JP4527893B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP4527893B2
JP4527893B2 JP2001070297A JP2001070297A JP4527893B2 JP 4527893 B2 JP4527893 B2 JP 4527893B2 JP 2001070297 A JP2001070297 A JP 2001070297A JP 2001070297 A JP2001070297 A JP 2001070297A JP 4527893 B2 JP4527893 B2 JP 4527893B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
fluid
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001070297A
Other languages
Japanese (ja)
Other versions
JP2002267254A (en
Inventor
哲二 大塚
哲司 森田
忍 石原
勝彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001070297A priority Critical patent/JP4527893B2/en
Publication of JP2002267254A publication Critical patent/JP2002267254A/en
Application granted granted Critical
Publication of JP4527893B2 publication Critical patent/JP4527893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • F28D7/085Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration in the form of parallel conduits coupled by bent portions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control For Baths (AREA)
  • Details Of Fluid Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給水路を通して供給される水をバーナの燃焼により加熱して給湯路に給湯する給湯用熱交換器と、入路を通して供給される加熱対象流体を前記バーナの燃焼により加熱して出路に流出する流体用熱交換器とが設けられ、前記給湯用熱交換器と前記流体用熱交換器とが、互いに熱伝導する状態で一体的に形成されている給湯装置に関する。
【0002】
【従来の技術】
上記のような給湯装置は、例えば、給湯用熱交換器と流体用熱交換器が、互いに熱伝導する状態で一体的に形成され、流体用熱交換器が、浴槽から入路を通して供給されて、出路を通して浴槽内に供給する浴槽湯水を加熱するように構成され、単一のバーナにて給湯および浴槽湯水の追焚を行うものである。
そして、この種の給湯装置では、給湯用熱交換器への水の供給を行い、流体用熱交換器への加熱対象流体の熱消費端末からの供給を停止する給湯単独加熱状態においては、流体用熱交換器内の加熱対象流体も加熱されることになるが、流体用熱交換器内で加熱対象流体が停滞するので、その加熱対象流体が沸騰する虞があり、また、流体用熱交換器への加熱対象流体の供給を行い、給湯用熱交換器から給湯路への給湯を停止する流体単独加熱状態においては、給湯用熱交換器内の湯水も加熱されることになるが、給湯用熱交換器内で湯水が停滞するので、その湯水が沸騰する虞がある。
【0003】
そこで、従来の給湯装置は、流体用熱交換器と熱消費端末としての浴槽や暖房装置との間で加熱対象流体を循環させる流体用循環手段と、給湯用熱交換器にて加熱される前の水と流体用熱交換器にて加熱された加熱対象流体との間で熱交換させる液々熱交換器とを設けるとともに、給湯用熱交換器内の水の温度を検出する給湯用沸騰検出サーミスタを設けることによって、給湯単独加熱状態における流体用熱交換器内の加熱対象流体の沸騰を防止するとともに、流体単独加熱状態における給湯用熱交換器内の湯水の沸騰を防止するように構成されている(例えば、特開平10−122652号公報)。
【0004】
説明を加えると、給湯単独加熱状態においては、流体用循環手段を作動させて、流体用熱交換器内の加熱対象流体を流動させることによって、液々熱交換器においてその加熱対象流体と給湯用熱交換器にて加熱される前の水とを熱交換させて、加熱対象流体の温度上昇を抑制して、加熱対象流体の沸騰を防止している。
また、流体単独加熱状態においては、給湯用沸騰検出サーミスタによる検出温度が沸騰用設定温度以上になると、バーナの燃焼量を減少させて、バーナの燃焼量を制限して、給湯用熱交換器内の湯水の沸騰を防止するようにしている。
【0005】
【発明が解決しようとする課題】
上記従来の給湯装置は、給湯単独加熱状態において、流体用循環手段を作動させて、液々熱交換器にて加熱対象流体と給湯用熱交換器にて加熱される前の水とを熱交換させることにより、加熱対象流体の沸騰を防止するので、バーナの燃焼量を制限することなく、加熱対象流体の沸騰を防止することが可能となる。
しかしながら、流体単独加熱状態において、給湯用沸騰検出サーミスタによる検出温度が沸騰用設定温度以上になると、バーナの燃焼量を減少させることによって、給湯用熱交換器内の湯水の沸騰を防止するようにしているので、バーナの燃焼量が制限されることとなって、所望の加熱能力を得ることができない虞があった。
【0006】
本発明は、かかる点に着目してなされたものであり、その目的は、バーナの燃焼量を制限させずに、所望の加熱能力を得ながら、給湯用熱交換器内の水の沸騰を防止するとともに、流体用熱交換器内の加熱対象流体の沸騰を防止することが可能となる給湯装置を提供する点にある。
【0007】
【課題を解決するための手段】
この目的を達成するために、請求項1に記載の発明によれば、給水路を通して供給される水をバーナの燃焼により加熱して給湯路に給湯する給湯用熱交換器と、入路を通して供給される加熱対象流体を前記バーナの燃焼により加熱して出路に流出する流体用熱交換器とが設けられ、
前記給湯用熱交換器と前記流体用熱交換器とが、互いに熱伝導する状態で一体的に形成されている給湯装置であって、
前記加熱対象流体を前記流体用熱交換器と熱消費端末との間で循環させる流体用循環手段が設けられ、
前記給湯用熱交換器における湯水を前記給湯路および前記給水路を通して循環させる給湯用循環手段が設けられ、
前記流体用循環手段にて循環される前記加熱対象流体と、前記給湯用熱交換器にて加熱される前記水との間で熱交換させ、かつ、前記給湯用循環手段にて循環される前記湯水と、前記流体用熱交換器にて加熱される前記加熱対象流体との間で熱交換させる液々熱交換器が設けられ
前記流体用循環手段により循環される前記加熱対象流体を前記熱消費端末を迂回させた状態で循環させるバイパス路が設けられ、
前記バーナの燃焼を制御する制御手段が設けられ、
前記制御手段が、
前記給湯用熱交換器への前記水の供給が行われ、前記流体用熱交換器への前記加熱対象流体の前記熱消費端末からの供給が停止している給湯単独加熱状態においては、前記バーナの燃焼量に基づいて、前記バーナの燃焼量が大きいほど前記流体用循環手段により前記バイパス路を通して循環される前記加熱対象流体の量を多くする形態で、前記流体用循環手段により循環される前記加熱対象流体の量を調整するように、前記流体用循環手段の作動状態を制御し、かつ、
前記流体用熱交換器への前記加熱対象流体の供給が行われ、前記給湯用熱交換器から前記給湯路への給湯が停止している流体単独加熱状態においては、前記バーナの燃焼量に基づいて、前記バーナの燃焼量が大きいほど前記給湯用循環手段により前記給湯路及び前記給水路を通して循環される前記湯水の量を多くする形態で、前記給湯用循環手段により循環される前記湯水の量を調整するように、前記給湯用循環手段の作動状態を制御するように構成されている。
【0008】
すなわち、流体用循環手段および給湯用循環手段が設けられ、液々熱交換器が、流体用循環手段にて循環される加熱対象流体と、給湯用熱交換器にて加熱される水との間で熱交換させるとともに、給湯用循環手段にて循環される湯水と、流体用熱交換器にて加熱される加熱対象流体との間で熱交換させるように構成されているので、例えば、出路の加熱対象流体を入路に供給する暖房バイパス路などを含む流体循環回路を設けて、流体用循環手段を作動させると、加熱対象流体を流体用熱交換器と暖房バイパス路を含む流体循環回路内で循環させ、液々熱交換器が、流体用循環手段にて循環される加熱対象流体と、給湯用熱交換器にて加熱される水との間で熱交換させることが可能となるとともに、給湯用循環手段を作動させると、給湯用熱交換器における湯水を給湯路および給水路を通して循環させ、液々熱交換器が、給湯用循環手段にて循環される湯水と、流体用熱交換器にて加熱される加熱対象流体との間で熱交換させることが可能となる。
【0009】
したがって、給湯用熱交換器への水の供給を行い、流体用熱交換器への加熱対象流体の前記熱消費端末からの供給を停止する給湯単独加熱状態においては、流体用循環手段を作動させて、加熱対象流体を流体用熱交換器と暖房バイパス路を含む流体循環回路内で循環させ、液々熱交換器においてその加熱対象流体と給湯用熱交換器にて加熱される水とを熱交換させて、加熱対象流体の温度上昇を抑制して、流体用熱交換器内の加熱対象流体の沸騰を防止することが可能となる。
しかも、液々熱交換器における加熱対象流体と給湯用熱交換器にて加熱される水との熱交換により、給湯用熱交換器にて加熱される水を予熱することが可能となって、機器の性能(加熱能力)を機器に入力したエネルギー量で割った値、いわゆる効率を向上させることが可能となる。
【0010】
また、流体用熱交換器への加熱対象流体の供給を行い、給湯用熱交換器から給湯路への給湯を停止する流体単独加熱状態においては、給湯用循環手段を作動させて、給湯用熱交換器における湯水を給湯路および給水路を通して循環させ、液々熱交換器においてその湯水と流体用熱交換器にて加熱される加熱対象流体とを熱交換させて、湯水の温度上昇を抑制して、給湯用熱交換器内の湯水の沸騰を防止することが可能となる。
【0011】
以上のことをまとめると、請求項1に記載の発明によれば、流体用循環手段または給湯用循環手段を作動させて、液々熱交換器にて熱交換させることによって、給湯用熱交換器内の水の沸騰を防止するとともに、流体用熱交換器内の加熱対象流体の沸騰を防止することが可能となるので、バーナの燃焼量を制限させずに、所望の加熱能力を得ながら、給湯用熱交換器内の水の沸騰を防止するとともに、流体用熱交換器内の加熱対象流体の沸騰を防止することが可能となる給湯装置を提供できるに到った。
又、制御手段が、給湯単独加熱状態においては、バーナの燃焼量に基づいて、流体用循環手段により循環される加熱対象流体の量を調整するように、流体用循環手段の作動状態を制御し、かつ、流体単独加熱状態においては、バーナの燃焼量に基づいて、給湯用循環手段により循環される湯水の量を調整するように、給湯用循環手段の作動状態を制御するように構成されているので、制御手段が、バーナの燃焼量に応じて、流体用循環手段の作動状態または給湯用循環手段の作動状態を変更させることが可能となる。
したがって、例えば、制御手段が、バーナの燃焼量が大きいほど、流体用循環手段または給湯用循環手段の能力が大きくなるように、流体用循環手段または給湯用循環手段の作動状態を変更させることが可能となって、流体用循環手段または給湯用循環手段を、最大能力など一定の作動状態にて作動させるものと比べて、流体用循環手段または給湯用循環手段への電力供給量を極力抑えて、ランニングコストの低減を図るとともに、流体用循環手段または給湯用循環手段の作動に伴う騒音の発生を極力抑えることが可能となる。
【0012】
請求項2に記載の発明によれば、前記給湯用熱交換器が、前記バーナの燃焼排ガスの顕熱を回収する給湯用顕熱熱交換部と、その給湯用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配設され、前記バーナの燃焼排ガスの潜熱を回収する給湯用潜熱熱交換部とを備えて構成され、
前記流体用熱交換器が、前記バーナの燃焼排ガスの顕熱を回収する流体用顕熱熱交換部と、その流体用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配設され、前記バーナの燃焼排ガスの潜熱を回収する流体用潜熱熱交換部とを備えて構成されている。
【0013】
すなわち、給湯用熱交換器が、給湯用顕熱熱交換部と給湯用潜熱熱交換部とを備えて構成され、流体用熱交換器が、流体用顕熱熱交換部と流体用潜熱熱交換部とを備えて構成されているので、給湯用熱交換器が、燃焼排ガスの顕熱に加えて、燃焼排ガスの潜熱をも回収することが可能となるとともに、流体用熱交換器が、燃焼排ガスの顕熱に加えて、燃焼排ガスの潜熱をも回収することが可能となって、装置全体の効率を効果的に向上させることが可能となり、装置の高効率化を図ることが可能となる。
【0014】
請求項3に記載の発明によれば、前記給湯用顕熱熱交換部と前記流体用顕熱熱交換部とが、互いに熱伝導する状態で一体的に形成され、かつ、前記給湯用潜熱熱交換部と前記流体用潜熱熱交換部とが、互いに熱伝導する状態で一体的に形成されている。
【0015】
すなわち、請求項2との協働作用により、効率の向上を図るために、単純に、給湯用熱交換器を給湯用顕熱熱交換部と給湯用潜熱熱交換部とを備えて構成し、流体用熱交換器を流体用顕熱熱交換部と流体用潜熱熱交換部とを備えて構成するだけでなく、給湯用顕熱熱交換部と流体用顕熱熱交換部とが、互いに熱伝導する状態で一体的に形成され、かつ、給湯用潜熱熱交換部と流体用潜熱熱交換部とが、互いに熱伝導する状態で一体的に形成されているので、給湯用顕熱熱交換部と流体用顕熱熱交換部とを別体にて形成し、給湯用潜熱熱交換部と流体用潜熱熱交換部とを別体にて形成するものと比べて、装置のコンパクト化を図ることが可能となる。
【0016】
請求項4に記載の発明によれば、前記流体用熱交換器が、前記加熱対象流体として、前記熱消費端末から前記入路を通して供給されて、前記出路を通して前記熱消費端末に供給する熱媒体を加熱するように構成され、浴槽内湯水を風呂戻り路および風呂往き路を通して循環させる風呂循環手段が設けられ、前記流体用熱交換器にて加熱された前記熱媒体と、前記風呂循環手段により循環される前記浴槽内湯水との間で熱交換させる風呂加熱用液々熱交換器が設けられている。
【0017】
すなわち、流体用熱交換器が、熱消費端末に循環供給する熱媒体を加熱するように構成され、その流体用熱交換器にて加熱された熱媒体と風呂循環手段により循環される浴槽湯水との間で熱交換させる液々熱交換器が設けられているので、熱消費端末に熱媒体を供給するために設けられた流体用熱交換器およびバーナを利用しながら、液々熱交換器にて浴槽湯水を加熱して、浴槽湯水の追焚を行うことが可能となる。
したがって、熱消費端末に熱媒体を供給するための加熱手段と、浴槽湯水の追焚を行うための加熱手段とを、単一のバーナにて兼用することが可能となって、装置の小型化を図りながら、熱消費端末への熱媒体の供給および浴槽湯水の追焚を行うことが可能となる。
【0018】
そして、請求項1との協働作用によって、単一のバーナにて、給湯、熱消費端末への熱媒体の供給、および、浴槽湯水の追焚を行うことが可能となり、給湯、熱消費端末への熱媒体の供給、および、浴槽湯水の追焚を行うことが可能な非常にコンパクトな給湯装置を提供することが可能となる。
【0019】
請求項5に記載の発明によれば、前記給水路を通して供給される水を前記給湯用熱交換器を迂回して前記給湯路に供給するバイパス路が設けられ、前記給湯用熱交換器にて加熱された湯水と前記バイパス路からの水とを混合して、前記給湯路を通して湯水を供給するように構成されている。
【0020】
すなわち、給水路を通して供給される水の一部を給湯用熱交換器に供給し、残りの一部をバイパス路に供給して、給湯用熱交換器にて加熱された湯水とバイパス路からの水とを混合したのち、給湯路を通して湯水を供給することが可能となるので、給水路を通して供給される水の全量を給湯用熱交換器に供給するものと比べて、給湯用熱交換器への通水量を減らすことができ、給湯用熱交換器内部の湯温を上昇させることで給湯用熱交換器の結露を防止でき、給湯用熱交換器の耐久性能を向上させることが可能となる。
【0023】
【発明の実施の形態】
本発明にかかる給湯装置について図面に基づいて説明する。
〔第1実施形態〕
この給湯装置は、図1および図2に示すように、給水路1を通して供給される水をバーナ2の燃焼により加熱して給湯路3に給湯する給湯用熱交換器4、暖房戻り路5を通して供給される熱媒体をバーナ2の燃焼により加熱して高温暖房往き路6に流出する流体用熱交換器7、流体用熱交換器7にて加熱された熱媒体と浴槽湯水との間で熱交換させる風呂加熱用液々熱交換器35、運転を制御する制御部Hなどから構成され、バーナ2、給湯用熱交換器4、流体用熱交換器7、および、風呂加熱用液々熱交換器35の夫々がケーシングT内に設けられている。
【0024】
前記給湯用熱交換器4は、その入口側に水道管に接続された給水路1が接続され、その出口側に図外の給湯栓などが接続された給湯路3が接続され、給水路1を通して供給される水をバーナ2の燃焼により加熱して給湯路3に給湯して、一般給湯や湯張りを行うように構成されている。
【0025】
前記給水路1には、上流側から順に、水フィルター8、給水温度を検出する給水サーミスタ9、給水量を検出する水量センサ10が設けられ、給水路1からの水を給湯用熱交換器4を迂回させて給湯路3に供給するバイパス路11が設けられ、そのバイパス路11は、給水路1における水量センサ10よりも下流側を分岐させて、給湯路3に接続されている。
【0026】
前記給湯路3には、上流側から順に、給湯用熱交換器4からの湯水の温度を検出する給湯サーミスタ12、給湯用熱交換器4からの湯水とバイパス路11からの水との混合比を調整するミキシングバルブ13、ミキシングバルブ13により混合された後の湯水の温度を検出するミキシングサーミスタ14、給湯路3を通して供給される湯水の量を調整する水比例弁15、一般給湯の割り込みを検出する割り込み水量センサ16、過圧防止装置17が設けられている。
前記ミキシングバルブ13は、バイパス路11と給湯路3との接続部分に設けられ、給湯路3において、水比例弁15と割り込み水量センサ16との間の部分から、風呂用の湯張り路18を分岐させている。
【0027】
すなわち、給水路1を通して供給される水を給湯用熱交換器4を迂回して給湯路3に供給するバイパス路11が設けられ、給湯用熱交換器4にて加熱された湯水とバイパス路11からの水とを混合して、給湯路3を通して湯水を供給するように構成されている。
説明を加えると、給水路1を通して供給される水の一部を給湯用熱交換器4に供給し、残りの一部をバイパス路11に供給して、給湯用熱交換器4にて加熱された湯水とバイパス路11からの水とを混合したのち、給湯路3を通して湯水を供給する構造であるので、給湯用熱交換器4への通水量を減らすことができ、給湯用熱交換器4内部の湯温を上昇させることで給湯用熱交換器4の結露を防止でき、給湯用熱交換器4の耐久性能を向上させることが可能となる。
【0028】
また、給湯用熱交換器4における湯水を給湯路3および給水路1を通して循環させるための循環用バイパス路102が設けられ、その循環用バイパス路102に、給湯用循環手段としての給湯ポンプ103が設けられ、循環用バイパス路102および給湯路3には、給湯使用時に給湯ポンプ103側へ水が流入するのを防止したり、給湯ポンプ103を作動させたときに、湯水がバイパス路11側へ流入するのを防止する逆止弁104が設けられている。
前記循環用バイパス路102は、給湯路3における給湯サーミスタ9よりも上流側を分岐し、その端部を給水路1におけるバイパス路11の分岐部分よりも下流側に接続するように構成されている。
【0029】
前記流体用熱交換器7は、その入口側に入路としての暖房戻り路5が接続され、その出口側に出路としての高温暖房往き路6が接続され、暖房戻り路5を通して供給される熱媒体をバーナ2の燃焼により加熱して高温暖房往き路6に流出して、熱消費端末としての暖房端末Dに熱媒体を供給するように構成されている。
【0030】
前記暖房戻り路5には、上流側から順に、暖房戻りサーミスタ19、補給水タンク20、流体用循環手段としての暖房ポンプ21が設けられ、高温暖房往き路6における流体用熱交換器7の近くには、暖房往き高温サーミスタ22が設けられている。
前記暖房戻り路5において、暖房ポンプ21よりも下流側の部分から、低温型暖房端末D2(例えば、床暖房装置)に熱媒体を供給する低温暖房往き路23を分岐させ、その低温暖房往き路23には、暖房往き低温サーミスタ24が設けられている。
また、高温暖房往き路6の熱媒体を高温型暖房端末D1(例えば、室内暖房装置)を迂回して暖房戻り路5に供給する暖房バイパス路6aが設けられ、その暖房バイパス路6aが、暖房戻り路5における暖房戻りサーミスタ19よりも上流側に接続されている。
【0031】
前記補給水タンク20には、給水路1における水フィルター8と給水サーミスタ9との間の箇所から分岐させた補給水路25を接続するとともに、オーバーフロー路26が接続され、補給水路25には、補給水バルブ27、補給水電磁弁28が設けられている。
そして、補給水タンク20には、水位の上限を検出する上限センサ29、水位の下限を検出する下限センサ30が設けられ、下限センサ30にて補給水タンク20の水位が下限であることが検出されると、上限センサ29にて補給水タンク20の水位が上限であることが検出されるまで、補給水タンク20に補給水路25を通して水を供給するように、補給水電磁弁28を開閉制御するように構成されている。
【0032】
前記高温暖房往き路6と暖房戻り路5とには、高温型暖房端末D1が接続され、低温暖房往き路23と暖房戻り路5とには、低温型暖房端末D2が接続され、熱消費端末が高温型暖房端末D1および低温型暖房端末D2にて構成されている。
そして、暖房ポンプ21を作動させることにより、補給水タンク20の湯水が暖房戻り路5を通流し、その一部が流体用熱交換器7を迂回して低温暖房往き路23を通じて低温型暖房端末D2に供給され、残部が流体用熱交換器7に流入し、流体用熱交換器7で加熱された湯水が高温暖房往き路6を通じて高温型暖房端末D1に供給され、その高温型暖房端末D1から戻る湯水も低温型暖房端末D2から戻る湯水も暖房戻り路5を通じて補給水タンク20に戻されるように構成されている。
【0033】
浴槽Aに設けられた循環アダプタ31には、風呂戻り路部分32および風呂往き路部分33が接続され、風呂戻り路部分32に設けられた風呂ポンプ34を作動させることにより、浴槽湯水を風呂戻り路部分32および風呂往き路部分33からなる風呂循環路36を通して循環させるように構成されている。
そして、風呂循環手段としての風呂ポンプ34が設けられ、流体用熱交換器7にて加熱された熱媒体と、風呂ポンプ34の作動により循環される浴槽湯水との間で熱交換させる風呂加熱用液々熱交換器35が設けられている。
【0034】
前記風呂加熱用液々熱交換器35は、高温暖房往き路6から分岐された風呂加熱用往き路37と風呂循環路36とが、一部の区間において、風呂加熱用往き路37を内側、風呂循環路36を外側とした同芯二重管構造にて構成されている。
そして、風呂加熱用液々熱交換器35においては、風呂加熱用往き路37における熱媒体の流れ方向と風呂循環路36における浴槽湯水の流れ方向とが互いに逆向きになるように構成されている。
【0035】
すなわち、流体用熱交換器7が、加熱対象流体として、高温型暖房端末D1や低温型暖房端末D2から暖房戻り路5を通して供給されて、高温暖房往き路6や低温暖房往き路23を通して高温型暖房端末D1や低温型暖房端末D2に供給する熱媒体を加熱するように構成され、浴槽湯水を風呂戻り路部分32および風呂往き路部分33を通して循環させる風呂ポンプ34および風呂循環路36が設けられ、流体用熱交換器7にて加熱された熱媒体と、風呂ポンプ34および風呂循環路36により循環される浴槽湯水との間で熱交換させる風呂加熱用液々熱交換器35が設けられている。
【0036】
前記風呂加熱用往き路37には、風呂加熱用液々熱交換器35よりも熱媒体の流動方向の上流側に、風呂往き熱動弁38が設けられ、この風呂往き熱動弁38を開閉することによって、流体用熱交換器7にて加熱された熱媒体を風呂加熱用液々熱交換器35に供給する状態と供給しない状態とに切り換えるように構成されている。
【0037】
前記風呂戻り路部分32には、上流側、すなわち循環アダプタ31側から順に、風呂戻り路部分32に作用する圧力に基づいて浴槽A内の水位を検出する圧力検知式の水位センサ39、風呂戻りサーミスタ40、風呂戻り路部分32を開閉する風呂二方弁41、風呂ポンプ34、水流スイッチ42が設けられ、風呂往き路部分33には、風呂往きサーミスタ43が設けられている。
【0038】
前記給湯路3からの湯水を浴槽Aに供給するための風呂用の湯張り路18は、風呂戻り路部分32において、風呂ポンプ34と水流スイッチ42との間に相当する部分に接続し、この湯張り路18には、上流側から順に、バキュームブレーカー44、湯張り路18を開閉する注湯電磁弁45、湯張り逆止弁46が設けられている。
【0039】
そして、給湯用熱交換器4からの湯水を、ミキシングバルブ13にてバイパス路11からの水と混合したのち、その湯水を給湯路3、湯張り路18、風呂戻り路部分32および風呂往き路部分33を通じて浴槽Aに供給して湯張りを行うように構成されている。
また、風呂ポンプ34を運転することにより、風呂戻り路部分32および風呂往き路部分33を通じて、浴槽湯水を風呂加熱用液々熱交換器35と浴槽Aとの間で循環させるとともに、風呂往き熱動弁38を開弁して、暖房ポンプ21を運転することにより、流体用熱交換器7にて加熱された熱媒体を風呂加熱用往き路37を通して風呂加熱用液々熱交換器35に供給させることによって、風呂加熱用往き路37における熱媒体にて浴槽湯水を加熱して、浴槽湯水を追焚するように構成されている。
【0040】
前記バーナ2は、図1〜4に示すように、多段式のガスバーナであり、火炎の形成方向を下向きに構成され、給湯用熱交換器4と流体用熱交換器7とが単一のバーナ2を共有し、バーナ2がバーナケース47内に設けられ、給湯用熱交換器4および流体用熱交換器7が、バーナ2よりもバーナ2の燃焼排ガスの流動方向の下流側、すなわちバーナ2よりも下方側に配設されている。
また、バーナ2に燃焼用空気を供給するファン48も設けられ、バーナ2の近傍には、バーナ2に点火するためのイグナイタ53、バーナ2への着火を検出するフレームロッド54などが設けられている。
【0041】
前記バーナ2に一般家庭用の燃料ガスを供給するガス供給路49は、3系統に分岐してバーナ2に接続され、それぞれのガス供給路分岐部分49aにガス切替え電磁弁50が設けられている。
そして、分岐箇所よりも上流側のガス供給路49には、上流側から順に、燃料ガスの供給を断続する元ガス電磁弁52、燃料ガス供給量を調整する電磁式のガス比例弁51が設けられている。
【0042】
前記給湯用熱交換器4は、バーナ2の燃焼排ガスの顕熱を回収する給湯用顕熱熱交換部4aと、その給湯用顕熱熱交換部4aよりもバーナ2の燃焼排ガスの流動方向の下流側に配設され、バーナ2の燃焼排ガスの潜熱を回収する給湯用潜熱熱交換部4bとを備えて構成されている。
前記流体用熱交換器7は、バーナ2の燃焼排ガスの顕熱を回収する流体用顕熱熱交換部としての流体用顕熱熱交換部7aと、その流体用顕熱熱交換部7aよりもバーナ2の燃焼排ガスの流動方向の下流側に配設され、バーナ2の燃焼排ガスの潜熱を回収する流体用潜熱熱交換部としての流体用潜熱熱交換部7bとを備えて構成されている。
【0043】
そして、給湯用顕熱熱交換部4aと流体用顕熱熱交換部7aとが、互いに熱伝導する状態で一体的に形成され、かつ、給湯用潜熱熱交換部4bと流体用潜熱熱交換部7bとが、互いに熱伝導する状態で一体的に形成されている。
また、給湯用熱交換器4および流体用熱交換器7が、バーナ2よりもバーナの燃焼排ガスの流動方向の下流側に配設されている。
【0044】
説明を加えると、バーナケース47に、火炎形成方向が下向きになるようにバーナ2が設けられ、そのバーナ2の燃焼排ガスが下向きに流動するように構成されている。
そして、バーナ2の下方側に、給湯用顕熱熱交換部4aと流体用顕熱熱交換部7aが互いに熱伝導する状態で一体的に形成された顕熱熱交換部Kが設けられ、その顕熱熱交換部Kの下方側に、給湯用潜熱熱交換部4bと流体用潜熱熱交換部7bが互いに熱伝導する状態で一体的に形成された潜熱熱交換部Nが設けられている。
【0045】
すなわち、給湯用熱交換器4を、給湯用顕熱熱交換部4aと給湯用潜熱熱交換部4bとを備えて構成し、流体用熱交換器7を、流体用顕熱熱交換部7aと流体用潜熱熱交換部7bとを備えて構成し、給湯用顕熱熱交換部4aと流体用顕熱熱交換部7aとを、互いに熱伝導する状態で一体的に形成し、かつ、給湯用潜熱熱交換部4bと流体用潜熱熱交換部4bとを、互いに熱伝導する状態で一体的に形成することによって、コンパクト化を図りながら、給湯用熱交換器4においても、また、流体用熱交換器7においても、燃焼排ガスの顕熱に加えて、燃焼排ガスの潜熱を回収して、機器の性能(加熱能力)を機器に入力したエネルギー量で割った値、いわゆる効率を効果的に向上させ、高効率化を実現するように構成されている。
【0046】
また、暖房ポンプ21にて循環される熱媒体と、給湯用熱交換器4にて加熱される水との間で熱交換させ、かつ、給湯ポンプ103にて循環される湯水と、流体用熱交換器7にて加熱される熱媒体との間で熱交換させる液々熱交換器100が設けられている。
説明を加えると、液々熱交換器100は、図1および図5に示すように、給湯用潜熱熱交換部4bと給湯用顕熱熱交換部4aとを連結する給湯用流路101と、流体用熱交換器7の入口側に接続された暖房戻り路5とが、一部の区間において、暖房戻り路5を内側、給湯用流路101を外側とした二重管構造に構成されている。
そして、給湯用潜熱熱交換部4bにて加熱されかつ給湯用顕熱熱交換部4aにて加熱される前の水と、暖房ポンプ21を作動させて、流体用熱交換器7と暖房バイパス路6aを含む流体循環回路内で循環される熱媒体との間で熱交換させるとともに、流体用潜熱熱交換部7bにて加熱される前の熱媒体と、給湯ポンプ103を作動させて、給湯路3および給水路1を通して循環される湯水との間で熱交換させるように構成されている。
【0047】
前記液々熱交換器100においては、給湯用流路101における水の流れ方向と暖房戻り路5における熱媒体の流れ方向とが互いに逆向きになるように構成され、暖房戻り路5における熱媒体から給湯用流路101における水に対して効率よく熱交換するとともに、給湯用流路101における湯水から暖房戻り路5における熱媒体に対して効率よく熱交換するように構成されている。
【0048】
また、給湯用潜熱熱交換部4bおよび流体用潜熱熱交換部7bの下方側には、給湯用潜熱熱交換部4bおよび流体用潜熱熱交換部7bから落下する凝縮水、すなわちドレンを回収するドレン回収路55が設けられ、そのドレン回収路55にて回収されたドレンを中和装置56に供給して、ドレンを中和したのち、排出するように構成されている。
なお、中和装置56としては、例えば、MgやZnなどのイオン化傾向の大きい金属により中和するものなど、各種の中和装置が適応可能である。
【0049】
前記顕熱熱交換部Kについて説明を加えると、図2、図3および図6に示すように、給水路1からの水を通過させる給湯用伝熱管57と、高温型暖房端末D1などからの熱媒体を通過させる暖房用伝熱管58とが、その長手方向に複数の顕熱用伝熱フィン59を貫通するように設けられている。
そして、顕熱熱交換部Kの両横側部では、給湯用伝熱管57および暖房用伝熱管58をU字状になるように、U字状の伝熱管60を接続するように構成され、給湯用伝熱管57および暖房用伝熱管58が、複数の顕熱用伝熱フィン59を貫通する状態で、蛇行状になるように配管されている。
また、顕熱用伝熱フィン59には、図8の(イ)に示すように、給湯用伝熱管57および暖房用伝熱管58を挿通させるための貫通孔61を備えて構成され、給湯用伝熱管57および暖房用伝熱管58を、顕熱用伝熱フィン59における貫通孔61に内嵌させるように構成されている。
【0050】
具体的に説明すると、給湯用伝熱管57と暖房用伝熱管58とが互いに熱伝導するように、給湯用伝熱管57と暖房用伝熱管58を接触させる状態で一体的に形成されて構成されている顕熱用一体部分62と、給湯用伝熱管57のみから構成されている顕熱用単数部分63とが設けられている。
また、顕熱用伝熱フィン59には、顕熱用一体部分62を挿通させるための顕熱用一体型貫通孔64と、顕熱用単数部分63を挿通させるための顕熱用単数型貫通孔65とが設けられている。
そして、顕熱用伝熱フィン59の上部には、顕熱用一体型貫通孔64が横方向に5つ並ぶ状態で設けられ、顕熱用伝熱フィン59の下部には、顕熱用単数型貫通孔65が横方向に4つ並ぶ状態で設けられている。
【0051】
前記顕熱熱交換部Kは、顕熱用一体部分62を顕熱用一体型貫通孔64に内嵌させるとともに、顕熱用単数部分63を顕熱用単数型貫通孔65に内嵌させて構成されている。
【0052】
前記潜熱熱交換部Nは、図2、図3および図7に示すように、給水路1からの水を通過させる給湯用伝熱管57と、高温型暖房端末D1などからの熱媒体を通過させる暖房用伝熱管58とが、その長手方向に複数の潜熱用伝熱フィン66を貫通するように設けられている。
そして、潜熱熱交換部Nの両横側部では、給湯用伝熱管57および暖房用伝熱管58をU字状になるように、U字状の伝熱管67を接続するように構成され、給湯用伝熱管57および暖房用伝熱管58が、複数の潜熱用伝熱フィン66を貫通する状態で、蛇行状になるように配管されている。
また、潜熱用伝熱フィン66には、図8の(ロ)に示すように、給湯用伝熱管57および暖房用伝熱管58を挿通させるための貫通孔68を備えて構成され、給湯用伝熱管57および暖房用伝熱管58を、伝熱カバーPを外嵌させた状態で、潜熱用伝熱フィン66における貫通孔68に内嵌させるように構成されている。
【0053】
具体的に説明すると、給湯用伝熱管57と暖房用伝熱管58とが互いに熱伝導するように、給湯用伝熱管57と暖房用伝熱管58を接触させる状態で一体的に形成されて構成されている潜熱用一体部分69と、給湯用伝熱管57のみから構成されている潜熱用単数部分70とが設けられている。
そして、伝熱カバーPは、潜熱用一体部分69に外嵌される潜熱用一体型伝熱カバーP1と、潜熱用単数部分70に外嵌される潜熱用単数型伝熱カバーP2とが設けられている。
【0054】
また、潜熱用伝熱フィン66には、潜熱用一体部分69を挿通させるための潜熱用一体型貫通孔71と、潜熱用単数部分70を挿通させるための潜熱用単数型貫通孔72とが設けられている。
そして、潜熱用伝熱フィン66の上部に、潜熱用一体型貫通孔71が横方向に4つ並ぶように設けられ、潜熱用伝熱フィン66の上下中間部に、潜熱用単数側貫通孔72が横方向に3つ並ぶように設けられ、その下部に、潜熱用単数側貫通孔72が横方向に4つ並ぶように設けられている。
【0055】
前記潜熱熱交換部Nは、潜熱用一体部分69を、潜熱用一体型伝熱カバーP1を外嵌させた状態で、潜熱用一体型貫通孔71に内嵌させるとともに、潜熱用単数部分70を、潜熱用単数型伝熱カバーP2を外嵌させた状態で、潜熱用単数型貫通孔72に内嵌させて構成されている。
【0056】
前記バーナ2は、図4に示すように、空気混合率の小さい濃混合気を燃焼させる濃バーナ2aと空気混合率の大きい淡混合気を燃焼させる淡バーナ2bとを備えて構成され、濃バーナ2aの複数と淡バーナ2bの複数とが、その幅方向を並設方向として、交互に並設されて、バーナケース47内に設けられた箱状枠体2c内に収納されている。
そして、淡バーナ2bの淡混合気を濃バーナ2aに生成される濃火炎により保炎しながら燃焼させて、全体として大きな空気混合率で燃料ガスを燃焼させ、窒素酸化物であるNOxの発生を極力抑えながら、安定した燃焼が行えるように構成されている。
【0057】
また、この濃淡燃焼バーナは、濃バーナ2aに供給する燃焼ガス量よりも淡バーナ2bに供給する燃料ガス量を極力大きくするなどして、濃淡燃焼バーナ全体の空気比を極力低く設定することによって、バーナ2の燃焼排ガスの潜熱を回収し易い状態でバーナ2を燃焼させて、潜熱熱交換部Nにて燃焼排ガスの潜熱を効率よく回収できるように構成されている。
【0058】
前記制御部Hに対して各種の指令を行う台所リモコン73および浴室リモコン74が設けられ、制御部Hは、図9に示すように、台所リモコン73および浴室リモコン74の指令に基づいて、バーナ動作部B、給湯動作部X、風呂動作部Y、暖房動作部Zを制御して、一般給湯運転、ふろ自動運転、あつく運転、暖房運転などの各種の運転を実行するように構成されている。
【0059】
ちなみに、バーナ動作部Bは、ファン48、ガス切替え電磁弁50、ガス比例弁51、元ガス電磁弁52、イグナイタ53、フレームロッド54などから構成され、給湯動作部Xは、給水サーミスタ9、水量センサ10、給湯サーミスタ12、ミキシングバルブ13、ミキシングサーミスタ14などから構成されている。
また、風呂動作部Yは、風呂ポンプ34、水位センサ39、風呂戻りサーミスタ40、風呂二方弁41、水流スイッチ42、風呂往きサーミスタ43、注湯電磁弁45などから構成され、暖房動作部Zは、暖房戻りサーミスタ19、暖房ポンプ21、暖房往き高温サーミスタ22、暖房往き低温サーミスタ24などから構成されている。
【0060】
前記台所リモコン73には、一般給湯運転を実行可能な状態に指令する運転スイッチ75、給湯温度を設定する給湯温度設定部76、ふろ自動運転を指令するふろ自動スイッチ77、暖房運転を指令する暖房スイッチ78などが設けられている。
前記浴室リモコン74には、一般給湯運転を実行可能な状態に指令する運転スイッチ79、浴槽Aへの湯張り温度や水位などを設定するふろ設定変更スイッチ80、ふろ自動運転を指令するふろ自動スイッチ81、あつく運転を指令するあつくスイッチ82などが設けられている。
【0061】
前記制御部Hの各種の運転における動作について説明する。
前記一般給湯運転は、給湯栓などの開操作に伴って水量センサ10による検出水量が所定量以上になると、ファン48を駆動した後、ガス切替え電磁弁50を適宜切替えて元ガス電磁弁52を開弁して、ガス比例弁51の開度を調整してイグナイタ53によりバ−ナ2に点火する。
そして、バーナ2に着火されると、台所リモコン73の給湯温度設定部76による設定温度、給水サーミスタ9による検出水温、水量センサ10による検出水量などに基づいて、ガス切替え電磁弁50が切替えられるとともに、ガス比例弁51の開度が調整され、かつ、ミキシングバルブ13の開度も調整されて給湯温度が設定温度になるように、いわゆるフィードフォワード制御が実行され、給湯用熱交換器4にて加熱された湯水とバイパス路11からの水とを混合して、給湯路3を通して設定温度の湯水を給湯するようにしている。
【0062】
また、このフィードフォワード制御とともに、台所リモコン73の給湯温度設定部76による設定温度とミキシングサーミスタ14による検出湯温との偏差に基づいて、ガス比例弁51の開度を微調整する、いわゆるフィードバック制御が実行されて、台所リモコン73の給湯温度設定部76による設定温度の湯を給湯栓に供給する。
そして、給湯栓の閉操作に伴って、水量センサ10が所定量の通水を検出しなくなると、元ガス電磁弁52とガス比例弁51を閉弁してバーナ2の燃焼を停止し、一定時間経過後にファン48も停止して一般給湯運転を終了する。
【0063】
前記ふろ自動運転は、台所リモコン73のふろ自動スイッチ77や浴室リモコン74のふろ自動スイッチ81がON操作されると、注湯電磁弁45が開弁され、水量センサ10が所定量以上の水流を検出すると、上述の一般給湯運転と同様にバーナ2に点火して、フィードフォワード制御とフィードバック制御とにより浴槽Aに設定温度の湯水が供給される。
つまり、ガス比例弁51やミキシングバルブ13の開度を調整して、給水路1からの水を給湯用熱交換器4にて加熱し、加熱後の湯にバイパス路11からの水が混合されて、設定温度の湯水が湯張り路18を介して風呂戻り路部分32と風呂往き路部分33に供給され、風呂戻り路部分32と風呂往き路部分33の両路から浴槽A内に供給される。
【0064】
そして、所定量の湯水が浴槽Aに供給されると、風呂ポンプ34を作動させて風呂二方弁41を閉じて、水位センサ39により浴槽Aの水位を検出し、この検出水位が設定水位に達していると、注湯電磁弁45を閉弁して、元ガス電磁弁52とガス比例弁51を閉弁してバーナ2の燃焼が停止され、一定時間経過後にファン48も停止される。このようにして、浴槽Aの水位検出を適宜行って、浴槽Aの水位が設定水位になるように浴槽Aに湯水を供給する。
浴槽Aに設定水位の湯水が供給されると、風呂ポンプ34を作動させて、浴槽湯水の温度が設定温度になるように、後述するあつく運転を実行する。
なお、湯張り運転中に給湯栓が開操作されると、割り込み水量センサ16が水流を検出し、ふろ自動運転を停止して一般給湯運転を実行する。つまり、一般給湯運転が優先して実行され、給湯栓が閉操作されると、ふろ自動運転が再開される。
【0065】
前記あつく運転は、浴室リモコン74のあつくスイッチ82がON操作されると、風呂ポンプ34が作動して、浴槽湯水が風呂循環路36を通して循環され、水流スイッチ42をONして、浴槽湯水が風呂加熱用液々熱交換器35に供給される。
そして、水流スイッチ42のONに伴って、バーナ2に点火して、バーナ2の燃焼量があつく運転用燃焼量になるように、ガス切替え電磁弁50が切替えられるとともに、ガス比例弁51の開度が調整される。
また、水流スイッチ42のONに伴って、暖房ポンプ21を作動させ、風呂往き熱動弁38を開弁して、流体用熱交換器7にて加熱された熱媒体を風呂加熱用液々熱交換器35に供給する。
【0066】
このようにして、風呂加熱用液々熱交換器35において、流体用熱交換器7にて加熱された熱媒体にて浴槽湯水が加熱され、風呂戻りサーミスタ40の検出温度が設定温度よりも少し高い温度になると、元ガス電磁弁52とガス比例弁51を閉弁してバーナ2の燃焼が停止され、一定時間経過後にファン48も停止される。
そして、風呂往き熱動弁38を閉弁して、暖房ポンプ21を停止させるとともに、風呂二方弁41を閉じ、風呂ポンプ34を停止させてあつく運転を終了する。
なお、あつくスイッチ82がOFF操作されても、上述の動作を行って、あつく運転を終了する。
【0067】
前記暖房運転は、高温型暖房端末D1に熱媒体を循環供給する高温暖房運転と、低温型暖房端末D2に熱媒体を循環供給する低温暖房運転とがある。
そして、高温暖房運転は、暖房リモコンによる運転指令があったり、台所リモコン73の暖房スイッチ78がON操作されると、暖房ポンプ21を作動させ、バーナ2に点火して、高温型暖房端末D1の負荷に応じて、バーナ2の燃焼状態を比例制御したり、ON/OFF制御するようにしている。
すなわち、比例制御は、暖房往き高温サーミスタ22の検出温度に基づいて、ガス切替え電磁弁50を切替え、ガス比例弁51の開度を調整して、バーナ2の燃焼量を最大燃焼量と最小燃焼量との間で調整し、ON/OFF制御は、バーナ2を最小燃焼量で燃焼させる状態とバーナ2の燃焼を停止させる状態とに切り換えている。
【0068】
また、低温暖房運転は、暖房リモコンによる運転指令があると、暖房ポンプ21を作動させ、バーナ2に点火して、低温型暖房端末D2の負荷に応じて、バーナ2の燃焼状態を比例制御したり、ON/OFF制御するようにしている。
すなわち、比例制御は、暖房往き低温サーミスタ24の検出温度に基づいて、ガス切替え電磁弁50を切替え、ガス比例弁51の開度を調整して、バーナ2の燃焼量を最大燃焼量と最小燃焼量との間で調整し、ON/OFF制御は、バーナ2を最小燃焼量で燃焼させる状態とバーナ2の燃焼を停止させる状態とに切り換えている。
【0069】
また、一般給湯運転と暖房運転や、一般給湯運転とふろ自動運転など、バーナ2の燃焼量を制御するなどにより、各種の運転を同時に行うことも可能である。
例えば、一般給湯運転中に、暖房運転の要求があると、現在のバーナ2の燃焼量に、暖房端末Dの負荷に応じた燃焼量を上乗せすることにより、一般給湯運転と暖房運転を同時に行うことが可能となる。
ちなみに、複数の運転を同時に行う場合には、各種の条件に基づいて、どの運転の条件を優先するかが予め設定されており、その設定された優先条件に基づいて、各運転を行うように構成されている。
【0070】
そして、制御部Hは、一般給湯運転やふろ自動運転を単独で実行するなど、給湯用熱交換器4への水の供給を行い、流体用熱交換器7への熱媒体の暖房端末Dからの供給を停止する給湯単独加熱状態においては、図示しないが、流体用熱交換器7の近傍に、流体用熱交換器7内の熱媒体の温度を検出する流体用沸騰防止用サーミスタが設けられ、その流体用沸騰防止用サーミスタによる検出温度が沸騰用設定温度以上になるなどして、流体沸騰防止条件が満たされると、暖房ポンプ21を作動させて、図1中点線矢印に示すように、流体用熱交換器7内の熱媒体を、液々熱交換器100に供給しながら、暖房バイパス路6aを含む流体循環回路内で循環させるとともに、給水路1からの水を、給湯用潜熱熱交換部4b、液々熱交換部100、給湯用顕熱熱交換部4aの順に供給させるように構成されている。
【0071】
説明を加えると、給水路1からの水は、まず、給湯用潜熱熱交換部4bに供給させて、給湯用潜熱熱交換部4bに供給される水とバーナ2の燃焼排ガスとの温度差を極力大きくなるようにして、給湯用潜熱熱交換部4bにて燃焼排ガスの潜熱を効果的に回収するように構成されている。
そして、給湯用潜熱熱交換部4bにて加熱された水を、液々熱交換器100に供給させて、その水と暖房戻り路5における熱媒体との間で熱交換させ、流体用熱交換器7内の熱媒体の温度上昇を抑制して、流体用熱交換器7内の熱媒体の沸騰を防止しながら、給湯用顕熱熱交換部4aにて加熱される前の水を予熱するように構成されている。
【0072】
このようにして、流体用熱交換器7内の熱媒体の沸騰を防止しながら、バーナ2の燃焼排ガスの潜熱を効果的に回収するとともに、給湯用顕熱熱交換部4aにて加熱される前の水を予熱することによって、流体用熱交換器7内の熱媒体の沸騰を防止しながら、機器の性能(加熱能力)を機器に入力したエネルギー量で割った値、いわゆる効率の向上を図るようにしている。
【0073】
そして、制御部Hは、給湯単独加熱状態においては、バーナ2の燃焼量に基づいて、暖房ポンプ21により循環される熱媒体の量を調整すべく、暖房ポンプ21の作動状態を制御するように構成されている。
具体的に説明すると、制御部Hは、バーナ2の燃焼量が大きいほど、暖房ポンプ21の能力が大きくなるように、暖房ポンプ21の能力を、大、中、小の3段階で制御し、暖房ポンプ21への電力供給量を極力抑えて、ランニングコストの低減を図るとともに、暖房ポンプ21の作動に伴う騒音の発生を極力抑えるように構成されている。
【0074】
前記給湯単独加熱状態においては、バーナ2の燃焼量が大きい方が小さいときよりも、流体用熱交換器7内の熱媒体の温度が早く上昇する傾向にあるので、バーナ2の燃焼量が大きいほど、暖房ポンプ21の能力が大きくなるように、暖房ポンプ21の能力を、大、中、小の3段階で制御することによって、その流体用熱交換器7内の熱媒体が沸騰するまでの時間に対応させて、循環させる熱媒体の量を変更させて、流体用熱交換器7内の熱媒体の沸騰を的確に防止することも可能となる。
【0075】
また、制御部Hは、暖房運転やあつく運転を単独で実行するなど、流体用熱交換器7への熱媒体の供給を行い、給湯用熱交換器4から給湯路3への給湯を停止する流体単独加熱状態においては、暖房ポンプ21を作動させて、図1中点線矢印に示すように、暖房戻り路5からの熱媒体を、液々熱交換器100、流体用潜熱熱交換部7b、流体用顕熱熱交換部7aの順に供給して加熱しながら、流体用熱交換器7と暖房バイパス路6aを含む流体循環回路内で循環させるとともに、給湯ポンプ103を作動させて、図1中実線矢印で示すように、給湯用熱交換4内の湯水を、液々熱交換器100に供給しながら、給湯路3、循環用バイパス路102、給水路1を通して循環させるように構成されている。
【0076】
説明を加えると、暖房戻り路5からの熱媒体は、まず、液々熱交換器100に供給させて、その熱媒体と給湯用流路101の湯水との間で熱交換させ、給湯用熱交換器4内の湯水の温度上昇を抑制して、給湯用熱交換器4内の湯水の沸騰を防止しながら、流体用潜熱熱交換部7bにて加熱される前の熱媒体を予熱するように構成されている。
そして、流体用潜熱熱交換部7bにて加熱された熱媒体を、流体用顕熱熱交換部7aにて加熱させて、燃焼排ガスの顕熱および潜熱を回収するように構成されている。
【0077】
このようにして、給湯用熱交換器4内の湯水の沸騰を防止しながら、バーナ2の燃焼排ガスの顕熱および潜熱を回収するとともに、流体用潜熱熱交換部7bにて加熱される前の熱媒体を予熱することによって、給湯用熱交換器4内の湯水の沸騰を防止しながら、効率の向上を図るようにしている。
【0078】
そして、制御部Hは、流体単独加熱状態においては、バーナ2の燃焼量に基づいて、給湯ポンプ103により循環される湯水の量を調整すべく、給湯ポンプ103の作動状態を制御するように構成されている。
具体的に説明すると、制御部Hは、バーナ2の燃焼量が大きいほど、給湯ポンプ103の能力が大きくなるように、給湯ポンプ103の能力を、大、中、小の3段階で制御し、給湯ポンプ103への電力供給量を極力抑えて、ランニングコストの低減を図るとともに、給湯ポンプ103の作動に伴う騒音の発生を極力抑えるように構成されている。
【0079】
前記流体単独加熱状態においては、バーナ2の燃焼量が大きい方が小さいときよりも、給湯用熱交換器4内の湯水の温度が早く上昇する傾向にあるので、バーナ2の燃焼量が大きいほど、給湯ポンプ103の能力が大きくなるように、給湯ポンプ103の能力を、大、中、小の3段階で制御することによって、その給湯用熱交換器4内の湯水が沸騰するまでの時間に対応させて、循環させる湯水の量を変更させて、給湯用熱交換器4内の湯水の沸騰を的確に防止することも可能となる。
【0080】
また、給湯用熱交換器4内の湯水および流体用熱交換器7内の熱媒体の沸騰防止については、基本的には、顕熱熱交換部Kおよび潜熱熱交換部Nにおいて、給湯用伝熱管57の一部と暖房用伝熱管58の一部とを接触させて一体的に形成することによって、給湯用熱交換器4内の湯水と流体用熱交換器7内の熱媒体との間で熱交換させて、給湯用熱交換器4および流体用熱交換器7のうち、流体(水または熱媒体)の供給が停止されている側の流体の温度上昇を抑制して、その流体(湯水または熱媒体)の沸騰を防止させるように構成されている。
【0081】
〔第2実施形態〕
この第2実施形態は、上記第1実施形態における液々熱交換器100の配設箇所の別実施形態を示すものであり、液々熱交換器100の構成について図面に基づいて説明する。
ちなみに、液々熱交換器100以外の構成については、上記第1実施形態と同様であるので、同符号を示すなどにより、その詳細な説明は省略する。
【0082】
上記第1実施形態では、液々熱交換器100が、給湯用潜熱熱交換部4bと給湯用顕熱熱交換部4aとを連結する給湯用流路101と、流体用熱交換器7の入口側に接続された暖房戻り路5とを、一部の区間において、暖房戻り路5を内側、給湯用流路101を外側とした二重管構造にて構成されているが、この第2実施形態では、図10および図11に示すように、液々熱交換器100が、給水路1と、流体用潜熱熱交換部7bと流体用顕熱熱交換部4aとを連結する暖房用流路105とを、一部の区間において、暖房用流路105を内側、給水路1を外側とした二重管構造にて構成されている。
【0083】
説明を加えると、液々熱交換器100は、給水路1の湯水と流体用潜熱熱交換部7bにて加熱されかつ流体用顕熱熱交換部7aにて加熱される前の熱媒体との間で熱交換させるように構成されている。
そして、液々熱交換器100においては、給水路1における湯水の流れ方向と暖房用流路105における熱媒体の流れ方向とが互いに逆向きになるように構成され、暖房用流路105における熱媒体から給水路1における水に対して効率よく熱交換するとともに、給水路1における湯水から暖房用流路105における熱媒体に対して効率よく熱交換するように構成されている。
【0084】
そして、制御部Hは、給湯単独加熱状態においては、図示しないが、流体用熱交換器7の近傍に、流体用熱交換器7内の熱媒体の温度を検出する流体用沸騰防止用サーミスタが設けられ、その流体用沸騰防止用サーミスタによる検出温度が沸騰用設定温度以上になるなどして、流体沸騰防止条件が満たされると、暖房ポンプ21を作動させて、図10中点線矢印に示すように、流体用熱交換器7内の熱媒体を、液々熱交換器100に供給しながら、暖房バイパス路6aを含む流体循環回路内で循環させるとともに、給水路1からの水を、液々熱交換部100、給湯用潜熱熱交換部4b、給湯用顕熱熱交換部4aの順に供給させるように構成されている。
【0085】
説明を加えると、給水路1からの水は、まず、液々熱交換器100に供給されて、その水と暖房用流路105の熱媒体との間で熱交換させ、流体用熱交換器7内の熱媒体の温度上昇を抑制して、流体用熱交換器7内の熱媒体の沸騰を防止しながら、給湯用潜熱熱交換部4bにて加熱される前の水を予熱するように構成されている。
そして、給湯用潜熱熱交換部4bにて加熱された水を、給湯用顕熱熱交換部4aにて加熱させて、燃焼排ガスの顕熱および潜熱を回収するように構成されている。
【0086】
このようにして、流体用熱交換器7内の熱媒体の沸騰を防止しながら、バーナ2の燃焼排ガスの顕熱および潜熱を回収するともに、給湯用潜熱熱交換部4bにて加熱される前の水を予熱することによって、流体用熱交換器7内の湯水の沸騰を防止しながら、効率の向上を図るようにしている。
【0087】
また、制御部Hは、流体単独加熱状態においては、暖房ポンプ21を作動させて、図10中点線矢印に示すように、暖房戻り路5からの熱媒体を、流体用潜熱熱交換部7b、液々熱交換器100、流体用顕熱熱交換部7aの順に供給して加熱しながら、流体用熱交換器7と暖房バイパス路6aを含む流体循環回路内で循環させるとともに、給湯ポンプ103を作動させて、図10中実線矢印で示すように、給湯用熱交換4内の湯水を、液々熱交換器100に供給しながら、給湯路3、循環用バイパス路102、給水路1を通して循環させるように構成されている。
【0088】
説明を加えると、暖房戻り路5からの熱媒体は、まず、流体用潜熱熱交換部7bに供給させて、流体用潜熱熱交換部7bに供給される熱媒体とバーナ2の燃焼排ガスとの温度差を極力大きくなるようにして、流体用潜熱熱交換部7bにて燃焼排ガスの潜熱を効果的に回収するように構成されている。
そして、流体用潜熱熱交換部7bにて加熱された熱媒体を、液々熱交換器100に供給させて、その熱媒体と給水路1における湯水との間で熱交換させ、給湯用熱交換器4内の湯水の温度上昇を抑制して、給湯用熱交換器4内の湯水の沸騰を防止しながら、流体用顕熱熱交換部7aにて加熱される前の熱媒体を予熱するように構成されている。
【0089】
このようにして、給湯用熱交換器4内の湯水の沸騰を防止しながら、バーナ2の燃焼排ガスの潜熱を効果的に回収するとともに、流体用顕熱熱交換部7aにて加熱される前の熱媒体を予熱することによって、給湯用熱交換器4内の湯水の沸騰を防止しながら、効率の向上を図るようにしている。
【0090】
そして、この第2実施形態では、上記第1実施形態と同様に、制御部Hが、給湯単独加熱状態においては、バーナ2の燃焼量が大きいほど、暖房ポンプ21の能力が大きくなるように、暖房ポンプ21の能力を、大、中、小の3段階で制御し、かつ、流体単独加熱状態においては、バーナ2の燃焼量が大きいほど、給湯ポンプ103の能力が大きくなるように、給湯ポンプ103の能力を、大、中、小の3段階で制御するように構成したり、この構成に代えて、後述するように、暖房ポンプ21または給湯ポンプ103の作動状態を制御するようにしてもよい。
【0091】
すなわち、バーナ2の燃焼量に応じて、バーナ2の燃焼量が大きいほど、暖房ポンプ21または給湯ポンプ103の能力が大きくなるように無段階で制御するように構成してもよい。
また、バーナ2の燃焼量に基づいて、暖房ポンプ21または給湯ポンプ103の能力を調整するものに限らず、給湯単独加熱状態においては、流体用熱交換器7内の熱媒体の温度に基づいて、暖房ポンプ21の能力を調整し、流体単独加熱状態においては、給湯用熱交換器4内の湯水の温度に基づいて、給湯ポンプ103の能力を調整するように構成することも可能である。
【0092】
〔別実施形態〕
(1)上記第1および第2実施形態では、給湯単独加熱状態において、流体用熱交換器7の近傍に設けられた流体用沸騰防止用サーミスタによる検出温度が沸騰用設定温度以上になるなどして、流体沸騰防止条件が満たされると、暖房ポンプ21を作動させるように構成されているが、給湯単独加熱状態のときには、流体沸騰防止条件が満たされているかにかかわらず、常時、暖房ポンプ21を作動させて、熱媒体を液々熱交換器100に供給しながら循環させるとともに、給水路1からの水を、給湯用潜熱熱交換部4b、液々熱交換部100、給湯用顕熱熱交換部4aの順に供給させるように構成して実施することも可能である。
また、流体用沸騰防止条件としては、バーナ2の燃焼開始から設定時間が経過するなど、各種の条件が適応可能であり、適宜変更することが可能である。
【0093】
(2)上記第1および第2実施形態では、流体単独加熱状態において、常時、給湯ポンプ103を作動させるように構成されているが、例えば、給湯用熱交換器4の近傍に、給湯用熱交換器4内の湯水の温度を検出する給湯用沸騰防止用サーミスタを設けて、その給湯用沸騰防止用サーミスタによる検出温度が沸騰用設定温度以上になるなどして、給湯沸騰防止条件が満たされると、給湯ポンプ103を作動させるように構成して実施することも可能である。
この場合には、給湯用沸騰防止条件を、バーナ2の燃焼開始から設定時間が経過するなど、各種の条件が適応可能であり、適宜変更することが可能である。
【0094】
(3)上記第1および第2実施形態では、給湯用熱交換器4が給湯用顕熱熱交換部4aと給湯用潜熱熱交換部4bとを備えて構成され、流体用熱交換器7が流体用顕熱熱交換部7aと流体用潜熱熱交換部7bとを備えるように構成され、給湯用熱交換器4および流体用熱交換器7の両方で、バーナ2の燃焼排ガスの顕熱および潜熱を回収するように構成しているが、給湯用熱交換器4および流体用熱交換器7の両方でバーナ2の燃焼排ガスの顕熱のみを回収するように構成して実施することも可能である。
【0095】
(4)上記第1および第2実施形態では、前記給湯用顕熱熱交換部と前記流体用顕熱熱交換部とが、互いに熱伝導する状態で一体的に形成され、かつ、前記給湯用潜熱熱交換部と前記流体用潜熱熱交換部とが、互いに熱伝導する状態で一体的に形成されているが、給湯用顕熱熱交換部4aと流体用顕熱熱交換部7a、および、給湯用潜熱熱交換部4bと流体用潜熱熱交換部7bのうち、いずれか一方または両方を別体で形成して実施することも可能である。
【0096】
(5)上記第1および第2実施形態では、バーナ2の火炎の形成方向を下向きに構成するようにしたが、バーナ2の火炎の形成方向を上向きに構成して実施することも可能である。
この場合には、顕熱熱交換部Kが下方側に位置され、その上方側に潜熱熱交換部Nが位置されることになり、顕熱熱交換部Kと潜熱熱交換部Nとの配設位置が上下反転するように構成する。
【0097】
(6)上記第1および第2実施形態では、給水路1を通して供給される水を給湯用熱交換器4を迂回して給湯路3に供給するバイパス路11が設けられ、給湯用熱交換器4にて加熱された湯水とバイパス路11からの水とを混合して、給湯路3を通して湯水を供給するように構成されているが、バイパス路11を設けずに、給水路1を通して供給される水の全量を給湯用熱交換器4に供給するように構成して実施することも可能である。
【0098】
(7)上記第1および第2実施形態では、流体用熱交換器7が、加熱対象流体として、ひとつの流体を加熱するように構成されているが、例えば、流体用熱交換器7が、暖房端末Dに供給する熱媒体と浴槽湯水とを加熱するように構成して、流体用熱交換器7が複数の流体を加熱するように構成して実施することも可能である。
【0099】
(8)上記第1および第2実施形態では、給湯用熱交換器4および流体用熱交換器7に加えて、風呂加熱用液々熱交換器35を設けることによって、給湯および暖房端末Dへの熱媒体の供給に加えて、浴槽湯水の追焚を行うように構成されているが、給湯および暖房端末Dへの熱媒体の供給のみを行うように構成したり、または、給湯および浴槽湯水の追焚のみを行うように構成して実施することも可能である。
【0100】
説明を加えると、給湯および暖房端末への熱媒体の供給のみを行うように構成する場合には、上記第1および2実施形態において、風呂循環路36や風呂加熱用液々熱交換器35などを設けないようにする。
また、給湯および浴槽湯水の追焚のみを行うように構成する場合には、熱媒体流体用熱交換器7を、浴槽Aから入路としての風呂循環路36における風呂戻り路部分32を通して供給されて、出路としての風呂循環路36における風呂往き路部分33を通して浴槽Aに供給する浴槽湯水を加熱するように構成して、流体用熱交換器7における加熱対象流体を、暖房端末Dに供給する熱媒体に代えて、浴槽湯水とする。
【0101】
(9)上記第1および第2実施形態では、給湯用熱交換器4における給湯用伝熱管57と流体用熱交換器7における流体用伝熱管58とを接触させる状態で一体的に形成することにより、給湯用熱交換器4と流体用熱交換器7とを、互いに熱伝導する状態で一体的に形成するように構成されているが、例えば、給湯用伝熱管57の外周部の一部と流体用伝熱管58の内周部の一部とを接触させる状態で、給湯用伝熱管57を内側、流体用伝熱管58を外側とした二重管構造にすることによって、給湯用熱交換器4と流体用熱交換器7とを、互いに熱伝導する状態で一体的に形成するように構成して実施することも可能であり、給湯用熱交換器4と流体用熱交換器7とを、互いに熱伝導させるための構造は適宜変更が可能である。
【0102】
(10)上記第1実施形態では、液々熱交換器100が、暖房戻り路5を内側、給湯用流路101を外側とした二重管構造にて構成されているが、暖房戻り路5に代えて、高温暖房往き路6を用いて、その高温暖房往き路6を内側、給湯用流路101を外側として二重管構造にて構成することが可能である。
また、上記第2実施形態においても、液々熱交換器100が、暖房用流路105を内側、給水路1を外側とした二重管構造にて構成されているが、給水路1に代えて、給湯路3を用いて、暖房用流路105を内側、給湯路3を外側とした二重管構造にて構成して実施することも可能である。
ちなみに、二重管構造においては、例えば、給湯用流路101を内側、暖房戻り路5を外側にするなど、内側と外側との配置は適宜変更が可能である。
なお、液々熱交換器100の構成は、二重管構造に限られるものではなく、内側の管から流体が漏れて、熱媒体と水が混ざることを防止するために、内側の管を二重管で構成し、その二重管の外側に管を設けて三重管構造にて構成することも可能である。
【0103】
(11)上記実施形態では、本発明にかかる給湯装置を、給湯、浴槽湯水の追焚、および、暖房端末Dへの熱媒体の供給を行う給湯装置に適応した例を示したが、その他各種の給湯装置に適応可能である。
【図面の簡単な説明】
【図1】第1実施形態における給湯装置の概略構成図
【図2】給湯装置の正面図
【図3】バーナ、顕熱熱交換部および潜熱熱交換部を示す斜視図
【図4】バーナを示す斜視図
【図5】第1実施形態における液々熱交換器を示す図
【図6】顕熱熱交換部の側面図
【図7】潜熱熱交換部の側面図
【図8】顕熱熱交換部および潜熱熱交換部の要部を示す図
【図9】給湯装置の制御ブロック図
【図10】第2実施形態における給湯装置の概略構成図
【図11】第2実施形態における液々熱交換器を示す図
【符号の説明】
1 給水路
2 バーナ
3 給湯路
4 給湯用熱交換器
4a 給湯用顕熱熱交換部
4b 給湯用潜熱熱交換部
5 入路
6 出路
6a バイパス路
7 流体用熱交換器
7a 流体用顕熱熱交換部
7b 流体用潜熱熱交換部
11 バイパス路
21 流体用循環手段
32 風呂戻り路
33 風呂往き路
34 風呂循環手段
35 風呂加熱用液々熱交換器
100 液々熱交換器
103 給湯用循環手段
A 浴槽
D 熱消費端末
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a hot water heat exchanger that heats water supplied through a water supply channel by combustion of a burner to supply hot water to the hot water supply channel, and heats a fluid to be heated supplied through an inlet channel by combustion of the burner. The hot water supply apparatus is provided with a fluid heat exchanger that flows out into the water heater, and the hot water supply heat exchanger and the fluid heat exchanger are integrally formed in a state of conducting heat with each other.
[0002]
[Prior art]
The hot water supply apparatus as described above is, for example, formed integrally with a hot water heat exchanger and a fluid heat exchanger in a state of conducting heat to each other, and the fluid heat exchanger is supplied from a bathtub through an inlet. The bath hot water supplied into the bathtub through the exit path is heated, and the hot water supply and the bath hot water are tracked by a single burner.
In this type of hot water supply apparatus, in the hot water supply single heating state in which water is supplied to the hot water heat exchanger and the supply of the heating target fluid from the heat consumption terminal to the fluid heat exchanger is stopped, The fluid to be heated in the heat exchanger for heating will also be heated, but the fluid to be heated stagnates in the fluid heat exchanger, so there is a risk that the fluid to be heated will boil, and heat exchange for fluid In the fluid single heating state in which the fluid to be heated is supplied to the heater and the hot water supply from the hot water supply heat exchanger to the hot water supply passage is stopped, the hot water in the hot water supply heat exchanger is also heated. Since hot water stagnates in the heat exchanger for use, the hot water may be boiled.
[0003]
Therefore, the conventional hot water supply device is a fluid circulation means for circulating the fluid to be heated between the fluid heat exchanger and the bathtub or heating device as a heat consuming terminal, and before being heated by the hot water supply heat exchanger. Detection for boiling water for detecting the temperature of water in the hot water supply heat exchanger and a liquid heat exchanger for exchanging heat between the water in the fluid and the fluid to be heated heated by the fluid heat exchanger By providing a thermistor, it is configured to prevent boiling of the fluid to be heated in the fluid heat exchanger in the hot water supply alone heating state, and to prevent boiling of hot water in the hot water supply heat exchanger in the fluid hot heating state. (For example, Japanese Patent Laid-Open No. 10-122652).
[0004]
In addition, in the hot water supply single heating state, by operating the fluid circulation means and causing the fluid to be heated in the fluid heat exchanger to flow, the liquid heat exchanger uses the fluid to be heated and the hot water supply. Heat is exchanged with water before being heated by the heat exchanger, and the temperature rise of the heating target fluid is suppressed to prevent boiling of the heating target fluid.
Also, in the fluid single heating state, if the temperature detected by the boiling detection thermistor for hot water supply becomes equal to or higher than the set temperature for boiling, the combustion amount of the burner is reduced to limit the combustion amount of the burner, and the inside of the heat exchanger for hot water supply I try to prevent boiling water.
[0005]
[Problems to be solved by the invention]
The conventional hot water supply apparatus operates the fluid circulation means in the single hot water supply heating state to exchange heat between the fluid to be heated in the liquid heat exchanger and the water before being heated in the hot water heat exchanger. By doing so, boiling of the fluid to be heated is prevented, so that boiling of the fluid to be heated can be prevented without limiting the amount of combustion of the burner.
However, when the temperature detected by the hot water boiling detection thermistor is equal to or higher than the set temperature for boiling in the fluid single heating state, boiling of hot water in the hot water heat exchanger is prevented by reducing the combustion amount of the burner. Therefore, the burner combustion amount is limited, and there is a possibility that a desired heating capacity cannot be obtained.
[0006]
The present invention has been made paying attention to such a point, and its purpose is to prevent boiling of water in a hot water supply heat exchanger while obtaining a desired heating capacity without limiting the amount of combustion of the burner. In addition, the present invention is to provide a hot water supply device that can prevent boiling of the fluid to be heated in the fluid heat exchanger.
[0007]
[Means for Solving the Problems]
  In order to achieve this object, according to the first aspect of the present invention, a hot water supply heat exchanger that heats water supplied through a water supply channel by combustion of a burner to supply hot water to the hot water supply channel, and supplies the water through an inlet channel. A fluid heat exchanger that heats the fluid to be heated by combustion of the burner and flows out to the outlet,
  The hot water supply heat exchanger and the fluid heat exchanger are integrally formed in a state of conducting heat with each other,
  A fluid circulation means for circulating the fluid to be heated between the fluid heat exchanger and a heat consuming terminal;
  A hot water supply circulation means for circulating hot water in the hot water supply heat exchanger through the hot water supply passage and the water supply passage is provided,
  Heat exchange is performed between the heating target fluid circulated by the fluid circulation means and the water heated by the hot water supply heat exchanger, and is circulated by the hot water circulation means. A liquid heat exchanger for exchanging heat between hot water and the fluid to be heated heated by the fluid heat exchanger is provided.,
  A bypass path is provided for circulating the heating target fluid circulated by the fluid circulation means while bypassing the heat consuming terminal;
  Control means for controlling the combustion of the burner is provided;
  The control means is
  In the hot water supply single heating state in which the water supply to the hot water supply heat exchanger is performed and the supply of the heating target fluid to the fluid heat exchanger from the heat consuming terminal is stopped, the burner The amount of the heating target fluid circulated through the bypass passage by the fluid circulation means increases as the combustion amount of the burner increases based on the combustion amount of the burner, and is circulated by the fluid circulation means. Controlling the operating state of the fluid circulation means so as to adjust the amount of fluid to be heated; and
  In the fluid single heating state in which the fluid to be heated is supplied to the fluid heat exchanger and the hot water supply from the hot water supply heat exchanger to the hot water supply passage is stopped, it is based on the combustion amount of the burner. The amount of hot water circulated by the hot water circulating means in such a manner that the amount of hot water circulated by the hot water circulating means through the hot water supply passage and the water supply passage increases as the combustion amount of the burner increases. Is configured to control an operating state of the hot water circulation means.Yes.
[0008]
That is, a circulating means for fluid and a circulating means for hot water supply are provided, and the liquid heat exchanger is between the fluid to be heated circulated by the circulating means for fluid and the water heated by the heat exchanger for hot water supply. Heat exchange between the hot water circulated by the hot water circulation means and the fluid to be heated heated by the fluid heat exchanger. When a fluid circulation circuit including a heating bypass passage for supplying a fluid to be heated to an inlet is provided and the fluid circulation means is operated, the fluid to be heated is contained in the fluid circulation circuit including the fluid heat exchanger and the heating bypass passage. And the liquid-to-liquid heat exchanger can exchange heat between the heating target fluid circulated by the fluid circulation means and the water heated by the hot water supply heat exchanger, When the hot water circulation means is activated, the hot water heat Hot water in the exchanger is circulated through the hot water supply passage and the water supply passage, and the liquid heat exchanger is between the hot water circulated in the hot water circulation means and the fluid to be heated heated in the fluid heat exchanger. Heat exchange can be performed.
[0009]
Therefore, in the hot water supply single heating state in which water is supplied to the hot water supply heat exchanger and supply of the fluid to be heated to the fluid heat exchanger from the heat consuming terminal is stopped, the fluid circulation means is operated. The fluid to be heated is circulated in a fluid circulation circuit including a fluid heat exchanger and a heating bypass, and the fluid to be heated and the water heated in the hot water supply heat exchanger are heated in a liquid heat exchanger. It is possible to prevent the boiling of the fluid to be heated in the fluid heat exchanger by suppressing the temperature rise of the fluid to be heated.
Moreover, by heat exchange between the fluid to be heated in the liquid heat exchanger and the water heated in the hot water supply heat exchanger, it becomes possible to preheat the water heated in the hot water supply heat exchanger, The value obtained by dividing the performance (heating capacity) of the device by the amount of energy input to the device, so-called efficiency, can be improved.
[0010]
In addition, in the fluid single heating state in which the fluid to be heated is supplied to the fluid heat exchanger and the hot water supply from the hot water supply heat exchanger to the hot water supply passage is stopped, the hot water supply circulation means is operated to The hot water in the exchanger is circulated through the hot water supply channel and the water supply channel, and in the liquid heat exchanger, the hot water and the fluid to be heated heated by the fluid heat exchanger are subjected to heat exchange, thereby suppressing an increase in the temperature of the hot water. Thus, boiling of hot water in the hot water supply heat exchanger can be prevented.
[0011]
  In summary, according to the first aspect of the present invention, the fluid circulation means or the hot water supply circulation means is operated and heat is exchanged in the liquid heat exchanger. It is possible to prevent boiling of the water in the fluid and to prevent boiling of the fluid to be heated in the fluid heat exchanger, so that the desired amount of heating can be obtained without limiting the combustion amount of the burner. It has been possible to provide a hot water supply apparatus that can prevent boiling of water in the hot water heat exchanger and prevent boiling of the fluid to be heated in the fluid heat exchanger.
  In addition, the control means controls the operating state of the fluid circulation means so as to adjust the amount of the heating target fluid circulated by the fluid circulation means based on the burner combustion amount in the hot water supply single heating state. In addition, in the fluid single heating state, the operation state of the hot water circulation means is controlled so as to adjust the amount of hot water circulated by the hot water circulation means based on the burner combustion amount. Therefore, the control means can change the operation state of the fluid circulation means or the hot water supply circulation means in accordance with the burner combustion amount.
  Therefore, for example, the control means may change the operating state of the fluid circulation means or the hot water supply circulation means so that the capacity of the fluid circulation means or the hot water supply circulation means increases as the burner combustion amount increases. The amount of power supplied to the fluid circulation means or the hot water supply circulation means can be suppressed as much as possible, compared with the case where the fluid circulation means or the hot water supply circulation means is operated in a constant operating state such as the maximum capacity. In addition, the running cost can be reduced, and the generation of noise associated with the operation of the fluid circulation means or the hot water supply circulation means can be suppressed as much as possible.
[0012]
According to the invention described in claim 2, the hot water supply heat exchanger includes a sensible heat exchange unit for hot water supply that recovers sensible heat of combustion exhaust gas of the burner, and a sensible heat exchange unit for hot water supply. It is arranged on the downstream side in the flow direction of the combustion exhaust gas of the burner, and comprises a latent heat exchange part for hot water supply for recovering the latent heat of the combustion exhaust gas of the burner,
The fluid heat exchanger recovers the sensible heat of the combustion exhaust gas of the burner, and the fluid sensible heat exchange part is located downstream of the fluid sensible heat exchange part in the flow direction of the combustion exhaust gas of the burner. And a fluid latent heat exchange section for recovering the latent heat of the combustion exhaust gas of the burner.
[0013]
That is, the hot water supply heat exchanger includes a sensible heat exchange unit for hot water supply and a latent heat exchange unit for hot water supply, and the fluid heat exchanger includes a sensible heat exchange unit for fluid and a latent heat exchange fluid for fluid. In addition to the sensible heat of the combustion exhaust gas, the heat exchanger for hot water supply can recover the latent heat of the combustion exhaust gas, and the fluid heat exchanger In addition to the sensible heat of the exhaust gas, it is possible to recover the latent heat of the combustion exhaust gas, so that the efficiency of the entire apparatus can be effectively improved and the efficiency of the apparatus can be increased. .
[0014]
According to invention of Claim 3, the said sensible heat exchange part for hot-water supply and the said sensible heat exchange part for fluids are integrally formed in the state which mutually conducts heat, and the said latent heat for hot-water supply The exchange part and the fluid latent heat exchange part are integrally formed so as to conduct heat to each other.
[0015]
That is, in order to improve efficiency by the cooperative action with claim 2, the heat exchanger for hot water supply is simply configured to include a sensible heat exchanger for hot water supply and a latent heat exchanger for hot water supply, The fluid heat exchanger includes not only a sensible heat exchanger for fluid and a latent heat exchanger for fluid, but also a sensible heat exchanger for hot water supply and a sensible heat exchanger for fluid. Since it is integrally formed in a conductive state, and the latent heat heat exchange part for hot water supply and the latent heat heat exchange part for fluid are integrally formed in a state of conducting heat with each other, a sensible heat exchange part for hot water supply And the sensible heat exchange part for fluid are formed separately, and the device is made compact compared to the case where the latent heat heat exchange part for hot water supply and the latent heat exchange part for fluid are formed separately. Is possible.
[0016]
According to the invention of claim 4, the heat exchanger for fluid is supplied as the heating target fluid from the heat consuming terminal through the inlet path and supplied to the heat consuming terminal through the outlet path. A bath circulating means for circulating hot water in the bathtub through the bath return path and the bath going path is provided, and the heat medium heated by the fluid heat exchanger and the bath circulating means A liquid heat exchanger for bath heating is provided for heat exchange with the hot water in the bathtub to be circulated.
[0017]
That is, the fluid heat exchanger is configured to heat the heat medium that is circulated and supplied to the heat consuming terminal, and the heat medium heated by the fluid heat exchanger and the bath water circulated by the bath circulation means A liquid-to-liquid heat exchanger that exchanges heat between the two, so that the liquid-to-liquid heat exchanger can be used while utilizing a fluid heat exchanger and a burner that are provided to supply a heat medium to the heat consuming terminal. It is possible to heat the bathtub hot water and perform the bath hot water memorialization.
Accordingly, the heating means for supplying the heat medium to the heat consuming terminal and the heating means for performing the bath water pursuit can be used in a single burner, and the apparatus can be downsized. It is possible to supply the heat medium to the heat consuming terminal and to keep up the bathtub hot water.
[0018]
And, by the cooperative action with claim 1, it becomes possible to perform hot water supply, supply of heat medium to the heat consuming terminal, and bathing hot water in a single burner, hot water supply, heat consuming terminal It is possible to provide a very compact hot water supply apparatus capable of supplying a heat medium to the tub and pursuing bath water.
[0019]
According to invention of Claim 5, the bypass path which supplies the water supplied through the said water supply path to the said hot water supply path bypassing the said hot water supply heat exchanger is provided, In the said hot water supply heat exchanger, The heated hot water and the water from the bypass path are mixed, and hot water is supplied through the hot water supply path.
[0020]
That is, a part of the water supplied through the water supply channel is supplied to the hot water heat exchanger, the remaining part is supplied to the bypass channel, and the hot water heated by the hot water heat exchanger and the bypass channel are supplied. After mixing with water, it becomes possible to supply hot water through the hot water supply channel, so that the total amount of water supplied through the water supply channel is supplied to the hot water supply heat exchanger, compared with the case where it is supplied to the hot water supply heat exchanger. The amount of water flow can be reduced, and by increasing the hot water temperature inside the hot water heat exchanger, condensation of the hot water heat exchanger can be prevented, and the durability performance of the hot water heat exchanger can be improved. .
[0023]
DETAILED DESCRIPTION OF THE INVENTION
A hot water supply apparatus according to the present invention will be described with reference to the drawings.
[First Embodiment]
As shown in FIGS. 1 and 2, this hot water supply apparatus heats water supplied through a water supply path 1 by combustion of a burner 2 and supplies hot water to a hot water supply path 3, and a heating return path 5. The supplied heat medium is heated by combustion of the burner 2 and flows out to the high-temperature heating outbound path 6. Heat is generated between the heat medium heated by the fluid heat exchanger 7 and the bath water. It comprises a bath-heated liquid heat exchanger 35 to be exchanged, a control unit H for controlling the operation, etc., and burner 2, hot water heat exchanger 4, fluid heat exchanger 7, and bath-heated liquid heat exchanger. Each of the containers 35 is provided in the casing T.
[0024]
The hot water supply heat exchanger 4 is connected to a water supply path 1 connected to a water pipe on the inlet side thereof, and connected to a hot water supply path 3 connected to a hot water tap (not shown) on the outlet side thereof. The water supplied through is heated by the combustion of the burner 2 to supply hot water to the hot water supply passage 3 to perform general hot water supply or hot water filling.
[0025]
The water supply channel 1 is provided with a water filter 8, a water supply thermistor 9 for detecting the water supply temperature, and a water amount sensor 10 for detecting the water supply amount in order from the upstream side, and the water from the water supply channel 1 is used as the heat exchanger 4 for hot water supply. The bypass path 11 is provided to bypass the water amount sensor 10 in the water supply path 1, and is connected to the hot water supply path 3.
[0026]
In the hot water supply path 3, the hot water thermistor 12 for detecting the temperature of hot water from the hot water heat exchanger 4, the mixing ratio of the hot water from the hot water heat exchanger 4 and the water from the bypass path 11, in order from the upstream side. A mixing valve 13 for adjusting the temperature, a mixing thermistor 14 for detecting the temperature of hot water after mixing by the mixing valve 13, a water proportional valve 15 for adjusting the amount of hot water supplied through the hot water supply passage 3, and an interruption of general hot water supply An interrupting water amount sensor 16 and an overpressure prevention device 17 are provided.
The mixing valve 13 is provided at a connection portion between the bypass passage 11 and the hot water supply passage 3. In the hot water supply passage 3, a hot water filling passage 18 for bath is provided from a portion between the water proportional valve 15 and the interruption water amount sensor 16. It is branched.
[0027]
That is, a bypass path 11 is provided for supplying water supplied through the water supply path 1 to the hot water supply path 3 bypassing the hot water supply heat exchanger 4, and the hot water heated by the hot water supply heat exchanger 4 and the bypass path 11. The hot water is supplied through the hot water supply passage 3 by mixing with water from the hot water supply passage 3.
In other words, a part of the water supplied through the water supply passage 1 is supplied to the hot water supply heat exchanger 4 and the remaining part is supplied to the bypass passage 11 and heated by the hot water supply heat exchanger 4. Since the hot water and the water from the bypass passage 11 are mixed and then hot water is supplied through the hot water supply passage 3, the amount of water passing through the hot water supply heat exchanger 4 can be reduced, and the hot water supply heat exchanger 4 can be reduced. By increasing the internal hot water temperature, condensation of the hot water supply heat exchanger 4 can be prevented, and the durability performance of the hot water supply heat exchanger 4 can be improved.
[0028]
Further, a circulation bypass passage 102 for circulating hot water in the hot water supply heat exchanger 4 through the hot water supply passage 3 and the water supply passage 1 is provided, and a hot water supply pump 103 as a hot water supply circulation means is provided in the circulation bypass passage 102. The circulation bypass passage 102 and the hot water supply passage 3 are prevented from flowing water into the hot water supply pump 103 side when hot water is used or when hot water supply pump 103 is operated, hot water is supplied to the bypass passage 11 side. A check valve 104 is provided to prevent inflow.
The circulation bypass passage 102 is configured to branch upstream of the hot water supply thermistor 9 in the hot water supply passage 3 and to connect the end thereof to the downstream side of the branch portion of the bypass passage 11 in the water supply passage 1. .
[0029]
The fluid heat exchanger 7 has a heating return path 5 as an inlet path connected to the inlet side, and a high-temperature heating outgoing path 6 as an outlet path connected to the outlet side, and heat supplied through the heating return path 5. The medium is heated by combustion of the burner 2 and flows out to the high-temperature heating outbound path 6 so that the heat medium is supplied to the heating terminal D as a heat consuming terminal.
[0030]
In the heating return path 5, a heating return thermistor 19, a make-up water tank 20, and a heating pump 21 as fluid circulation means are provided in order from the upstream side, and near the fluid heat exchanger 7 in the high-temperature heating outbound path 6. Is provided with a heating high temperature thermistor 22.
In the heating return path 5, a low-temperature heating outbound path 23 for supplying a heat medium to a low-temperature heating terminal D2 (for example, a floor heating device) is branched from a portion downstream of the heating pump 21, and the low-temperature heating outbound path 23 is provided with a low temperature thermistor 24 that goes to the heating.
Further, a heating bypass path 6a that bypasses the high-temperature heating terminal D1 (for example, an indoor heating device) and supplies the heating medium to the heating return path 5 is provided, and the heating bypass path 6a is connected to the heating bypass path 6a. The return path 5 is connected to the upstream side of the heating return thermistor 19.
[0031]
The make-up water tank 20 is connected to a make-up water channel 25 branched from a location between the water filter 8 and the water supply thermistor 9 in the water supply channel 1, and an overflow channel 26 is connected to the make-up water channel 25. A water valve 27 and a makeup water electromagnetic valve 28 are provided.
The make-up water tank 20 is provided with an upper limit sensor 29 for detecting the upper limit of the water level and a lower limit sensor 30 for detecting the lower limit of the water level. The lower limit sensor 30 detects that the water level of the make-up water tank 20 is the lower limit. Then, until the upper limit sensor 29 detects that the water level of the make-up water tank 20 is the upper limit, the make-up water electromagnetic valve 28 is controlled to open and close so that water is supplied to the make-up water tank 20 through the make-up water channel 25. Is configured to do.
[0032]
A high-temperature heating terminal D1 is connected to the high-temperature heating outbound path 6 and the heating return path 5, and a low-temperature heating terminal D2 is connected to the low-temperature heating outbound path 23 and the heating return path 5, and a heat consuming terminal. Is composed of a high-temperature heating terminal D1 and a low-temperature heating terminal D2.
Then, by operating the heating pump 21, hot water in the makeup water tank 20 flows through the heating return path 5, a part of which bypasses the fluid heat exchanger 7 and passes through the low-temperature heating outgoing path 23, and the low-temperature heating terminal. The remaining portion flows into the fluid heat exchanger 7 and the hot water heated by the fluid heat exchanger 7 is supplied to the high temperature heating terminal D1 through the high temperature heating outbound path 6, and the high temperature heating terminal D1. The hot water returning from the hot water and the hot water returning from the low-temperature heating terminal D2 are also returned to the makeup water tank 20 through the heating return path 5.
[0033]
The circulation adapter 31 provided in the bathtub A is connected to a bath return path portion 32 and a bath return path portion 33. By operating a bath pump 34 provided in the bath return path portion 32, the bath water is returned to the bath. It is configured to circulate through a bath circulation path 36 including a path portion 32 and a bath going-out path portion 33.
A bath pump 34 is provided as a bath circulation means, and heat is exchanged between the heat medium heated by the fluid heat exchanger 7 and the bath water circulated by the operation of the bath pump 34. A liquid heat exchanger 35 is provided.
[0034]
The bath heating liquid-liquid heat exchanger 35 includes a bath heating outbound path 37 and a bath circulation path 36 that are branched from the high temperature heating outbound path 6. It has a concentric double pipe structure with the bath circulation path 36 as the outside.
The bath-heating liquid heat exchanger 35 is configured such that the flow direction of the heat medium in the bath heating forward path 37 and the flow direction of the bathtub hot water in the bath circulation path 36 are opposite to each other. .
[0035]
That is, the fluid heat exchanger 7 is supplied as a heating target fluid from the high-temperature heating terminal D1 or the low-temperature heating terminal D2 through the heating return path 5 and then through the high-temperature heating outbound path 6 or the low-temperature heating outbound path 23. A heat pump supplied to the heating terminal D1 and the low-temperature heating terminal D2 is configured to be heated, and a bath pump 34 and a bath circulation path 36 that circulate bathtub hot water through the bath return path portion 32 and the bath outlet path portion 33 are provided. And a bath heating liquid-liquid heat exchanger 35 for exchanging heat between the heat medium heated by the fluid heat exchanger 7 and the bath water circulated by the bath pump 34 and the bath circulation path 36. Yes.
[0036]
A bath heating heat valve 38 is provided in the bath heating outbound path 37 upstream of the bath heating liquid-liquid heat exchanger 35 in the flow direction of the heat medium. The bath heating heat valve 38 is opened and closed. By doing so, the heat medium heated in the fluid heat exchanger 7 is switched between a state in which the heat medium is supplied to the bath heating liquid heat exchanger 35 and a state in which the heat medium is not supplied.
[0037]
The bath return path portion 32 includes, in order from the upstream side, that is, the circulation adapter 31 side, a pressure detection type water level sensor 39 that detects the water level in the bathtub A based on the pressure acting on the bath return path portion 32, and the bath return. A thermistor 40, a bath two-way valve 41 that opens and closes the bath return path portion 32, a bath pump 34, and a water flow switch 42 are provided, and a bath trip thermistor 43 is provided in the bath exit path portion 33.
[0038]
A hot water filling passage 18 for supplying hot water from the hot water supply passage 3 to the bathtub A is connected to a portion corresponding to a portion between the bath pump 34 and the water flow switch 42 in the bath return passage portion 32. In the hot water filling path 18, a vacuum breaker 44, a hot water electromagnetic valve 45 that opens and closes the hot water filling path 18, and a hot water check valve 46 are provided in this order from the upstream side.
[0039]
Then, hot water from the hot water supply heat exchanger 4 is mixed with water from the bypass passage 11 by the mixing valve 13, and then the hot water is supplied to the hot water supply passage 3, the hot water filling passage 18, the bath return passage portion 32, and the bath going out passage The hot water filling is performed by supplying to the bathtub A through the portion 33.
In addition, by operating the bath pump 34, the bath hot water is circulated between the bath heating liquid heat exchanger 35 and the bath A through the bath return path portion 32 and the bath return path portion 33, and the bath heat is increased. By opening the valve 38 and operating the heating pump 21, the heat medium heated by the fluid heat exchanger 7 is supplied to the bath heating liquid-liquid heat exchanger 35 through the bath heating forward passage 37. By doing so, the bath hot water is heated by the heat medium in the bath heating outbound path 37, and the bath hot water is memorized.
[0040]
The burner 2 is a multistage gas burner as shown in FIGS. 1 to 4, and is configured such that the flame is formed downward. The hot water supply heat exchanger 4 and the fluid heat exchanger 7 are a single burner. 2, the burner 2 is provided in the burner case 47, and the hot water supply heat exchanger 4 and the fluid heat exchanger 7 are downstream of the burner 2 in the flow direction of the combustion exhaust gas of the burner 2, that is, the burner 2. It is arrange | positioned below rather than.
A fan 48 for supplying combustion air to the burner 2 is also provided. In the vicinity of the burner 2, an igniter 53 for igniting the burner 2, a frame rod 54 for detecting ignition of the burner 2, and the like are provided. Yes.
[0041]
A gas supply path 49 for supplying fuel gas for household use to the burner 2 is branched into three systems and connected to the burner 2, and a gas switching electromagnetic valve 50 is provided at each gas supply path branch portion 49a. .
The gas supply passage 49 upstream of the branch point is provided with an original gas solenoid valve 52 for intermittently supplying fuel gas and an electromagnetic gas proportional valve 51 for adjusting the fuel gas supply amount in order from the upstream side. It has been.
[0042]
The hot water supply heat exchanger 4 includes a hot water sensible heat exchange section 4a for recovering sensible heat of the combustion exhaust gas of the burner 2, and a flow direction of the combustion exhaust gas of the burner 2 more than the sensible heat exchange section 4a for hot water supply. The hot water supply latent heat exchange unit 4b is disposed on the downstream side and recovers the latent heat of the combustion exhaust gas from the burner 2.
The fluid heat exchanger 7 includes a sensible heat exchange unit 7a for fluid as a sensible heat exchange unit for fluid that recovers sensible heat of combustion exhaust gas from the burner 2, and a sensible heat exchange unit 7a for fluid. A fluid latent heat heat exchanging portion 7b as a fluid latent heat exchanging portion that is disposed on the downstream side of the burner 2 in the flow direction of the combustion exhaust gas and recovers the latent heat of the combustion exhaust gas of the burner 2 is configured.
[0043]
And the sensible heat exchange part 4a for hot water supply and the sensible heat exchange part 7a for fluid are integrally formed in the state which mutually conducts heat, and the latent heat heat exchange part 4b for hot water supply and the latent heat heat exchange part for fluids 7b are integrally formed in a state of conducting heat to each other.
Further, the hot water supply heat exchanger 4 and the fluid heat exchanger 7 are disposed downstream of the burner 2 in the flow direction of the combustion exhaust gas of the burner.
[0044]
In other words, the burner case 47 is provided in the burner case 47 so that the flame formation direction is downward, and the combustion exhaust gas of the burner 2 flows downward.
And, on the lower side of the burner 2, there is provided a sensible heat exchange part K integrally formed in a state where the sensible heat exchange part 4a for hot water supply and the sensible heat exchange part 7a for fluid conduct heat with each other, Below the sensible heat exchange section K, there is provided a latent heat heat exchange section N that is integrally formed with the hot water latent heat exchange section 4b and the fluid latent heat exchange section 7b conducting heat with each other.
[0045]
That is, the hot water supply heat exchanger 4 includes a sensible heat exchange unit 4a for hot water supply and a latent heat exchange unit 4b for hot water supply, and the fluid heat exchanger 7 is connected to the sensible heat exchange unit 7a for fluid. A fluid latent heat exchange unit 7b, and a sensible heat exchange unit 4a for hot water supply and a sensible heat exchange unit 7a for fluid are integrally formed in a state of conducting heat to each other, and for hot water supply The latent heat heat exchanging portion 4b and the fluid latent heat exchanging portion 4b are integrally formed in a state of conducting heat to each other, so that the heat exchanger 4 for hot water supply also has heat for fluid. In the exchanger 7 as well, the latent heat of the flue gas is recovered in addition to the sensible heat of the flue gas, and the efficiency (heating capacity) divided by the amount of energy input to the device, so-called efficiency, is effectively improved. And high efficiency is realized.
[0046]
Further, heat exchange between the heat medium circulated by the heating pump 21 and the water heated by the hot water supply heat exchanger 4 and the hot water circulated by the hot water supply pump 103 and the heat for fluid A liquid heat exchanger 100 for exchanging heat with the heat medium heated by the exchanger 7 is provided.
In addition, as shown in FIGS. 1 and 5, the liquid heat exchanger 100 includes a hot water supply channel 101 that connects the hot water latent heat exchange unit 4b and the hot water sensible heat exchange unit 4a, The heating return path 5 connected to the inlet side of the fluid heat exchanger 7 is configured to have a double-pipe structure with the heating return path 5 on the inner side and the hot water supply channel 101 on the outer side in some sections. Yes.
Then, the water before being heated by the hot water supply latent heat exchange unit 4b and heated by the hot water supply sensible heat exchange unit 4a, the heating pump 21 is operated, the fluid heat exchanger 7 and the heating bypass passage Heat exchange with the heat medium circulated in the fluid circulation circuit including 6a, the heat medium before being heated in the fluid latent heat exchange section 7b, and the hot water supply pump 103 are operated, and the hot water supply path 3 and hot water circulated through the water supply channel 1 are configured to exchange heat.
[0047]
The liquid heat exchanger 100 is configured such that the flow direction of water in the hot water supply flow path 101 and the flow direction of the heat medium in the heating return path 5 are opposite to each other, and the heat medium in the heating return path 5 Thus, heat is efficiently exchanged with respect to the water in the hot water supply flow path 101, and heat is efficiently exchanged with respect to the heat medium in the heating return path 5 from the hot water in the hot water supply flow path 101.
[0048]
Further, a drain for recovering condensed water, that is, drain, which falls from the hot water latent heat exchange unit 4b and the fluid latent heat exchange unit 7b is provided below the hot water latent heat exchange unit 4b and the fluid latent heat exchange unit 7b. A recovery path 55 is provided, and the drain recovered in the drain recovery path 55 is supplied to the neutralization device 56 to neutralize the drain, and then discharged.
In addition, as the neutralization apparatus 56, various neutralization apparatuses, such as what neutralizes with metals with a large ionization tendency, such as Mg and Zn, are applicable.
[0049]
When the sensible heat exchange section K is further described, as shown in FIGS. 2, 3, and 6, the hot water supply heat transfer pipe 57 that allows the water from the water supply passage 1 to pass through, the high-temperature heating terminal D1, and the like. A heating heat transfer tube 58 through which the heat medium passes is provided so as to penetrate the plurality of sensible heat transfer fins 59 in the longitudinal direction.
And, on both lateral sides of the sensible heat exchange section K, the heat transfer pipe 57 for hot water supply and the heat transfer pipe 58 for heating are configured to be connected to the U-shaped heat transfer pipe 60, The hot water supply heat transfer tube 57 and the heating heat transfer tube 58 are piped in a meandering manner in a state of passing through the plurality of sensible heat heat transfer fins 59.
Further, as shown in FIG. 8A, the sensible heat heat transfer fin 59 is provided with a through-hole 61 through which the hot water supply heat transfer tube 57 and the heating heat transfer tube 58 are inserted. The heat transfer tubes 57 and the heating heat transfer tubes 58 are configured to be fitted into the through holes 61 in the sensible heat transfer fins 59.
[0050]
More specifically, the hot water supply heat transfer tube 57 and the heating heat transfer tube 58 are integrally formed in a state in which the hot water supply heat transfer tube 57 and the heating heat transfer tube 58 are in contact with each other so as to conduct heat with each other. The sensible heat integral part 62 and the sensible heat single part 63 composed only of the hot water supply heat transfer tube 57 are provided.
The sensible heat transfer fin 59 has a sensible heat integrated through hole 64 for inserting the sensible heat integrated portion 62 and a sensible heat singular through hole for inserting the sensible heat single portion 63. A hole 65 is provided.
The sensible heat transfer fins 59 are provided with five sensible heat integrated through holes 64 arranged in the lateral direction at the upper part, and the sensible heat transfer fins 59 are provided with a single sensible heat transfer fin 59 at the lower part. The mold through holes 65 are provided in a state where four mold through holes 65 are arranged in the horizontal direction.
[0051]
The sensible heat exchange section K has the sensible heat integral part 62 fitted in the sensible heat integral through hole 64 and the sensible heat singular part 63 fitted in the sensible heat singular through hole 65. It is configured.
[0052]
As shown in FIGS. 2, 3, and 7, the latent heat exchange unit N allows a hot water supply heat transfer pipe 57 that allows water from the water supply channel 1 to pass therethrough and a heat medium from the high-temperature heating terminal D <b> 1 and the like. A heating heat transfer tube 58 is provided so as to penetrate through the plurality of latent heat transfer fins 66 in the longitudinal direction thereof.
And, on both lateral sides of the latent heat exchange section N, a U-shaped heat transfer tube 67 is connected so that the hot-water supply heat transfer tube 57 and the heating heat transfer tube 58 are U-shaped. The heat transfer tubes 57 and the heating heat transfer tubes 58 are piped so as to meander in a state of passing through the plurality of latent heat transfer fins 66.
Further, as shown in FIG. 8 (B), the latent heat transfer fin 66 is provided with a through-hole 68 through which the hot water supply heat transfer tube 57 and the heating heat transfer tube 58 are inserted. The heat pipe 57 and the heating heat transfer pipe 58 are configured to be fitted in the through holes 68 in the latent heat transfer fins 66 in a state where the heat transfer cover P is fitted.
[0053]
More specifically, the hot water supply heat transfer tube 57 and the heating heat transfer tube 58 are integrally formed in a state in which the hot water supply heat transfer tube 57 and the heating heat transfer tube 58 are in contact with each other so as to conduct heat with each other. The latent heat integral part 69 and the single part 70 for latent heat composed only of the hot water supply heat transfer tube 57 are provided.
The heat transfer cover P is provided with a latent heat integrated heat transfer cover P1 externally fitted to the latent heat integrated part 69 and a latent heat single heat transfer cover P2 externally fitted to the latent heat single part 70. ing.
[0054]
The latent heat heat transfer fin 66 is provided with a latent heat integrated through hole 71 for inserting the latent heat integrated portion 69 and a latent heat singular through hole 72 for inserting the latent heat singular portion 70. It has been.
Then, four latent heat integrated through-holes 71 are provided in the upper part of the latent heat transfer fins 66 so as to be arranged in the horizontal direction, and the latent heat single-side through-holes 72 are provided at the upper and lower intermediate portions of the latent heat transfer fins 66. Are arranged in a row in the horizontal direction, and in the lower part, four through-holes for latent heat 72 are arranged in the horizontal direction.
[0055]
The latent heat exchanging part N has the latent heat integrated portion 69 fitted in the latent heat integrated through-hole 71 in a state where the latent heat integrated heat transfer cover P1 is externally fitted, and the latent heat single portion 70 is also mounted. The single heat transfer cover P2 for latent heat is fitted into the single through hole 72 for latent heat in a state where the single heat transfer cover P2 is fitted.
[0056]
As shown in FIG. 4, the burner 2 includes a rich burner 2 a that burns a rich air-fuel mixture having a low air mixing ratio and a light burner 2 b that burns a light air-fuel mixture having a high air mixing ratio. A plurality of 2a and a plurality of light burners 2b are alternately arranged side by side in the width direction, and are accommodated in a box-shaped frame 2c provided in the burner case 47.
Then, the light mixture of the light burner 2b is burned while being held by the rich flame generated in the rich burner 2a, and the fuel gas is burned with a large air mixing ratio as a whole, so that NOx that is nitrogen oxides is generated. It is configured to perform stable combustion while suppressing as much as possible.
[0057]
In addition, this concentration burner is configured by setting the air ratio of the entire concentration burner as low as possible by increasing the amount of fuel gas supplied to the light burner 2b as much as possible than the amount of combustion gas supplied to the concentration burner 2a. The burner 2 is burned in a state where it is easy to recover the latent heat of the combustion exhaust gas from the burner 2, and the latent heat of the combustion exhaust gas can be efficiently recovered by the latent heat exchange section N.
[0058]
A kitchen remote controller 73 and a bathroom remote controller 74 for providing various commands to the controller H are provided, and the controller H performs a burner operation based on commands of the kitchen remote controller 73 and the bathroom remote controller 74 as shown in FIG. By controlling the part B, the hot water supply operation part X, the bath operation part Y, and the heating operation part Z, various operations such as a general hot water supply operation, a bath automatic operation, a hot operation, and a heating operation are executed.
[0059]
Incidentally, the burner operation part B is composed of a fan 48, a gas switching electromagnetic valve 50, a gas proportional valve 51, an original gas electromagnetic valve 52, an igniter 53, a frame rod 54, and the like. The sensor 10 includes a hot water supply thermistor 12, a mixing valve 13, a mixing thermistor 14, and the like.
The bath operating unit Y includes a bath pump 34, a water level sensor 39, a bath return thermistor 40, a bath two-way valve 41, a water flow switch 42, a bathing thermistor 43, a pouring electromagnetic valve 45, and the like. Consists of a heating return thermistor 19, a heating pump 21, a heating high temperature thermistor 22, a heating low temperature thermistor 24, and the like.
[0060]
The kitchen remote controller 73 includes an operation switch 75 for instructing a state in which a general hot water supply operation can be performed, a hot water supply temperature setting unit 76 for setting a hot water supply temperature, an automatic bath switch 77 for instructing a bath automatic operation, and a heating for instructing a heating operation. A switch 78 and the like are provided.
The bathroom remote controller 74 includes an operation switch 79 for instructing a state in which a general hot water supply operation can be performed, a bath setting change switch 80 for setting a hot water temperature and a water level for the bathtub A, and a bath automatic switch for instructing an automatic bath operation. 81, a hot switch 82 for instructing hot operation is provided.
[0061]
The operation | movement in the various driving | operations of the said control part H is demonstrated.
In the general hot water supply operation, when the amount of water detected by the water amount sensor 10 is greater than or equal to a predetermined amount due to opening operation of a hot water tap or the like, the fan 48 is driven, and then the gas switching electromagnetic valve 50 is appropriately switched to change the original gas electromagnetic valve 52. The valve is opened, the opening of the gas proportional valve 51 is adjusted, and the burner 2 is ignited by the igniter 53.
When the burner 2 is ignited, the gas switching solenoid valve 50 is switched based on the set temperature by the hot water supply temperature setting unit 76 of the kitchen remote controller 73, the detected water temperature by the water supply thermistor 9, the detected water amount by the water amount sensor 10, and the like. The so-called feedforward control is performed so that the opening degree of the gas proportional valve 51 is adjusted and the opening degree of the mixing valve 13 is also adjusted so that the hot water supply temperature becomes the set temperature. The heated hot water and the water from the bypass passage 11 are mixed, and hot water at a set temperature is supplied through the hot water supply passage 3.
[0062]
In addition to this feedforward control, so-called feedback control that finely adjusts the opening of the gas proportional valve 51 based on the deviation between the set temperature by the hot water supply temperature setting unit 76 of the kitchen remote controller 73 and the detected hot water temperature by the mixing thermistor 14. Is executed to supply hot water having a temperature set by the hot water supply temperature setting unit 76 of the kitchen remote controller 73 to the hot water tap.
When the water amount sensor 10 no longer detects a predetermined amount of water in connection with the operation of closing the hot water tap, the original gas solenoid valve 52 and the gas proportional valve 51 are closed to stop the combustion of the burner 2, and the constant After the elapse of time, the fan 48 is also stopped to end the general hot water supply operation.
[0063]
In the automatic bathing operation, when the bath automatic switch 77 of the kitchen remote controller 73 and the bath automatic switch 81 of the bathroom remote controller 74 are turned ON, the pouring electromagnetic valve 45 is opened, and the water amount sensor 10 causes a water flow of a predetermined amount or more. When detected, the burner 2 is ignited similarly to the above-described general hot water supply operation, and hot water of a set temperature is supplied to the bathtub A by feedforward control and feedback control.
That is, the opening of the gas proportional valve 51 and the mixing valve 13 is adjusted, the water from the water supply passage 1 is heated by the hot water supply heat exchanger 4, and the water from the bypass passage 11 is mixed with the heated hot water. Then, hot water at the set temperature is supplied to the bath return path portion 32 and the bath going-out path portion 33 through the hot water filling path 18, and is supplied into the bathtub A from both the bath return path portion 32 and the bath going-out path portion 33. The
[0064]
When a predetermined amount of hot water is supplied to the bathtub A, the bath pump 34 is operated to close the bath two-way valve 41, the water level sensor 39 detects the water level of the bathtub A, and this detected water level becomes the set water level. If it has reached, the pouring solenoid valve 45 is closed, the original gas solenoid valve 52 and the gas proportional valve 51 are closed, and the combustion of the burner 2 is stopped, and the fan 48 is also stopped after a lapse of a certain time. In this manner, the water level of the bathtub A is appropriately detected, and hot water is supplied to the bathtub A so that the water level of the bathtub A becomes the set water level.
When hot water of a set water level is supplied to the bathtub A, the bath pump 34 is operated, and a hot operation described later is executed so that the temperature of the hot water in the bathtub becomes the set temperature.
When the hot water tap is opened during the hot water filling operation, the interrupt water amount sensor 16 detects the water flow, stops the automatic bathing operation, and executes the general hot water supply operation. That is, the general hot water supply operation is executed with priority, and the automatic bath operation is resumed when the hot water tap is closed.
[0065]
In the hot operation, when the hot switch 82 of the bathroom remote controller 74 is turned ON, the bath pump 34 is activated, the bathtub hot water is circulated through the bath circulation path 36, the water flow switch 42 is turned ON, and the bathtub hot water is taken into the bath. It is supplied to the liquid-to-heat heat exchanger 35 for heating.
Then, as the water flow switch 42 is turned on, the gas switching solenoid valve 50 is switched so that the burner 2 is ignited and the combustion amount of the burner 2 is increased, and the gas proportional valve 51 is opened. The degree is adjusted.
When the water flow switch 42 is turned on, the heating pump 21 is operated to open the bath heating heat valve 38 so that the heat medium heated by the fluid heat exchanger 7 is heated to the liquid heat for bath heating. Supply to the exchanger 35.
[0066]
In this way, in the bath heating liquid-liquid heat exchanger 35, the bath water is heated by the heat medium heated by the fluid heat exchanger 7, and the detected temperature of the bath return thermistor 40 is slightly lower than the set temperature. When the temperature becomes high, the original gas solenoid valve 52 and the gas proportional valve 51 are closed, the combustion of the burner 2 is stopped, and the fan 48 is also stopped after a certain period of time.
Then, the hot air valve 38 is closed to stop the heating pump 21, the two-way valve 41 is closed, the bath pump 34 is stopped, and the hot operation is finished.
Even if the hot switch 82 is turned OFF, the above operation is performed to end the hot operation.
[0067]
The heating operation includes a high-temperature heating operation that circulates and supplies a heat medium to the high-temperature heating terminal D1, and a low-temperature heating operation that circulates and supplies a heat medium to the low-temperature heating terminal D2.
In the high-temperature heating operation, when there is an operation command from the heating remote controller or when the heating switch 78 of the kitchen remote controller 73 is turned on, the heating pump 21 is activated, the burner 2 is ignited, and the high-temperature heating terminal D1 Depending on the load, the combustion state of the burner 2 is proportionally controlled or ON / OFF controlled.
That is, the proportional control is performed by switching the gas switching electromagnetic valve 50 and adjusting the opening of the gas proportional valve 51 based on the temperature detected by the heating high temperature thermistor 22 so that the combustion amount of the burner 2 is the maximum combustion amount and the minimum combustion amount. The ON / OFF control is switched between the state in which the burner 2 is burned with the minimum combustion amount and the state in which the burner 2 is stopped.
[0068]
Further, in the low temperature heating operation, when there is an operation command from the heating remote controller, the heating pump 21 is operated, the burner 2 is ignited, and the combustion state of the burner 2 is proportionally controlled according to the load of the low temperature heating terminal D2. Or ON / OFF control.
That is, the proportional control is performed by switching the gas switching solenoid valve 50 and adjusting the opening of the gas proportional valve 51 on the basis of the temperature detected by the heating low temperature thermistor 24 so that the combustion amount of the burner 2 is set to the maximum combustion amount and the minimum combustion amount. The ON / OFF control is switched between the state in which the burner 2 is burned with the minimum combustion amount and the state in which the burner 2 is stopped.
[0069]
Further, various operations can be simultaneously performed by controlling the combustion amount of the burner 2 such as a general hot water supply operation and a heating operation, a general hot water supply operation and a bath automatic operation, and the like.
For example, if there is a request for heating operation during the general hot water supply operation, the general hot water supply operation and the heating operation are performed simultaneously by adding the combustion amount according to the load of the heating terminal D to the current combustion amount of the burner 2. It becomes possible.
By the way, when performing multiple operations at the same time, based on various conditions, which operation conditions are prioritized is set in advance, and each operation is performed based on the set priority conditions. It is configured.
[0070]
Then, the control unit H supplies water to the hot water supply heat exchanger 4 such as performing a general hot water supply operation or automatic bath operation alone, and from the heating terminal D of the heat medium to the fluid heat exchanger 7. In the hot water supply single heating state in which the supply of water is stopped, although not shown, a fluid boiling prevention thermistor for detecting the temperature of the heat medium in the fluid heat exchanger 7 is provided in the vicinity of the fluid heat exchanger 7. When the fluid boiling prevention condition is satisfied, for example, when the temperature detected by the fluid boiling prevention thermistor is equal to or higher than the boiling setting temperature, the heating pump 21 is operated, as shown by the dotted arrow in FIG. While supplying the heat medium in the fluid heat exchanger 7 to the liquid heat exchanger 100, the heat medium is circulated in the fluid circulation circuit including the heating bypass passage 6a, and the water from the water supply passage 1 is heated to the latent heat for hot water supply. Exchange unit 4b, liquid-to-liquid heat exchange unit 100, It is configured to be sequentially supplied to the water for sensible heat exchange unit 4a.
[0071]
In other words, the water from the water supply channel 1 is first supplied to the hot water supply latent heat exchange unit 4b, and the temperature difference between the water supplied to the hot water supply latent heat exchange unit 4b and the combustion exhaust gas of the burner 2 is calculated. It is configured to effectively recover the latent heat of the combustion exhaust gas in the hot water supply latent heat exchange section 4b as much as possible.
Then, the water heated in the hot water latent heat exchanger 4b is supplied to the liquid heat exchanger 100 to exchange heat between the water and the heating medium in the heating return path 5, thereby exchanging heat for fluid. The water before being heated in the hot water supply sensible heat exchanger 4a is preheated while suppressing the temperature rise of the heat medium in the heater 7 and preventing the heat medium in the fluid heat exchanger 7 from boiling. It is configured as follows.
[0072]
Thus, while preventing boiling of the heat medium in the fluid heat exchanger 7, the latent heat of the combustion exhaust gas from the burner 2 is effectively recovered and heated by the sensible heat exchange section 4a for hot water supply. By preheating the previous water, while preventing the heat medium in the fluid heat exchanger 7 from boiling, the performance (heating capacity) of the device divided by the amount of energy input to the device, the so-called efficiency improvement. I try to figure it out.
[0073]
And the control part H controls the operating state of the heating pump 21 in order to adjust the quantity of the heat medium circulated by the heating pump 21 based on the combustion amount of the burner 2 in the hot water supply single heating state. It is configured.
Specifically, the control unit H controls the capacity of the heating pump 21 in three stages of large, medium, and small so that the capacity of the heating pump 21 increases as the combustion amount of the burner 2 increases. The power supply amount to the heating pump 21 is suppressed as much as possible to reduce the running cost, and the generation of noise accompanying the operation of the heating pump 21 is suppressed as much as possible.
[0074]
In the hot water supply single heating state, since the temperature of the heat medium in the fluid heat exchanger 7 tends to rise faster than when the burner 2 has a large combustion amount, the burner 2 has a large combustion amount. As the capacity of the heating pump 21 is increased, the capacity of the heating pump 21 is controlled in three stages of large, medium and small so that the heat medium in the fluid heat exchanger 7 is boiled. It is also possible to accurately prevent boiling of the heat medium in the fluid heat exchanger 7 by changing the amount of the heat medium to be circulated according to the time.
[0075]
In addition, the control unit H supplies the heat medium to the fluid heat exchanger 7 such as performing a heating operation or a hot operation alone, and stops the hot water supply from the hot water supply heat exchanger 4 to the hot water supply path 3. In the fluid single heating state, the heating pump 21 is operated, and the heat medium from the heating return path 5 is converted into the liquid heat exchanger 100, the fluid latent heat exchange section 7b, as shown by the dotted line arrow in FIG. While supplying and heating in order of the sensible heat exchange section for fluid 7a, while circulating in the fluid circulation circuit including the fluid heat exchanger 7 and the heating bypass 6a, the hot water supply pump 103 is operated, As indicated by the solid line arrows, the hot water in the hot water supply heat exchanger 4 is circulated through the hot water supply path 3, the circulation bypass path 102, and the water supply path 1 while being supplied to the liquid heat exchanger 100. .
[0076]
In other words, the heat medium from the heating return path 5 is first supplied to the liquid heat exchanger 100, and heat is exchanged between the heat medium and the hot water in the hot water supply channel 101, so that the heat for hot water supply is increased. The heating medium before being heated in the fluid latent heat exchanger 7b is preheated while suppressing the temperature rise of the hot water in the exchanger 4 and preventing boiling of the hot water in the hot water supply heat exchanger 4. It is configured.
And the heat medium heated in the fluid latent heat exchange part 7b is heated in the fluid sensible heat exchange part 7a, and the sensible heat and latent heat of combustion exhaust gas are collect | recovered.
[0077]
In this way, while preventing boiling of hot water in the hot water supply heat exchanger 4, the sensible heat and latent heat of the combustion exhaust gas from the burner 2 are recovered, and before being heated in the fluid latent heat exchange section 7 b. By preheating the heat medium, efficiency is improved while preventing boiling of hot water in the hot water supply heat exchanger 4.
[0078]
The control unit H is configured to control the operating state of the hot water supply pump 103 to adjust the amount of hot water circulated by the hot water supply pump 103 based on the combustion amount of the burner 2 in the fluid single heating state. Has been.
Specifically, the control unit H controls the capacity of the hot water supply pump 103 in three stages of large, medium, and small so that the capacity of the hot water supply pump 103 increases as the combustion amount of the burner 2 increases. The power supply amount to the hot water supply pump 103 is suppressed as much as possible to reduce the running cost, and the generation of noise accompanying the operation of the hot water supply pump 103 is suppressed as much as possible.
[0079]
In the fluid single heating state, the temperature of the hot water in the hot water supply heat exchanger 4 tends to rise faster than when the combustion amount of the burner 2 is small, so that the combustion amount of the burner 2 is larger. In order to increase the capacity of the hot water supply pump 103, the capacity of the hot water supply pump 103 is controlled in three stages of large, medium, and small so that the hot water in the hot water supply heat exchanger 4 is heated until it boils. Correspondingly, it is also possible to accurately prevent boiling of hot water in the hot water supply heat exchanger 4 by changing the amount of hot water to be circulated.
[0080]
For preventing boiling of hot water in the hot water supply heat exchanger 4 and heat medium in the fluid heat exchanger 7, basically, in the sensible heat exchanger K and the latent heat exchanger N, the hot water transfer is performed. By forming a part of the heat pipe 57 and a part of the heating heat transfer pipe 58 in contact with each other, the hot water in the hot water supply heat exchanger 4 and the heat medium in the fluid heat exchanger 7 are formed. To suppress the temperature rise of the fluid on the side where the supply of fluid (water or heat medium) is stopped, among the hot water supply heat exchanger 4 and the fluid heat exchanger 7, and the fluid ( It is configured to prevent boiling of hot water or heat medium).
[0081]
[Second Embodiment]
This 2nd Embodiment shows another embodiment of the arrangement | positioning location of the liquid heat exchanger 100 in the said 1st Embodiment, The structure of the liquid heat exchanger 100 is demonstrated based on drawing.
Incidentally, since the configuration other than the liquid-liquid heat exchanger 100 is the same as that of the first embodiment, detailed description thereof is omitted by showing the same reference numerals.
[0082]
In the first embodiment, the liquid heat exchanger 100 includes the hot water supply channel 101 connecting the hot water supply latent heat exchange unit 4b and the hot water sensible heat exchange unit 4a, and the inlet of the fluid heat exchanger 7. The heating return path 5 connected to the side is configured in a double pipe structure with the heating return path 5 inside and the hot water supply flow path 101 outside in some sections. In the embodiment, as shown in FIGS. 10 and 11, the liquid-liquid heat exchanger 100 connects the water supply channel 1, the fluid latent heat exchange unit 7b, and the fluid sensible heat exchange unit 4a. 105 is configured in a double-pipe structure with a heating flow path 105 on the inside and a water supply path 1 on the outside in some sections.
[0083]
When the explanation is added, the liquid heat exchanger 100 is heated between the hot water in the water supply channel 1 and the fluid latent heat exchange section 7b and the heat medium before being heated in the fluid sensible heat exchange section 7a. It is configured to exchange heat between them.
The liquid heat exchanger 100 is configured such that the hot water flow direction in the water supply channel 1 and the heat medium flow direction in the heating flow channel 105 are opposite to each other. Heat is efficiently exchanged from the medium to the water in the water supply channel 1, and heat is efficiently exchanged from the hot water in the water supply channel 1 to the heat medium in the heating flow channel 105.
[0084]
The control unit H is not shown in the single hot water supply heating state, but a fluid boiling prevention thermistor for detecting the temperature of the heat medium in the fluid heat exchanger 7 is provided in the vicinity of the fluid heat exchanger 7. When the fluid boiling prevention condition is satisfied, for example, when the temperature detected by the fluid boiling prevention thermistor becomes equal to or higher than the set temperature for boiling, the heating pump 21 is operated, as shown by the dotted arrow in FIG. In addition, while supplying the heat medium in the fluid heat exchanger 7 to the liquid heat exchanger 100, the heat medium is circulated in the fluid circulation circuit including the heating bypass 6a, and the water from the water supply passage 1 is liquefied. The heat exchange unit 100, the hot water supply latent heat exchange unit 4b, and the hot water supply sensible heat exchange unit 4a are supplied in this order.
[0085]
In other words, the water from the water supply channel 1 is first supplied to the liquid heat exchanger 100 to exchange heat between the water and the heating medium in the heating flow path 105, and the fluid heat exchanger. The water before being heated in the hot water supply latent heat exchange section 4b is preheated while suppressing the temperature rise of the heat medium in the heat exchanger 7 and preventing the heat medium in the fluid heat exchanger 7 from boiling. It is configured.
And the water heated in the hot water supply latent heat exchange part 4b is heated in the hot water supply sensible heat exchange part 4a, and the sensible heat and latent heat of combustion exhaust gas are collect | recovered.
[0086]
In this way, the sensible heat and latent heat of the combustion exhaust gas from the burner 2 are recovered while preventing the heat medium in the fluid heat exchanger 7 from boiling, and before being heated by the hot water supply latent heat exchanger 4b. By preheating the water, the efficiency is improved while preventing boiling of hot water in the fluid heat exchanger 7.
[0087]
Further, in the fluid single heating state, the control unit H operates the heating pump 21 to transfer the heat medium from the heating return path 5 to the fluid latent heat exchange unit 7b, as indicated by a dotted arrow in FIG. While supplying and heating in order the liquid heat exchanger 100 and the sensible heat exchanger for fluid 7a, the fluid heat exchanger 7 and the fluid bypass circuit 6a are circulated in the fluid circulation circuit, and the hot water supply pump 103 is As shown by the solid line arrows in FIG. 10, the hot water in the hot water supply heat exchange 4 is circulated through the hot water supply path 3, the circulation bypass path 102, and the water supply path 1 while supplying the liquid heat exchanger 100 with hot water. It is configured to let you.
[0088]
When the description is added, the heat medium from the heating return path 5 is first supplied to the fluid latent heat exchange section 7b, and the heat medium supplied to the fluid latent heat exchange section 7b and the combustion exhaust gas of the burner 2 are By making the temperature difference as large as possible, the latent heat of the combustion exhaust gas is effectively recovered by the fluid latent heat exchange section 7b.
Then, the heat medium heated in the fluid latent heat exchange unit 7b is supplied to the liquid heat exchanger 100 to exchange heat between the heat medium and hot water in the water supply channel 1, thereby exchanging heat for hot water supply. The heating medium before being heated in the fluid sensible heat exchanger 7a is preheated while suppressing the rise in the temperature of the hot water in the water heater 4 to prevent boiling of the hot water in the hot water supply heat exchanger 4 It is configured.
[0089]
In this way, while preventing boiling of hot water in the hot water supply heat exchanger 4, the latent heat of the combustion exhaust gas from the burner 2 is effectively recovered and before being heated in the fluid sensible heat exchange section 7 a. By preheating the heating medium, efficiency is improved while preventing boiling of hot water in the hot water supply heat exchanger 4.
[0090]
And in this 2nd Embodiment, like the said 1st Embodiment, in the hot water supply single heating state, the control part H is so that the capability of the heating pump 21 becomes large, so that the combustion amount of the burner 2 is large. The capacity of the heating pump 21 is controlled in three stages of large, medium and small, and in the fluid single heating state, the capacity of the hot water supply pump 103 is increased as the combustion amount of the burner 2 is increased. 103 is configured to be controlled in three stages of large, medium, and small, or instead of this configuration, the operating state of the heating pump 21 or the hot water supply pump 103 may be controlled as described later. Good.
[0091]
That is, according to the combustion amount of the burner 2, you may comprise so that it may control without a step so that the capability of the heating pump 21 or the hot water supply pump 103 may become large, so that the combustion amount of the burner 2 is large.
Further, the heating pump 21 or the hot water supply pump 103 is not limited to adjust the capacity of the heating pump 21 or the hot water supply pump 103 based on the combustion amount of the burner 2, but based on the temperature of the heat medium in the fluid heat exchanger 7 in the single hot water supply heating state. It is also possible to adjust the capacity of the hot water supply pump 103 based on the temperature of the hot water in the hot water supply heat exchanger 4 when the capacity of the heating pump 21 is adjusted and in the fluid single heating state.
[0092]
[Another embodiment]
(1) In the first and second embodiments described above, the temperature detected by the fluid boiling prevention thermistor provided in the vicinity of the fluid heat exchanger 7 is equal to or higher than the boiling set temperature in the hot water supply single heating state. When the fluid boiling prevention condition is satisfied, the heating pump 21 is configured to operate. However, when the hot water supply is in a single heating state, the heating pump 21 is always operated regardless of whether the fluid boiling prevention condition is satisfied. Is operated and circulated while supplying the heat medium to the liquid-liquid heat exchanger 100, and the water from the water supply channel 1 is circulated through the hot water latent heat exchanger 4b, the liquid heat exchanger 100, and the sensible heat for hot water. It is also possible to configure and carry out the supply in the order of the exchange unit 4a.
Moreover, various conditions such as a set time elapses from the start of combustion of the burner 2 can be applied as the fluid boiling prevention condition, and can be changed as appropriate.
[0093]
(2) In the first and second embodiments, the hot water supply pump 103 is always operated in the fluid single heating state. For example, in the vicinity of the hot water supply heat exchanger 4, The hot water boiling prevention thermistor for detecting the temperature of the hot water in the exchanger 4 is provided, and the temperature detected by the hot water boiling prevention thermistor becomes equal to or higher than the set temperature for boiling, so that the hot water boiling prevention condition is satisfied. The hot water supply pump 103 can be configured to be operated.
In this case, various conditions such as a set time elapses from the start of combustion of the burner 2 can be applied to the boiling prevention condition for hot water supply, and can be changed as appropriate.
[0094]
(3) In the first and second embodiments, the hot water supply heat exchanger 4 includes the sensible heat exchange unit 4a for hot water supply and the latent heat exchange unit 4b for hot water supply, and the fluid heat exchanger 7 includes The sensible heat exchange unit for fluid 7a and the latent heat exchange unit for fluid 7b are provided, and both the sensible heat of the combustion exhaust gas from the burner 2 and the heat exchanger for fluid supply 4 and the fluid heat exchanger 7 are provided. Although it is configured to recover latent heat, it can also be configured to recover only the sensible heat of the combustion exhaust gas of the burner 2 in both the hot water supply heat exchanger 4 and the fluid heat exchanger 7. It is.
[0095]
(4) In the first and second embodiments, the sensible heat exchange unit for hot water supply and the sensible heat exchange unit for fluid are integrally formed in a state of conducting heat to each other, and for the hot water supply The latent heat exchange part and the fluid latent heat exchange part are integrally formed in a state of conducting heat to each other, but the hot water sensible heat exchange part 4a and the fluid sensible heat exchange part 7a, and It is also possible to carry out by forming either one or both of the hot water latent heat exchange unit 4b and the fluid latent heat exchange unit 7b separately.
[0096]
(5) In the first and second embodiments, the flame formation direction of the burner 2 is configured to face downward. However, the flame formation direction of the burner 2 may be configured to face upward. .
In this case, the sensible heat exchange section K is located on the lower side, and the latent heat exchange section N is located on the upper side, so that the sensible heat exchange section K and the latent heat exchange section N are arranged. The installation position is configured to be inverted upside down.
[0097]
(6) In the said 1st and 2nd embodiment, the bypass path 11 which bypasses the hot water supply heat exchanger 4 and supplies the water supplied through the water supply path 1 to the hot water supply path 3 is provided, and the hot water supply heat exchanger The hot water heated at 4 and the water from the bypass channel 11 are mixed and supplied with hot water through the hot water supply channel 3. However, the hot water is supplied through the water supply channel 1 without providing the bypass channel 11. It is also possible to configure and implement such that the entire amount of water is supplied to the hot water supply heat exchanger 4.
[0098]
(7) In the first and second embodiments, the fluid heat exchanger 7 is configured to heat one fluid as the fluid to be heated. For example, the fluid heat exchanger 7 includes: The heat medium supplied to the heating terminal D and the bath water can be heated, and the fluid heat exchanger 7 can be configured to heat a plurality of fluids.
[0099]
(8) In the first and second embodiments, by providing the bath heating liquid heat exchanger 35 in addition to the hot water supply heat exchanger 4 and the fluid heat exchanger 7, the hot water supply and heating terminal D is provided. In addition to the supply of the heating medium, it is configured to carry out the bath hot water tracking, but it is configured to supply only the heating medium to the hot water supply and the heating terminal D, or the hot water supply and the bath hot water. It is also possible to configure and carry out only the memorial.
[0100]
In other words, in the first and second embodiments described above, in the first and second embodiments, the bath circulation path 36, the bath heating liquid-liquid heat exchanger 35, etc. Do not provide.
Further, in the case where only hot water supply and bath hot water tracking are performed, the heat medium fluid heat exchanger 7 is supplied from the bathtub A through the bath return path portion 32 in the bath circulation path 36 as an entrance. The bath hot water supplied to the bathtub A is heated through the bath going-out path portion 33 in the bath circulation path 36 as the outlet, and the fluid to be heated in the fluid heat exchanger 7 is supplied to the heating terminal D. Instead of the heat medium, bath water is used.
[0101]
(9) In the first and second embodiments, the hot water supply heat transfer tube 57 in the hot water supply heat exchanger 4 and the fluid heat transfer tube 58 in the fluid heat exchanger 7 are integrally formed. Therefore, the heat exchanger 4 for hot water supply and the heat exchanger 7 for fluid are integrally formed so as to conduct heat to each other. For example, a part of the outer peripheral portion of the heat transfer pipe 57 for hot water supply And a part of the inner peripheral portion of the fluid heat transfer tube 58 are in contact with each other, a heat exchange for hot water supply is made by forming a double tube structure with the heat transfer tube 57 for hot water supply inside and the heat transfer tube 58 for fluid outside. The heat exchanger 4 and the fluid heat exchanger 7 may be configured to be integrally formed so as to conduct heat with each other. The hot water supply heat exchanger 4 and the fluid heat exchanger 7 The structures for conducting the heat conduction with each other can be appropriately changed.
[0102]
(10) In the first embodiment, the liquid-to-liquid heat exchanger 100 has a double-pipe structure in which the heating return path 5 is on the inner side and the hot water supply flow path 101 is on the outer side. Instead of this, it is possible to use a high-temperature heating outbound path 6 to form a double-pipe structure with the high-temperature heating outbound path 6 on the inside and the hot water supply channel 101 on the outside.
Also in the second embodiment, the liquid heat exchanger 100 has a double-pipe structure in which the heating flow path 105 is on the inner side and the water supply path 1 is on the outer side. Thus, the hot water supply path 3 can be used to form a double pipe structure in which the heating flow path 105 is inside and the hot water supply path 3 is outside.
Incidentally, in the double-pipe structure, for example, the arrangement of the inner side and the outer side can be changed as appropriate, for example, the hot water supply channel 101 is on the inner side and the heating return channel 5 is on the outer side.
Note that the configuration of the liquid-liquid heat exchanger 100 is not limited to the double-pipe structure, and the inner tube is connected to the inner tube in order to prevent fluid from leaking from the inner tube and mixing the heat medium and water. It is also possible to use a triple pipe structure with a double pipe and a pipe provided outside the double pipe.
[0103]
(11) In the above embodiment, the hot water supply apparatus according to the present invention is applied to a hot water supply apparatus that performs hot water supply, bath water remedy, and heating medium supply to the heating terminal D. It can be applied to the hot water supply system.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a hot water supply apparatus according to a first embodiment.
FIG. 2 is a front view of a hot water supply device.
FIG. 3 is a perspective view showing a burner, a sensible heat exchanger, and a latent heat exchanger.
FIG. 4 is a perspective view showing a burner.
FIG. 5 is a diagram showing a liquid-to-liquid heat exchanger according to the first embodiment.
FIG. 6 is a side view of the sensible heat exchange section.
FIG. 7 is a side view of the latent heat exchange unit.
FIG. 8 is a diagram showing the main parts of a sensible heat exchange unit and a latent heat exchange unit
FIG. 9 is a control block diagram of a hot water supply device.
FIG. 10 is a schematic configuration diagram of a water heater in the second embodiment.
FIG. 11 is a diagram showing a liquid-to-liquid heat exchanger in the second embodiment.
[Explanation of symbols]
  1 water supply channel
  2 Burner
  3 Hot water supply path
  4 Heat exchanger for hot water supply
  4a Sensible heat exchanger for hot water supply
  4b Latent heat exchanger for hot water supply
  5 entrance
  6 departure
  6a            Bypass road
  7 Fluid heat exchanger
  7a Sensible heat exchanger for fluid
  7b Latent heat heat exchanger for fluid
  11 Bypass
  21 Circulating means for fluid
  32 Bath Return Path
  33 Bathway
  34 Bath circulation means
  35 Liquid heat exchanger for bath heating
  100 Liquid heat exchanger
  103 Circulating means for hot water supply
  A Bathtub
  D Heat consumption terminal

Claims (5)

給水路を通して供給される水をバーナの燃焼により加熱して給湯路に給湯する給湯用熱交換器と、入路を通して供給される加熱対象流体を前記バーナの燃焼により加熱して出路に流出する流体用熱交換器とが設けられ、
前記給湯用熱交換器と前記流体用熱交換器とが、互いに熱伝導する状態で一体的に形成されている給湯装置であって、
前記加熱対象流体を前記流体用熱交換器と熱消費端末との間で循環させる流体用循環手段が設けられ、
前記給湯用熱交換器における湯水を前記給湯路および前記給水路を通して循環させる給湯用循環手段が設けられ、
前記流体用循環手段にて循環される前記加熱対象流体と、前記給湯用熱交換器にて加熱される前記水との間で熱交換させ、かつ、前記給湯用循環手段にて循環される前記湯水と、前記流体用熱交換器にて加熱される前記加熱対象流体との間で熱交換させる液々熱交換器が設けられ
前記流体用循環手段により循環される前記加熱対象流体を前記熱消費端末を迂回させた状態で循環させるバイパス路が設けられ、
前記バーナの燃焼を制御する制御手段が設けられ、
前記制御手段が、
前記給湯用熱交換器への前記水の供給が行われ、前記流体用熱交換器への前記加熱対象流体の前記熱消費端末からの供給が停止している給湯単独加熱状態においては、前記バーナの燃焼量に基づいて、前記バーナの燃焼量が大きいほど前記流体用循環手段により前記バイパス路を通して循環される前記加熱対象流体の量を多くする形態で、前記流体用循環手段により循環される前記加熱対象流体の量を調整するように、前記流体用循環手段の作動状態を制御し、かつ、
前記流体用熱交換器への前記加熱対象流体の供給が行われ、前記給湯用熱交換器から前記給湯路への給湯が停止している流体単独加熱状態においては、前記バーナの燃焼量に基づいて、前記バーナの燃焼量が大きいほど前記給湯用循環手段により前記給湯路及び前記給水路を通して循環される前記湯水の量を多くする形態で、前記給湯用循環手段により循環される前記湯水の量を調整するように、前記給湯用循環手段の作動状態を制御するように構成されている給湯装置。
A hot water supply heat exchanger that heats the water supplied through the water supply passage by combustion of the burner and supplies the hot water supply passage, and a fluid that heats the fluid to be heated supplied through the inlet passage by combustion of the burner and flows out to the outlet passage And a heat exchanger for
The hot water supply heat exchanger and the fluid heat exchanger are integrally formed in a state of conducting heat with each other,
A fluid circulation means for circulating the fluid to be heated between the fluid heat exchanger and a heat consuming terminal;
A hot water supply circulation means for circulating hot water in the hot water supply heat exchanger through the hot water supply passage and the water supply passage is provided,
Heat exchange is performed between the heating target fluid circulated by the fluid circulation means and the water heated by the hot water supply heat exchanger, and is circulated by the hot water circulation means. A liquid heat exchanger is provided that exchanges heat between hot water and the fluid to be heated that is heated by the fluid heat exchanger ,
A bypass path is provided for circulating the heating target fluid circulated by the fluid circulation means while bypassing the heat consuming terminal;
Control means for controlling the combustion of the burner is provided;
The control means is
In the hot water supply single heating state in which the water supply to the hot water supply heat exchanger is performed and the supply of the heating target fluid to the fluid heat exchanger from the heat consuming terminal is stopped, the burner The amount of the heating target fluid circulated through the bypass passage by the fluid circulation means increases as the combustion amount of the burner increases based on the combustion amount of the burner, and is circulated by the fluid circulation means. Controlling the operating state of the fluid circulation means so as to adjust the amount of fluid to be heated; and
In the fluid single heating state in which the fluid to be heated is supplied to the fluid heat exchanger and the hot water supply from the hot water supply heat exchanger to the hot water supply passage is stopped, it is based on the combustion amount of the burner. The amount of hot water circulated by the hot water circulating means in such a manner that the amount of hot water circulated by the hot water circulating means through the hot water supply passage and the water supply passage increases as the combustion amount of the burner increases. A hot water supply apparatus configured to control an operating state of the circulating means for hot water supply so as to adjust the temperature.
前記給湯用熱交換器が、前記バーナの燃焼排ガスの顕熱を回収する給湯用顕熱熱交換部と、その給湯用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配設され、前記バーナの燃焼排ガスの潜熱を回収する給湯用潜熱熱交換部とを備えて構成され、
前記流体用熱交換器が、前記バーナの燃焼排ガスの顕熱を回収する流体用顕熱熱交換部と、その流体用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配設され、前記バーナの燃焼排ガスの潜熱を回収する流体用潜熱熱交換部とを備えて構成されている請求項1に記載の給湯装置。
The hot water supply heat exchanger has a sensible heat exchange section for hot water supply that recovers sensible heat of the combustion exhaust gas of the burner, and is located downstream of the sensible heat exchange section for hot water supply in the flow direction of the burner combustion exhaust gas A hot water supply latent heat exchange section for recovering the latent heat of the combustion exhaust gas of the burner,
The fluid heat exchanger recovers the sensible heat of the combustion exhaust gas of the burner, and the fluid sensible heat exchange part is located downstream of the fluid sensible heat exchange part in the flow direction of the combustion exhaust gas of the burner. The hot water supply device according to claim 1, further comprising a fluid latent heat exchange unit for recovering latent heat of combustion exhaust gas of the burner.
前記給湯用顕熱熱交換部と前記流体用顕熱熱交換部とが、互いに熱伝導する状態で一体的に形成され、かつ、前記給湯用潜熱熱交換部と前記流体用潜熱熱交換部とが、互いに熱伝導する状態で一体的に形成されている請求項2に記載の給湯装置。  The sensible heat exchange section for hot water supply and the sensible heat exchange section for fluid are integrally formed in a state of conducting heat with each other, and the latent heat heat exchange section for hot water supply and the latent heat exchange section for fluid The hot water supply apparatus according to claim 2, which are integrally formed in a state of conducting heat to each other. 前記流体用熱交換器が、前記加熱対象流体として、前記熱消費端末から前記入路を通して供給されて、前記出路を通して前記熱消費端末に供給する熱媒体を加熱するように構成され、
浴槽内湯水を風呂戻り路および風呂往き路を通して循環させる風呂循環手段が設けられ、
前記流体用熱交換器にて加熱された前記熱媒体と、前記風呂循環手段により循環される前記浴槽内湯水との間で熱交換させる風呂加熱用液々熱交換器が設けられている請求項1〜3のいずれか1項に記載の給湯装置。
The fluid heat exchanger is configured to heat the heat medium supplied as the heating target fluid from the heat consumption terminal through the entry path and supplied to the heat consumption terminal through the exit path,
Bath circulation means to circulate the hot water in the bathtub through the bath return path and the bath return path,
A bath-heated liquid-to-heat exchanger for exchanging heat between the heat medium heated by the fluid heat exchanger and the hot water in the bathtub circulated by the bath circulation means is provided. The hot water supply apparatus of any one of 1-3.
前記給水路を通して供給される水を前記給湯用熱交換器を迂回して前記給湯路に供給するバイパス路が設けられ、
前記給湯用熱交換器にて加熱された湯水と前記バイパス路からの水とを混合して、前記給湯路を通して湯水を供給するように構成されている請求項1〜4のいずれか1項に記載の給湯装置。
A bypass path is provided for supplying water supplied through the water supply path to the hot water supply path, bypassing the hot water heat exchanger;
In any one of Claims 1-4 comprised so that the hot water heated with the said heat exchanger for hot water supply and the water from the said bypass channel may be mixed, and hot water may be supplied through the said hot water supply channel. The hot water supply device described .
JP2001070297A 2001-03-13 2001-03-13 Water heater Expired - Fee Related JP4527893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001070297A JP4527893B2 (en) 2001-03-13 2001-03-13 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001070297A JP4527893B2 (en) 2001-03-13 2001-03-13 Water heater

Publications (2)

Publication Number Publication Date
JP2002267254A JP2002267254A (en) 2002-09-18
JP4527893B2 true JP4527893B2 (en) 2010-08-18

Family

ID=18928195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001070297A Expired - Fee Related JP4527893B2 (en) 2001-03-13 2001-03-13 Water heater

Country Status (1)

Country Link
JP (1) JP4527893B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501700B2 (en) * 2004-09-15 2010-07-14 パナソニック株式会社 Water heater
JP4710436B2 (en) * 2005-06-29 2011-06-29 株式会社ノーリツ Hot water supply control method for hot water circulation heater
JP2007101052A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Hot water supply apparatus
JP4867274B2 (en) * 2005-10-11 2012-02-01 パナソニック株式会社 Water heater
JP4715438B2 (en) * 2005-10-11 2011-07-06 パナソニック株式会社 Water heater
JP4867273B2 (en) * 2005-10-11 2012-02-01 パナソニック株式会社 Water heater
JP4715440B2 (en) * 2005-10-12 2011-07-06 パナソニック株式会社 Water heater
JP2007107822A (en) * 2005-10-14 2007-04-26 Matsushita Electric Ind Co Ltd Water heater
JP4774905B2 (en) * 2005-10-19 2011-09-21 パナソニック株式会社 Water heater
JP4752452B2 (en) * 2005-10-27 2011-08-17 パナソニック株式会社 Water heater
JP2007120865A (en) * 2005-10-28 2007-05-17 Gastar Corp Single-drum two-waterway hot water supply system
JP2007187419A (en) * 2006-01-16 2007-07-26 Rinnai Corp Hot water supply heating device
JP6331214B2 (en) * 2014-01-10 2018-05-30 株式会社ノーリツ Heat exchanger and hot water device provided with the same
JP6449688B2 (en) * 2015-03-06 2019-01-09 株式会社ガスター Heat source equipment
JP6449687B2 (en) * 2015-03-06 2019-01-09 株式会社ガスター Heat source equipment
JP6488157B2 (en) * 2015-03-06 2019-03-20 株式会社ガスター Heat source equipment
JP7341028B2 (en) * 2019-10-28 2023-09-08 リンナイ株式会社 heat source device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554953U (en) * 1991-12-18 1993-07-23 株式会社長府製作所 1 can 2 circuit type water heater heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58192330U (en) * 1982-06-17 1983-12-21 三洋電機株式会社 hot water heater
JP3801274B2 (en) * 1996-10-16 2006-07-26 大阪瓦斯株式会社 Water heater
JP3862805B2 (en) * 1997-03-19 2006-12-27 株式会社ガスター One can two water heater
JP3848747B2 (en) * 1997-08-06 2006-11-22 株式会社ガスター Combustion device
JP3772493B2 (en) * 1997-10-08 2006-05-10 松下電器産業株式会社 Water heater
JPH11125461A (en) * 1997-10-22 1999-05-11 Matsushita Electric Ind Co Ltd One can two circuit type heat source apparatus
JP3823486B2 (en) * 1997-10-22 2006-09-20 松下電器産業株式会社 1 can 2 circuit heat source device
JPH11141979A (en) * 1997-11-10 1999-05-28 Gastar Corp Single-can two-water channel type water heater

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554953U (en) * 1991-12-18 1993-07-23 株式会社長府製作所 1 can 2 circuit type water heater heat exchanger

Also Published As

Publication number Publication date
JP2002267254A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP4527893B2 (en) Water heater
JP3931162B2 (en) Hot water heater
JP4820213B2 (en) Cogeneration system
JP2007120865A (en) Single-drum two-waterway hot water supply system
JP4454169B2 (en) Water heater
JP6449687B2 (en) Heat source equipment
JP4182432B2 (en) Combustion device
JP2002267262A (en) Hot-water supply apparatus
JP3907032B2 (en) Water heater
JP4867273B2 (en) Water heater
JP2003021390A (en) Heat source for water heater
JP2017122533A (en) Bath water heater
JP3876877B2 (en) Gas hot water heater
JP2002286285A (en) Hot-water supplier
JP6449688B2 (en) Heat source equipment
JP3778199B2 (en) Gas hot water heater
JP4692814B2 (en) Heat source equipment
JP2007147235A (en) Liquid heater
JP3792637B2 (en) Water heater
JP3801274B2 (en) Water heater
JP3872901B2 (en) One can multi-channel water heater
JP6488157B2 (en) Heat source equipment
JP2007101052A (en) Hot water supply apparatus
JP2009228961A (en) Bath hot water supply device
JP2008075886A (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080229

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees