二種管路配設部112を設けた特徴的な構成としていることから、以下の効果を奏することができる。
On the other hand, in the present embodiment, a kind of
つまり、暖房単独運転が行われて暖房用バーナ装置5の燃焼と共に燃焼ファン15の駆動が行われると、一種管路配設部111の液体流通管路13内に滞留している湯が給湯停止以降の燃焼ファン15からの風によって冷えてしまっても二種管路配設部の液体流通管路13内に滞留している湯が暖房用のバーナ装置5の燃焼によって加熱されるため、メインの給湯熱交換器を形成する給湯用の液体流通管路13内に温かい湯が残り、また、給湯回路45を通って給湯される熱媒体(湯)は、一種管路配設部111と暖房用のバーナ装置5に加熱される二種管路配設部112とを通って給湯されることから、冷水サンドイッチ現象を抑制できる。
That is, when the heating single operation is performed and the
なお、本実施例において、図1の右側から4番目に示されているように、給湯用のバーナ装置2側にはみ出している二種管路配設部112の液体流通管路13は、暖房用のバーナ装置5の燃焼時にバーナ装置5の燃焼面よりも給湯用のバーナ装置2側に広がりながら上昇する燃焼ガスによって加熱されるものの、燃焼ガスの熱は液体流通管路13の下側に該液体流通管路13と接して設けられている液体流通管路12によって殆ど吸熱されてしまうために、液体流通管路13によって吸収される燃焼ガスの熱量はそれほど大きくない。
In the present embodiment, as shown in the fourth from the right side in FIG. 1, the
したがって、この部分の液体流通管路13が暖房用のバーナ装置5からの燃焼ガスの広がりによって加熱されても、それだけでは給湯される湯の冷水サンドイッチ現象の抑制はできないが、本実施例では、暖房用のバーナ装置5の上側に配置されている液体流通管路13(図1では右側から1番目、2番目、3番目のそれぞれの液体流通管路13)は暖房用のバーナ装置5の燃焼ガスの熱量を十分に吸熱でき、これらの液体流通管路13内には温かい湯が残ることになり、前記の如く冷水サンドイッチ現象を抑制することができる。
Therefore, even if the
つまり、本実施例の構成は、暖房単独運転時に給湯側の液体流通管路13内の液体(水)が沸騰してしまうことを抑制できて効率的に運転できることに加え、給湯運転を断続的に行いながら暖房運転を行う場合に懸念される冷水サンドイッチ現象の抑制もできるものである。
That is, the configuration of the present embodiment can suppress the boiling of the liquid (water) in the
なお、図11に示した熱源装置のように、給湯用のバーナ装置2と風呂の追い焚き用のバーナ装置102とを並設し、給湯用のバーナ装置2の上側に給湯用の液体流通管路13を設けて追い焚き用のバーナ装置102の上側には追い焚き用の液体流通管路105を設け、給湯側と追い焚き側とにそれぞれ燃焼ファンを設ける構成の場合にも、それらの両方の燃焼ファンの駆動が給湯単独運転時も追い焚き単独運転時も行われる。ただし、この場合、燃焼が行われていない側の燃焼ファンの駆動は燃焼ガスの逆流を防ぐためのものであるために送風量は少ない。
As in the heat source device shown in FIG. 11, a hot water
つまり、このような燃焼ガスの逆流防止のための送風によって、燃焼が行われていない側の熱交換器内の湯温が大きく低下するほどではなく、図11に示したような2つの燃焼ファン15を設ける構成においては、冷水サンドイッチ現象の発生の懸念は少ないが、前記の如く、仕切り等を設けないと、給湯や追い焚きの単独燃焼時に、燃焼していない側の熱交換器内の水等が沸騰してしまうといった問題が生じることになる。 That is, by the air blow for preventing the backflow of the combustion gas, the hot water temperature in the heat exchanger on the side where the combustion is not performed is not greatly lowered, but two combustion fans as shown in FIG. 15 is less likely to cause a cold water sandwich phenomenon. However, as described above, if a partition or the like is not provided, the water in the heat exchanger on the non-burning side can be used for hot water supply or reheating. This will cause a problem such as boiling.
