JP2007107822A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2007107822A
JP2007107822A JP2005300024A JP2005300024A JP2007107822A JP 2007107822 A JP2007107822 A JP 2007107822A JP 2005300024 A JP2005300024 A JP 2005300024A JP 2005300024 A JP2005300024 A JP 2005300024A JP 2007107822 A JP2007107822 A JP 2007107822A
Authority
JP
Japan
Prior art keywords
hot water
water supply
heat exchanger
heating
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005300024A
Other languages
Japanese (ja)
Inventor
Masazumi Iwanaga
昌純 岩永
Koichi Kanezaki
幸一 金崎
Shigeki Uno
茂岐 宇野
Hiroshi Kitanishi
博 北西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005300024A priority Critical patent/JP2007107822A/en
Publication of JP2007107822A publication Critical patent/JP2007107822A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water heater capable of providing hot water supply, heating and bathing by a single heat source by combining a heat exchanger for hot water supply and a heat exchanger for latent heat recovery, reducing a size and a weight of an apparatus, and improving efficiency. <P>SOLUTION: This one-can multiple-water channel water heater is composed of a hot water supply circulation circuit 19, use-side heat exchangers 18, 27 and a hot water supply circuit 3. Here, a drain connection opening 39 for for connecting dew condensation water generated in the heat exchanger 18 for latent heat recovery to a draining port outside of a machine after neutralizing the dew condensation water by a neutralizing device 38, and an over pressure relief valve 35 for relieving a pressure of the hot water supply circulation circuit 19 to the drain connection opening 39, are mounted, and further a control means 36 is mounted to open the over pressure relief solenoid valve 35 when the use-side heat exchangers 18, 27 are used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、バーナの燃焼熱により加熱する給湯用熱交換器を介して供給される湯水を循環させて複数の負荷側に熱量を供給する1缶多水路の給湯装置に関するものである。   The present invention relates to a hot water supply device for a single can multi-channel that circulates hot water supplied through a hot water supply heat exchanger heated by combustion heat of a burner and supplies heat to a plurality of loads.

従来この種の燃焼装置としては、特許文献1のように、給水路を通して供給される水をバーナの燃焼により加熱して給湯路に給湯する給湯用熱交換器と、入路を通して供給される加熱対象流体を前記バーナの燃焼により加熱して出路に流出する流体用熱交換器とが設けられている給湯装置であって、前記給湯用熱交換器が前記バーナの燃焼排ガスの顕熱を回収する給湯用顕熱熱交換部と、その給湯用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配置され、前記バーナの燃焼排ガスの潜熱を回収する給湯用潜熱熱交換部とを備えて構成され、前記流体用熱交換器が、前記バーナの燃焼排ガスの顕熱を回収する流体用顕熱熱交換部と、その流体用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配置され、前記バーナの燃焼排ガスの潜熱を回収する流体用潜熱熱交換部とを備えて構成され、前記給湯用顕熱熱交換部と流体用顕熱熱交換部とが、互いに熱伝導する状態で一体的に形成され、かつ、前記給湯用潜熱熱交換部と流体用潜熱熱交換部とが、互いに熱伝導する状態で一体的に形成された給湯装置が開示されている(例えば、特許文献1参照)。
特開2002−267262号公報
Conventionally, as this type of combustion apparatus, as disclosed in Patent Document 1, a hot water supply heat exchanger that heats water supplied through a water supply path by combustion of a burner to supply hot water to the hot water supply path, and heating supplied through an inlet path A hot water supply apparatus provided with a fluid heat exchanger that heats a target fluid by combustion of the burner and flows out to an outlet, and the hot water heat exchanger recovers sensible heat of combustion exhaust gas of the burner A sensible heat exchanger for hot water supply, and a sensible heat exchanger for hot water supply, which is arranged downstream of the sensible heat exchanger for hot water supply in the flow direction of the combustion exhaust gas of the burner and recovers the latent heat of the combustion exhaust gas of the burner The fluid heat exchanger recovers sensible heat of the combustion exhaust gas of the burner, and the combustion exhaust gas of the burner than the fluid sensible heat exchange unit. Arranged downstream of the flow direction of And a fluid latent heat exchange part for recovering the latent heat of the combustion exhaust gas of the burner, and the sensible heat exchange part for hot water supply and the sensible heat exchange part for fluid are integrated in a state of conducting heat to each other. And a hot water supply device in which the latent heat heat exchange part for hot water supply and the latent heat heat exchange part for fluid are integrally formed in a state of conducting heat to each other are disclosed (for example, see Patent Document 1). .
JP 2002-267262 A

しかしながら、前記従来の給湯装置は、バーナで加熱される経路として、給湯用と流体用の2つの経路を形成しているため、配管構成が複雑になるとともに、単独運転時に運転停止側の熱交換器内の残水の沸騰が発生するという課題を有するものであった。   However, since the conventional hot water supply apparatus forms two paths for hot water supply and fluid as the paths heated by the burner, the piping configuration becomes complicated and the heat exchange on the shutdown side during single operation It had the subject that the boiling of the residual water in a container generate | occur | produced.

また、バーナの燃焼ガスの流出経路中に給湯用熱交換器と流体用熱交換器をそれぞれ配置し、前記給湯用熱交換器に給湯用顕熱熱交換部と給湯用潜熱熱交換部を設け、前記流体用熱交換器に流体用顕熱熱交換部と流体用潜熱熱交換部を設けた構成としているため、顕熱熱交換部と潜熱熱交換部にそれぞれ給湯用熱交換器と流体用熱交換器を一体的に形成する必要があり、給湯用熱交換器及び流体用熱交換器として極めて複雑な構成を強いられるものであった。特に、潜熱熱交換部の構成として、耐食性を高めるためにステンレスパイプと銅管を用いた2重管構造とする場合などはその加工性に課題を有するものであった。   In addition, a hot water supply heat exchanger and a fluid heat exchanger are respectively disposed in the burner combustion gas outflow path, and the hot water supply heat exchanger is provided with a sensible heat exchange unit for hot water supply and a latent heat exchange unit for hot water supply. The fluid heat exchanger is provided with a sensible heat exchange section for fluid and a latent heat exchange section for fluid, so that the sensible heat exchange section and the latent heat exchange section respectively have a hot water supply heat exchanger and a fluid It is necessary to integrally form the heat exchanger, and the heat exchanger for hot water supply and the heat exchanger for fluid are forced to have extremely complicated configurations. In particular, when the structure of the latent heat exchange section is a double pipe structure using a stainless steel pipe and a copper pipe in order to improve the corrosion resistance, there is a problem in workability.

さらに、上記従来例には開示されていないが、バーナで加熱された湯水を循環し、その循環水を利用して複数の利用回路に熱量を供給するような構成において、利用側熱交換器から運転要求があった場合、バーナの燃焼が開始し給湯用熱交換器が加熱されるため、給湯循環回路が高圧になるとともに、給湯接続口に設けた第1の過圧逃がし弁から膨張水が常時滴下してしまうという課題を有するものであった。   Further, although not disclosed in the above conventional example, in a configuration in which hot water heated by a burner is circulated and heat is supplied to a plurality of utilization circuits using the circulating water, the utilization side heat exchanger When there is an operation request, the burner starts to burn and the hot water heat exchanger is heated, so that the hot water circulation circuit becomes high pressure and the expanded water is supplied from the first overpressure relief valve provided at the hot water connection port. It had the subject of dripping always.

本発明は前記従来の課題を解決するもので、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供する。また、給湯回路を主体とする1つの加熱経路構成における機器内圧上昇の低減による安全性、耐久性の向上と機器外部への膨張水の滴下防止
を図った給湯装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and forms one heating path with a hot water supply heat exchanger and a latent heat recovery heat exchanger, and uses circulating water in the heating path to form a heating circuit or a bath circuit. By adopting a structure for supplying heat, it is possible to configure a use-side heat exchanger that is not related to the heat exchanger for hot water supply and the latent heat recovery heat exchanger. It is possible to provide a hot water supply device that is easy to use and prioritizes hot water supply performance by realizing a reduction in weight and weight and making the heating path mainly a hot water supply circuit. It is another object of the present invention to provide a hot water supply apparatus that is improved in safety and durability by reducing an increase in the internal pressure of an apparatus in one heating path configuration mainly including a hot water supply circuit and prevents dripping of expanded water to the outside of the apparatus. .

前記従来の課題を解決するために、本発明の給湯装置は、給水路より供給される水をバーナの燃焼により加熱し潜熱回収用熱交換器および給湯用熱交換器を介して出湯路に供給するとともに、給湯循環ポンプを介して再度前記給湯用熱交換器に戻して給湯循環回路を形成し、前記給湯循環回路には利用側熱交換器を配設して負荷側に熱量を供給する回路を形成するとともに、前記利用側熱交換器を経由した給湯循環回路から分岐してカランまたは風呂回路に給湯する風呂注湯用の給湯回路を形成した1缶多水路の給湯装置であって、前記潜熱回収用熱交換器で発生する結露水を中和処理後、機外の排水口へ接続する排水接続口と前記給湯循環回路の圧力を前記排水接続口へ逃がす過圧逃がし電磁弁を設け、前記利用側熱交換器を使用しているとき、前記過圧逃がし電磁弁を開弁する制御手段を設けたものである。   In order to solve the above-described conventional problems, the hot water supply apparatus of the present invention heats the water supplied from the water supply path by combustion of the burner and supplies it to the hot water supply path via the latent heat recovery heat exchanger and the hot water supply heat exchanger. In addition, a hot water supply circulation circuit is formed by returning it to the hot water supply heat exchanger again through a hot water supply circulation pump, and a circuit for supplying heat to the load side by disposing a use side heat exchanger in the hot water supply circulation circuit. And a hot water supply device for a single can multi-channel that forms a hot water supply circuit for bath pouring that branches off from a hot water supply circulation circuit via the use side heat exchanger and supplies hot water to a currant or a bath circuit, After neutralizing the condensed water generated in the latent heat recovery heat exchanger, a drain connection port connected to a drain port outside the machine and an overpressure relief solenoid valve for releasing the pressure of the hot water circulation circuit to the drain connection port are provided. The use side heat exchanger is used Can, is provided with a control means for the overpressure relief is to open the solenoid valve.

これによって、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成としているため、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、また、給湯回路を主体とする1つの加熱経路構成における機器内圧上昇の低減による安全性、耐久性の向上と機器外部への膨張水の滴下防止を図った給湯装置を提供することができる。   Thereby, one heating path is formed by the heat exchanger for hot water supply and the heat exchanger for latent heat recovery, and the heat amount is supplied to the heating circuit and the bath circuit using the circulating water of the heating path. Enables the configuration of the use side heat exchanger that is not related to the hot water supply heat exchanger or the latent heat recovery heat exchanger. By using a hot water supply circuit as a main route, it is possible to provide an easy-to-use hot water supply device that prioritizes hot water supply performance, and safety by reducing the increase in the internal pressure of the equipment in one heating route configuration mainly consisting of a hot water supply circuit, It is possible to provide a hot water supply device that improves durability and prevents dripping of expansion water to the outside of the device.

本発明の給湯装置は、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、利用側熱交換器を使用しているとき、過圧逃がし電磁弁を開弁する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、かつ、機器内圧上昇の低減による安全性、耐久性の向上と機器外部への膨張水の滴下防止を図った給湯装置を提供することができる。   The hot water supply apparatus of the present invention has a structure in which one heating path is formed by a hot water supply heat exchanger and a latent heat recovery heat exchanger, and an overpressure relief solenoid valve is opened when the use side heat exchanger is used. This makes it possible to configure the use-side heat exchanger not related to the hot water supply heat exchanger or latent heat recovery heat exchanger, and to reduce the size and weight of the equipment by simplifying the main body configuration including the piping configuration. As well as realizing the above, it is possible to provide an easy-to-use hot water supply apparatus that prioritizes hot water supply performance by mainly using a hot water supply circuit as the heating path, and to improve safety and durability by reducing the rise in internal pressure of the equipment and equipment. It is possible to provide a hot water supply device that prevents dripping of expansion water to the outside.

第1の発明は、給水路より供給される水をバーナの燃焼により加熱し潜熱回収用熱交換器および給湯用熱交換器を介して出湯路に供給するとともに、給湯循環ポンプを介して再度前記給湯用熱交換器に戻して給湯循環回路を形成し、前記給湯循環回路には利用側熱交換器を配設して負荷側に熱量を供給する回路を形成するとともに、前記利用側熱交換器を経由した給湯循環回路から分岐してカランまたは風呂回路に給湯する風呂注湯用の給湯回路を形成した1缶多水路の給湯装置であって、前記潜熱回収用熱交換器で発生する結露水を中和処理後、機外の排水口へ接続する排水接続口と前記給湯循環回路の圧力を前記排水接続口へ逃がす過圧逃がし電磁弁を設け、前記利用側熱交換器を使用しているとき、前記過圧逃がし電磁弁を開弁する制御手段を設けたことを特徴とするものである。   1st invention heats the water supplied from a water supply path by combustion of a burner, supplies it to a hot water supply path via a heat exchanger for latent heat recovery and a heat exchanger for hot water supply, and again through the hot water supply circulation pump A hot water supply circulation circuit is formed by returning to the hot water supply heat exchanger, and a use side heat exchanger is provided in the hot water supply circulation circuit to form a circuit for supplying heat to the load side, and the use side heat exchanger Is a hot water supply device for a single can multi-channel that forms a hot water supply circuit for bath pouring that branches off from a hot water supply circulation circuit that passes through the hot water supply to a currant or bath circuit, and the dew condensation water generated in the latent heat recovery heat exchanger After the neutralization treatment, a drainage connection port connected to a drainage port outside the machine and an overpressure relief solenoid valve that releases the pressure of the hot water supply circulation circuit to the drainage connection port are provided, and the use side heat exchanger is used. When the overpressure relief solenoid valve is opened. It is characterized in that a means.

そして、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成としているため、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、また、給湯回路を主体とする1つの加熱経路構成における機器内圧上昇の低減による安全性、耐久性の向上と機器外部への膨張水の滴下防止を図った給湯装置を提
供することができる。
And since one heating path is formed by the heat exchanger for hot water supply and the heat exchanger for latent heat recovery, and the amount of heat is supplied to the heating circuit or bath circuit using the circulating water of the heating path, the hot water supply It is possible to configure a heat exchanger on the use side that is not related to a heat exchanger for heat recovery or a heat exchanger for latent heat recovery. By using a hot water supply circuit as a main component, it is possible to provide an easy-to-use hot water supply device that prioritizes hot water supply performance, and safety and durability by reducing the increase in equipment internal pressure in one heating path configuration mainly consisting of a hot water supply circuit It is possible to provide a hot water supply device that improves the performance and prevents the expansion water from dripping to the outside of the device.

第2の発明は、過圧逃がし電磁弁の下流側に所定の圧力で開弁する第2の過圧逃がし弁を設けたことを特徴とするもので、膨張水の排水の無駄を防止できまた、給湯接続口に設けた第1の過圧逃がし弁の開弁圧より低く設定することで、第1の過圧逃がし弁からの機器外部への膨張水の滴下防止を図った給湯装置を提供することができる。   The second invention is characterized in that a second overpressure relief valve that opens at a predetermined pressure is provided downstream of the overpressure relief solenoid valve. Provides a water heater that prevents dripping of expansion water from the first overpressure relief valve to the outside of the equipment by setting it lower than the opening pressure of the first overpressure relief valve provided at the hot water supply connection port can do.

第3の発明は、利用側熱交換器として、暖房や浴室乾燥等を行う暖房装置を有する暖房回路に熱量を供給する暖房用熱交換器として用い、給湯または暖房の単独利用、あるいは給湯と暖房の同時利用、を選択できるようにしたことを特徴とするもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路を用いて給湯と暖房を行うように構成した給湯装置に限定したものであり、給湯と暖房を1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、潜熱回収により効率アップを図ることで給湯性能と暖房性能を同時に確保することができる。   3rd invention is used as a heat exchanger for a heating which supplies a calorie | heat amount to the heating circuit which has a heating apparatus which performs heating, bathroom drying, etc. as a utilization side heat exchanger, Hot water supply or independent use of heating, or hot water supply and heating Hot water supply device configured to perform hot water supply and heating using a hot water circulation circuit composed of a hot water supply heat exchanger and a latent heat recovery heat exchanger. By configuring the hot water supply and heating with a single heating path, the main body structure including the piping structure can be simplified to reduce the size and weight of the appliance, and to improve the efficiency by collecting latent heat. Therefore, hot water supply performance and heating performance can be secured at the same time.

第4の発明は、利用側熱交換器として、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器として用い、給湯または風呂追い焚きの単独利用、あるいは給湯と風呂追い焚きの同時利用、を選択できるようにしたことを特徴とするもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路を用いて給湯と風呂追い焚きを行うように構成した給湯装置に限定したものであり、給湯と風呂追い焚きを1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、潜熱回収により効率アップを図ることで給湯性能と風呂追い焚き性能を同時に確保することができる。   4th invention is used as a heat exchanger for a bath which supplies a heat quantity to a bath circuit which performs reheating of a bath as a use side heat exchanger, and uses hot water or bath reheating alone, or hot water and reheating of a bath. Hot water supply that is configured to perform hot water supply and bath replenishment using a hot water circulation circuit consisting of a hot water supply heat exchanger and a latent heat recovery heat exchanger. The system is limited to equipment, and hot water supply and bath chase are configured with a single heating path, which reduces the size and weight of the equipment by simplifying the main body configuration including the piping configuration, and improves the efficiency by collecting latent heat. By improving the temperature, it is possible to ensure both hot water supply performance and bathing performance.

第5の発明は、利用側熱交換器として、暖房や浴室乾燥等を行う暖房装置を有する暖房回路に熱量を供給する暖房用熱交換器と、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器を設け、給湯または暖房または風呂追い焚きの単独利用、あるいは給湯と暖房と風呂追い焚きのうち少なくとも2つの同時利用、を選択できるようにしたことを特徴とするもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路を用いて給湯と暖房と風呂追い焚きを行うように構成した給湯装置に限定したものであり、給湯と暖房と風呂追い焚きを1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、潜熱回収により効率アップを図ることで給湯性能と暖房性能と風呂追い焚き性能を同時に確保することができる。   The fifth aspect of the invention provides a heating heat exchanger that supplies heat to a heating circuit having a heating device that performs heating, bathroom drying, and the like as a use-side heat exchanger, and supplies heat to a bath circuit that retreats the bath A heat exchanger for bath is provided, and it is possible to select a single use of hot water supply or heating or bath reheating, or at least two simultaneous use of hot water supply and heating and reheating bath, It is limited to hot water supply devices that are configured to perform hot water supply, heating, and bath reheating using a hot water supply circulation circuit that consists of a heat exchanger for hot water supply and a heat exchanger for recovering latent heat. By using a single heating path, it is possible to reduce the size and weight of the equipment by simplifying the main body structure including the piping structure, and to improve the efficiency by recovering latent heat, thereby improving hot water supply performance, heating performance, and wind. Reheating performance can be secured simultaneously.

第6の発明は、利用側熱交換器として複数個設ける場合、給湯循環回路に対して各熱交換器を並列に接続し、給湯用熱交換器から供給される湯水温度が略同一となるようにしたことを特徴とするもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路に複数の利用側熱交換器を並列に接続して使用することで、給湯循環回路の通路抵抗を小さくすることができ、循環ポンプの小型化・軽量化が可能になる。   In the sixth aspect of the present invention, when a plurality of use-side heat exchangers are provided, the heat exchangers are connected in parallel to the hot water supply circulation circuit so that the hot water temperatures supplied from the hot water supply heat exchangers are substantially the same. A hot water supply circulation circuit by connecting a plurality of use side heat exchangers in parallel to a hot water supply circulation circuit composed of a hot water supply heat exchanger and a latent heat recovery heat exchanger. Therefore, the circulation pump can be made smaller and lighter.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明の第1の実施の形態における給湯装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 shows a structural diagram of a hot water supply apparatus according to a first embodiment of the present invention.

図1において、まず給水路1より供給される水をバーナ2の燃焼により加熱し所定の温度に上昇した後、出湯路に供給し、利用側熱交換器である暖房用熱交換器18の一次側経路を経由した後、循環ポンプ17を介して再度給水路1に合流させて給湯循環回路19を形成している。そして、暖房用熱交換器18を経由した後の給湯循環回路19から分岐さ
せて給湯路3を形成し、この給湯路3と給水路1を連通して形成したバイパス通路4から給水路1より供給される水の一部をバイパス制御弁5を介して供給することで所望の湯水に調整し、給湯栓6より出湯する給湯回路を構成している。
また、浴槽31へ湯張りを行う注湯回路32として、バイパス通路4の下流側の給湯路3から風呂回路28に連通する経路を形成している。
In FIG. 1, first, water supplied from a water supply channel 1 is heated by combustion of a burner 2 and rises to a predetermined temperature, and then supplied to a tapping channel, and is a primary heat exchanger 18 for heating that is a use side heat exchanger. After passing through the side path, the hot water supply circulation circuit 19 is formed by joining again to the water supply path 1 via the circulation pump 17. Then, a hot water supply path 3 is formed by branching from the hot water supply circulation circuit 19 after passing through the heating heat exchanger 18, and from the water supply path 1 from the bypass passage 4 formed by connecting the hot water supply path 3 and the water supply path 1. By supplying a part of the supplied water through the bypass control valve 5, the hot water is adjusted to a desired hot water and discharged from the hot water tap 6.
In addition, as the pouring circuit 32 for filling the bathtub 31 with water, a path communicating from the hot water supply path 3 on the downstream side of the bypass passage 4 to the bath circuit 28 is formed.

ここで、バーナ2はガス元電磁弁7、ガス比例弁8、ガス切替弁9が配設されたガス供給路10より燃料が供給され、燃焼用ファン11より燃焼用空気が供給されて、予め定められたシーケンスに従い燃焼動作が行われる。そして、バーナ2の燃焼により発生する燃焼ガスは燃焼室12を通って排気通路13を経由し排気口14から器具外に排出される。   Here, the burner 2 is supplied with fuel from a gas supply passage 10 provided with a gas source solenoid valve 7, a gas proportional valve 8, and a gas switching valve 9, and supplied with combustion air from a combustion fan 11, in advance. A combustion operation is performed according to a predetermined sequence. Then, the combustion gas generated by the combustion of the burner 2 passes through the combustion chamber 12, passes through the exhaust passage 13, and is discharged out of the instrument from the exhaust port 14.

この燃焼ガスの排気経路に燃焼ガスの顕熱を回収する給湯用熱交換器15と燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16を配設している。具体的には、バーナ2の下流側燃焼室12に給湯用熱交換器15を設け、その下流側排気通路13に潜熱回収用熱交換器16を設け、前記給水路1より供給される水を、まず潜熱回収用熱交換器16に供給し燃焼排ガス中の潜熱を回収したのち、給湯用熱交換器15に供給しバーナ2の燃焼により所定の高温水に上昇させて出湯路3に供給する。このように従来の給湯用熱交換器15による熱回収に加え、燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16を設けることで、総合的な熱効率を高め省エネを図るものである。   A hot water supply heat exchanger 15 that recovers sensible heat of the combustion gas and a latent heat recovery heat exchanger 16 that recovers the latent heat of the combustion exhaust gas are disposed in the exhaust path of the combustion gas. Specifically, a hot water supply heat exchanger 15 is provided in the downstream combustion chamber 12 of the burner 2, a latent heat recovery heat exchanger 16 is provided in the downstream exhaust passage 13, and water supplied from the water supply passage 1 is supplied. First, the heat is supplied to the latent heat recovery heat exchanger 16 to recover the latent heat in the combustion exhaust gas, and then supplied to the hot water supply heat exchanger 15 to be heated to a predetermined high temperature water by combustion of the burner 2 and supplied to the hot water outlet 3. . Thus, in addition to heat recovery by the conventional hot water supply heat exchanger 15, by providing the latent heat recovery heat exchanger 16 for recovering the latent heat of the combustion exhaust gas, the overall thermal efficiency is improved and energy saving is achieved.

暖房回路20は、暖房用熱交換器18の2次側に放熱機21等の負荷を接続して閉回路を形成し、暖房用循環ポンプ22で循環させることにより、前記暖房用熱交換器18で給湯循環回路19より供給される高温水と熱交換して暖房熱量を確保するようにしている。   The heating circuit 20 is connected to a load such as a radiator 21 on the secondary side of the heating heat exchanger 18 to form a closed circuit, and is circulated by the heating circulation pump 22, whereby the heating heat exchanger 18. Thus, heat is exchanged with the high-temperature water supplied from the hot water supply circuit 19 so as to ensure the amount of heating heat.


以上のように構成された燃焼装置について、以下その動作、作用を説明する。

About the combustion apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、給湯運転時には、給湯栓6を開くと給水路1に配設した給水側流量センサー23が通水を検知し、この通水信号で燃焼用ファン11が動作し同時にガス元電磁弁7、ガス比例弁8が開き、バーナ2に燃料と燃焼用空気が供給されて着火動作により燃焼が開始する。このバーナ2の燃焼開始により発生した燃焼ガスは燃焼室12から排気通路13を経由して排気口14より排出される。この燃焼ガスの排気動作の過程において燃焼室12に配設した給湯用熱交換器15と排気通路13に配設した潜熱回収用熱交換器16で給水路1より供給される水が加熱される。   First, at the time of hot water supply operation, when the hot water tap 6 is opened, the water supply side flow rate sensor 23 disposed in the water supply passage 1 detects water flow, and the combustion fan 11 is operated by this water flow signal and simultaneously the gas source solenoid valve 7, The gas proportional valve 8 is opened, fuel and combustion air are supplied to the burner 2, and combustion is started by an ignition operation. Combustion gas generated by the start of combustion of the burner 2 is discharged from the exhaust port 14 via the exhaust passage 13 from the combustion chamber 12. In the process of exhausting the combustion gas, the water supplied from the water supply passage 1 is heated by the hot water supply heat exchanger 15 disposed in the combustion chamber 12 and the latent heat recovery heat exchanger 16 disposed in the exhaust passage 13. .

給湯用熱交換器15で加熱された湯水は、前記給湯用熱交換器15と潜熱回収用熱交換器16を迂回するように給水路1と給湯路3を連通して設けたバイパス通路4に配設したバイパス制御弁5により入水側の水と混合される。混合された湯は遠隔操作用リモコン24で設定した給湯設定温度になるよう出湯サーミスター25の信号によりバイパス制御弁5の開度を調整し、給湯接続口26を経て給湯栓6より給湯される。   Hot water heated by the hot water supply heat exchanger 15 passes through a bypass passage 4 provided in communication between the water supply passage 1 and the hot water supply passage 3 so as to bypass the hot water supply heat exchanger 15 and the latent heat recovery heat exchanger 16. The bypass control valve 5 is mixed with the water on the incoming side. The opening of the bypass control valve 5 is adjusted by a signal from the hot water thermistor 25 so that the mixed hot water reaches a hot water supply set temperature set by the remote control remote controller 24, and hot water is supplied from the hot water tap 6 through the hot water connection port 26. .

このように、給湯単独運転を選択する場合は、遠隔操作用リモコン24で所望の温度を設定し給湯栓6を開くことで自動的に設定された湯温の湯水を確保することができる。   Thus, when selecting the hot water supply independent operation, the hot water set automatically can be secured by setting a desired temperature with the remote control remote controller 24 and opening the hot water tap 6.

次に自動お湯張り運転時には、遠隔操作用リモコン24で所望の流量を設定し、注湯回路32に設けられた注湯電磁弁33が開弁し風呂回路28から浴槽31へ注湯される。   Next, at the time of automatic hot water filling operation, a desired flow rate is set by the remote control remote controller 24, the hot water solenoid valve 33 provided in the hot water circuit 32 is opened, and hot water is poured from the bath circuit 28 to the bathtub 31.

次に暖房運転時には、放熱機21等の暖房端末装置に内蔵した制御器(図示せず)の運転指令で、暖房回路20に設けた暖房用循環ポンプ22が駆動し、この運転指令に連動して給湯循環回路19の湯水を循環させる循環ポンプ17が駆動し、同時にバーナ2の着火
動作により燃焼が開始する。このバーナ2の燃焼開始により発生した燃焼ガスは燃焼室12から排気通路13を経由して排気口14より排出される。この燃焼ガスの排気動作の過程において燃焼室12に配設した給湯用熱交換器15と排気通路13に配設した潜熱回収用熱交換器16で給水路1より供給される水が加熱される。
Next, at the time of heating operation, the heating circulation pump 22 provided in the heating circuit 20 is driven by an operation command of a controller (not shown) built in the heating terminal device such as the radiator 21, and the operation command is linked. Then, the circulation pump 17 for circulating the hot water in the hot water supply circulation circuit 19 is driven, and at the same time, combustion is started by the ignition operation of the burner 2. Combustion gas generated by the start of combustion of the burner 2 is discharged from the exhaust port 14 via the exhaust passage 13 from the combustion chamber 12. In the process of exhausting the combustion gas, the water supplied from the water supply passage 1 is heated by the hot water supply heat exchanger 15 disposed in the combustion chamber 12 and the latent heat recovery heat exchanger 16 disposed in the exhaust passage 13. .

給湯用熱交換器15で加熱された湯水は循環ポンプ17により暖房用熱交換器18の1次側経路を経由しながら給湯循環回路19を循環し、水−水熱交換構成により熱交換され暖房回路20へ伝熱される。暖房用熱交換器18で受熱した暖房回路20の熱は、放熱機21で温風として放熱される。そして、暖房用熱交換器18で熱交換された高温水は潜熱回収用熱交換器16の上流側給水路1に戻し、給湯循環回路19を形成し、放熱機21からの暖房運転指令が発せられている間、所定の湯温に維持して循環を継続する。   Hot water heated by the hot water supply heat exchanger 15 circulates in the hot water supply circulation circuit 19 through the primary side path of the heating heat exchanger 18 by the circulation pump 17, and heat is exchanged by the water-water heat exchange configuration for heating. Heat is transferred to the circuit 20. Heat of the heating circuit 20 received by the heating heat exchanger 18 is radiated as warm air by the radiator 21. And the high temperature water heat-exchanged with the heat exchanger 18 for heating returns to the upstream water supply path 1 of the heat exchanger 16 for latent heat collection | recovery, forms the hot-water supply circulation circuit 19, and issues the heating operation command from the radiator 21 While it is being circulated, it is maintained at a predetermined hot water temperature and continues to circulate.

このように、利用側熱交換器である暖房用熱交換器18を経由した後の給湯循環回路19から給湯路3を分岐した構成とすることで、暖房運転に必要な高温水を確保しつつ、給湯回路に対して高温水から低温水まで幅広い範囲の湯水を調節して供給することが可能な給湯優先動作を確保することができる。   In this way, the hot water supply path 3 is branched from the hot water supply circulation circuit 19 after passing through the heating heat exchanger 18 that is a use side heat exchanger, thereby securing high-temperature water necessary for the heating operation. The hot water supply priority operation that can adjust and supply hot water in a wide range from high temperature water to low temperature water to the hot water supply circuit can be ensured.

また、燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16は、排ガス経路に対して給湯用熱交換器15の下流側に位置させ、給水経路に対して給湯用熱交換器15の上流側に位置させて設けており、潜熱回収熱交換器16で余熱された湯水を給湯用熱交換器15で加熱するようにしている。これによりバーナ2の燃焼で発生した熱量を効率よく熱交換することができ省エネにつながる。
ここで、従来暖房運転時には、バーナ2で給湯用熱交換器15が加熱されるため、給湯循環回路19全体が高圧になるとともに、給湯接続口26に設けた第1の過圧逃がし弁34から膨張水が常時滴下してしまうという課題があったが、本発明では潜熱回収用熱交換器18で発生する結露水を中和装置38にて中和処理後、機外の排水口へ接続する排水接続口39と前記給湯循環回路19の圧力を前記排水接続口39へ逃がす過圧逃がし電磁弁35を設け、前記利用側熱交換器を使用しているとき、前記過圧逃がし電磁弁35を開弁する制御手段36を有するため、機器内圧上昇の低減による安全性、耐久性の向上と機器外部への膨張水の滴下防止を図った給湯装置を提供することが可能となる。
つまり、1缶多水路の構成に起因する特有の課題を解決したもので、給湯回路と利用側回路を共通の湯水供給路を利用して運転を行う構成としたものにおいて、利用側熱交換器を使用しているとき、過圧逃がし電磁弁を開弁する制御手段を設けているため機器内圧上昇を低減し、機器外部への膨張水の滴下防止を図ることができる。
The latent heat recovery heat exchanger 16 that recovers the latent heat of the combustion exhaust gas is positioned downstream of the hot water supply heat exchanger 15 with respect to the exhaust gas path, and upstream of the hot water supply heat exchanger 15 with respect to the water supply path. The hot water remaining in the latent heat recovery heat exchanger 16 is heated by the hot water supply heat exchanger 15. As a result, the amount of heat generated by the combustion of the burner 2 can be efficiently exchanged, leading to energy saving.
Here, during the conventional heating operation, the hot water supply heat exchanger 15 is heated by the burner 2, so that the entire hot water supply circulation circuit 19 becomes high pressure, and from the first overpressure relief valve 34 provided at the hot water supply connection port 26. In the present invention, the condensed water generated in the latent heat recovery heat exchanger 18 is neutralized by the neutralizing device 38 and then connected to a drain outlet outside the apparatus. An overpressure relief solenoid valve 35 for releasing the pressure of the drainage connection port 39 and the hot water supply circulation circuit 19 to the drainage connection port 39 is provided. When the use side heat exchanger is used, the overpressure relief solenoid valve 35 is Since the control means 36 that opens the valve is provided, it is possible to provide a hot water supply device that is improved in safety and durability by reducing the increase in the internal pressure of the device and prevents the expansion water from dripping to the outside of the device.
In other words, it solves a specific problem caused by the configuration of a single can multi-channel, and is configured to operate a hot water supply circuit and a user-side circuit using a common hot-water supply channel. When using, the control means for opening the overpressure relief solenoid valve is provided, so that the rise in the internal pressure of the device can be reduced and the expansion of expansion water to the outside of the device can be prevented.

また、潜熱回収用熱交換器16の構成としては図2に示すように、ステンレス鋼製の側板16a、16bと、前記側板16a、16bの間に配列したステンレス鋼製のプレートフィン16cと、前記側板16a、16bとプレートフィン16cに設けた開口部に貫通させて並設したステンレス鋼製の鞘管16dと、前記鞘管16dに内通させ入水口16eと出水口16fを設けた複数の銅製通水管16gと、前記通水管16gの入水口16eを集合させて1つの入水経路を形成する入水ヘッダー16hと、前記通水管16gの出水口16fを集合させて1つの入水経路を形成する出水ヘッダー16iとを備え、前記通水管16gを排ガス経路内において2重管構造とし、前記入水ヘッダー16h、出水ヘッダー16iを介して並列の熱交換経路を形成するようにしている。   Further, as shown in FIG. 2, the latent heat recovery heat exchanger 16 has a side plate 16a, 16b made of stainless steel, a plate fin 16c made of stainless steel arranged between the side plates 16a, 16b, Stainless steel sheath pipes 16d that are arranged side by side through openings provided in the side plates 16a and 16b and the plate fins 16c, and a plurality of copper pipes that are internally passed through the sheath pipe 16d and are provided with a water inlet 16e and a water outlet 16f. A water inlet pipe 16g, a water inlet header 16h that gathers the water inlet 16e of the water pipe 16g to form one water inlet path, and a water outlet header that gathers the water outlet 16f of the water pipe 16g to form a water inlet path. 16i, and the water pipe 16g has a double pipe structure in the exhaust gas path, and the heat exchange path in parallel through the water inlet header 16h and the water outlet header 16i. And so as to form a.

この構成により、給水路1より供給される水は入水ヘッダー16hより複数の通水管16gを並列に流れて出水ヘッダー16iで集合され、給湯用熱交換器15に供給される。そして、排ガス経路内はステンレス鋼製の鞘管16dで通水管16gを覆っているため、結露水による腐食の問題も抑制され、燃焼排ガス中の潜熱を回収することで熱効率のアップを図ることができる。   With this configuration, the water supplied from the water supply channel 1 flows in parallel through the plurality of water pipes 16g from the water inlet header 16h, gathers at the water outlet header 16i, and is supplied to the hot water supply heat exchanger 15. And since the inside of the exhaust gas path covers the water conduit 16g with a stainless steel sheath tube 16d, the problem of corrosion due to condensed water is also suppressed, and the heat efficiency can be improved by recovering the latent heat in the combustion exhaust gas. it can.

また、通水管16gの入水口16eと出水口16fを入水ヘッダー16hと出水ヘッダー16iで集合させることにより潜熱回収用熱交換器16内を複数の通水経路を介して通水することができ、給湯循環回路19の通路抵抗を小さくすることができ、循環ポンプ17の小型化・軽量化が可能になる。さらに、通水管16gの一方側で集合して入水経路と出水経路を形成する構成とすることで、通水管16gの配設構成を簡素化し加工性の向上を図ることができる。   Further, by collecting the water inlet 16e and the water outlet 16f of the water pipe 16g with the water inlet header 16h and the water outlet header 16i, the latent heat recovery heat exchanger 16 can be passed through a plurality of water passages, The passage resistance of the hot water supply circulation circuit 19 can be reduced, and the circulation pump 17 can be reduced in size and weight. Furthermore, the arrangement of the water pipe 16g is simplified by simplifying the arrangement structure of the water pipe 16g by gathering on one side of the water pipe 16g to form the water inlet path and the water outlet path.

以上のように本実施の形態においては、給湯用熱交換器15と潜熱回収用熱交換器16で1つの加熱経路を形成し、前記加熱経路の循環水を利用して利用側負荷回路である暖房回路20に熱量を供給する構成としているため、前記給湯用熱交換器15や潜熱回収用熱交換器16に関連しない利用側熱交換器である暖房用熱交換器18の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、断水等により給湯循環回路19内の水落ち現象が発生した場合における空焼き運転を防止することができ、安全性の向上を図った給湯装置を提供することができ、さらに、潜熱回収用熱交換器16の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯装置を提供することができる。   As described above, in the present embodiment, one heating path is formed by the hot water supply heat exchanger 15 and the latent heat recovery heat exchanger 16, and the use side load circuit utilizes the circulating water of the heating path. Since the heat amount is supplied to the heating circuit 20, it is possible to configure the heating heat exchanger 18 that is a use side heat exchanger not related to the hot water supply heat exchanger 15 and the latent heat recovery heat exchanger 16. The simplification of the main body configuration including the piping configuration can reduce the size and weight of the appliance, and can provide an easy-to-use hot water supply device that prioritizes the hot water supply performance by mainly using the hot water supply circuit as the heating path. In addition, by adopting a single heating path configuration mainly composed of a hot water supply circuit, the problem of residual water boiling in the heat exchanger at the time of single operation is solved, and a water drop phenomenon in the hot water supply circuit 19 is caused by water interruption or the like. Occurred In addition, it is possible to provide a hot water supply apparatus that can prevent an empty-burning operation in a combination, improve safety, and further facilitate the configuration for improving the corrosion resistance of the heat exchanger 16 for recovering latent heat, thereby achieving high efficiency. Therefore, it is possible to provide a hot water supply device that reduces the running cost.

(実施の形態2)
図3は、本発明の第2の実施の形態における給湯装置の構造図を示すものである。
(Embodiment 2)
FIG. 3 shows a structural diagram of a hot water supply apparatus according to the second embodiment of the present invention.

本実施の形態は、第1の実施の形態における給湯装置の過圧逃がし電磁弁の下流側に所定の圧力で開弁する第2の過圧逃がし弁を設けたものである。なお、第1の実施の形態と同一符号のものは同一構造を有し、説明は省略する。   In the present embodiment, a second overpressure relief valve that opens at a predetermined pressure is provided downstream of the overpressure relief solenoid valve of the hot water supply apparatus in the first embodiment. In addition, the thing of the same code | symbol as 1st Embodiment has the same structure, and abbreviate | omits description.

過圧逃がし電磁弁35の下流側に所定の圧力で開弁する第2の過圧逃がし弁37を設けており、過圧逃がし電磁弁35が開弁しても常時膨張水を排水接続口39から機外の排水口へ排水するのではなく、所定の圧力で開弁するため排水の無駄を防止できる。   A second overpressure relief valve 37 that opens at a predetermined pressure is provided on the downstream side of the overpressure relief solenoid valve 35. Even if the overpressure relief solenoid valve 35 is opened, the expansion water is always supplied to the drain connection port 39. The wastewater is prevented from being wasted because the valve is opened at a predetermined pressure instead of draining from the machine to the drain outlet outside the machine.

また、給湯接続口26に設けた第1の過圧逃がし弁34の開弁圧より低く設定することで、第1の過圧逃がし弁からの機器外部への膨張水の滴下防止を図ることができる。   Further, by setting the pressure lower than the opening pressure of the first overpressure relief valve 34 provided at the hot water supply connection port 26, it is possible to prevent dripping of the expansion water from the first overpressure relief valve to the outside of the device. it can.

(実施の形態3)
図4は、本発明の第4の実施の形態における給湯装置の構造図を示すものである。
(Embodiment 3)
FIG. 4 shows a structural diagram of a hot water supply apparatus according to the fourth embodiment of the present invention.

本実施の形態は、第1の実施の形態における給湯装置の利用側熱交換器として、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器を用いた給湯装置に関するものである。なお、第1の実施の形態と同一符号のものは同一構造を有し、説明は省略する。   This embodiment relates to a hot water supply apparatus using a bath heat exchanger that supplies heat to a bath circuit that performs reheating of the bath as a use-side heat exchanger of the hot water supply apparatus in the first embodiment. . In addition, the thing of the same code | symbol as 1st Embodiment has the same structure, and abbreviate | omits description.

風呂用熱交換器27は給湯循環回路19に接続され、潜熱回収用熱交換器16と給湯用熱交換器15で加熱された高温水を循環ポンプ17で循環させながら熱交換し風呂回路28に熱量を供給する。風呂回路28は風呂用循環ポンプ29、水量検知部30を通って浴槽31の湯を風呂用熱交換器27に供給し所定時間循環させることで浴槽水の追い焚きを行う。また、浴槽31へ湯張りを行う注湯回路32として、バイパス通路4の下流側の給湯路3から風呂回路28に連通する経路を形成している。   The bath heat exchanger 27 is connected to the hot water supply circulation circuit 19, and heat exchange is performed while circulating the high-temperature water heated by the latent heat recovery heat exchanger 16 and the hot water supply heat exchanger 15 through the circulation pump 17 to the bath circuit 28. Supply heat. The bath circuit 28 replenishes the bath water by supplying the hot water in the bath 31 to the bath heat exchanger 27 through the bath circulation pump 29 and the water amount detection unit 30 and circulating it for a predetermined time. In addition, as the pouring circuit 32 for filling the bathtub 31 with water, a path communicating from the hot water supply path 3 on the downstream side of the bypass passage 4 to the bath circuit 28 is formed.

次にその動作、作用を説明すると、風呂運転時には、遠隔操作用リモコン24で風呂運
転の指示を行うと、風呂回路28に設けた風呂用循環ポンプ29が駆動し水流検知部30で浴槽水の循環が検知されると、その検知信号で給湯循環回路19の湯水を循環させる循環ポンプ17が駆動し、同時にバーナ2の着火動作により燃焼が開始される。
Next, the operation and action will be described. When bath operation is instructed by the remote control remote controller 24 during bath operation, the bath circulation pump 29 provided in the bath circuit 28 is driven and the water flow detection unit 30 performs bath water. When the circulation is detected, the circulation pump 17 that circulates the hot water in the hot water supply circulation circuit 19 is driven by the detection signal, and at the same time, combustion is started by the ignition operation of the burner 2.

このバーナ2の燃焼開始により発生した燃焼ガスは燃焼室12から排気通路13を経由して排気口14より排出される。この燃焼ガスの排気動作の過程において燃焼室12に配設した給湯用熱交換器15と排気通路13に配設した潜熱回収用熱交換器16で給水路1より供給される水が加熱される。   Combustion gas generated by the start of combustion of the burner 2 is discharged from the exhaust port 14 via the exhaust passage 13 from the combustion chamber 12. In the process of exhausting the combustion gas, the water supplied from the water supply passage 1 is heated by the hot water supply heat exchanger 15 disposed in the combustion chamber 12 and the latent heat recovery heat exchanger 16 disposed in the exhaust passage 13. .

給湯用熱交換器15で加熱された湯水は循環ポンプ17で風呂用熱交換器27に供給され、水−水熱交換構成により熱交換され風呂回路28へ伝熱される。風呂用熱交換器27で受熱した風呂回路28の熱は、浴槽31の湯温を上昇させ所定の追い焚き湯温を確保する。そして、風呂用熱交換器27で熱交換された高温水は潜熱回収用熱交換器16の上流側給水路1に戻し、給湯循環回路19を形成し、遠隔操作用リモコン24で設定された所定の追い焚き条件を満足するまで所定の湯温に維持して循環を継続する。   Hot water heated by the hot water supply heat exchanger 15 is supplied to the bath heat exchanger 27 by the circulation pump 17, and heat is exchanged by the water-water heat exchange configuration and is transferred to the bath circuit 28. The heat of the bath circuit 28 received by the bath heat exchanger 27 raises the hot water temperature of the bathtub 31 to ensure a predetermined hot water temperature. Then, the high-temperature water heat-exchanged by the bath heat exchanger 27 is returned to the upstream water supply channel 1 of the latent heat recovery heat exchanger 16 to form a hot water supply circulation circuit 19, and a predetermined set by the remote-control remote controller 24. The circulation is continued at a predetermined hot water temperature until the reheating condition is satisfied.

このように、利用側熱交換器である風呂用熱交換器27を経由した後の給湯循環回路19から給湯路3を分岐した構成とすることで、風呂追い焚き運転に必要な高温水を確保しつつ、給湯回路に対して高温水から低温水まで幅広い範囲の湯水を調節して供給することが可能な給湯優先動作を確保することができる。   As described above, the hot water supply path 3 is branched from the hot water supply circulation circuit 19 after passing through the bath heat exchanger 27 which is a use side heat exchanger, thereby securing high-temperature water necessary for the bath reheating operation. However, it is possible to ensure hot water supply priority operation capable of adjusting and supplying a wide range of hot water from high temperature water to low temperature water to the hot water supply circuit.

また、燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16は、排ガス経路に対して給湯用熱交換器15の下流側に位置させ、給水経路に対して給湯用熱交換器15の上流側に位置させて設けており、潜熱回収熱交換器16で予熱された湯水を給湯用熱交換器15で加熱するようにしている。これにより、風呂追い焚き運転時においてもバーナ2の燃焼で発生した熱量を効率よく熱交換することができ省エネにつながる。
ここで、従来風呂運転時には、バーナ2で給湯用熱交換器15が加熱されるため、給湯循環回路19全体が高圧になるとともに、給湯接続口26に設けた第1の過圧逃がし弁34から膨張水が常時滴下してしまうという課題があったが、本発明では潜熱回収用熱交換器18で発生する結露水を中和装置38にて中和処理後、機外の排水口へ接続する排水接続口39と前記給湯循環回路19の圧力を前記排水接続口39へ逃がす過圧逃がし電磁弁35を設け、前記利用側熱交換器を使用しているとき、前記過圧逃がし電磁弁35を開弁する制御手段36を有するため、機器内圧上昇の低減による安全性、耐久性の向上と機器外部への膨張水の滴下防止を図った給湯装置を提供することが可能となる。
つまり、1缶多水路の構成に起因する特有の課題を解決したもので、給湯回路と利用側回路を共通の湯水供給路を利用して運転を行う構成としたものにおいて、利用側熱交換器を使用しているとき、過圧逃がし電磁弁を開弁する制御手段を設けているため機器内圧上昇を低減し、機器外部への膨張水の滴下防止を図ることができる。
The latent heat recovery heat exchanger 16 that recovers the latent heat of the combustion exhaust gas is positioned downstream of the hot water supply heat exchanger 15 with respect to the exhaust gas path, and upstream of the hot water supply heat exchanger 15 with respect to the water supply path. The hot water preheated by the latent heat recovery heat exchanger 16 is heated by the hot water supply heat exchanger 15. As a result, the amount of heat generated by the combustion of the burner 2 can be efficiently exchanged even during the bath chasing operation, leading to energy saving.
Here, during the conventional bath operation, the hot water supply heat exchanger 15 is heated by the burner 2, so that the entire hot water supply circulation circuit 19 becomes high pressure, and from the first overpressure relief valve 34 provided at the hot water supply connection port 26. In the present invention, the condensed water generated in the latent heat recovery heat exchanger 18 is neutralized by the neutralizing device 38 and then connected to a drain outlet outside the apparatus. An overpressure relief solenoid valve 35 for releasing the pressure of the drainage connection port 39 and the hot water supply circulation circuit 19 to the drainage connection port 39 is provided. When the use side heat exchanger is used, the overpressure relief solenoid valve 35 is Since the control means 36 that opens the valve is provided, it is possible to provide a hot water supply device that is improved in safety and durability by reducing the increase in the internal pressure of the device and prevents the expansion water from dripping to the outside of the device.
In other words, it solves a specific problem caused by the configuration of a single can multi-channel, and is configured to operate a hot water supply circuit and a user-side circuit using a common hot-water supply channel. When using, the control means for opening the overpressure relief solenoid valve is provided, so that the rise in the internal pressure of the device can be reduced and the expansion of expansion water to the outside of the device can be prevented.

また、注湯回路32をバイパス通路4の下流側の給湯路3より混合された湯水を供給するようにしたことで、潜熱回収用熱交換器16と給湯用熱交換器15で効率よく加熱された湯水をバイパス通路4より供給される水と混合して所望の湯水を確保した後、注湯回路32より風呂回路28に供給することで、効率のよい風呂運転が可能になる。   Further, by supplying hot water mixed in the hot water supply circuit 32 from the hot water supply passage 3 on the downstream side of the bypass passage 4, the hot water is efficiently heated by the latent heat recovery heat exchanger 16 and the hot water supply heat exchanger 15. After the hot water is mixed with the water supplied from the bypass passage 4 to secure the desired hot water, the hot water is supplied to the bath circuit 28 from the pouring circuit 32, thereby enabling an efficient bath operation.

以上のように本実施の形態においては、給湯と風呂追い焚きを1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、潜熱回収により効率アップを図ることで給湯性能と風呂追い焚き性能を同時に確保することができる。   As described above, in the present embodiment, the hot water supply and the bath reheating are configured by one heating path, thereby realizing a reduction in the size and weight of the appliance by simplifying the main body configuration including the piping configuration, and latent heat. By improving efficiency through recovery, it is possible to ensure both hot water supply performance and bath retreat performance at the same time.

(実施の形態4)
図5は、本発明の第5の実施の形態における給湯装置の構造図を示すものである。
(Embodiment 4)
FIG. 5 shows a structural diagram of a hot water supply apparatus in the fifth embodiment of the present invention.

本実施の形態は、第1の実施の形態における給湯装置の利用側熱交換器として、暖房や浴室乾燥等を行う放熱機21を有する暖房回路に熱量を供給する暖房用熱交換器と、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器を用いた給湯装置に関するものである。なお、第1の実施の形態と同一符号のものは同一構造を有し、説明は省略する。   This embodiment is a heating heat exchanger for supplying heat to a heating circuit having a radiator 21 that performs heating, bathroom drying, and the like as a use-side heat exchanger of the hot water supply apparatus in the first embodiment, and a bath The present invention relates to a hot water supply apparatus using a bath heat exchanger that supplies heat to a bath circuit that performs reheating. In addition, the thing of the same code | symbol as 1st Embodiment has the same structure, and abbreviate | omits description.

暖房用熱交換器18と風呂用熱交換器27は給湯循環回路19に並列に接続され、潜熱回収用熱交換器16と給湯用熱交換器15で加熱された高温水を循環ポンプ17で循環させながら熱交換し、暖房回路20または風呂回路28に熱量を供給する。   The heat exchanger 18 for heating and the heat exchanger 27 for bath 27 are connected in parallel to the hot water supply circulation circuit 19, and the high-temperature water heated by the latent heat recovery heat exchanger 16 and the hot water supply heat exchanger 15 is circulated by the circulation pump 17. Then, heat is exchanged to supply heat to the heating circuit 20 or the bath circuit 28.

次にその動作、作用を説明すると、暖房運転時には、放熱機21の運転指令で、暖房回路20に設けた暖房ポンプ22が駆動し、連動して給湯循環回路19の温水を循環させるポンプ17が駆動することによりバーナ2に着火し、燃焼された熱を回収する給湯用熱交換器15で加熱された温水は暖房用熱交換器18で熱交換され暖房回路20へ伝熱される。暖房用熱交換器18で受熱した暖房回路20の熱は、放熱機21で温風として放熱される。   Next, the operation and action will be described. During the heating operation, the heating pump 22 provided in the heating circuit 20 is driven by the operation command of the radiator 21, and the pump 17 that circulates the hot water in the hot water supply circulation circuit 19 in conjunction with it. The warm water heated by the hot water supply heat exchanger 15 that ignites the burner 2 by driving and collects the burned heat is heat-exchanged by the heating heat exchanger 18 and transferred to the heating circuit 20. Heat of the heating circuit 20 received by the heating heat exchanger 18 is radiated as warm air by the radiator 21.

また、風呂運転時には、遠隔操作用リモコン24の運転指令で、風呂回路28に設けた風呂用循環ポンプ29が駆動し水流検知部30にて循環が検知されると、連動して給湯循環回路19の温水を循環させるポンプ17が駆動することによりバーナ2に着火し、燃焼された熱を回収する給湯用熱交換器15で加熱された温水は風呂用熱交換器27で熱交換され風呂回路28へ伝熱される。風呂用熱交換器27で受熱した風呂回路28の熱は、浴槽31へ循環し追い焚き加熱される。   Further, during bath operation, when the bath circulation pump 29 provided in the bath circuit 28 is driven by the operation command of the remote control remote controller 24 and the circulation is detected by the water flow detection unit 30, the hot water supply circulation circuit 19 is interlocked. When the pump 17 that circulates the hot water is driven, the burner 2 is ignited, and the hot water heated by the hot water heat exchanger 15 that recovers the burned heat is heat-exchanged by the bath heat exchanger 27 and the bath circuit 28 Heat is transferred to. The heat of the bath circuit 28 received by the bath heat exchanger 27 is circulated to the bathtub 31 and reheated.

また、暖房と風呂同時運転時には、放熱機21と遠隔操作用リモコン24からの運転指令により、暖房回路20と風呂回路28のポンプ22、29が駆動しバーナ2の着火動作により燃焼が開始する。この燃焼により給湯循環回路19の循環水は潜熱回収用熱交換器16と給湯用熱交換器15で加熱され所定の高温水の状態を維持しながら循環する。この高温の循環水は暖房用熱交換器18と風呂用熱交換器27に略同一の温度で供給され、暖房回路20と風呂回路28に伝熱される。   Further, during heating and bath simultaneous operation, the heating circuits 20 and the pumps 22 and 29 of the bath circuit 28 are driven by the operation commands from the radiator 21 and the remote control remote controller 24, and combustion is started by the ignition operation of the burner 2. By this combustion, the circulating water in the hot water supply circuit 19 is heated by the latent heat recovery heat exchanger 16 and the hot water heat exchanger 15 and circulates while maintaining a predetermined high-temperature water state. This high-temperature circulating water is supplied to the heating heat exchanger 18 and the bath heat exchanger 27 at substantially the same temperature, and is transferred to the heating circuit 20 and the bath circuit 28.

また、上記以外の組み合わせによる同時運転も可能であり、暖房用熱交換器18と風呂用熱交換器27とを給湯循環回路19に並列に構成しているため、循環回路の通路抵抗を小さくすることができ、循環ポンプ17の小型化・軽量化が可能となる。   Also, simultaneous operation by combinations other than the above is possible, and the heat exchanger 18 for heating and the heat exchanger 27 for bath 27 are configured in parallel with the hot water supply circulation circuit 19, so that the passage resistance of the circulation circuit is reduced. Therefore, the circulation pump 17 can be reduced in size and weight.

このように、利用側熱交換器である暖房用熱交換器18および風呂用熱交換器27を経由した後の給湯循環回路19から給湯路3を分岐した構成とすることで、利用側負荷の運転に必要な高温水を確保しつつ、給湯回路に対して高温水から低温水まで幅広い範囲の湯水を調節して供給することが可能な給湯優先動作を確保することができる。   In this way, by using a configuration in which the hot water supply path 3 is branched from the hot water supply circulation circuit 19 after passing through the heating heat exchanger 18 and the bath heat exchanger 27 that are the use side heat exchangers, Hot water supply priority operation that can adjust and supply a wide range of hot water from high temperature water to low temperature water to the hot water supply circuit can be ensured while securing high temperature water necessary for operation.

また、燃焼排ガスの潜熱を回収する潜熱回収用熱交換器16は、排ガス経路に対して給湯用熱交換器15の下流側に位置させ、給水経路に対して給湯用熱交換器15の上流側に位置させて設けており、潜熱回収熱交換器16で予熱された湯水を給湯用熱交換器15で加熱するようにしている。これにより、複数の利用側負荷の運転時においてもバーナ2の燃焼で発生した熱量を効率よく熱交換することができ省エネにつながる。
ここで、従来暖房運転時または風呂運転時には、バーナ2で給湯用熱交換器15が加熱されるため、給湯循環回路19全体が高圧になるとともに、給湯接続口26に設けた第1の過圧逃がし弁34から膨張水が常時滴下してしまうという課題があったが、本発明では潜
熱回収用熱交換器18で発生する結露水を中和装置38にて中和処理後、機外の排水口へ接続する排水接続口39と前記給湯循環回路19の圧力を前記排水接続口39へ逃がす過圧逃がし電磁弁35を設け、前記利用側熱交換器を使用しているとき、前記過圧逃がし電磁弁35を開弁する制御手段36を有するため、機器内圧上昇の低減による安全性、耐久性の向上と機器外部への膨張水の滴下防止を図った給湯装置を提供することが可能となる。
つまり、1缶多水路の構成に起因する特有の課題を解決したもので、給湯回路と利用側回路を共通の湯水供給路を利用して運転を行う構成としたものにおいて、利用側熱交換器を使用しているとき、過圧逃がし電磁弁を開弁する制御手段を設けているため機器内圧上昇を低減し、機器外部への膨張水の滴下防止を図ることができる。
The latent heat recovery heat exchanger 16 that recovers the latent heat of the combustion exhaust gas is positioned downstream of the hot water supply heat exchanger 15 with respect to the exhaust gas path, and upstream of the hot water supply heat exchanger 15 with respect to the water supply path. The hot water preheated by the latent heat recovery heat exchanger 16 is heated by the hot water supply heat exchanger 15. Thereby, the heat quantity generated by the combustion of the burner 2 can be efficiently exchanged even during operation of a plurality of usage-side loads, leading to energy saving.
Here, during the conventional heating operation or bath operation, the hot water supply heat exchanger 15 is heated by the burner 2, so that the entire hot water supply circulation circuit 19 becomes high pressure and the first overpressure provided at the hot water supply connection port 26. Although there has been a problem that the expansion water is always dripped from the relief valve 34, in the present invention, the condensed water generated in the heat exchanger 18 for latent heat recovery is neutralized by the neutralizing device 38, and then discharged outside the machine. When the use side heat exchanger is used, the overpressure relief is provided when a drainage connection port 39 connected to the outlet and an overpressure relief solenoid valve 35 for releasing the pressure of the hot water supply circulation circuit 19 to the drainage connection port 39 are provided. Since the control means 36 for opening the electromagnetic valve 35 is provided, it is possible to provide a hot water supply device that is improved in safety and durability due to a reduction in the increase in the internal pressure of the device and prevents the expansion water from dripping to the outside of the device. .
In other words, it solves a specific problem caused by the configuration of a single can multi-channel, and is configured to operate a hot water supply circuit and a user-side circuit using a common hot-water supply channel. When using, the control means for opening the overpressure relief solenoid valve is provided, so that the rise in the internal pressure of the device can be reduced and the expansion of expansion water to the outside of the device can be prevented.

以上のように、本発明にかかる給湯装置は、給湯循環回路を主回路として給湯と暖房、または給湯と風呂、または給湯と暖房と風呂を単一の循環路を熱源とし、利用側熱交換器を使用しているとき、過圧逃がし電磁弁を開弁する制御手段を設けているため機器内圧上昇を低減し、機器外部への膨張水の滴下防止を図るとともに、器具の小型化・軽量化ができ、設置スペースの余裕確保、施工性の向上と、潜熱回収熱交換器を備えることにより、高効率化を実現しランニングコストの低減による省エネルギー化を図ることが可能となるため、ガス、石油の給湯風呂装置、給湯暖房機等の用途にも適用できる。   As described above, the hot water supply apparatus according to the present invention uses a hot water supply circulation circuit as a main circuit, hot water supply and heating, or hot water supply and bath, or hot water supply and heating and bath with a single circulation path as a heat source, and a use-side heat exchanger. The control means for opening the overpressure relief solenoid valve is provided when using the, reducing the internal pressure rise of the equipment, preventing dripping of expansion water outside the equipment, and reducing the size and weight of the equipment. It is possible to secure sufficient installation space, improve workability, and provide a latent heat recovery heat exchanger to achieve high efficiency and save energy by reducing running costs. It can also be applied to applications such as hot water bath equipment and hot water heaters.

本発明の実施の形態1における給湯装置の構造図Structure diagram of hot water supply apparatus in Embodiment 1 of the present invention 同給湯装置の潜熱回収熱交換器の構造図Structure diagram of latent heat recovery heat exchanger of the hot water supply device 本発明の実施の形態2における給湯装置の構造図Structure diagram of hot water supply apparatus in Embodiment 2 of the present invention 本発明の実施の形態3における給湯装置の構造図Structure diagram of hot water supply apparatus in Embodiment 3 of the present invention 本発明の実施の形態4における給湯装置の構造図Structure diagram of hot water supply apparatus in Embodiment 4 of the present invention

符号の説明Explanation of symbols

1 給水路
2 バーナ(加熱手段)
3 給湯路
13 排気通路(排熱経路)
15 給湯用熱交換器
16 潜熱回収用熱交換器
17 給湯用循環ポンプ
18 暖房用熱交換器(利用側熱交換器)
19 給湯循環回路
20 暖房回路
21 放熱機
22 暖房用循環ポンプ
23 水側流量センサ
27 風呂用熱交換器(利用側熱交換器)
28 風呂回路
29 風呂用循環ポンプ
31 浴槽
33 注湯電磁弁
34 第1の過圧逃がし弁
35 過圧逃がし電磁弁
36 制御手段
37 第2の過圧逃がし弁
38 中和装置
39 排水接続口

1 Water supply path 2 Burner (heating means)
3 Hot water supply passage 13 Exhaust passage (exhaust heat passage)
DESCRIPTION OF SYMBOLS 15 Heat exchanger for hot water supply 16 Heat exchanger for latent heat recovery 17 Circulation pump for hot water supply 18 Heat exchanger for heating (use side heat exchanger)
DESCRIPTION OF SYMBOLS 19 Hot-water supply circulation circuit 20 Heating circuit 21 Radiator 22 Circulation pump 23 for heating 23 Water side flow sensor 27 Heat exchanger for baths (use side heat exchanger)
28 Bath Circuit 29 Bath Circulation Pump 31 Bathtub 33 Pouring Solenoid Valve 34 First Overpressure Relief Valve 35 Overpressure Relief Solenoid Valve 36 Control Unit 37 Second Overpressure Relief Valve 38 Neutralizer 39 Drainage Connection Port

Claims (6)

給水路より供給される水をバーナの燃焼により加熱し潜熱回収用熱交換器および給湯用熱交換器を介して出湯路に供給するとともに、給湯循環ポンプを介して再度前記給湯用熱交換器に戻して給湯循環回路を形成し、前記給湯循環回路には利用側熱交換器を配設して負荷側に熱量を供給する回路を形成するとともに、前記利用側熱交換器を経由した給湯循環回路から分岐してカランまたは風呂回路に給湯する風呂注湯用の給湯回路を形成した1缶多水路の給湯装置であって、前記潜熱回収用熱交換器で発生する結露水を中和処理後、機外の排水口へ接続する排水接続口と前記給湯循環回路の圧力を前記排水接続口へ逃がす過圧逃がし電磁弁を設け、前記利用側熱交換器を使用しているとき、前記過圧逃がし電磁弁を開弁する制御手段を設けた給湯装置。   The water supplied from the water supply passage is heated by combustion of the burner and supplied to the hot water supply passage through the latent heat recovery heat exchanger and the hot water supply heat exchanger, and again to the hot water supply heat exchanger through the hot water circulation pump. A hot water supply circulation circuit is formed by returning to the hot water supply circulation circuit, a user side heat exchanger is provided to form a circuit for supplying heat to the load side, and a hot water supply circulation circuit via the user side heat exchanger is formed. Is a one-can multi-channel hot water supply device that forms a hot water supply circuit for bath pouring that branches from the water supply to the currant or bath circuit, after neutralizing the condensed water generated in the latent heat recovery heat exchanger, A drainage connection port connected to a drainage port outside the machine and an overpressure relief solenoid valve for releasing the pressure of the hot water supply circulation circuit to the drainage connection port are provided, and the overpressure relief is used when the use side heat exchanger is used. Provided with control means to open the solenoid valve Hot water system. 過圧逃がし電磁弁の下流側に所定の圧力で開弁する第2の過圧逃がし弁を設けた請求項1記載の給湯装置。   The hot water supply apparatus according to claim 1, further comprising a second overpressure relief valve that opens at a predetermined pressure downstream of the overpressure relief solenoid valve. 利用側熱交換器として、暖房や浴室乾燥等を行う暖房装置を有する暖房回路に熱量を供給する暖房用熱交換器として用い、給湯または暖房の単独利用、あるいは給湯と暖房の同時利用、を選択できるようにした請求項1または2記載の給湯装置。   Use as a heat exchanger for heating that supplies the amount of heat to a heating circuit that has a heating device that performs heating, bathroom drying, etc., as the use side heat exchanger, and selects either hot water supply or heating alone or simultaneous use of hot water and heating The hot water supply device according to claim 1 or 2, wherein the hot water supply device can be used. 利用側熱交換器として、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器として用い、給湯または風呂追い焚きの単独利用、あるいは給湯と風呂追い焚きの同時利用、を選択できるようにした請求項1または2記載の給湯装置。   As a use side heat exchanger, it can be used as a bath heat exchanger that supplies heat to the bath circuit that performs bath renewal, and can select either hot water supply or bath reheating alone, or simultaneous use of hot water and bath reheating The hot-water supply apparatus of Claim 1 or 2 which was made to do. 利用側熱交換器として、暖房や浴室乾燥等を行う暖房装置を有する暖房回路に熱量を供給する暖房用熱交換器と、風呂の追い焚きを行う風呂回路に熱量を供給する風呂用熱交換器を設け、給湯または暖房または風呂追い焚きの単独利用、あるいは給湯と暖房と風呂追い焚きのうち少なくとも2つの同時利用、を選択できるようにした請求項1または2記載の給湯装置。   Heating heat exchanger for supplying heat to a heating circuit having a heating device that performs heating, bathroom drying, etc. as a use side heat exchanger, and a heat exchanger for bath that supplies heat to a bath circuit that retreats the bath The hot water supply apparatus according to claim 1 or 2, wherein a hot water supply or heating or bath reheating is used independently, or at least two simultaneous use of hot water supply, heating and bath reheating can be selected. 利用側熱交換器として複数個設ける場合、給湯循環回路に対して各熱交換器を並列に接続し、給湯用熱交換器から供給される湯水温度が略同一となるようにした請求項5記載の給湯装置。   6. When providing a plurality of use-side heat exchangers, the respective heat exchangers are connected in parallel to the hot water supply circulation circuit so that the hot water temperatures supplied from the hot water heat exchanger are substantially the same. Water heater.
JP2005300024A 2005-10-14 2005-10-14 Water heater Pending JP2007107822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300024A JP2007107822A (en) 2005-10-14 2005-10-14 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300024A JP2007107822A (en) 2005-10-14 2005-10-14 Water heater

Publications (1)

Publication Number Publication Date
JP2007107822A true JP2007107822A (en) 2007-04-26

Family

ID=38033818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300024A Pending JP2007107822A (en) 2005-10-14 2005-10-14 Water heater

Country Status (1)

Country Link
JP (1) JP2007107822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726424A (en) * 2017-10-13 2018-02-23 北京建筑大学 A kind of sewage source heat pump and data center's composite clean cold and heat supply system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714758Y2 (en) * 1988-04-13 1995-04-10 株式会社ガスター 1 can 3 circuit water heater
JPH0926290A (en) * 1995-07-14 1997-01-28 Tokyo Gas Co Ltd Hot water heating system
JP2000111149A (en) * 1998-10-07 2000-04-18 Matsushita Electric Ind Co Ltd Bath hot water supplier
JP2002267254A (en) * 2001-03-13 2002-09-18 Osaka Gas Co Ltd Hot-water supply apparatus
JP2005147538A (en) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd Hot water storage type water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714758Y2 (en) * 1988-04-13 1995-04-10 株式会社ガスター 1 can 3 circuit water heater
JPH0926290A (en) * 1995-07-14 1997-01-28 Tokyo Gas Co Ltd Hot water heating system
JP2000111149A (en) * 1998-10-07 2000-04-18 Matsushita Electric Ind Co Ltd Bath hot water supplier
JP2002267254A (en) * 2001-03-13 2002-09-18 Osaka Gas Co Ltd Hot-water supply apparatus
JP2005147538A (en) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd Hot water storage type water heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107726424A (en) * 2017-10-13 2018-02-23 北京建筑大学 A kind of sewage source heat pump and data center's composite clean cold and heat supply system and method

Similar Documents

Publication Publication Date Title
JP4867273B2 (en) Water heater
JP2006275309A (en) Hot-water supply heating device
JP2008075886A (en) Water heater
JP2007107822A (en) Water heater
JP2006266557A (en) Hot water supply heating device
JP4770377B2 (en) Water heater
JP2006057989A (en) Hot-water supply apparatus
JP2007101052A (en) Hot water supply apparatus
JP2007278534A (en) Water heater
JP2006266560A (en) Hot water supply heating device
JP4624091B2 (en) Water heater
JP4774905B2 (en) Water heater
JP4760282B2 (en) Water heater
JP2008180401A (en) Hot water supply device
JP4400407B2 (en) Water heater
JP4602062B2 (en) Water heater
JP2006292236A (en) Hot water supply apparatus
JP4479553B2 (en) Hot water heater
JP4867274B2 (en) Water heater
JP4715438B2 (en) Water heater
JP4784266B2 (en) Water heater
JP4779571B2 (en) Water heater
JP4501700B2 (en) Water heater
JP2006266558A (en) Hot water supply heating device
JP2006292238A (en) Hot water supply heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025