それに対し、本実施例の熱源装置は、このような水等の熱媒体の沸騰の問題を防止でき、かつ、前記のように冷水サンドイッチ現象の抑制も両立できて、給湯単独運転時でも給湯と暖房の同時運転時でも給湯温度の安定化を図れ、さらに、構成も簡単であることから低コスト化も図れる優れた熱源装置である。 On the other hand, the heat source device of the present embodiment can prevent such a problem of boiling of a heat medium such as water, and can also suppress the cold water sandwich phenomenon as described above, so that hot water supply can be performed even during hot water supply single operation. It is an excellent heat source device that can stabilize the hot water supply temperature even during the simultaneous operation of heating, and can be reduced in cost because of its simple configuration.
図8には、本発明に係る熱源装置の第2実施例のシステム構成が示されており、以下、第2実施例について説明する。なお、第2実施例の説明において、前記第1実施例と同一名称部分には同一符号を付し、その重複説明は省略または簡略化する。 FIG. 8 shows a system configuration of a second embodiment of the heat source apparatus according to the present invention, and the second embodiment will be described below. In the description of the second embodiment, the same reference numerals are assigned to the same name portions as those in the first embodiment, and the duplicate description is omitted or simplified.
第2実施例は、図8に示されるように、第1実施例において複合熱交換器1の液体流通管路13(メインの給湯熱交換器)の入側に設けられていた給湯暖房熱的接続用液−水熱交換器33を複合熱交換器1を形成する給湯用の液体流通管路13(メインの給湯熱交換器)の出側に設けて構成されている。それ以外の第2実施例の構成は第1実施例と同様であり、第2実施例も前記第1実施例と同様の効果を奏することができる。
In the second embodiment, as shown in FIG. 8, the hot water heating / heating system provided on the inlet side of the liquid flow line 13 (main hot water supply heat exchanger) of the
なお、本発明は、前記各実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において様々な態様を採り得る。例えば、前記各実施例では、図3に示されるような制御構成を有していたが、本発明の熱源装置における制御構成は特に限定されるものでなく、適宜設定されるものである。 Note that the present invention is not limited to the above-described embodiments, and can take various forms without departing from the technical scope of the present invention. For example, in each of the above embodiments, the control configuration as shown in FIG. 3 is provided, but the control configuration in the heat source device of the present invention is not particularly limited, and is appropriately set.
例えば、前記各実施例では、経路切り替え制御手段51による経路切り替え基準となる経路切り替え基準値を、燃焼制御手段52に与えられる水路配設部切り替え基準能力と同じ値の例えば16.5号としたが、経路切り替え基準値を水路部切り替え基準値より大きい値に設定し、給湯単独運転時の給湯要求能力の値が経路切り替え基準値以下のときには、経路切り替え制御手段51が図7(a)の実線に示したバイパス経路で熱媒体を循環させ、経路切り替え基準値を超えたときに、図7(b)の実線に示した潜熱熱交経由経路で熱媒体を循環させるようにしてもよい。
For example, in each of the above-described embodiments, the route switching reference value serving as the route switching reference by the route switching
このようにすると、給湯単独運転時の給湯要求能力が16.5号以上になっても、16.5号以上に必要な熱量が少なめのとき(給湯要求能力が16.5号から経路切り替え基準値までの間の時)にはバイパス経路で熱媒体を循環させることにより暖房用循環ポンプ9の負荷を小さくして省エネ化を図ることができ、給湯要求能力が経路切り替え基準値より大きくなって、より高い給湯能力が要求されるときには、その高い給湯能力による給湯を行うことができるようにすることができる。 In this way, even if the required hot water supply capacity during hot water supply independent operation is 16.5 or higher, the amount of heat required for 16.5 or higher is less (the hot water required capacity is 16.5 than the route switching standard). By circulating the heat medium in the bypass route, the load of the heating circulation pump 9 can be reduced to save energy, and the required hot water supply capacity becomes larger than the route switching reference value. When a higher hot water supply capability is required, it is possible to perform hot water supply with the higher hot water supply capability.
また、本発明の熱源装置は、図2に示されているような複合熱交換器1を有するとは限らず、例えば図9に示されるような二種管路配設部112のみを有する態様とすることもできる。このように、本発明の熱源装置は、前記各実施例に適用した複合熱交換器1の二種管路配設部112のように、メインの給湯熱交換器の液体流通管路がメインの暖房用熱交換器の液体流通管路によって上下に挟まれる態様で互いに接して配設された二種管路配設部112を少なくとも一部有し、該二種管路配設部112の二種の液体流通管路12,13が共通のバーナ装置により加熱される構成を有していればよい。
In addition, the heat source apparatus of the present invention does not necessarily have the
なお、図9に示すような構成の場合、バーナ装置は、例えば切り替え可能な複数の燃焼面を持つ1つのバーナ装置を設けて形成することができ、図9は、複数の燃焼面の内の1つが燃焼している状態を模式的に示している。また、図9に示すような構成の熱交換器を有する場合のシステム構成は、例えば図1、図8における複合熱交換器1の暖房用の液体流通管路12が給湯用の液体流通管路13の配設位置全体に渡るような態様となる。
In the case of the configuration as shown in FIG. 9, the burner device can be formed by providing, for example, one burner device having a plurality of switchable combustion surfaces, and FIG. A state in which one is burning is schematically shown. Further, the system configuration in the case of having a heat exchanger configured as shown in FIG. 9 is such that, for example, the heating
さらに、本発明の熱源装置は、例えば図1、図8に示されるような構成に形成されるものであるが、給湯暖房熱的接続用液−水熱交換器33を備えて給湯回路45と暖房回路7とが熱的に接続され、かつ、給湯単独運転時に、経路切り替え制御手段51による暖房回路7の熱媒体の循環経路切り替えが前記各実施例のように行えるようにすれば、システム構成の詳細は特に限定されるものでなく適宜設定されるものである。例えば、前記各実施例では、給湯の入水温度を検出する入水温検出手段を設けずに、入水温度を演算によって求める方式を適用したが、入水温度をリアルタイムで検出する入水温度検出手段を設けてもよい。
Furthermore, the heat source device of the present invention is formed, for example, in a configuration as shown in FIGS. 1 and 8, and includes a liquid-
また、太陽熱を集熱する集熱機能等の他の機能や、貯湯槽等の構成を有していてもよい。 Moreover, you may have other functions, such as the heat collection function which collects solar heat, and structures, such as a hot water tank.
さらに、図1、図8の鎖線に示されるように、暖房装置70,71が運転(稼働)されていない場合に、暖房用熱交換器28(28a,28b)により加熱された熱媒体を暖房装置70,71に通さずに暖房用熱交換器28aの入側に戻すバイパス通路119を設け、該バイパス通路119にバイパス弁117を設け、給湯単独運転時に、経路切り替え制御手段51が、前記経路切り替え条件に基づき、前記各実施例において追い焚き用液体流量制御弁32の開閉動作制御を行うようにする代わりに(あるいは追い焚き用液体流量制御弁32の開閉動作制御に加えて)、バイパス弁117の開閉動作制御を行うようにしてもよい。
Further, as shown by the chain line in FIG. 1 and FIG. 8, when the
さらに、本発明の熱源装置は、例えば前記各実施例で設けたガス燃焼を行うバーナ装置の代わりに、石油燃焼用のバーナ装置を設けてもよい。 Furthermore, the heat source device of the present invention may be provided with a burner device for oil combustion instead of the burner device that performs gas combustion provided in each of the above embodiments, for example.
本発明は、小型でも給湯と暖房の能力を十分に得ることができ、給湯や暖房の単独運転時における熱交換器内の熱媒体の沸騰も抑制できるので、家庭用や業務用の熱源装置として利用できる。 Since the present invention can sufficiently obtain hot water supply and heating capabilities even in a small size and can suppress boiling of the heat medium in the heat exchanger during single operation of hot water supply or heating, it can be used as a heat source device for home use or business use. Available.
1 熱源装置
2 給湯用のバーナ装置
4 潜熱回収用の給湯熱交換器
5 暖房用のバーナ装置
6 潜熱回収用の暖房用熱交換器
7 暖房回路
8 暖房用液体循環通路
9 暖房用循環ポンプ
10 シスターン
12,13 液体流通管路
14,17 ガス電磁弁
15 燃焼ファン
18 ガス比例弁
19 水量センサ
20 水量サーボ
24 出湯サーミスタ
23 熱交出側サーミスタ
25 風呂熱交換器
32 追い焚き用液体流通制御弁
33 給湯暖房接続用液−水熱交換器
40 暖房高温サーミスタ
41 暖房低温サーミスタ
51 経路切り替え制御手段
52 燃焼制御手段
53 リモコン装置
54 制御手段
55 ポンプ駆動制御手段
111 一種管路配設部
112 二種管路配設部
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015044777A JP6449687B2 (en) | 2015-03-06 | 2015-03-06 | Heat source equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015044777A JP6449687B2 (en) | 2015-03-06 | 2015-03-06 | Heat source equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016164472A true JP2016164472A (en) | 2016-09-08 |
JP6449687B2 JP6449687B2 (en) | 2019-01-09 |
Family
ID=56876822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015044777A Expired - Fee Related JP6449687B2 (en) | 2015-03-06 | 2015-03-06 | Heat source equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6449687B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020029974A (en) * | 2018-08-21 | 2020-02-27 | リンナイ株式会社 | Heat source device |
JP2020106225A (en) * | 2018-12-27 | 2020-07-09 | 株式会社ガスター | Heat source device |
JP2020106227A (en) * | 2018-12-27 | 2020-07-09 | 株式会社ガスター | Heat source device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0554953U (en) * | 1991-12-18 | 1993-07-23 | 株式会社長府製作所 | 1 can 2 circuit type water heater heat exchanger |
JP2000304348A (en) * | 1999-04-16 | 2000-11-02 | Matsushita Electric Ind Co Ltd | Combustor |
JP2002267254A (en) * | 2001-03-13 | 2002-09-18 | Osaka Gas Co Ltd | Hot-water supply apparatus |
JP2015183876A (en) * | 2014-03-20 | 2015-10-22 | 株式会社ガスター | heat source device |
-
2015
- 2015-03-06 JP JP2015044777A patent/JP6449687B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0554953U (en) * | 1991-12-18 | 1993-07-23 | 株式会社長府製作所 | 1 can 2 circuit type water heater heat exchanger |
JP2000304348A (en) * | 1999-04-16 | 2000-11-02 | Matsushita Electric Ind Co Ltd | Combustor |
JP2002267254A (en) * | 2001-03-13 | 2002-09-18 | Osaka Gas Co Ltd | Hot-water supply apparatus |
JP2015183876A (en) * | 2014-03-20 | 2015-10-22 | 株式会社ガスター | heat source device |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020029974A (en) * | 2018-08-21 | 2020-02-27 | リンナイ株式会社 | Heat source device |
JP7195812B2 (en) | 2018-08-21 | 2022-12-26 | 株式会社ガスター | Heat source device |
JP2020106225A (en) * | 2018-12-27 | 2020-07-09 | 株式会社ガスター | Heat source device |
JP2020106227A (en) * | 2018-12-27 | 2020-07-09 | 株式会社ガスター | Heat source device |
JP7217628B2 (en) | 2018-12-27 | 2023-02-03 | 株式会社ガスター | Heat source device |
JP7235502B2 (en) | 2018-12-27 | 2023-03-08 | 株式会社ガスター | Heat source device |
Also Published As
Publication number | Publication date |
---|---|
JP6449687B2 (en) | 2019-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106595026B (en) | Gas wall-mounted boiler, hot water supply system and control method | |
US20100282440A1 (en) | Fluid Heater | |
JP4527893B2 (en) | Water heater | |
JP2006226618A (en) | Heat exchanger, heat pump type hot water supply device, and heat pump type hot water supply heating system | |
JP6449687B2 (en) | Heat source equipment | |
JP2008224076A (en) | Hot water supplying device and hot water supplying/heating device | |
JP5146731B2 (en) | Hot water supply apparatus and hot water supply system | |
JP7217628B2 (en) | Heat source device | |
JP7235502B2 (en) | Heat source device | |
JP6449688B2 (en) | Heat source equipment | |
JP4877580B2 (en) | Hot water storage water heater | |
CN216924756U (en) | Gas heating water heater | |
JP6488157B2 (en) | Heat source equipment | |
JP7267739B2 (en) | Heat source device | |
JP7195812B2 (en) | Heat source device | |
JP7267738B2 (en) | Heat source device | |
JP4454169B2 (en) | Water heater | |
JP2009115329A (en) | Hot-water supply heating device | |
CN114198904A (en) | Gas heating water heater | |
JP3907032B2 (en) | Water heater | |
JP4711129B2 (en) | Liquid heating device | |
JP6570908B2 (en) | Hot water system | |
JP2008275282A (en) | Composite heat source machine | |
JP4624091B2 (en) | Water heater | |
JP4602062B2 (en) | Water heater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170927 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181206 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6449687 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |