JP7217628B2 - Heat source device - Google Patents

Heat source device Download PDF

Info

Publication number
JP7217628B2
JP7217628B2 JP2018245900A JP2018245900A JP7217628B2 JP 7217628 B2 JP7217628 B2 JP 7217628B2 JP 2018245900 A JP2018245900 A JP 2018245900A JP 2018245900 A JP2018245900 A JP 2018245900A JP 7217628 B2 JP7217628 B2 JP 7217628B2
Authority
JP
Japan
Prior art keywords
hot water
heating
water supply
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018245900A
Other languages
Japanese (ja)
Other versions
JP2020106227A (en
Inventor
進 小泉
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP2018245900A priority Critical patent/JP7217628B2/en
Publication of JP2020106227A publication Critical patent/JP2020106227A/en
Application granted granted Critical
Publication of JP7217628B2 publication Critical patent/JP7217628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Description

本発明は、暖房用と給湯用の液体流通管路を共通のバーナにより加熱する構成を備えた熱源装置に関するものである。 BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat source device having a configuration in which a common burner heats liquid distribution pipes for heating and hot water supply.

従来、例えば給湯交換器と風呂の追い焚き用の熱交換器とが一体化された一缶二水路型の熱交換器を備えて、その一缶二水路型の熱交換器を共通のバーナで加熱するタイプの熱源装置が用いられており、図14には、その一缶二水路型の熱交換器の断面構成が模式的に示されている(例えば特許文献1、参照)。 Conventionally, for example, a one-can two-channel type heat exchanger in which a hot water supply exchanger and a heat exchanger for reheating a bath are integrated is provided, and the one-can two-channel type heat exchanger is used with a common burner. A heating type heat source device is used, and FIG. 14 schematically shows a cross-sectional configuration of a one-can two-channel type heat exchanger (see, for example, Patent Document 1).

同図に示されるように、この一缶二水路型の熱交換器201は、給湯熱交換器を形成する給湯用伝熱管141が追い焚き用の熱交換器を形成する循環加熱用伝熱管142を上下に挟む態様で互いに接して設けられており、同図においては、これらの伝熱管141,142の外周側に共通のフィン143が設けられている。この一缶二水路型の熱交換器1においては、同図の矢印Aに示されるように、最下段に配置された給湯用伝熱管141の一端側から水が導入され、バーナによって加熱された水が最上段に配置された給湯用伝熱管141を通って導出されて給湯が行われると共に、風呂の追い焚き時には、中央段の循環加熱用伝熱管142を通る湯水が前記バーナによって加熱される。 As shown in the figure, the one-can two-channel type heat exchanger 201 has a hot water supply heat transfer pipe 141 forming a hot water supply heat exchanger and a circulation heating heat transfer pipe 142 forming a reheating heat exchanger. In the figure, a common fin 143 is provided on the outer peripheral side of these heat transfer tubes 141 and 142 . In this one-can, two-channel type heat exchanger 1, as indicated by an arrow A in FIG. Water is led out through the heat transfer pipe 141 for hot water supply arranged at the uppermost stage to supply hot water, and at the time of reheating the bath, hot water passing through the heat transfer pipe 142 for circulation heating at the center stage is heated by the burner. .

このような一缶二水路型の熱交換器201を設けて熱源装置を形成すると、風呂用の熱交換器と給湯用の熱交換器とを個別に形成する場合に比べて熱源装置の小型化が図れるといった利点がある。 If the heat source device is formed by providing such a one-can two-channel type heat exchanger 201, the size of the heat source device can be reduced compared to the case where the heat exchanger for the bath and the heat exchanger for the hot water supply are separately formed. There is an advantage that

実公平8-7307号公報Japanese Utility Model Publication No. 8-7307

ところで、近年、温水マットや浴室乾燥機等の暖房装置に例えば温水等の液体の熱媒体を供給するために、暖房装置に接続される暖房回路を設けた熱源装置が広く用いられるようになってきている。このような暖房回路を有する熱源装置において、熱源装置の小型化を図るために、特許文献1に提案されているような構成において、風呂の追い焚き用の熱交換器の代わりに暖房装置に液体の熱媒体を供給するための暖房用の熱交換器を設けて一缶二水路型の熱交換器を形成することが考えられる。 By the way, in recent years, in order to supply a liquid heat medium such as hot water to a heating device such as a hot water mat or a bathroom dryer, a heat source device provided with a heating circuit connected to the heating device has come to be widely used. ing. In a heat source device having such a heating circuit, in order to reduce the size of the heat source device, in the configuration proposed in Patent Document 1, liquid is added to the heating device instead of the heat exchanger for reheating the bath. It is conceivable to provide a heating heat exchanger for supplying a heat medium of 1 to form a one-can two-channel type heat exchanger.

つまり、例えば図14の構成にける追い焚き用の熱交換器を形成する循環加熱用伝熱管142の代わりに暖房用の熱交換器の伝熱管を設けることが考えられ、この場合、給湯用伝熱管141が暖房用の熱交換器の伝熱管を上下に挟む態様で設けられることになるが、そうすると、暖房能力は追い焚き能力と同程度しか得られないことになる。しかしながら、暖房に必要な能力は追い焚き能力よりも高い能力であるため、暖房の能力が必要能力に対して不足してしまうといった問題が生じることになる。 That is, for example, instead of the circulation heating heat transfer pipe 142 forming the heat exchanger for reheating in the configuration of FIG. The heat pipes 141 are provided in such a manner as to sandwich the heat transfer pipes of the heat exchanger for heating from above and below. However, since the capacity required for heating is higher than the reheating capacity, there arises a problem that the heating capacity is insufficient with respect to the required capacity.

なお、給湯機能を備えた熱源装置においては、利用者は、台所や洗面所等での給湯利用や浴室でのシャワーを用いた給湯利用等を行うことになるが、特にシャワー利用時においては、利用者が設定した給湯設定温度の湯が利用者の操作に応じた十分な量だけシャワーノズルから出湯されることを強く望むものであり、湯の温度が低すぎたり湯の流量が少なすぎたりすると非常に不快に感じるものであり、快適な利用を考慮すると、例えばバーナ装置のハンチングが生じることも防ぐ必要がある。 In addition, in a heat source device equipped with a hot water supply function, a user will use hot water supply in the kitchen, washroom, etc., and use hot water supply using a shower in the bathroom. It is strongly desired that a sufficient amount of hot water at the hot water supply set temperature set by the user is discharged from the shower nozzle according to the user's operation, and the temperature of the hot water is too low or the flow rate of hot water is too low. This makes one feel very uncomfortable, and in consideration of comfortable use, it is necessary to prevent hunting of the burner device, for example.

本発明は、上記課題を解決するためになされたものであり、その目的は、小型でも給湯能力と暖房能力とを十分に得ることができ、利用者が快適に利用できる熱源装置を提供することにある。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its object is to provide a heat source device that can provide sufficient hot water supply capacity and heating capacity even in a small size, and that can be used comfortably by users. It is in.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、給湯熱交換器と該給湯熱交換器によって熱媒体である水を加熱して給湯先に給湯する機能を備えた給湯回路と、暖房用熱交換器と該暖房用熱交換器を通して液体の熱媒体を循環させる暖房用循環ポンプとを備えた暖房回路とを備え、外部に接続される暖房装置に前記暖房回路から前記熱媒体を供給して該熱媒体を前記暖房回路に通して循環させる構成を有し、前記給湯熱交換器は該給湯熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの給湯熱交換器を有し、前記暖房用熱交換器は該暖房用熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの暖房用熱交換器を有し、前記メインの給湯熱交換器を形成する給湯用の液体流通管路のみが配設された一種管路配設部と、前記メインの給湯熱交換器の液体流通管路が前記メインの暖房用熱交換器の液体流通管路によって上下に挟まれる態様で互いに接して配設されて形成された二種管路配設部とを有して前記給湯熱交換器と前記暖房用熱交換器が複合熱交換器と成し、該複合熱交換器の下部側には給湯用バーナ装置と暖房用バーナ装置とが区分け配置されて前記給湯用バーナ装置によって前記一種管路配設部が加熱され前記暖房用バーナ装置によって前記二種管路配設部の二種の液体流通管路が加熱される構成と成しており、前記給湯用バーナ装置と前記暖房用バーナ装置のそれぞれに対応させてバーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁が設けられるとともに、両方のバーナ装置へのガス供給割合を一律に可変するガス比例弁が設けられており、暖房運転と給湯運転とを同時に行う暖房と給湯の同時運転時に要求される給湯能力に対応させて前記暖房用バーナ装置のみを燃焼させるか該暖房用バーナ装置に加えて前記給湯用バーナ装置も燃焼させるかを制御する燃焼バーナ決定制御と該燃焼バーナ決定制御により決定された燃焼バーナの燃焼において前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを予め定められたバーナ燃焼制御プログラムにしたがって行う燃焼制御手段を有し、前記メインの暖房用熱交換器を通って加熱された熱媒体と前記メインの給湯熱交換器の入側の通路と出側の通路のいずれかを通る熱媒体とを熱的に接続する給湯暖房熱的接続用液-水熱交換器が設けられており、前記暖房と給湯の同時運転時に前記暖房用バーナ装置のみを燃焼させて前記二種管路配設部を加熱するときには前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させる熱媒体循環経路制御手段を有する構成をもって課題を解決する手段としている。 In order to achieve the above objects, the present invention has the following configuration as means for solving the problems. That is, the first invention includes a hot water supply heat exchanger, a hot water supply circuit having a function of heating water as a heat medium by the hot water supply heat exchanger and supplying hot water to a hot water supply destination, a heating heat exchanger, and the heating heat exchanger. a heating circuit comprising a heating circulation pump for circulating a liquid heat medium through a heat exchanger; supplying the heat medium from the heating circuit to a heating device connected to the outside; The hot water heat exchanger has a main hot water heat exchanger for recovering the sensible heat of the combustion gas of the burner unit by means of liquid flow conduits forming the hot water heat exchanger. , the heating heat exchanger has a main heating heat exchanger for recovering sensible heat of the combustion gas of the burner device through a liquid flow conduit forming the heating heat exchanger, and the main hot water supply heat exchange and a liquid distribution pipe for the main heating heat exchanger, which is the liquid distribution pipe for the main hot water supply heat exchanger. The hot water supply heat exchanger and the heating heat exchanger form a composite heat exchanger, and have a two-kind pipe installation portion that is arranged in contact with each other in a manner sandwiched vertically by the channels. A hot water supply burner device and a heating burner device are separately arranged on the lower side of the composite heat exchanger. The two types of liquid distribution pipelines of the seed pipeline installation portion are heated, and the fuel gas is supplied to the burner device corresponding to each of the hot water supply burner device and the heating burner device. In addition to providing a gas on-off valve that shuts off the gas, a gas proportional valve that uniformly varies the gas supply ratio to both burner devices is provided, and heating operation and hot water supply operation are performed at the same time. Combustion burner determination control for controlling whether to burn only the heating burner device or to burn the hot water supply burner device in addition to the heating burner device according to the hot water supply capacity required during operation, and the combustion burner determination. In the combustion of the combustion burner determined by control, the opening degree of the gas proportional valve is increased as the required hot water supply capacity increases in accordance with the required hot water supply capacity, and the opening of the gas proportional valve is increased as the required hot water supply capacity becomes smaller. Combustion control means for performing proportional valve opening degree control for reducing the opening degree according to a predetermined burner combustion control program, and the heat medium heated through the main heating heat exchanger and the main heat exchanger. Pass either the inlet or outlet passage of the hot water heat exchanger. A hot water supply and heating thermal connection liquid-water heat exchanger is provided for thermally connecting the heat medium to the hot water supply and heating, and when the heating and hot water supply are simultaneously operated, only the heating burner device is burned and the two types of pipes are burned. Means for solving the problem by a configuration having heat medium circulation path control means for circulating the heat medium for circulating the heating circuit through the liquid-water heat exchanger for hot water supply and heating thermal connection when heating the path installation portion. and

また、第2の発明は、前記第1の発明の構成に加え、前記熱媒体循環経路制御手段は、前記暖房と給湯の同時運転時に前記暖房用バーナ装置のみを燃焼させて前記二種管路配設部を加熱するときには前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させる代わりに、前記暖房と給湯の同時運転時に前記暖房用バーナ装置のみを燃焼させて前記二種管路配設部を加熱するときに前記熱媒体の温度が低いことにより前記給湯用バーナ装置のハンチングが生じると判断されるときに前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させる構成としたことを特徴とする。 In a second invention, in addition to the configuration of the first invention, the heat medium circulation path control means burns only the heating burner device during simultaneous operation of the heating and the hot water supply to Instead of circulating the heat medium for circulating the heating circuit through the liquid-water heat exchanger for hot water supply/heating thermal connection when heating the installation portion, the heating burner device is used during simultaneous operation of the heating and hot water supply. When it is determined that hunting of the hot water supply burner device occurs due to the low temperature of the heat medium when heating the second kind of pipe installation portion by burning only the heat medium, the heat medium is circulated in the heating circuit. is circulated through the liquid-water heat exchanger for hot water supply and heating thermal connection.

さらに、第3の発明は、前記第1または第2の発明の構成に加え、前記熱媒体循環経路制御手段は、前記給湯暖房熱的接続用液-水熱交換器による熱交換量が予め定められる設定熱交換量となるように前記給湯暖房熱的接続用液-水熱交換器に通す熱媒体流量を制御することを特徴とする。なお、前記設定熱交換量は、1つの値としてもよいし、特定の範囲を有する値としてもよい。 Further, in a third invention, in addition to the configuration of the first or second invention, the heat medium circulation path control means predetermines the amount of heat exchanged by the liquid-water heat exchanger for hot water supply and heating thermal connection. The heat medium flow rate through the liquid-water heat exchanger for hot water supply and heating thermal connection is controlled so as to achieve a set heat exchange amount. The set amount of heat exchange may be one value, or may be a value having a specific range.

さらに、第4の発明は、前記第1または第2または第3の発明の構成に加え、前記メインの暖房用熱交換器の出側には該メインの暖房用熱交換器を通った液体を前記暖房装置側に向けて流通させる往き側の通路が形成され、前記暖房装置を通った液体を前記メインの暖房用熱交換器側に戻す戻り側の通路が形成され、前記往き側の通路から分岐された分岐通路の先端側が前記戻り側の通路に接続されて、前記分岐通路に前記給湯暖房熱的接続用液-水熱交換器が設けられていることを特徴とする。 Furthermore, a fourth invention, in addition to the configuration of the first, second, or third invention, supplies liquid that has passed through the main heating heat exchanger to the outlet side of the main heating heat exchanger. A going-side passage is formed to circulate toward the heating device, and a return-side passage is formed to return the liquid that has passed through the heating device to the main heating heat exchanger side, and from the going-side passage A tip side of the branched passage is connected to the passage on the return side, and the liquid-water heat exchanger for hot water supply and heating thermal connection is provided in the branch passage.

さらに、第5の発明は、前記第1乃至第4のいずれか一つの発明の構成に加え、前記給湯用バーナ装置は複数のバーナ装置を備え、該複数のバーナ装置と前記暖房用バーナ装置のそれぞれに対応させてバーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁が設けられるとともに、全てのバーナ装置へのガス供給割合を一律に可変するガス比例弁が設けられており、要求される給湯能力に対応させて前記複数の給湯用バーナ装置のうちの燃焼バーナ個数であるバーナ段数を予め定められたバーナ段数可変プログラムに従って前記要求給湯能力が大きくなるにつれて大きくし前記要求給湯能力が小さくくなるにつれて前記バーナ段数を小さくするバーナ段数制御と前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを行う燃焼制御手段を有し、該燃焼制御手段は暖房運転と給湯運転とを同時に行う同時運転時に前記要求給湯能力が予め定められる設定能力未満のときには前記暖房用バーナ装置のみを燃焼させ前記設定能力以上となった時には前記暖房用バーナ装置の燃焼に加えて前記給湯用バーナ装置を前記バーナ段数可変プログラムに従って燃焼させる構成としたことを特徴とする。 Furthermore, in a fifth invention, in addition to the configuration of any one of the first to fourth inventions, the hot water supply burner device includes a plurality of burner devices, and the plurality of burner devices and the heating burner device are combined. A gas on-off valve is provided for switching the supply and shutoff of fuel gas to each burner device, and a gas proportional valve is provided for uniformly varying the ratio of gas supply to all burner devices. The number of burner stages, which is the number of combustion burners among the plurality of hot water supply burner devices, is increased according to a predetermined burner stage number variable program in accordance with the required hot water supply capacity to correspond to the required hot water supply capacity. Burner stage number control for decreasing the burner stage number as the burner stage number decreases, and corresponding to the required hot water supply capacity, the opening degree of the gas proportional valve is increased as the required hot water supply capacity increases, and the gas proportional valve is increased as the required hot water supply capacity becomes smaller. Combustion control means for performing proportional valve opening control for reducing the opening of the proportional valve, wherein the combustion control means has a setting capacity that predetermines the required hot water supply capacity during simultaneous operation in which the heating operation and the hot water supply operation are performed at the same time. When the capacity is less than the set capacity, only the heating burner device is burned, and when the capacity is equal to or higher than the set capacity, in addition to the combustion of the heating burner device, the hot water supply burner device is burned according to the burner stage variable program. and

さらに、第6の発明は、前記第5の発明の構成に加え、前記バーナ段数可変プログラムの上下に隣り合う段数において給湯能力が同じとなる領域がない場合には同じ領域が形成されるように前記熱媒体循環経路制御手段が前記メインの暖房用熱交換器を通って加熱された熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させ、前記暖房回路を循環する熱媒体の熱を前記給湯回路側に伝えることを特徴とする。 Furthermore, in the sixth invention, in addition to the configuration of the fifth invention, when there is no region in which the hot water supply capacity is the same in the vertically adjacent stages of the burner stage variable program, the same area is formed. The heat medium circulation path control means circulates the heat medium heated through the main heating heat exchanger through the hot water supply/heating thermal connection liquid-water heat exchanger to circulate through the heating circuit. It is characterized in that the heat of the heat medium is transferred to the hot water supply circuit side.

さらに、第7の発明は、前記第1乃至第6のいずれか一つの発明の構成に加え、前記メインの給湯熱交換器と前記メインの暖房用熱交換器の少なくとも一方には前記バーナ装置の燃焼ガスの潜熱を回収する潜熱回収用熱交換器が接続されていることを特徴とする。 Furthermore, in a seventh invention, in addition to the configuration of any one of the first to sixth inventions, at least one of the main hot water supply heat exchanger and the main heating heat exchanger has the burner device. A latent heat recovery heat exchanger for recovering latent heat of combustion gas is connected.

本発明によれば、給湯回路に設けられるメインの給湯熱交換器を形成する給湯用の液体流通管路のみが配設された一種管路配設部と、前記メインの給湯熱交換器と、暖房回路に設けられるメインの暖房用熱交換器の液体流通管路とが配設された二種管路配設部とを有して前記給湯熱交換器と前記暖房用熱交換器が複合熱交換器と成していることから、メインの給湯熱交換器とメインの暖房用熱交換器をそれぞれ別々に形成して設ける場合に比べて熱源装置の小型化が可能となる。 According to the present invention, a first-class pipeline installation section in which only a liquid distribution pipeline for hot water supply forming a main hot water supply heat exchanger provided in a hot water supply circuit is arranged; the main hot water supply heat exchanger; and a two-kind pipe installation portion in which a liquid distribution pipe of a main heating heat exchanger provided in a heating circuit is arranged, wherein the hot water supply heat exchanger and the heating heat exchanger are combined heat. Since it is formed as an exchanger, it is possible to reduce the size of the heat source device as compared with the case where the main hot water supply heat exchanger and the main heating heat exchanger are separately formed and provided.

また、複合熱交換器の二種管路配設部においては、メインの給湯熱交換器の液体流通管路の上下に暖房用熱交換器の暖房用の液体流通管路が設けられているので、二種管路配設部は最下段(最下位置)の通路が暖房用の液体流通管路であり、この管路を流れる液体(熱媒体)は加熱されて循環されている状態であれば温かく、また、その循環が停止されていても給水側から冷たい水が導入される給湯用の液体流通管路のように冷たい状態であることは殆どないことから、複合熱交換器の液体流通管路に結露が発生することを防止できる。 In addition, in the two-kind pipe arrangement portion of the composite heat exchanger, the heating liquid distribution pipes of the heating heat exchanger are provided above and below the liquid distribution pipe of the main hot water heat exchanger. , The lowermost (lowest position) passage of the second type pipe installation part is a liquid distribution pipe for heating, and the liquid (heat medium) flowing through this pipe is heated and circulated. However, even if the circulation is stopped, it is rarely as cold as the liquid distribution line for hot water supply, in which cold water is introduced from the water supply side. It is possible to prevent condensation from occurring in the pipeline.

さらに、本発明によれば、複合熱交換器の二種管路配設部においては、メインの給湯熱交換器の液体流通管路の上下に暖房用熱交換器の暖房用の液体流通管路が設けられているので暖房用の液体流通管路の配設割合を多くでき、二種管路配設部を暖房用バーナ装置によって加熱することによって、十分な暖房能力を得ることができる。一方、給湯運転に関しては、その給湯能力に応じ、二種管路配設部に配設されている給湯用の液体流通管路を給湯用バーナ装置で加熱したり、一種管路配設部配設されている給湯用の液体流通管路の適宜の液体流通管路を給湯用バーナ装置で加熱したりすることにより十分な給湯能力を得ることができる。 Furthermore, according to the present invention, in the two-kind pipe arrangement portion of the composite heat exchanger, the liquid distribution pipe for heating of the heat exchanger for heating is arranged above and below the liquid distribution pipe for the main hot water supply heat exchanger. is provided, it is possible to increase the arrangement ratio of the liquid distribution pipes for heating, and to obtain sufficient heating capacity by heating the part where the second kind of pipes are arranged by the heating burner device. On the other hand, regarding the hot water supply operation, depending on the hot water supply capacity, the liquid distribution pipe for hot water supply arranged in the second kind pipe installation part is heated by the hot water supply burner device, or the first kind pipe installation part is heated. Sufficient hot water supply capacity can be obtained by heating an appropriate liquid flow line among the provided hot water supply liquid flow lines with a hot water supply burner device.

また、本発明において、暖房運転と給湯運転とを同時に行う暖房と給湯の同時運転時には、要求される給湯能力に対応させて前記暖房用バーナ装置のみを燃焼させるか該暖房用バーナ装置に加えて前記給湯用バーナ装置も燃焼させるかを制御する燃焼バーナ決定制御と、該燃焼バーナ決定制御により決定された燃焼バーナの燃焼において前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを予め定められたバーナ燃焼制御プログラムにしたがって行う燃焼制御手段を有することから、前記暖房と給湯の同時運転時におけるバーナ燃焼制御を的確に行うことができる。 Further, in the present invention, at the time of simultaneous heating and hot water supply operation in which heating operation and hot water supply operation are performed at the same time, only the heating burner device is burned or in addition to the heating burner device, in accordance with the required hot water supply capacity. combustion burner determination control for controlling whether the hot water supply burner device also burns, and in combustion of the combustion burner determined by the combustion burner determination control, corresponding to the required hot water supply capacity, the gas as the required hot water supply capacity increases. Combustion control means for performing proportional valve opening control for increasing the opening of the proportional valve and decreasing the opening of the gas proportional valve as the required hot water supply capacity decreases according to a predetermined burner combustion control program. Therefore, burner combustion control can be accurately performed during the simultaneous operation of heating and hot water supply.

なお、本発明に適用されているような複合熱交換器の二種管路配設部では、給湯と暖房の同時運転時において、暖房用バーナ装置の燃焼熱量を暖房用の液体流通管路が多く吸熱すると給湯能力が低下するものであり、例えば暖房用の液体流通管路内を通る熱媒体の温度が低いと、暖房用の液体流通管路内を通る熱媒体が暖房用のバーナ装置の燃焼熱量を多く吸熱する。そのため、前記熱媒体の温度が低いことにより、前記暖房用バーナ装置のみを燃焼させるときに発揮される給湯能力が小さくなり、その給湯能力と、前記暖房用バーナ装置に加えて前記給湯用バーナ装置も燃焼させるときの給湯能力との切り替えが的確に行えないときがあり、前記給湯用バーナ装置のハンチング発生の可能性が生じることがある。 In addition, in the two-kind pipe arrangement portion of the composite heat exchanger as applied to the present invention, during simultaneous operation of hot water supply and heating, the combustion heat amount of the heating burner device is transferred to the liquid distribution pipe for heating. If a large amount of heat is absorbed, the hot water supply capacity decreases. Absorbs a large amount of combustion heat. Therefore, since the temperature of the heat medium is low, the hot water supply capacity exhibited when only the heating burner device is burned becomes small, and the hot water supply capacity and the hot water supply burner device in addition to the heating burner device. There are times when the hot water supply capacity cannot be accurately switched when the hot water is burned, and there is a possibility that hunting may occur in the hot water supply burner device.

それに対し、本発明においては、前記メインの暖房用熱交換器を通って加熱された熱媒体と前記メインの給湯熱交換器の入側の通路と出側の通路のいずれかを通る熱媒体とを熱的に接続する給湯暖房熱的接続用液-水熱交換器が設けられており、熱媒体循環経路制御手段が、前記暖房と給湯の同時運転時に前記暖房用バーナ装置のみを燃焼させて前記二種管路配設部を加熱するときには前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させることにより、そのような不具合(給湯用バーナ装置のハンチングの発生)を防ぐことができる。 On the other hand, in the present invention, the heat medium heated through the main heating heat exchanger and the heat medium passing through either the inlet side passage or the outlet side passage of the main hot water supply heat exchanger A liquid-water heat exchanger for thermally connecting the hot water supply and heating is provided, and the heat medium circulation path control means burns only the heating burner device during simultaneous operation of the heating and hot water supply. By circulating the heat medium that circulates the heating circuit through the liquid-water heat exchanger for hot water supply and heating thermal connection when heating the two-kind pipe installation part, such a problem (hot water supply burner (Occurrence of device hunting) can be prevented.

つまり、前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させると、暖房用の液体流通管路を通って加熱されて熱くなった熱媒体の熱を給湯回路側に伝えることができるので、前記暖房用バーナ装置のみを燃焼させるときに発揮される給湯能力を高めることができ、その給湯能力と、前記暖房用バーナ装置に加えて前記給湯用バーナ装置も燃焼させるときの給湯能力との切り替えを的確に行えるようになり、前記給湯用バーナ装置のハンチングが生じることを防ぐことができる。 That is, when the heat medium circulating in the heating circuit is circulated through the liquid-water heat exchanger for hot water supply/heating thermal connection, the heat medium that has been heated through the heating liquid circulation pipe is heated. Since heat can be transmitted to the hot water supply circuit side, the hot water supply capacity exhibited when only the heating burner device is burned can be increased, and the hot water supply capacity and the hot water supply capacity can be combined with the heating burner device. It becomes possible to accurately switch the hot water supply capacity when the burner device is also used for combustion, so that hunting of the hot water supply burner device can be prevented.

なお、前記の如く、本発明に適用されているような複合熱交換器の二種管路配設部では、給湯と暖房の同時運転時において、暖房用バーナ装置の燃焼熱量を暖房用の液体流通管路が多く吸熱すると給湯能力が低下することから、暖房用の液体流通管路内を通る熱媒体の温度が低いと、前記給湯用バーナ装置のハンチングが生じる可能性が生じる(高くなる)。そのため、前記暖房と給湯の同時運転時に前記暖房用バーナ装置のみを燃焼させて前記二種管路配設部を加熱するときに、前記熱媒体の温度が低いことにより前記給湯用バーナ装置のハンチングが生じると判断されるときに前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させるようにすれば、非常に的確に給湯用バーナ装置のハンチングを防止できる。 As described above, in the two-kind pipe arrangement portion of the composite heat exchanger as applied to the present invention, during the simultaneous operation of hot water supply and heating, the combustion heat amount of the heating burner device is transferred to the heating liquid. If the flow pipe absorbs a large amount of heat, the hot water supply capacity decreases. Therefore, if the temperature of the heat medium passing through the liquid flow pipe for heating is low, there is a possibility that the hot water supply burner device will hunt (increase). . Therefore, when heating only the heating burner device during the simultaneous operation of heating and hot water supply to heat the two-kind pipe installation portion, the temperature of the heat medium is low, so that hunting of the hot water supply burner device occurs. If it is determined that the hot water supply burner device is circulated through the liquid-water heat exchanger for hot water supply heating thermal connection, the heat medium circulating in the heating circuit is circulated very accurately. can be prevented.

さらに、本発明において、媒体循環経路制御手段は、前記給湯暖房熱的接続用液-水熱交換器による熱交換量が予め定められる設定熱交換量となるように前記給湯暖房熱的接続用液-水熱交換器に通す熱媒体流量を制御する構成とすることにより、例えば暖房用回路を循環する熱媒体から前記給湯暖房熱的接続用液-水熱交換器給湯熱交換器側に加えられる熱量が多くなりすぎて暖房用回路を循環する熱媒体の温度が低くなりすぎ、暖房能力が足りなくなるといった不具合が生じることを的確に抑制できる。すなわち、給湯側と暖房側とのバランスを適切にとることができ、使い勝手が非常に良好な熱源装置を実現することができる。 Further, in the present invention, the medium circulation path control means controls the hot water supply/heating thermal connection liquid so that the amount of heat exchanged by the hot water supply/heating thermal connection liquid-water heat exchanger becomes a predetermined set heat exchange amount. -By adopting a configuration that controls the flow rate of the heat medium passing through the water heat exchanger, for example, the heat medium that circulates in the heating circuit is added to the hot water supply heating thermal connection liquid-water heat exchanger hot water heat exchanger side It is possible to accurately suppress the problem that the heating capacity becomes insufficient due to the temperature of the heat medium circulating in the heating circuit becoming too low due to an excessive amount of heat. That is, it is possible to appropriately balance the hot water supply side and the heating side, and it is possible to realize a heat source device that is very convenient to use.

さらに、前記メインの暖房用熱交換器の出側には該メインの暖房用熱交換器を通った液体を前記暖房装置側に向けて流通させる往き側の通路が形成され、前記暖房装置を通った液体を前記メインの暖房用熱交換器側に戻す戻り側の通路が形成され、前記往き側の通路から分岐された分岐通路の先端側が前記戻り側の通路に接続されて、前記分岐通路に前記給湯暖房熱的接続用液-水熱交換器が設けられている構成によれば、暖房回路を循環させる熱媒体を必要に応じて分岐通路に通し、給湯暖房熱的接続用液-水熱交換器を介して暖房回路の熱を給湯回路側に伝えることによって給湯能力の不足を補充することができる。 Further, an outgoing passage is formed on the outlet side of the main heat exchanger for heating so that the liquid that has passed through the main heat exchanger for heating flows toward the heating device. A return-side passage is formed to return the liquid to the main heating heat exchanger side, and the tip end of the branch passage branched from the going-side passage is connected to the return-side passage, and the branch passage According to the configuration in which the hot water supply and heating thermal connection liquid-water heat exchanger is provided, the heat medium for circulating the heating circuit is passed through the branch passage as necessary, and the hot water supply and heating thermal connection liquid - water heat By transmitting the heat of the heating circuit to the hot water supply circuit side via the heat exchanger, it is possible to make up for the lack of hot water supply capacity.

さらに、燃焼制御手段は、要求される給湯能力に対応させて前記複数の給湯用バーナ装置のうちの燃焼バーナ個数であるバーナ段数を予め定められたバーナ段数可変プログラムに従って前記要求給湯能力が大きくなるにつれて大きくし前記要求給湯能力が小さくくなるにつれて前記バーナ段数を小さくするバーナ段数制御と、前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを行う構成によれば、給湯運転をきめ細かく的確に行うことができる。 Further, the combustion control means increases the required hot water supply capacity according to a burner stage number variable program in which the burner stage number, which is the number of combustion burners among the plurality of hot water supply burner devices, is determined in advance in correspondence with the required hot water supply capacity. a burner stage number control for increasing the burner stage number as the required hot water supply capacity decreases and decreasing the burner stage number as the required hot water supply capacity becomes smaller; According to the configuration in which proportional valve opening degree control is performed to decrease the opening degree of the gas proportional valve as the required hot water supply capacity becomes smaller, the hot water supply operation can be performed finely and accurately.

さらに、前記のように複数の給湯用バーナ装置を有して、バーナ段数可変プログラムの上下に隣り合う段数において給湯能力が同じとなる領域がない場合には同じ領域が形成されるように前記熱媒体循環経路制御手段が前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させ、前記暖房回路を循環する熱媒体の熱を前記給湯回路側に伝える構成によれば、もしもバーナ段数可変プログラムの上下に隣り合う段数において給湯能力が同じとなる領域がない場合でも、前記メインの暖房用熱交換器を通って加熱された熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させ、前記暖房回路を循環する熱媒体の熱を前記給湯回路側に伝えることにより、複数の給湯用バーナ装置間でバーナ段数を切り替えるときのハンチング発生を抑制できる。 Further, if there is no region in which the hot water supply capacity is the same in the number of stages adjacent to each other in the burner stage number variable program, the same area is formed. A medium circulation path control means circulates the heat medium circulating in the heating circuit through the liquid-water heat exchanger for hot water supply/heating thermal connection, and transfers the heat of the heat medium circulating in the heating circuit to the hot water supply circuit side. According to the transmission configuration, even if there is no region where the hot water supply capacity is the same in the number of stages adjacent to each other in the burner stage number variable program, the heat medium heated through the main heat exchanger for heating is used for the hot water supply and heating. When switching the number of burner stages between a plurality of hot water supply burner devices by circulating through the thermal connection liquid-water heat exchanger and transferring the heat of the heat medium circulating in the heating circuit to the hot water supply circuit side Hunting can be suppressed.

さらに、本発明において、前記メインの給湯熱交換器と前記メインの暖房用熱交換器の少なくとも一方には前記バーナ装置の燃焼ガスの潜熱を回収する潜熱回収用熱交換器を接続すると、効率の高い熱源装置の実現を可能にできる。 Furthermore, in the present invention, if at least one of the main hot water supply heat exchanger and the main heating heat exchanger is connected to a latent heat recovery heat exchanger for recovering the latent heat of the combustion gas of the burner device, the efficiency can be improved. Realization of an expensive heat source device can be made possible.

本発明に係る熱源装置の実施例の制御方法を説明するための模式的なグラフである。4 is a schematic graph for explaining the control method of the embodiment of the heat source device according to the present invention; 実施例の熱源装置における複合熱交換器とバーナ装置との配設構成を模式的に示す説明図である。FIG. 3 is an explanatory view schematically showing the arrangement configuration of a composite heat exchanger and a burner device in the heat source device of the embodiment; 本発明に係る熱源装置の第1実施例の熱源装置のシステム構成を熱源装置に接続される暖房装置等と共に示す模式的な説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is typical explanatory drawing which shows the system configuration|structure of the heat-source apparatus of 1st Example of the heat-source apparatus which concerns on this invention with the heating apparatus etc. which are connected to a heat-source apparatus. 実施例における潜熱回収用熱交換器の配設構成を模式的に示す説明図である。FIG. 3 is an explanatory view schematically showing the arrangement configuration of the latent heat recovery heat exchanger in the example. 実施例の熱源装置に設けられている制御構成の要部構成を示すブロック図である。FIG. 3 is a block diagram showing the main configuration of the control configuration provided in the heat source device of the embodiment; 実施例の熱源装置に適用されている給湯用と暖房用のバーナ装置の構成を説明するための模式的な斜視図(a)と平面図(b)である。FIG. 3 is a schematic perspective view (a) and a plan view (b) for explaining the configurations of hot water supply and heating burner devices applied to the heat source device of the embodiment. 実施例の熱源装置の給湯単独運転時におけるバーナ装置の燃焼面切り替え動作と給湯能力との関係を説明するためのグラフである。5 is a graph for explaining the relationship between the combustion surface switching operation of the burner device and the hot water supply capacity when the heat source device of the embodiment is in hot water supply independent operation. 第2実施例の熱源装置のシステム構成を説明するための模式的なシステム説明図である。FIG. 11 is a schematic system explanatory diagram for explaining the system configuration of the heat source device of the second embodiment; 第3実施例の熱源装置のシステム構成を示す模式的説明図である。FIG. 11 is a schematic explanatory diagram showing the system configuration of the heat source device of the third embodiment; 給湯暖房同時運転時のガス比例弁の開度と給湯能力との関係例を模式的に示すグラフである。4 is a graph schematically showing an example of the relationship between the degree of opening of the gas proportional valve and the hot water supply capacity during simultaneous operation of hot water supply and heating. 給湯暖房同時運転時のガス比例弁の開度と給湯能力との別の関係例を模式的に示すグラフである。FIG. 11 is a graph schematically showing another relationship example between the degree of opening of the gas proportional valve and the hot water supply capacity during simultaneous operation of hot water supply and heating; FIG. 熱源装置の暖房運転制御と風呂運転制御のための制御構成を示すブロック図である。4 is a block diagram showing a control configuration for heating operation control and bathing operation control of the heat source device; FIG. 浴槽への湯張りに用いられる浴槽の水位(P)と水量(Q)との関係データ(P-Qデータ)の例を示すグラフである。4 is a graph showing an example of relationship data (PQ data) between a water level (P) and a water volume (Q) of a bathtub used for filling the bathtub with hot water. 従来提案されている一缶二水路型の熱交換器の構成例を示す模式的な説明図である。1 is a schematic explanatory diagram showing a configuration example of a conventionally proposed one-can two-channel type heat exchanger; FIG. 暖房用バーナと複数の給湯用バーナの段数制御を行って燃焼制御を行う制御方法を説明するための模式的なグラフである。5 is a schematic graph for explaining a control method for performing combustion control by controlling the number of stages of a heating burner and a plurality of hot water supply burners.

以下、本発明の実施の形態を図面に基づき実施例によって説明する。なお、本実施例の説明において、これまでの説明の例と同一名称部分には同一符号を付し、その重複説明は省略または簡略化する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described by examples based on the drawings. In the description of the present embodiment, the same reference numerals are given to the parts with the same names as the examples of the description so far, and the redundant description thereof will be omitted or simplified.

図3には、本発明に係る熱源装置の第1実施例のシステム構成が模式的に示されている。同図に示されるように、本実施例の熱源装置は、器具ケース80内に、給湯回路45と暖房回路7とを設けて形成される複合型の熱源装置である。この熱源装置は燃焼室100を有し、燃焼室100内には給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ装置5とが設けられており、複合熱交換器1の下部側に区分け配置されている。なお、複合熱交換器1についての詳細構成は後述する。 FIG. 3 schematically shows the system configuration of the first embodiment of the heat source device according to the present invention. As shown in the figure, the heat source device of this embodiment is a composite heat source device formed by providing a hot water supply circuit 45 and a heating circuit 7 in an instrument case 80 . This heat source device has a combustion chamber 100, in which a burner device 2 (2a, 2b, 2c) for hot water supply and a burner device 5 for heating are provided. They are arranged separately on the lower side. A detailed configuration of the composite heat exchanger 1 will be described later.

給湯用のバーナ装置2は複数のバーナ装置2a,2b,2cを有し、バーナ装置2aの燃焼面とバーナ装置2bの燃焼面とバーナ装置2cの燃焼面によって区分される態様で形成された区分燃焼面を有している。言い換えれば、バーナ装置2a,2b,2cの各燃焼面によって区分された区分燃焼面が形成されており、熱源装置には、給湯用のバーナ装置2に要求される能力が一段アップする毎に前記区分燃焼面を予め定められた順番(バーナ装置2a,2b,2cの順)で選択的に順次追加燃焼させる燃焼制御手段(図3には図示せず)が設けられている。給湯用のバーナ装置2と暖房用のバーナ装置5の下方側には、これらのバーナ装置2,5の給排気用の燃焼ファン15が設けられている。 The burner device 2 for hot water supply has a plurality of burner devices 2a, 2b, and 2c, and is divided into sections formed by a combustion surface of the burner device 2a, a combustion surface of the burner device 2b, and a combustion surface of the burner device 2c. It has a burning surface. In other words, each combustion surface of the burner devices 2a, 2b, and 2c forms a sectioned combustion surface, and the heat source device has the above-mentioned capacity every time the capability required of the burner device 2 for hot water supply is increased by one level. Combustion control means (not shown in FIG. 3) are provided for selectively sequentially additionally burning the segmented combustion surfaces in a predetermined order (the order of the burner devices 2a, 2b, 2c). Below the hot water supply burner device 2 and heating burner device 5, a combustion fan 15 for air supply and exhaust of these burner devices 2 and 5 is provided.

また、燃焼室100には、給湯用のバーナ装置2と暖房用のバーナ装置5の上側に、給湯と暖房の複合熱交換器1が設けられており、この複合熱交換器1は、図2、図3に示されるように、メインの給湯熱交換器を形成する給湯用の液体流通管路13のみが配設された一種管路配設部(一種流路配設部)111と、給湯用の液体流通管路13がメインの暖房用熱交換器を形成する暖房用の液体流通管路12によって上下に挟まれる態様で(図2、参照)互いに接して配設された二種管路配設部112とを有しており、二種管路配設部(二種流路配設部)112と一種管路配設部111とは隣り合わせに配設されている。 In the combustion chamber 100, a combined heat exchanger 1 for supplying hot water and heating is provided above the burner device 2 for supplying hot water and the burner device 5 for heating. As shown in FIG. 3, a first-class pipeline installation portion (first-class flow path installation portion) 111 in which only the hot water supply liquid distribution pipeline 13 forming the main hot water supply heat exchanger is arranged, and a hot water supply Two types of pipes are arranged in contact with each other in such a manner that the liquid distribution pipe 13 for the heating is vertically sandwiched by the liquid distribution pipe 12 for heating forming the main heat exchanger for heating (see FIG. 2). The first-class pipeline installation portion 112 and the first-class pipeline installation portion 111 are arranged side by side.

このように、本実施例では、複合熱交換器1の二種管路配設部112がメインの給湯熱交換器の液体流通管路13をメインの暖房用熱交換器の液体流通管路12によって上下に挟む態様で互いに接して配設された構成と成して、この構成の二種管路配設部112が複合熱交換器1の一部と成している。二種管路配設部112の下方側には、二種管路配設部112を加熱するための暖房用のバーナ装置5が設けられ、二種管路配設部112の液体流通管路12,13は共通(1つ)のバーナ装置(暖房用のバーナ装置5)により加熱される構成と成している。 As described above, in this embodiment, the two-kind pipe installation portion 112 of the composite heat exchanger 1 is arranged to connect the liquid distribution pipe 13 of the main hot water heat exchanger to the liquid distribution pipe 12 of the main heating heat exchanger. The two pipe line installation portions 112 of this configuration form a part of the composite heat exchanger 1 . A heating burner device 5 for heating the second pipeline installation portion 112 is provided below the second pipeline installation portion 112, and the liquid distribution pipeline of the second pipeline installation portion 112 is provided. 12 and 13 are configured to be heated by a common (one) burner device (heating burner device 5).

一方、一種管路配設部111の下方側には、該一種管路配設部111を加熱するための給湯用のバーナ装置2が配設されているが、図2に示されるように、二種管路配設部112において一種管路配設部111に隣接する側の一部分に配設されている液体流通管路12,13が、給湯用のバーナ装置2の上方側にはみ出す態様で配設されている。 On the other hand, a burner device 2 for supplying hot water for heating the first-class pipeline installation portion 111 is disposed below the first-class pipeline installation portion 111. As shown in FIG. The liquid distribution pipelines 12 and 13 arranged in a part of the side adjacent to the first pipeline installation part 111 in the second pipeline installation part 112 protrude above the burner device 2 for hot water supply. are arranged.

本実施例では、この構成によって、暖房用のバーナ装置5のみの燃焼時に暖房用のバーナ装置5の燃焼ガスが一種管路配設部111側に広がっても、その広がり部分には給湯用のバーナ装置2の上方側にはみ出す態様で配設された二種管路配設部112の液体流通管路12,13が配設されているので、広がった燃焼ガスによって加熱されるのは、この二種管路配設部112の液体流通管路12,13となる。 In this embodiment, even if the combustion gas from the heating burner device 5 spreads toward the first pipe line installation portion 111 when only the heating burner device 5 burns, the hot water supply gas is spread in the spread portion. Since the liquid distribution pipelines 12 and 13 of the second-class pipeline installation portion 112 are arranged so as to protrude from the upper side of the burner device 2, it is this that is heated by the spread combustion gas. It becomes the liquid distribution pipelines 12 and 13 of the two-kind pipeline installation part 112 .

そして、二種管路配設部112は、暖房用の液体流通管路12によって給湯用の液体流通管路13を上下に挟む態様で配設されているので、暖房用のバーナ装置5の燃焼ガスの広がりによって加熱されるのは、給湯用の液体流通管路13の下側に配設されている暖房用の液体流通管路12である。したがって、一種管路配設部111側に配設されている給湯用の液体流通管路13が暖房単独運転時に暖房用のバーナ装置5によって加熱されてしまうことを防ぐことができ、一種管路配設部111側に配設されている給湯用の液体流通管路13内に滞留している水等の熱媒体が沸騰してしまうことを抑制できる。 Since the two-kind pipe arrangement portion 112 is arranged in such a manner that the liquid circulation pipe 13 for supplying hot water is vertically sandwiched by the liquid circulation pipe 12 for heating, the burner device 5 for heating burns. Heated by the spread of the gas is the heating liquid conduit 12 disposed below the hot water supply liquid conduit 13 . Therefore, it is possible to prevent the hot water supply liquid distribution pipeline 13 arranged on the first pipeline installation portion 111 side from being heated by the heating burner device 5 during the single heating operation. It is possible to suppress the boiling of the heat medium such as water remaining in the hot water supply liquid circulation pipe 13 arranged on the arrangement portion 111 side.

複合熱交換器1はフィン43を有しており、このフィン43は、給湯用のバーナ装置2と暖房用のバーナ装置5の上側に立ち上がる態様で設けられて、図2の紙面に垂直な方向に(図3では左右方向に)互いに間隔を介して複数配設されており、各フィン43の面方向が給湯用のバーナ装置2a,2b,2cの配列方向とは直交(または略直交)する方向となるような態様と成している。一種管路配設部111の液体流通管路13と二種管路配設部112の液体流通管路12,13は共に、これらの複数の共通のフィン43に形成された対応する管路挿入孔103,104に挿入され(液体流通管路13は管路挿入孔103に、液体流通管路12は管路挿入孔104に挿入され)ており、複合熱交換器1をこのような態様に形成すると非常に製造しやすい。 The composite heat exchanger 1 has fins 43. The fins 43 are provided so as to rise above the hot water supply burner device 2 and the heating burner device 5, and are arranged in a direction perpendicular to the paper surface of FIG. 3, and the surface direction of each fin 43 is orthogonal (or substantially orthogonal) to the arrangement direction of the burner devices 2a, 2b, 2c for supplying hot water. It is configured in such a manner as to be oriented. Both the liquid distribution conduit 13 of the first conduit arrangement part 111 and the liquid distribution conduits 12, 13 of the second conduit arrangement part 112 are connected to corresponding conduit inserts formed in these common fins 43. are inserted into the holes 103 and 104 (the liquid circulation pipeline 13 is inserted into the pipeline insertion hole 103, and the liquid circulation pipeline 12 is inserted into the pipeline insertion hole 104). Once formed, it is very easy to manufacture.

また、二種管路配設部112において、上下方向に配設される3つの管路(暖房用の液体流通管路12と給湯用の液体流通管路13)のうち、真ん中の管路を、低温の水が導入される液体流通管路13とすることにより、以下の効果を奏することができる。つまり、二種管路配設部112における暖房用の液体流通管路12と給湯用の液体流通管路13の配列態様によって、暖房用の液体流通管路12の吸熱量と給湯用の液体流通管路13側の吸熱量とに違いが生じ、二種管路配設部112において上下方向の真ん中の管路を給湯用の液体流通管路13として互いに接する態様で設けることにより、給湯用の液体流通管路13の1本あたりの吸熱量を高くできる構成と成している。 Further, in the two-kind pipe arrangement portion 112, among the three pipes arranged in the vertical direction (liquid distribution pipe 12 for heating and liquid distribution pipe 13 for hot water supply), the middle pipe is The following effects can be obtained by forming the liquid flow conduit 13 into which low-temperature water is introduced. In other words, depending on the arrangement of the heating liquid circulation conduit 12 and the hot water supply liquid circulation conduit 13 in the two-kind conduit arrangement portion 112, the heat absorption amount of the heating liquid circulation conduit 12 and the hot water supply liquid circulation A difference occurs in the amount of heat absorbed on the side of the pipe line 13, and by providing the middle pipe line in the vertical direction in the second type pipe line installation part 112 as the liquid distribution pipe line 13 for hot water supply in a manner that is in contact with each other, The structure is such that the amount of heat absorbed per one liquid circulation pipe 13 can be increased.

なお、図3はシステム図であるために、図2の態様と異なるように示されているが、実際には図2に示される断面構成図のような態様で一種管路配設部111の液体流通管路13と二種管路配設部112の液体流通管路12,13等が配設されている。ただし、図2も模式的な構成図であるために、液体流通管路12,13等の本数等は正確に示されているとは限らず、液体流通管路12,13の本数や配設間隔等は図1に示されるものに限定されるものではなく、適宜設定されるものである。 Since FIG. 3 is a system diagram, it is shown in a manner different from that of FIG. The liquid circulation conduit 13 and the liquid circulation conduits 12, 13 of the two-kind conduit arrangement portion 112 are arranged. However, since FIG. 2 is also a schematic configuration diagram, the number of the liquid circulation conduits 12, 13, etc. is not necessarily shown accurately, and the number and arrangement of the liquid circulation conduits 12, 13 are not always shown. Intervals and the like are not limited to those shown in FIG. 1, and may be set as appropriate.

本実施例において、メインの給湯熱交換器を形成する給湯用の液体流通管路13には、バーナ装置2,5の燃焼ガスの潜熱を回収する潜熱回収用の給湯熱交換器4が接続されており、メインの暖房用熱交換器を形成する暖房用の液体流通管路12には、バーナ装置2,5の燃焼ガスの潜熱を回収する潜熱回収用の暖房用熱交換器6が接続されている。なお、これらの潜熱回収用の給湯熱交換器4と暖房用熱交換器6は、それぞれの熱交換器を形成する液体流通管路を通る熱媒体(ここでは水)によりバーナ装置2,5の燃焼ガスの潜熱を回収するものであるが、潜熱回収用の給湯熱交換器4と暖房用熱交換器6は共に、バーナ装置2,5の燃焼ガスの潜熱のみならず顕熱も回収するものである。 In this embodiment, a hot water supply heat exchanger 4 for latent heat recovery for recovering the latent heat of the combustion gas of the burner devices 2 and 5 is connected to the hot water supply liquid flow conduit 13 forming the main hot water supply heat exchanger. A heating heat exchanger 6 for recovering the latent heat of the combustion gas of the burner devices 2 and 5 is connected to the heating liquid distribution pipe 12 forming the main heating heat exchanger. ing. The hot water supply heat exchanger 4 for recovering latent heat and the heat exchanger 6 for heating use the heat medium (here, water) passing through the liquid flow conduits forming the respective heat exchangers to heat the burners 2 and 5. The latent heat of the combustion gas is recovered, and both the hot water supply heat exchanger 4 for latent heat recovery and the heating heat exchanger 6 recover not only the latent heat of the combustion gas of the burner devices 2 and 5 but also the sensible heat. is.

また、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6は共に、複合熱交換器1の上部側に配設され、図4に示されるように、潜熱回収用の給湯熱交換器4の配設空間と潜熱回収用の暖房用熱交換器6の配設空間とを仕切る仕切り115が複合熱交換器1の上部側に設けられている。この仕切り115によって、暖房用のバーナ装置5の燃焼ガス(排気ガス)が複合熱交換器1を通った後に潜熱回収用の暖房用熱交換器6の配設空間を通り、その後、潜熱回収用の給湯熱交換器4の配設空間を通って排気口116から排出される態様と成している。つまり、複合熱交換器1を通った暖房用のバーナ装置5の燃焼ガスが流れる流れの上流側に潜熱回収用の暖房用熱交換器6が配設され、流れの下流側に潜熱回収用の給湯熱交換器4が配設されている。 Both the hot water supply heat exchanger 4 for latent heat recovery and the heating heat exchanger 6 for latent heat recovery are disposed on the upper side of the composite heat exchanger 1, and as shown in FIG. A partition 115 is provided on the upper side of the composite heat exchanger 1 to separate the installation space of the hot water supply heat exchanger 4 and the installation space of the latent heat recovery heating heat exchanger 6 . Due to this partition 115, the combustion gas (exhaust gas) of the burner device 5 for heating passes through the space in which the latent heat recovery heating heat exchanger 6 is installed after passing through the composite heat exchanger 1, and then passes through the space for latent heat recovery. The water is discharged from the exhaust port 116 through the installation space of the hot water supply heat exchanger 4 . That is, the heating heat exchanger 6 for latent heat recovery is disposed upstream of the flow of combustion gas from the burner device 5 for heating that has passed through the composite heat exchanger 1, and the latent heat recovery heat exchanger 6 is disposed downstream of the flow. A hot water supply heat exchanger 4 is provided.

このような構成によって、暖房用のバーナ装置5の燃焼時の燃焼ガスが、複合熱交換器1を通った後に約160~約250℃で潜熱回収用の暖房用熱交換器6の配設領域を通って潜熱回収されて冷やされた後、潜熱回収用の給湯熱交換器4の配設領域を通ることになるため、暖房用のバーナ装置5の単独燃焼時であっても、潜熱回収用の給湯熱交換器4内の水が沸騰することを抑制できる。また、潜熱回収用の暖房用熱交換器6は、仕切り115を介して潜熱回収用の給湯熱交換器4の上側に配設されており、給湯用のバーナ装置2の単独燃焼時であっても、潜熱回収用の暖房用熱交換器6内の水の沸騰は抑制できる。 With such a configuration, the combustion gas at the time of combustion of the burner device 5 for heating is about 160 to about 250° C. after passing through the composite heat exchanger 1. After the latent heat is recovered through and cooled, it passes through the arrangement area of the hot water supply heat exchanger 4 for latent heat recovery. Boiling of water in the hot water supply heat exchanger 4 can be suppressed. In addition, the latent heat recovery heating heat exchanger 6 is arranged above the latent heat recovery hot water supply heat exchanger 4 via a partition 115, and when the hot water supply burner device 2 burns alone, Also, boiling of water in the heating heat exchanger 6 for latent heat recovery can be suppressed.

なお、図3および後述する図9は、システム図であるために、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の配設構成も図4の態様と異なるように示されているが、実際には図4に示される模式的な断面構成図のような態様で潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6等が配設されている。ただし、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の本数や配設間隔等は図4に示されるものに限定されるものではなく、適宜設定されるものである。 Since FIG. 3 and FIG. 9, which will be described later, are system diagrams, the arrangement configuration of the hot water supply heat exchanger 4 for latent heat recovery and the heating heat exchanger 6 for latent heat recovery is also different from that in FIG. , actually, the hot water supply heat exchanger 4 for latent heat recovery, the heating heat exchanger 6 for latent heat recovery, etc. are arranged in a manner like the schematic cross-sectional configuration diagram shown in FIG. It is However, the number of hot water supply heat exchangers 4 for recovering latent heat and the heat exchangers for heating 6 for latent heat recovery, the number of installation intervals, etc. are not limited to those shown in FIG. 4, and may be set as appropriate. be.

図3に示されるように、メインの暖房用熱交換器の出側には該メインの暖房用熱交換器(暖房用の液体流通管路12)を通った液体(温水)を暖房装置70,71側に向けて流通させる往き側の通路としての管路60が形成され、暖房装置70,71を通った液体(水)を潜熱回収用の暖房用熱交換器に戻す戻り側の通路としての管路61が形成され、管路60から分岐された分岐通路65の先端側が管路61に接続されており、分岐通路65には、該分岐通路65を前記メインの給湯熱交換器(複合熱交換器1を形成する給湯用の液体流通管路13)の入側の通路と出側の通路のいずれか(ここでは入側)に熱的に接続する給湯暖房熱的接続用液-水熱交換器33が設けられている。 As shown in FIG. 3, on the output side of the main heating heat exchanger, the liquid (hot water) that has passed through the main heating heat exchanger (heating liquid distribution line 12) is supplied to a heating device 70, A pipeline 60 is formed as a passage on the going side for circulating toward the 71 side, and a passage on the return side for returning the liquid (water) that has passed through the heating devices 70 and 71 to the latent heat recovery heating heat exchanger. A pipe line 61 is formed, and the tip side of a branch passage 65 branched from the pipe line 60 is connected to the pipe line 61. Hot water supply and heating thermal connection liquid-water heat thermally connected to either the inlet side passage or the outlet side passage (here, the inlet side) of the hot water supply liquid distribution pipe 13) forming the exchanger 1 A exchanger 33 is provided.

なお、給湯暖房熱的接続用液-水熱交換器33は潜熱回収用の給湯熱交換器4と前記メインの給湯熱交換器との間の管路に熱的に接続されており、給湯暖房熱的接続用液-水熱交換器33を通った水の温度を検出する熱交換後水温検出手段133が設けられている。 The hot water supply and heating thermally connecting liquid-water heat exchanger 33 is thermally connected to the pipeline between the latent heat recovery hot water supply heat exchanger 4 and the main hot water supply heat exchanger. Post-heat exchange water temperature detection means 133 for detecting the temperature of the water that has passed through the thermal connection liquid-water heat exchanger 33 is provided.

図6(a)、(b)に示されるように、本実施例において、給湯用のバーナ装置2(2a,2b,2c)は、複数の炎口110が長手方向に沿って配列配置された炎口列を一列以上(ここでは一列)配設して成る燃焼面を備えたバーナ107が、前記炎口列と直交する方向に並ぶ態様で複数配置されて形成されている。バーナ装置2aは3本のバーナ107によって形成され、バーナ装置2bは5本のバーナ107によって形成され、バーナ装置2cは4本のバーナ107によって形成されており、したがって、それぞれのバーナ装置2a,2b,2cの燃焼面により形成される区分燃焼面の面積比はおおよそ、3:5:4と成している。暖房用のバーナ装置5は、給湯用のバーナ装置2を形成するバーナ107と同方向に炎口110を配列配置したバーナ109を4本配置して形成されている。 As shown in FIGS. 6(a) and 6(b), in this embodiment, the hot water supply burner device 2 (2a, 2b, 2c) has a plurality of flame ports 110 arranged along the longitudinal direction. A plurality of burners 107 having a combustion surface formed by arranging one or more flame port rows (here, one row) are arranged in a manner perpendicular to the flame port rows. Burner arrangement 2a is formed by three burners 107, burner arrangement 2b by five burners 107 and burner arrangement 2c by four burners 107, so that each burner arrangement 2a, 2b , 2c has an area ratio of approximately 3:5:4. The heating burner device 5 is formed by arranging four burners 109 having flame ports 110 arranged in the same direction as the burners 107 forming the hot water supply burner device 2 .

これらの給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ装置5には、図3に示されるガス供給通路16を通して燃料ガスが供給される。また、複数のバーナ装置2a,2b,2cと暖房用バーナ装置5のそれぞれに対応させてバーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁(ガス電磁弁)17,14が設けられるとともに、全てのバーナ装置へのガス供給割合を一律に可変するガス比例弁18が設けられている。 Fuel gas is supplied to the hot water supply burner device 2 (2a, 2b, 2c) and the heating burner device 5 through the gas supply passage 16 shown in FIG. Further, gas on-off valves (gas electromagnetic valves) 17 and 14 are provided corresponding to the plurality of burner devices 2a, 2b, 2c and the heating burner device 5, respectively, for supplying and shutting off the fuel gas to the burner devices. In addition, a gas proportional valve 18 is provided to uniformly vary the ratio of gas supply to all burner devices.

また、図6と図2とを共に参照すると分かるように、給湯用のバーナ装置2(2a,2b,2c)および暖房用のバーナ装置5の各燃焼面の上側に設けられている複合熱交換器1の給湯用の液体流通管路13と複合熱交換器1の暖房用の液体流通管路12は、これらの液体流通管路12,13の下方側に配設されている対応する暖房用のバーナ装置5と給湯用のバーナ装置2(2a,2b,2c)の炎口110の列と平行または略平行に伸長した管路部位を有して配設されている。潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の液体流通管路もバーナ装置2,5の炎口110の列と平行または略平行に伸長した管路部位を有して配設されており、潜熱回収用の給湯熱交換器4と潜熱回収用の暖房用熱交換器6の液体流通管路は、全体としては両方のバーナ装置2,5の上面側に配設されている。 Further, as can be seen by referring to both FIG. 6 and FIG. 2, a composite heat exchange device is provided above each combustion surface of the burner device 2 (2a, 2b, 2c) for hot water supply and the burner device 5 for heating. The hot water supply liquid distribution line 13 of the unit 1 and the heating liquid distribution line 12 of the combined heat exchanger 1 are connected to the corresponding heating liquid distribution lines 12, 13 disposed below these liquid distribution lines 12, 13. The burner device 5 and the burner device 2 (2a, 2b, 2c) for supplying hot water have a pipeline part extending parallel or substantially parallel to the row of flame ports 110 of the burner device 2 (2a, 2b, 2c). The liquid distribution pipelines of the hot water supply heat exchanger 4 for latent heat recovery and the heating heat exchanger 6 for latent heat recovery also have pipeline portions that extend parallel or substantially parallel to the rows of flame ports 110 of the burner devices 2 and 5. The liquid distribution pipes of the hot water supply heat exchanger 4 for latent heat recovery and the heating heat exchanger 6 for latent heat recovery are arranged on the upper surface side of both burner devices 2 and 5 as a whole. is set.

図3に示されるように、本実施例において、前記給湯回路45は、潜熱回収用の給湯熱交換器4と、潜熱回収用の給湯熱交換器4の入水側に設けられた給水通路46と、潜熱回収用の給湯熱交換器4の出水側に設けられた通路34と、複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)と、複合熱交換器1の給湯用の液体流通管路13の出水側に設けられた給湯通路47とを有して形成されている。 As shown in FIG. 3, in this embodiment, the hot water supply circuit 45 includes the hot water supply heat exchanger 4 for latent heat recovery and a water supply passage 46 provided on the water inlet side of the hot water supply heat exchanger 4 for latent heat recovery. , a passage 34 provided on the water outlet side of the latent heat recovery hot water heat exchanger 4, a hot water supply liquid distribution pipe 13 (main hot water heat exchanger) of the composite heat exchanger 1, and the composite heat exchanger 1 and a hot water supply passage 47 provided on the water outlet side of the liquid circulation pipe 13 for hot water supply.

給湯回路45は、給水通路46から導入されて潜熱回収用の給湯熱交換器4を通って加熱された液体の熱媒体である水を複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)に導入して加熱した後、その加熱した水を、給湯通路47を介して給湯先に導く回路である。給湯回路45において、給水通路46には、該給水通路46を通る水の水量を検出する流量検出手段としての水量センサ19が設けられており、通路34には給湯ハイリミットスイッチ36が設けられ、複合熱交換器1の給湯用の液体流通管路13の途中部には給湯水管サーミスタ151が設けられている。 The hot water supply circuit 45 supplies water, which is a liquid heat medium introduced from the water supply passage 46 and heated through the hot water supply heat exchanger 4 for latent heat recovery, to the liquid circulation pipe 13 ( After the water is introduced into the main hot water supply heat exchanger) and heated, the heated water is led through the hot water supply passage 47 to the hot water supply destination. In the hot water supply circuit 45, the water supply passage 46 is provided with a water volume sensor 19 as flow rate detection means for detecting the amount of water passing through the water supply passage 46, and the passage 34 is provided with a hot water supply high limit switch 36, A hot water supply pipe thermistor 151 is provided in the middle of the hot water supply liquid distribution pipe 13 of the composite heat exchanger 1 .

また、給湯通路47には、複合熱交換器1の給湯用の液体流通管路13の出側の温度を検出する熱交出側サーミスタ23と、給湯温度を検出する出湯サーミスタ24とが設けられている。なお、本実施例では、給湯用の入水温度を検出する入水温検出手段を設けずに入水温度を演算によって求める方式を適用しており(図示されていないが、給水温度を算出する給水温度検出手段を有しており)、例えば給湯バーナ装置2の安定燃焼時に燃焼量と水量と出湯温度から入水温度を逆算し、これを記憶するようにしている。演算によって給湯用の入水温度を求める方式の熱源装置については周知であるので、その説明は省略するが、適宜の方法により給湯用の入水温度を求めることができるものである。 Further, the hot water supply passage 47 is provided with a heat exchange side thermistor 23 for detecting the temperature of the outlet side of the liquid circulation pipe 13 for hot water supply of the composite heat exchanger 1 and a hot water outlet thermistor 24 for detecting the hot water supply temperature. ing. In addition, in this embodiment, a method of calculating the temperature of the incoming water without providing an incoming water temperature detecting means for detecting the temperature of the incoming water for hot water supply is applied (although not shown, a method of detecting the temperature of the incoming water for calculating the temperature of the supplied water is applied). means), for example, during stable combustion of the hot water supply burner device 2, the inlet water temperature is back-calculated from the combustion amount, the water amount, and the outlet hot water temperature, and is stored. A heat source device that obtains the inlet water temperature for hot water supply by calculation is well known, so the description thereof will be omitted, but the temperature of inlet water for hot water supply can be obtained by an appropriate method.

給湯通路47には給湯回路45を通って給湯される給湯の総水量を可変調節するための水量サーボ20が設けられており、給湯通路47は、給湯バイパス通路22を介して給水通路46に接続され、該バイパス通路22の給水通路46との接続部にはバイパスサーボ21が設けられている。 The hot water supply passage 47 is provided with a water amount servo 20 for variably adjusting the total amount of hot water supplied through the hot water supply circuit 45, and the hot water supply passage 47 is connected to the water supply passage 46 via the hot water supply bypass passage 22. A bypass servo 21 is provided at the connecting portion of the bypass passage 22 with the water supply passage 46 .

バイパスサーボ21は、給湯用の液体流通管路13からの出側の温度(熱交出側サーミスタ23で検出する例えば60℃)と、前記入水温度と、リモコン装置53に設定されている給湯設定温度とに基づいて演算されるバイパス比で制御されると共に、出湯サーミスタ24で検出される温度と給湯設定温度とを比較して、給湯温度が給湯設定温度となるように、さらに制御する。 The bypass servo 21 is controlled by the temperature on the outlet side from the liquid distribution pipe 13 for hot water supply (e.g., 60° C. detected by the thermistor 23 on the heat exchange side), the incoming water temperature, and the hot water supply set in the remote controller 53 . The temperature detected by the hot water supply thermistor 24 is compared with the hot water supply set temperature, and the hot water supply temperature is further controlled to match the hot water supply set temperature.

前記暖房回路7は暖房用液体循環通路8を有し、暖房用液体循環通路8には、前記潜熱回収用の暖房用熱交換器6と、暖房用循環ポンプ(暖房用液体循環ポンプ)9と、シスターン10と、暖房高温サーミスタ40、暖房ハイリミットスイッチ77、暖房水管サーミスタ52、暖房低温サーミスタ41が設けられており、暖房用循環ポンプ9は、潜熱回収用の暖房用熱交換器6と複合熱交換器1の暖房用の液体流通管路12とを通して液体の熱媒体(例えば水)を循環させる機能を備えている。 The heating circuit 7 has a heating liquid circulation passage 8, and the heating liquid circulation passage 8 includes a heating heat exchanger 6 for recovering the latent heat and a heating circulation pump (heating liquid circulation pump) 9. , a cistern 10, a heating high temperature thermistor 40, a heating high limit switch 77, a heating water pipe thermistor 52, and a heating low temperature thermistor 41 are provided. It has a function of circulating a liquid heat medium (for example, water) through the heat exchanger 1 and the heating liquid circulation line 12 .

暖房用液体循環通路8は、管路(通路)59~65,108を有しており、管路108は、暖房回路7内の熱媒体(例えば水)を潜熱回収用の暖房用熱交換器6には通さずに循環させるための潜熱熱交バイパス通路として機能する。通路108には、低温能力切り替え弁118を備えた通路119が設けられており、通路108には、図のRの部分にオリフィスが設けられている。なお、通路119や低温能力切り替え弁118は場合によっては省略できる。暖房高温サーミスタ40は、メインの暖房用熱交換器(メインの暖房用熱交換器を形成する暖房用の液体流通管路12)の出側の熱媒体の温度を検出するものであり、暖房低温サーミスタ41は、メインの暖房用熱交換器の入側の熱媒体の温度を検出するものである。 The heating liquid circulation passage 8 has pipes (passages) 59 to 65 and 108, and the pipe 108 transfers the heat medium (for example, water) in the heating circuit 7 to the latent heat recovery heating heat exchanger. It functions as a latent heat heat exchange bypass passage for circulating without passing through 6. The passage 108 is provided with a passage 119 having a low temperature capacity switching valve 118, and the passage 108 is provided with an orifice at the portion indicated by R in the figure. Note that the passage 119 and the low temperature capacity switching valve 118 can be omitted in some cases. The heating high temperature thermistor 40 detects the temperature of the heat medium on the outlet side of the main heating heat exchanger (heating liquid distribution pipe 12 forming the main heating heat exchanger). The thermistor 41 detects the temperature of the heat medium on the inlet side of the main heating heat exchanger.

シスターン10の容量は例えば1800ccであり、シスターン10には水位電極44とオーバーフロー通路66とが設けられている。シスターン10は、補給水電磁弁42と水補給用通路165を介して給水通路46に接続されている。 The capacity of the cistern 10 is, for example, 1800 cc, and the cistern 10 is provided with a water level electrode 44 and an overflow passage 66 . The cistern 10 is connected to the water supply passage 46 via the water supply electromagnetic valve 42 and the water supply passage 165 .

なお、暖房回路7には適宜の暖房装置が接続されるものである。この図では、暖房回路7には、暖房装置70,71が外部通路72,73,74を介して接続されており、暖房回路7は、暖房装置70,71への熱媒体の供給機能を有する。暖房装置70は例えば浴室乾燥機等の高温暖房装置(熱媒体温度が例えば80℃循環の高温端末)であり、暖房装置70には熱動弁76が設けられている。一方、暖房装置71は温水マット等の低温暖房装置(熱媒体温度が例えば60℃循環の低温端末)であり、暖房用液体循環通路8の器具ケース80内の通路と外部通路73との接続を選択的に切り替える熱動弁48が設けられて、暖房装置71への熱媒体の供給が制御される。 An appropriate heating device is connected to the heating circuit 7 . In this figure, heating devices 70, 71 are connected to the heating circuit 7 via external passages 72, 73, 74, and the heating circuit 7 has a function of supplying a heat medium to the heating devices 70, 71. . The heating device 70 is, for example, a high-temperature heating device such as a bathroom dryer (a high-temperature terminal that circulates at a heat medium temperature of, for example, 80° C.), and the heating device 70 is provided with a thermal valve 76 . On the other hand, the heating device 71 is a low-temperature heating device such as a hot water mat (a low-temperature terminal with a heat medium temperature of 60° C. circulation, for example), and connects the passage inside the device case 80 of the heating liquid circulation passage 8 and the external passage 73. A selectively switching thermal valve 48 is provided to control the supply of heat transfer medium to the heating device 71 .

また、本実施例の熱源装置において、暖房回路7の暖房用液体循環通路8は、追い焚き用液-水熱交換器25を介して風呂の追い焚き循環通路26と熱的に接続されている。追い焚き循環通路26には、追い焚き循環ポンプ27と風呂サーミスタ28、流水スイッチ29、水位センサ30、風呂往きサーミスタ31が設けられており、追い焚き循環通路26は、循環金具81を介して浴槽75に接続されている。 Further, in the heat source device of this embodiment, the heating liquid circulation passage 8 of the heating circuit 7 is thermally connected to the bath reheating circulation passage 26 via the reheating liquid-water heat exchanger 25. . The reheating circulation passage 26 is provided with a reheating circulation pump 27, a bath thermistor 28, a running water switch 29, a water level sensor 30, and a thermistor 31 for bath. 75.

また、追い焚き用液-水熱交換器25は、給湯暖房熱的接続用液-水熱交換器33よりも分岐通路65における液体の流れの上流側に設けられており、追い焚き用液-水熱交換器25の入口側には、追い焚き用液体流量制御弁32が設けられている。追い焚き用液体流量制御弁32は、暖房回路7を循環する熱媒体(ここでは水)の、分岐通路65側への導入の有無と導入量の調整とを、弁の開閉および弁の開弁量により切り替える液体分岐可変手段として機能するものである。 In addition, the reheating liquid-water heat exchanger 25 is provided on the upstream side of the liquid flow in the branch passage 65 from the hot water supply and heating thermal connection liquid-water heat exchanger 33, and the reheating liquid- A reheating liquid flow control valve 32 is provided on the inlet side of the water heat exchanger 25 . The reheating liquid flow rate control valve 32 controls whether or not the heat medium (water in this case) circulating in the heating circuit 7 is introduced to the branch passage 65 side and adjusts the introduction amount by opening and closing the valve and opening the valve. It functions as a liquid branch variable means that switches depending on the amount.

追い焚き用液体流量制御弁32は、後述する分岐対応給湯側温度可変手段(図3の符号51)の制御によって制御され、前記熱媒体の分岐通路65側への導入の有無と導入量の調整とによって、追い焚き用液-水熱交換器25および給湯暖房熱的接続用液-水熱交換器33への前記熱媒体の導入の有無と導入量の調整とが行われる。また、追い焚き用液-水熱交換器25において、分岐通路65側から導入される熱媒体と追い焚き循環通路26を循環する水との熱交換が行われることによって浴槽湯水の追い焚きが行われ、給湯暖房熱的接続用液-水熱交換器33において、分岐通路65側から熱媒体が導入されると、その熱媒体と給湯回路との熱交換が行われる。 The reheating liquid flow rate control valve 32 is controlled by branching hot water supply side temperature variable means (reference numeral 51 in FIG. 3), which will be described later, to determine whether or not the heat medium is introduced into the branch passage 65 and to adjust the amount of introduction. , whether or not the heat medium is introduced into the liquid-water heat exchanger 25 for reheating and the liquid-water heat exchanger 33 for hot water supply/heating thermal connection and the amount of the heat medium introduced are adjusted. Further, in the reheating liquid-water heat exchanger 25, heat exchange is performed between the heat medium introduced from the branch passage 65 and the water circulating in the reheating circulation passage 26, thereby reheating the hot water in the bathtub. In the hot water supply/heating thermal connection liquid-water heat exchanger 33, when the heat medium is introduced from the branch passage 65 side, heat exchange is performed between the heat medium and the hot water supply circuit.

なお、前記の如く、追い焚き用液体流量制御弁32を開いて追い焚き用液-水熱交換器25への水(温水)の導入を行いながら追い焚き循環ポンプ27を駆動することによって風呂の追い焚きが行われるが、追い焚き循環ポンプ27を停止していれば暖房回路7を通る熱媒体と追い焚き循環通路26内の水との熱交換は行われない(正確に言えば追い焚き循環通路26に滞留している水の一部は熱交換されるが殆ど熱交換は行われない)。 As described above, the reheating liquid flow rate control valve 32 is opened to introduce water (hot water) into the reheating liquid-water heat exchanger 25, and the reheating circulation pump 27 is driven to reheat the bath. Reheating is performed, but if the reheating circulation pump 27 is stopped, heat exchange between the heat medium passing through the heating circuit 7 and the water in the reheating circulation passage 26 is not performed (more precisely, reheating circulation Although some of the water staying in the passage 26 is heat-exchanged, almost no heat-exchange is performed).

なお、図3の図中、符号49は注湯通路、符号50は注湯電磁弁、符号79は注湯量センサ、符号37はドレン回収手段、符号38はドレン通路、符号39はドレン中和器をそれぞれ示している。 3, reference numeral 49 is a pouring passage, reference numeral 50 is a pouring electromagnetic valve, reference numeral 79 is a pouring amount sensor, reference numeral 37 is drain recovery means, reference numeral 38 is a drain passage, and reference numeral 39 is a drain neutralizer. are shown respectively.

また、図3にはリモコン装置が図示されていないが、熱源装置の制御装置にはリモコン装置が信号接続されており、以下の説明において、リモコン装置には、適宜、符号53を付して説明する。また、家庭等の住居において、給湯を行う台所や浴室には、給湯温度設定、追い焚きスイッチ、自動スイッチ(自動湯張りのための操作スイッチ)等の付いたリモコン装置53が設けられ、洗面所には浴室乾燥(暖房装置)を行うスイッチ等の付いたリモコン装置53が設けられ、居間には床暖房(暖房装置)スイッチ等の付いたリモコン装置53が設けられる等、異なる機能をもったリモコンが複数設けられることが多いが、本明細書では、それらを総称してリモコン装置53と称することとし、また、後述する図12を用いての説明においては、リモコン装置167,168,169と称して説明を行う。 Although the remote control device is not shown in FIG. 3, the remote control device is signal-connected to the control device of the heat source device. do. In addition, in a dwelling such as a home, a remote control device 53 with a hot water temperature setting, a reheating switch, an automatic switch (operation switch for automatic hot water filling), etc. is provided in the kitchen and bathroom where hot water is supplied, and the washroom. A remote control device 53 with a switch for drying the bathroom (heating device) is provided in the living room, and a remote control device 53 with a floor heating (heating device) switch is provided in the living room. are provided in many cases, but in this specification they are collectively referred to as a remote control device 53, and in the explanation using FIG. will be explained.

本実施例において、給湯動作は例えば以下のようにして行われる。つまり、リモコン装置53の運転がオンの状態において、例えば熱源装置の利用者によって、給湯通路47の先端側に設けられている給湯栓(図示せず)が開かれると、給水通路46から導入される水が、潜熱回収用の給湯熱交換器4と複合熱交換器1の給湯用の液体流通管路13(メインの給湯熱交換器)とを通って給湯通路47に導入され、水量センサ19が予め定められている給湯の作動流量に達するとバーナ装置2の燃焼制御および燃焼ファン15の回転制御等が制御手段によって適宜行われ、予めリモコン装置53に設定されている給湯設定温度の湯が形成されて給湯先に供給される。なお、必要に応じ、暖房用のバーナ装置5の燃焼も行われるが、この動作についての詳細説明は後述する。 In this embodiment, the hot water supply operation is performed, for example, as follows. That is, when the user of the heat source device opens a hot water tap (not shown) provided on the tip side of the hot water supply passage 47 while the operation of the remote control device 53 is on, the water is introduced from the water supply passage 46 . water is introduced into the hot water supply passage 47 through the hot water supply heat exchanger 4 for latent heat recovery and the liquid distribution pipe 13 (main hot water supply heat exchanger) for hot water supply of the composite heat exchanger 1, and the water quantity sensor 19 reaches a predetermined operating flow rate of hot water supply, combustion control of the burner device 2, rotation control of the combustion fan 15, etc. are appropriately performed by the control means, and hot water at the hot water supply set temperature preset in the remote control device 53 is supplied. It is formed and supplied to the hot water supply destination. Combustion is also performed by the burner device 5 for heating as required, and detailed description of this operation will be given later.

また、リモコン装置53に設けられている自動スイッチがオンとなると、前記給湯動作時と同様にして、予めリモコン装置53に設定されている給湯設定温度の湯が形成され、その湯が、注湯電磁弁50が開かれることにより、給湯通路47から注湯通路49を通して浴槽75への注湯による湯張りが行われる。 Further, when the automatic switch provided in the remote control device 53 is turned on, hot water having a hot water supply set temperature preset in the remote control device 53 is formed in the same manner as in the hot water supply operation, and the hot water is poured. When the electromagnetic valve 50 is opened, hot water is poured into the bathtub 75 from the hot water supply passage 47 through the hot water pouring passage 49 to fill the bath.

一方、給湯は行わずに、暖房用液体循環通路8から暖房装置70、71に暖房用の熱媒体(液体)を供給する際(例えば衣類乾燥機、浴室暖房乾燥機、床暖房等の運転による暖房単独運転時)には、暖房用循環ポンプ9の駆動によって、液体(ここでは温水)を循環させるものであり、暖房用循環ポンプ9の吐出側から吐出される液体が、図3の矢印Aに示されるように、通路59を通って複合熱交換器1の暖房用の液体流通管路12(メインの暖房用熱交換器)に導入される。このときには暖房用のバーナ装置5の燃焼および燃焼ファン15の回転制御等が適宜行われて液体の加熱が行われる。 On the other hand, when the heat medium (liquid) for heating is supplied from the heating liquid circulation passage 8 to the heating devices 70 and 71 without supplying hot water (for example, by operating a clothes dryer, a bathroom heater/dryer, a floor heater, etc.) When the heating circulation pump 9 is driven, the heating circulation pump 9 is driven to circulate the liquid (hot water in this case). , is introduced into the heating liquid distribution line 12 (main heating heat exchanger) of the composite heat exchanger 1 through the passage 59 . At this time, the combustion of the heating burner device 5 and the rotation control of the combustion fan 15 are appropriately performed to heat the liquid.

複合熱交換器1の暖房用の液体流通管路12を通った液体は、その後、矢印Cに示されるように管路60を通り、分岐点を通り、例えば暖房用液体循環通路8に接続されている高温側の暖房装置70が作動する際には、矢印Dに示されるようにして、高温側の暖房装置に供給され、高温側の暖房装置70を通った後に、矢印D’に示されるように管路61側に戻って、矢印Fに示されるようにシスターン10に導入される。このとき、例えば浴室暖房乾燥機の暖房スイッチ(SW)がオン(ON)されると、それに対応する高温側の暖房装置70内の熱動弁76が開弁され、高温側の暖房装置10内の制御装置からの信号を受けて暖房用の熱媒体の往き温度は(例えば80℃といった)高温に維持される。 After passing through the heating liquid circulation line 12 of the composite heat exchanger 1, the liquid then passes through the line 60 as indicated by arrow C, passes through a branch point, and is connected to, for example, the heating liquid circulation line 8. When the high temperature side heating device 70 is operated, as shown by arrow D, it is supplied to the high temperature side heating device, and after passing through the high temperature side heating device 70, it is shown by arrow D'. , and is introduced into the cistern 10 as indicated by the arrow F. At this time, for example, when the heating switch (SW) of the bathroom heater/dryer is turned on (ON), the thermal valve 76 in the corresponding high temperature side heating device 70 is opened, and the high temperature side heating device 10 is opened. The incoming temperature of the heat medium for heating is maintained at a high temperature (for example, 80° C.) in response to a signal from the controller.

高温側の暖房装置が作動していないときには、高温側の暖房装置70内の熱動弁76が閉弁され、矢印Dに示されるようにして管路60を通った液体は、矢印Hに示されるように管路(潜熱熱交バイパス通路)108を通り、シスターン10に導入され、矢印Gに示されるように管路64を通って暖房用循環ポンプ9の吸入側に戻る。 When the hot side heater is not in operation, the thermal valve 76 in the hot side heater 70 is closed and the liquid through line 60 as indicated by arrow D is shown by arrow H. As indicated by arrow G, it passes through a pipeline (latent heat exchange bypass passage) 108 and is introduced into the cistern 10 , and returns to the suction side of the heating circulation pump 9 through a pipeline 64 as indicated by arrow G.

また、例えば浴室で追い焚きスイッチ(SW)がオン(ON)されると、それに対応する追い焚き用液体流量制御弁32が開状態となり、管路60を通った後に分岐された液体(熱媒体)は、矢印E’に示されるように、分岐通路65を通り、追い焚き用液-水熱交換器25と給湯暖房熱的接続用液-水熱交換器33とを順に通って管路61側に向かう。このように、高温に維持される液体を追い焚き用液-水熱交換器25に通しながら、追い焚き循環通路26において浴槽75の湯水を循環させることにより、風呂の追い焚きが適宜行われる。なお、管路61を通った液体は、前記の如く、管路62、シスターン10、管路64を通って暖房用循環ポンプ9の吸入側に戻ってくる。 Further, for example, when the reheating switch (SW) is turned on (ON) in the bathroom, the corresponding reheating liquid flow control valve 32 is opened, and the liquid (heat medium) branched after passing through the pipe line 60 ) passes through the branch passage 65 as indicated by the arrow E′, and passes through the reheating liquid-water heat exchanger 25 and the hot water supply heating thermal connection liquid-water heat exchanger 33 in order to the pipeline 61 go to the side. By circulating the hot water in the bathtub 75 in the reheating circulation passage 26 while passing the liquid maintained at a high temperature through the reheating liquid-water heat exchanger 25, the bath is properly reheated. The liquid that has passed through the conduit 61 returns to the suction side of the heating circulation pump 9 through the conduit 62, the cistern 10, and the conduit 64, as described above.

なお、浴槽湯水にはレジオネラ菌や大腸菌が発生する可能性がある。しかしながら、本実施例では、浴槽水は追い焚き用液-水熱交換器25で暖房側の回路を通る湯水と絶縁され、さらに、給湯回路45を通る給湯用の湯水(市水)と暖房回路7を通る熱媒体(ここでは湯水)とは給湯暖房熱的接続用液-水熱交換器33によって絶縁されているため、浴槽湯水と給湯用の湯水とは給湯暖房熱的接続用液-水熱交換器33と追い焚き用液-水熱交換器25とで2重絶縁されている。しかも、暖房回路7を循環する熱媒体は60℃以上で循環させるように構成されていることから、万が一、追い焚き用液-水熱交換器25にピンホール等が空いて絶縁状態が維持できないといった状態が生じて浴槽湯水で発生した菌類が暖房回路7側に混入したとしても、熱殺菌されるので、菌類が給湯回路45側の湯水に混入するおそれはない。 There is a possibility that Legionella bacteria and Escherichia coli may occur in bath water. However, in this embodiment, the bath water is insulated from the hot water passing through the circuit on the heating side by the liquid-water heat exchanger 25 for reheating, and the hot water (city water) for hot water passing through the hot water supply circuit 45 and the heating circuit. Since the heat medium (hot water in this case) passing through 7 is insulated by the hot water supply/heating thermal connection liquid-water heat exchanger 33, the bathtub hot water and the hot water supply are separated from the hot water supply/heating thermal connection liquid-water. The heat exchanger 33 and the liquid-water heat exchanger 25 for reheating are double-insulated. In addition, since the heat medium circulating in the heating circuit 7 is configured to be circulated at 60° C. or higher, in the unlikely event that the reheating liquid-water heat exchanger 25 has a pinhole or the like, the insulation state cannot be maintained. Even if such a situation occurs and fungi generated in the hot water in the bathtub enter the heating circuit 7 side, the bacteria are sterilized by heat, so there is no possibility that the fungi will enter the hot water in the hot water supply circuit 45 side.

また、暖房用循環ポンプ9の吐出側には、例えば温水マット等の低温側の暖房装置71に液体を供給するための管路63も接続されており、例えば居室にあるリモコン装置53で床暖房がONされると、それに対応する熱動弁48の開閉に応じて適宜の低温側暖房装置71(例えば温水マット等)に暖房用の(例えば往き温度60℃といった)低温に維持された液体が供給される。 The discharge side of the heating circulation pump 9 is also connected to a conduit 63 for supplying liquid to a low-temperature side heating device 71 such as a hot water mat. is turned on, the liquid maintained at a low temperature (eg, 60° C.) for heating is supplied to an appropriate low-temperature side heating device 71 (eg, hot water mat, etc.) according to the opening and closing of the corresponding thermal valve 48. supplied.

なお、高温側の暖房装置70に液体を供給する際の温度制御と低温側の暖房装置71に液体を供給する際の温度制御、暖房用液体循環通路8の通路が冷えている状態で作動するコールドスタート時の温度制御、風呂の追い焚き時の制御等、必要に応じて暖房用のバーナ装置5の燃焼制御や燃焼ファン15の回転制御等の適宜の制御が行われる。暖房運転制御および浴槽75への湯張りと追い焚き制御の一例として、図12に示されるような制御構成を用いた制御例があり、以下に簡単に説明するが、本発明においては、この制御例をはじめとし、公知の適宜の制御方法および、今後提案される適宜の制御方法が適用されるものである。 In addition, temperature control when liquid is supplied to the heating device 70 on the high temperature side and temperature control when liquid is supplied to the heating device 71 on the low temperature side are operated in a state where the passage of the heating liquid circulation passage 8 is cold. Appropriate control such as temperature control at the time of cold start, control at the time of reheating the bath, and combustion control of the heating burner device 5 and rotation control of the combustion fan 15 are performed as necessary. As an example of the heating operation control and the hot water filling and reheating control of the bathtub 75, there is a control example using a control configuration as shown in FIG. In addition to the examples, appropriate known control methods and appropriate control methods that will be proposed in the future are applied.

図12に示す制御構成は、燃焼制御手段52を有する制御装置54が熱源装置のリモコン装置167,168,169に信号接続されて形成されている。同図において、リモコン装置167は風呂リモコン装置であり、リモコン装置168は、暖房装置(高温暖房装置)70のリモコン装置であり、リモコン装置169は、暖房装置(低温暖房装置)71のリモコン装置である。リモコン装置167には、風呂設定温度入力操作部163と追い焚きスイッチ160と風呂自動スイッチ164とが設けられ、リモコン装置168には暖房運転スイッチ161が、リモコン装置169には暖房運転スイッチ166がそれぞれ設けられている。 The control configuration shown in FIG. 12 is formed by signal-connecting a control device 54 having combustion control means 52 to remote control devices 167, 168 and 169 of the heat source device. In the figure, a remote control device 167 is a bath remote control device, a remote control device 168 is a remote control device for a heating device (high-temperature heating device) 70, and a remote control device 169 is a remote control device for a heating device (low-temperature heating device) 71. be. The remote control device 167 is provided with a bath set temperature input operation section 163, a reheating switch 160, and an automatic bath switch 164. The remote control device 168 has a heating operation switch 161, and the remote control device 169 has a heating operation switch 166. is provided.

暖房運転スイッチ161,166は、対応する暖房装置70,71の運転のオンオフ動作指令を行うスイッチであり、暖房運転スイッチ161,166のオンオフ信号は、いずれも燃焼制御手段52に加えられる。なお、暖房運転スイッチ161がオンされると、暖房装置70の熱動弁76への通電が行われて所定時間(例えば1分)経過後に熱動弁76が開き(PTC( positive temperature coefficient;正特性)サーミスタ)を発熱させてサーモアクチュエータを動作させる)、暖房運転スイッチ161がオフされると、前記熱動弁76への通電が停止して所定時間(例えば20秒)経過後に熱動弁76が閉じる。また、暖房運転スイッチ166がオンされると、燃焼制御手段52により熱動弁48が開かれ、暖房運転スイッチ166がオフされると、燃焼制御手段52により熱動弁48が閉じられる。 The heating operation switches 161 , 166 are switches that issue ON/OFF operation commands for the operation of the corresponding heating devices 70 , 71 . When the heating operation switch 161 is turned on, the thermal valve 76 of the heating device 70 is energized, and after a predetermined time (for example, 1 minute), the thermal valve 76 opens (positive temperature coefficient (PTC)). When the heating operation switch 161 is turned off, the thermal valve 76 is turned off after a predetermined time (for example, 20 seconds) has passed. closes. When the heating operation switch 166 is turned on, the thermal valve 48 is opened by the combustion control means 52, and when the heating operation switch 166 is turned off, the thermal valve 48 is closed by the combustion control means 52.

燃焼制御手段52は、暖房運転スイッチ161のオン信号を受けて、バーナ5の燃焼制御(ガス電磁弁14の開弁、ガス比例弁18の開弁量制御等による燃焼量制御を含む)および燃焼ファン15の回転制御を行うと共に、暖房用循環ポンプ9を駆動させる。燃焼制御手段52は、高温暖房装置70の運転を行うときには80℃の液体を供給できるように(暖房高温サーミスタ40の検出温度が80℃となるようにFB;フィードバック制御して)バーナ5の燃焼制御および燃焼ファン18の回転制御等を行って、暖房用熱交換器(メインの暖房用熱交換器を形成する暖房用の液体流通管路12と潜熱回収用の暖房用熱交換器6)を加熱し、暖房用液体循環通路7を循環する液体を加熱する。加熱された液体は、メインの暖房用熱交換器から約80℃で導出され、図3の矢印Cに示すように管路60を通り、追い焚き用液体流量制御弁32の閉状態においては、図3の矢印Dに示すように、管路64,72を順に通って暖房装置70に供給される。 Combustion control means 52 receives an ON signal from heating operation switch 161 and performs combustion control of burner 5 (including combustion amount control by opening gas solenoid valve 14, opening amount control of gas proportional valve 18, etc.) and combustion. Rotation control of the fan 15 is performed, and the circulation pump 9 for heating is driven. The combustion control means 52 controls the combustion of the burner 5 so that the liquid of 80° C. can be supplied when the high temperature heating device 70 is operated (FB; feedback control is performed so that the detected temperature of the heating high temperature thermistor 40 becomes 80° C.). By controlling the rotation of the combustion fan 18 and the like, the heating heat exchanger (the heating liquid distribution pipe 12 forming the main heating heat exchanger and the latent heat recovery heating heat exchanger 6) is operated. Heat is applied to heat the liquid circulating through the heating liquid circulation passage 7 . The heated liquid is discharged from the main heating heat exchanger at about 80° C., passes through a conduit 60 as indicated by arrow C in FIG. As indicated by arrow D in FIG.

暖房装置70に供給された液体は、暖房装置70内の管路を通るときに放熱して、その温度が例えば60℃程度に下がった状態で、暖房装置70の出側の管路72と管路74を通り、図3の矢印D’に示すように、管路61を通って暖房用熱交換器6(潜熱熱交換器)に導入され、暖房用熱交換器6によって加温される。この加温された液体は図3の矢印Fに示すように管路62を通って導出されてシスターン装置10に導入され、シスターン装置10を通った後に、図3の矢印Gに示すように、管路62を通り、暖房用循環ポンプ9に導入される。その後、液体は、図3の矢印Aに示すように、管路59を通ってメインの暖房用熱交換器(顕熱熱交換器)(液体流通管路12)に導入され、メインの暖房用熱交換器によって加熱されて、前記と同様にして暖房用液体循環通路7を循環する。 The liquid supplied to the heating device 70 radiates heat when passing through the pipes in the heating device 70, and in a state where the temperature has dropped to about 60° C., the pipe 72 on the outlet side of the heating device 70 and the pipe. It passes through the path 74 and is introduced into the heating heat exchanger 6 (latent heat exchanger) through the pipeline 61 as indicated by the arrow D' in FIG. This heated liquid is drawn out through conduit 62 and introduced into cistern device 10 as indicated by arrow F in FIG. It is introduced into the heating circulation pump 9 through the pipe line 62 . After that, the liquid is introduced into the main heating heat exchanger (sensible heat exchanger) (liquid circulation pipe 12) through the pipe 59 as indicated by arrow A in FIG. It is heated by the heat exchanger and circulates through the heating liquid circulation passage 7 in the same manner as described above.

なお、前記追い焚き用液体流量制御弁32が開いている状態(=追い焚き時。追い焚き高温暖房となる)においては、管路60を通った液体は、前記の如く、矢印Dに示したように暖房装置(高温暖房装置)70側に導入されてから管路61に導入される流れと、矢印E’に示すように、管路(分岐通路)65、追い焚き用液-水熱交換器25を通って、管路61に導入される流れとに分かれる。なお、追い焚き用液-水熱交換器25もまた高温暖房装置ということもできる(高温暖房負荷が生じるという点で高温暖房装置と同等となる)。 In the state where the reheating liquid flow control valve 32 is open (=during reheating, high temperature reheating heating), the liquid passing through the conduit 60 is shown by the arrow D as described above. As shown by the flow introduced into the heating device (high-temperature heating device) 70 side and then introduced into the pipeline 61, and as shown by arrow E ', the pipeline (branch passage) 65, the reheating liquid-water heat exchange It splits through vessel 25 and is introduced into line 61 . Note that the reheating liquid-water heat exchanger 25 can also be called a high-temperature heating device (it is equivalent to a high-temperature heating device in that a high-temperature heating load is generated).

また、高温暖房装置70の動作時に、燃焼制御手段52は、低温暖房装置71の運転を行うときには熱動弁48を開き、通常、60℃の液体を低温暖房装置71に供給できるようにする。なお、このときも、バーナ5の燃焼制御および燃焼ファン18の回転制御等は、高温暖房装置70の運転時と同様であり、メインの暖房用熱交換器11からは暖房高温サーミスタ40の温度を参照して適宜の温度(例えば約80℃)の液体が導出される。そして、この液体は図3の矢印C、Dのように流れて、矢印Hのようなシスターン10側への流れと高温暖房装置70側とに別れ、シスターン10側に流れた液体がシスターン10で混合されて、管路64、暖房用循環ポンプ9、管路63を順に通って低温暖房装置71に供給される。 Also, when the high-temperature heating device 70 operates, the combustion control means 52 opens the thermal valve 48 when operating the low-temperature heating device 71 so that the liquid at 60° C. can be normally supplied to the low-temperature heating device 71 . At this time as well, the combustion control of the burner 5 and the rotation control of the combustion fan 18 are the same as in the operation of the high-temperature heating device 70, and the temperature of the heating high-temperature thermistor 40 is supplied from the main heating heat exchanger 11. A liquid having an appropriate temperature (for example, about 80° C.) is drawn out. This liquid flows as indicated by arrows C and D in FIG. The mixture is supplied to the low-temperature heating device 71 through the line 64 , the heating circulation pump 9 and the line 63 in this order.

高温暖房装置70の動作時には、暖房用循環ポンプ9から吐出された液体が高温暖房装置70の管路を通るときに放熱することから、例えば60℃程度に下がっており、その液体がシスターン10に導入され、シスターン10で混合された液体が、熱動弁48の開状態において、図3の矢印に示すように管路73を通って低温暖房装置71に導入されることで、メインの暖房用熱交換器から直接的に液体が導入されるよりも液体の温度が低くなる。低温暖房装置71を通って放熱し、例えば40℃以下の低温となった液体は、管路74を通り、管路61に導入され、前記と同様に、暖房用液体循環通路7を循環する。 When the high-temperature heating device 70 is in operation, the liquid discharged from the heating circulation pump 9 radiates heat when passing through the conduit of the high-temperature heating device 70, so the temperature drops to, for example, about 60° C. The liquid introduced and mixed in the cistern 10 is introduced into the low-temperature heating device 71 through the pipeline 73 as indicated by the arrow in FIG. The temperature of the liquid is lower than if the liquid were introduced directly from the heat exchanger. The liquid, which has been radiated through the low-temperature heating device 71 and has a low temperature of, for example, 40° C. or less, passes through the conduit 74, is introduced into the conduit 61, and circulates through the heating liquid circulation passage 7 in the same manner as described above.

高温暖房装置70が動作していない時には、低温暖房装置71に導入される液体の温度調節は、暖房低温サーミスタ41の検出温度に基づき、燃焼制御手段52の制御によって行われるものである。つまり、低温暖房装置71の通常運転時には、暖房低温サーミスタ41の検出温度が例えば60℃になるようにして(FB;フィードバック制御して)管路73に送られる。なお、このとき、低温能力切り替え弁(熱動弁)118を開弁してメインの暖房用熱交換器からシスターン10に送る熱媒体量を増やすと同時にバーナ5の燃焼量の調節が行われ、管路73に送られる。 When the high-temperature heating device 70 is not operating, the temperature of the liquid introduced into the low-temperature heating device 71 is controlled by the combustion control means 52 based on the temperature detected by the heating low-temperature thermistor 41. That is, during normal operation of the low-temperature heating device 71 , the detected temperature of the heating low-temperature thermistor 41 is sent to the conduit 73 so as to be, for example, 60° C. (FB; feedback control). At this time, the low temperature capacity switching valve (thermal valve) 118 is opened to increase the amount of heat medium sent from the main heating heat exchanger to the cistern 10, and at the same time, the combustion amount of the burner 5 is adjusted. It is sent to line 73 .

また、低温暖房装置71の運転開始直後には、これらの低温暖房装置71の内部通路や管路73内の液体が冷えている状態であり、このように液体を冷たい状態から加熱する場合のホットダッシュ運転(コールドスタート)では、例えば30分といった予め定められたホットダッシュ設定時間だけ、暖房高温サーミスタ40の検出温度が例えば80℃になるように低温能力切り替え弁(熱動弁)118を開弁してバーナ5の燃焼量を調節(制御)し、管路60に送られる。 In addition, immediately after the operation of the low-temperature heating device 71 is started, the liquid in the internal passages and pipes 73 of the low-temperature heating device 71 is cold. In the dash operation (cold start), the low temperature capacity switching valve (thermal valve) 118 is opened so that the temperature detected by the heating high temperature thermistor 40 becomes, for example, 80° C. for a predetermined hot dash set time such as 30 minutes. Then, the combustion amount of the burner 5 is adjusted (controlled) and sent to the pipeline 60 .

なお、低温暖房装置71のみが運転されるときも、低温暖房装置71を通った液体は、低温暖房装置71の出側の管路73と管路74を通って管路61に導入される。 Even when only the low-temperature heating device 71 is operated, the liquid that has passed through the low-temperature heating device 71 is introduced into the conduit 61 through the conduits 73 and 74 on the outlet side of the low-temperature heating device 71 .

図12に示されている風呂設定温度入力操作部163は、浴槽湯水の温度を設定する操作部であり、浴槽湯水温度は、例えば40℃前後の適宜の値に設定される。設定された温度の情報は、燃焼制御手段52に加えられる。風呂自動スイッチ164は、浴槽75への自動湯張り、保温、保水動作のオンオフスイッチであり、風呂自動スイッチ164のオン信号は、いずれも燃焼制御手段52に加えられ、自動湯張り後、例えば4時間保温と保水を行った後、自動的にオフとなる。また、追い焚きスイッチ160は、浴槽湯水の追い焚き単独動作のオンスイッチであり、追い焚きスイッチ160のオン信号は、燃焼制御手段52に加えられる。なお、燃焼制御手段52により追い焚き動作が終了すると、追い焚きスイッチ160は自動的にオフとなる。 A bath set temperature input operation unit 163 shown in FIG. 12 is an operation unit for setting the temperature of hot water in the bathtub. Information on the set temperature is applied to the combustion control means 52 . The automatic bath switch 164 is an ON/OFF switch for automatically filling the bathtub 75 with hot water, keeping warm, and retaining water. It will turn off automatically after keeping warm and water for a long time. Further, the reheating switch 160 is an on-switch for a single reheating operation of bath water, and the ON signal of the reheating switch 160 is applied to the combustion control means 52 . When the combustion control means 52 finishes the reheating operation, the reheating switch 160 is automatically turned off.

燃焼制御手段52は、風呂自動スイッチ164のオン信号が加えられると、例えばバーナ2の燃焼によってメインの給湯熱交換器の液体流通管路13を通る水を加熱し、給湯通路47から注湯通路49を通して湯を浴槽75に注ぐ。この際、例えば図13に示すような、予めメモリ部4に与えられている浴槽の水位(P)と水量(Q)との関係データ(P-Qデータ)と、水位センサ30により検出される検出水位とに基づき、浴槽の設定水位まで注湯する。 When the automatic bath switch 164 is turned on, the combustion control means 52 heats the water passing through the liquid distribution pipe 13 of the main hot water supply heat exchanger by, for example, combustion of the burner 2, and the water is supplied from the hot water supply passage 47 to the pouring passage. Hot water is poured into the bathtub 75 through 49. At this time, for example, as shown in FIG. Based on the detected water level, hot water is poured up to the set water level of the bathtub.

また、浴槽湯水循環ポンプ27を駆動して得られる風呂サーミスタ28により検出される浴槽湯水温が風呂設定温度よりも低いときには、前記のようなバーナ5の燃焼や暖房用循環ポンプ9の駆動を行いながら、風呂設定温度となるように、追い焚き用液体流量制御弁32を開、浴槽湯水循環ポンプ27をオンとして、浴槽湯水の追い焚き動作を行う。なお、燃焼制御手段52は、追い焚きスイッチ160のオン信号が加えられたときも、風呂サーミスタ28により検出される浴槽湯水温が風呂設定温度となるように、浴槽湯水の追い焚き動作を行う。 When the hot water temperature in the bathtub detected by the bath thermistor 28 obtained by driving the bathtub hot water circulation pump 27 is lower than the bath set temperature, the burner 5 is combusted and the heating circulation pump 9 is driven as described above. Meanwhile, the reheating liquid flow rate control valve 32 is opened and the bathtub hot water circulation pump 27 is turned on so that the bath set temperature is reached, and the bathtub hot water is reheated. The combustion control means 52 also reheats the hot water in the bathtub so that the hot water temperature detected by the bath thermistor 28 is equal to the bath set temperature even when the ON signal of the reheating switch 160 is applied.

図5には、本実施例の熱源装置の制御構成がブロック図により示されており、同図に示されるように、熱源装置の制御装置54は、分岐対応給湯側温度可変手段51、燃焼制御手段52、ポンプ駆動制御手段55を有している。また、制御装置54は、リモコン装置53と、出湯サーミスタ24、水量センサ(流量センサ)19、熱交換後水温検出手段133、追い焚き用液体流量制御弁32、ガス電磁弁14,17、ガス比例弁18、燃焼ファン15、暖房用循環ポンプ9、暖房高温サーミスタ40、暖房低温サーミスタ41、熱交出側サーミスタ23に信号接続されている。 FIG. 5 is a block diagram showing the control configuration of the heat source device of this embodiment. It has means 52 and pump drive control means 55 . The control device 54 includes a remote controller 53, a hot water outlet thermistor 24, a water quantity sensor (flow rate sensor) 19, post-heat exchange water temperature detection means 133, a reheating liquid flow rate control valve 32, gas solenoid valves 14 and 17, a gas proportional Signal connections are made to the valve 18 , the combustion fan 15 , the heating circulation pump 9 , the heating high temperature thermistor 40 , the heating low temperature thermistor 41 , and the heat exchange side thermistor 23 .

燃焼制御手段52は、リモコン装置53の信号(指令や設定温度の値等)に基づき、出湯サーミスタ24、水量センサ(流量センサ)19、熱交出側サーミスタ23、暖房高温サーミスタ40、暖房低温サーミスタ41等の検出信号を参照し、ガス電磁弁14,17の開閉制御とガス比例弁18の開弁量制御とを行って、給湯用のバーナ装置2(2a,2b,2c)と暖房用のバーナ装置5の燃焼制御を行うものである。また、燃焼制御手段52は、これらのバーナ装置2,5の燃焼時には燃焼ファン15を駆動させ、例えばその回転数をバーナ装置2,5の燃焼量に対応させる等して適宜の制御を行う。なお、その詳細は前述の記載の通りである。 The combustion control means 52 controls the hot water thermistor 24, the water quantity sensor (flow rate sensor) 19, the heat exchange thermistor 23, the heating high temperature thermistor 40, and the heating low temperature thermistor based on the signal (command, set temperature value, etc.) from the remote control device 53. 41 or the like is referred to, opening/closing control of the gas electromagnetic valves 14 and 17 and control of the opening amount of the gas proportional valve 18 are performed, and the burner device 2 (2a, 2b, 2c) for supplying hot water and the burner device 2 (2a, 2b, 2c) for heating are controlled. Combustion control of the burner device 5 is performed. Further, the combustion control means 52 drives the combustion fan 15 during combustion of the burner devices 2 and 5, and performs appropriate control, for example, by making the rotational speed correspond to the amount of combustion of the burner devices 2 and 5, or the like. The details are as described above.

本実施例では、給湯運転のみを行う給湯単独運転時と、暖房運転のみを行う暖房単独運転時と、暖房運転と給湯運転とを同時に行う同時運転とにおいて、それぞれ、各運転に対応させて、対応する給湯用のバーナ装置2(2a,2b,2c)、暖房用のバーナ装置5の燃焼を切り替える構成を有している。つまり、燃焼制御手段52は、給湯用の複数のバーナ装置2(2a,2b,2c)と暖房用バーナ装置5のそれぞれに対応させてガス開閉弁17,14の開閉制御を行うと共に、ガス比例弁18の制御によって行われる全てのバーナ装置2,5へのガス供給割合を一律に制御することによって、給湯単独運転と暖房単独運転と給湯と暖房の同時運転とを適宜行うようにしている。 In this embodiment, in hot water supply only operation, heating only operation, and simultaneous heating operation and hot water supply operation, respectively, It has the structure which switches combustion of the corresponding burner device 2 (2a, 2b, 2c) for hot water supply, and the burner device 5 for heating. That is, the combustion control means 52 controls the opening and closing of the gas on-off valves 17 and 14 corresponding to the plurality of burner devices 2 (2a, 2b, 2c) for supplying hot water and the burner device 5 for heating, respectively. By uniformly controlling the gas supply rate to all the burners 2 and 5 by controlling the valve 18, the hot water supply single operation, the heating single operation, and the simultaneous hot water supply and heating operation are appropriately performed.

例えば給湯単独運転におけるバーナ燃焼においては、表1の切替段数(1)の蘭に示されているように、最初に燃焼させる燃焼面は給湯用のバーナ装置2aの3本のバーナ107の燃焼面である。なお、表1の切替段数はバーナ装置2,5の切り替え段数であり、バーナ段数である。また、表1においては、図2に示されるように、給湯用のバーナ装置2aの燃焼面をA、給湯用のバーナ装置2bの燃焼面をB、給湯用のバーナ装置2cの燃焼面をC、暖房用のバーナ装置5の燃焼面をDと示している。 For example, in burner combustion in single hot water supply operation, as shown in the number of switching stages (1) in Table 1, the first combustion surface is the combustion surface of the three burners 107 of the burner device 2a for hot water supply. is. The number of switching stages in Table 1 is the number of switching stages of the burner devices 2 and 5, and is the number of burner stages. In Table 1, as shown in FIG. 2, A is the combustion surface of the hot water supply burner device 2a, B is the combustion surface of the hot water supply burner device 2b, and C is the combustion surface of the hot water supply burner device 2c. , the combustion surface of the burner device 5 for heating is denoted by D. FIG.

Figure 0007217628000001
Figure 0007217628000001

給湯用のバーナ装置2aのみの燃焼により得られる給湯特性(出湯特性)は、例えば給湯回路45への入水温度が15℃の場合には、給湯設定温度に応じて、図7の特性線aと特性線aとに挟まれた領域内の給湯が可能となる。つまり、給湯用のバーナ装置2aのみを燃焼させる場合でも、ガス比例弁18の開弁量に応じて給湯特性が異なる態様となり、ガス比例弁18の開弁量が最小開度のときには図7の特性線aの特性となり、ガス比例弁18の開弁量が多くなるにつれて図7の特性線a側に近づき、最大開度のときに特性線aの特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。 The hot water supply characteristic (hot water output characteristic) obtained by combustion of only the hot water supply burner device 2a is, for example, when the temperature of water entering the hot water supply circuit 45 is 15° C., according to the hot water supply set temperature, the characteristic line a 1 in FIG. and the characteristic line a2 . That is, even when only the burner device 2a for hot water supply is burned, the hot water supply characteristic varies depending on the opening amount of the gas proportional valve 18. It becomes the characteristic of the characteristic line a1, and as the valve opening amount of the gas proportional valve 18 increases, it approaches the characteristic line a2 side in FIG . Means 52 proportionally controls the amount of supplied gas by controlling the valve opening amount of gas proportional valve 18 corresponding to the hot water supply set temperature and the hot water supply flow rate.

燃焼制御手段52は、給湯要求能力に対応する燃焼能力が一段アップすると、バーナ装置2aの3本のバーナ107の燃焼面に加えてバーナ装置2bの5本のバーナ107の、合計8本のバーナ107の燃焼面の燃焼を行う(表1の切り替え段数(2)を参照)。バーナ装置2a,2bの燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図7の特性線bと特性線bとに挟まれた領域内の給湯が可能となる。 When the combustion capacity corresponding to the hot water supply demand capacity is further increased, the combustion control means 52 increases the combustion surfaces of the three burners 107 of the burner device 2a and the five burners 107 of the burner device 2b, for a total of eight burners. Combustion is performed on the combustion surface of 107 (see switching stage number (2) in Table 1). The hot water supply characteristics obtained by the combustion of the burner devices 2a and 2b are the hot water supply characteristics within the region sandwiched between the characteristic lines b1 and b2 in FIG . becomes possible.

つまり、バーナ装置2a,2bの燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図7の特性線bの特性となり、ガス比例弁18の開弁量が多くなるにつれて図7の特性線b側に近づき、最大開度のときに特性線bの特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。 That is, the hot water supply characteristics obtained by combustion of the burner devices 2a and 2b correspond to the valve opening amount of the gas proportional valve 18, and when the valve opening amount of the gas proportional valve 18 is the minimum opening degree, As the valve opening amount of the gas proportional valve 18 increases, it approaches the characteristic line b2 side in FIG . The valve opening amount of the gas proportional valve 18 is controlled in accordance with the temperature and the hot water supply flow rate to proportionally control the supply gas amount.

また、燃焼制御手段52は、給湯要求能力に対応する燃焼能力がさらに一段アップすると、バーナ装置2aの4本のバーナ107の燃焼面とバーナ装置2bの3本のバーナ107とバーナ装置2cの7本のバーナ107の合計12本のバーナ107の燃焼面燃焼面の燃焼を行う(表1の切り替え段数(3)、を参照)。これらのバーナ装置2a,2b,2cの燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図7の特性線cと特性線cとに挟まれた領域内の給湯が可能となる。 Further, when the combustion capacity corresponding to the hot water supply demand capacity is further increased, the combustion control means 52 changes the combustion surfaces of the four burners 107 of the burner device 2a, the three burners 107 of the burner device 2b, and the combustion surfaces of the three burners 107 of the burner device 2c. Combustion is performed on the combustion surfaces of a total of 12 burners 107 of the three burners 107 (see the switching stage number (3) in Table 1). The hot water supply characteristics obtained by combustion of these burner devices 2a, 2b, and 2c are sandwiched between the characteristic line c1 and the characteristic line c2 in FIG . It is possible to supply hot water within the area.

つまり、バーナ装置2a,2b,2cの燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図7の特性線cの特性となり、ガス比例弁18の開弁量が多くなるにつれて図7の特性線c側に近づき、最大開度のときに特性線cの特性が得られるので、燃焼制御手段52は、給湯設定温度と給湯流量に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。 That is, the hot water supply characteristics obtained by combustion of the burner devices 2a, 2b, and 2c correspond to the valve opening amount of the gas proportional valve 18, and when the valve opening amount of the gas proportional valve 18 is the minimum opening, the characteristic line c1 in FIG. As the valve opening amount of the gas proportional valve 18 increases, it approaches the characteristic line c2 side of FIG . The amount of supplied gas is proportionally controlled by controlling the opening amount of the gas proportional valve 18 corresponding to the hot water supply set temperature and the hot water supply flow rate.

さらに、燃焼制御手段52は、給湯単独運転時に、給湯要求能力に対応する燃焼能力が前記水路配設部切り替え基準能力(例えば16.5号)以上となったときには給湯用のバーナ装置2(2a,2b,2c)に加えて二種管路配設部112の下方側の暖房用のバーナ装置5を燃焼させる(表1の切り替え段数(4)を参照)。また、このとき、燃焼制御手段52は、ポンプ駆動制御手段55に指令を加えて暖房用循環ポンプ9を駆動させる。 Further, the combustion control means 52 controls the hot water supply burner device 2 (2a , 2b and 2c), the burner device 5 for heating on the lower side of the type 2 pipeline installation portion 112 is burned (see the switching stage number (4) in Table 1). Also, at this time, the combustion control means 52 gives a command to the pump drive control means 55 to drive the circulation pump 9 for heating.

給湯用のバーナ装置2a,2b,2cと暖房用のバーナ装置5の燃焼により得られる給湯特性は、例えば給湯回路45への入水温度が15℃の場合に、図7の特性線dと特性線dとに挟まれた領域内の給湯が可能となる。つまり、バーナ装置2a,2b,2cと暖房用のバーナ装置5の燃焼により得られる給湯特性は、ガス比例弁18の開弁量に応じ、ガス比例弁18の開弁量が最小開度のときには図7の特性線dの特性となり、ガス比例弁18の開弁量が多くなるにつれて図7の特性線d側に近づき、最大開度のときに特性線dの特性が得られるので、燃焼制御手段52は給湯設定温度と給湯流量に対応させてガス比例弁18を制御する。 The hot water supply characteristics obtained by the combustion of the hot water supply burner devices 2a, 2b, 2c and the heating burner device 5 are, for example, when the temperature of water entering the hot water supply circuit 45 is 15 ° C., the characteristic line d1 in FIG. It is possible to supply hot water in the area sandwiched between lines d2 and d2. That is, the hot water supply characteristics obtained by combustion of the burner devices 2a, 2b, 2c and the heating burner device 5 correspond to the valve opening amount of the gas proportional valve 18, and when the valve opening amount of the gas proportional valve 18 is the minimum opening, The characteristics of the characteristic line d1 in FIG . 7 are obtained, and as the valve opening amount of the proportional gas valve 18 increases, the characteristics of the characteristic line d2 in FIG . 7 are approached. , the combustion control means 52 controls the gas proportional valve 18 corresponding to the hot water supply set temperature and the hot water supply flow rate.

つまり、給湯単独運転時であっても、暖房用のバーナ装置5の燃焼を行う時には液体循環ポンプ9を駆動させて暖房回路7内の熱媒体(温水)を循環させ、給湯暖房熱的接続用液-水熱交換器33を介して暖房回路7側の熱を給湯側に吸熱させて回収することにより、図7の特性線dと特性線dとに挟まれた領域内の高い給湯能力による給湯を行うことができるものである。 That is, even during the hot water supply single operation, when the burner device 5 for heating is burned, the liquid circulation pump 9 is driven to circulate the heat medium (hot water) in the heating circuit 7, and the hot water supply heating thermal connection is performed. By absorbing and recovering the heat on the heating circuit 7 side to the hot water supply side via the liquid - water heat exchanger 33, high hot water supply in the area sandwiched between the characteristic line d1 and the characteristic line d2 in FIG . It can supply hot water according to its capacity.

すなわち、本実施例では、給湯用のバーナ装置2と暖房用のバーナ装置5の全ての燃焼面を燃焼させ、ガス比例弁18の開弁量制御を行うことに加え、暖房回路7の熱媒体を循環させ、このとき、分岐対応給湯側温度可変手段51が追い焚き用液体流量制御弁32を適宜開き、給湯暖房熱的接続用液-水熱交換器33を介して暖房回路7側から給湯回路45側へ熱を移動させることにより、図7の特性線dと特性線dとに挟まれた領域内の高い給湯能力による給湯を行うことができる。 That is, in this embodiment, all the combustion surfaces of the hot water supply burner device 2 and the heating burner device 5 are burned, and in addition to controlling the valve opening amount of the gas proportional valve 18, the heat medium of the heating circuit 7 is At this time, the branching hot water supply side temperature variable means 51 appropriately opens the reheating liquid flow rate control valve 32, and hot water supply from the heating circuit 7 side via the hot water supply heating thermal connection liquid-water heat exchanger 33 By transferring heat to the circuit 45 side, it is possible to supply hot water with a high hot water supply capacity in the area sandwiched between the characteristic lines d1 and d2 in FIG .

また、燃焼制御手段52は、暖房単独運転時には、暖房運転動作に必要な必要燃焼能力が予め定められる暖房制御切り替え基準能力(例えば7.3kw)未満の時には、二種管路配設部112の下方側の暖房用のバーナ装置5の4本のバーナ109をオンオフ制御し(予め定められるオンオフタイミング毎にオンとオフとを繰り返すオンオフ燃焼(間欠燃焼)を行い)、このとき、ガス比例弁18の開弁量を最小とする。 In addition, the combustion control means 52, during the heating single operation, when the required combustion capacity required for the heating operation operation is less than the predetermined heating control switching reference capacity (for example, 7.3 kw) The four burners 109 of the burner device 5 for heating on the lower side are on/off controlled (on/off combustion (intermittent combustion) that repeats on and off at each predetermined on/off timing), and at this time, the gas proportional valve 18 to minimize the amount of valve opening.

一方、暖房運転動作に必要な必要燃焼能力が前記暖房制御切り替え基準能力以上の時には、暖房用のバーナ装置5の4本のバーナ109の燃焼を継続して行い、このときには、前記必要燃焼能力に対応させてガス比例弁18の開弁量を制御して供給ガス量を比例制御する。 On the other hand, when the necessary combustion capacity required for the heating operation is equal to or higher than the heating control switching reference capacity, the four burners 109 of the burner device 5 for heating continue to burn. Correspondingly, the valve opening amount of the gas proportional valve 18 is controlled to proportionally control the supply gas amount.

さらに、燃焼制御手段52は、暖房運転と給湯運転とを同時に行う暖房と給湯の同時運転時には、要求される給湯能力に対応させて暖房用のバーナ装置5のみを燃焼させるか該暖房用のバーナ装置5に加えて給湯用のバーナ装置2も燃焼させるかを制御する燃焼バーナ決定制御と、この燃焼バーナ決定制御によって決定された燃焼バーナの燃焼において、前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれてガス比例弁18の開度を大きくし前記要求給湯能力が小さくなるにつれてガス比例弁18の開度を小さくする比例弁開度制御とを予め定められたバーナ燃焼制御プログラムにしたがって行う。 Further, when the heating operation and the hot water supply operation are performed simultaneously, the combustion control means 52 either burns only the heating burner device 5 or burns the heating burner device 5 in accordance with the required hot water supply capacity. Combustion burner determination control for controlling whether to burn the burner device 2 for hot water supply in addition to the device 5; Proportional valve opening control for increasing the opening of the gas proportional valve 18 as the capacity increases and decreasing the opening of the gas proportional valve 18 as the required hot water supply capacity decreases according to a predetermined burner combustion control program. conduct.

なお、本実施例では、給湯用のバーナ装置2が複数の複数の給湯用のバーナ装置2a,2b,2cを有して形成されており、要求される給湯能力に対応させて、複数の給湯用のバーナ装置2a,2b,2cのうちの燃焼バーナ個数であるバーナ段数を予め定められたバーナ段数可変プログラムに従って制御するバーナ段数制御も行う(バーナ燃焼制御プログラムはバーナ段数可変プログラムも含むプログラムである)。 In the present embodiment, the hot water supply burner device 2 is formed to have a plurality of hot water supply burner devices 2a, 2b, and 2c. Burner stage number control is also performed to control the number of burner stages, which is the number of combustion burners, of the burner devices 2a, 2b, and 2c for use according to a predetermined burner stage number variable program (the burner combustion control program is a program that also includes the burner stage number variable program). be).

このバーナ段数可変プログラムにしたがう制御は、前記要求給湯能力が大きくなるにつれてバーナ段数を大きくし、前記要求給湯能力が小さくくなるにつれて前記バーナ段数を小さくする制御である。また、燃焼制御手段52は、同じバーナ段数において、前記要求給湯能力に対応させて、該要求給湯能力が大きくなるにつれてガス比例弁18の開度を大きくし、前記要求給湯能力が小さくなるにつれてガス比例弁18の開度を小さくする比例弁開度制御を行う。 Control according to the variable burner stage number program is control in which the burner stage number is increased as the required hot water supply capacity increases, and the burner stage number is decreased as the required hot water supply capacity decreases. Further, the combustion control means 52 increases the opening degree of the gas proportional valve 18 as the required hot water supply capacity increases, corresponding to the required hot water supply capacity at the same number of burner stages, and increases the opening degree of the gas proportional valve 18 as the required hot water supply capacity decreases. Proportional valve opening control is performed to reduce the opening of the proportional valve 18 .

燃焼制御手段52によって行われる給湯用のバーナ装置2(2a,2b,2c)の燃焼制御は、図6に示したような給湯用のそれぞれのバーナ装置2a,2b,2cを形成する複数本ずつのバーナ107によって区分された燃焼面(区分燃焼面)を、給湯用のバーナ装置2に要求される能力が一段アップする毎に予め定められた順番で選択的に順次追加燃焼させるものであり、給湯と暖房の同時運転時には、例えば表2に示すバーナ段数制御を行う。 The combustion control of the hot water supply burner devices 2 (2a, 2b, 2c) performed by the combustion control means 52 is performed by a plurality of burners forming the respective hot water supply burner devices 2a, 2b, 2c as shown in FIG. The combustion surfaces (divided combustion surfaces) divided by the burner 107 are selectively and sequentially additionally burned in a predetermined order each time the capacity required of the burner device 2 for hot water supply is increased by one step, During the simultaneous operation of hot water supply and heating, burner stage number control shown in Table 2, for example, is performed.

Figure 0007217628000002
Figure 0007217628000002

なお、表2において、面は、給湯用と暖房用のバーナ装置2,5の燃焼面を示しており、給湯用のバーナ装置2aの燃焼面をA、給湯用のバーナ装置2bの燃焼面をB、給湯用のバーナ装置2cの燃焼面をC、暖房用のバーナ装置5の燃焼面をDとして示している。 In Table 2, the surfaces indicate the combustion surfaces of the burner devices 2 and 5 for hot water supply and heating. B, C indicates the combustion surface of the burner device 2c for hot water supply, and D indicates the combustion surface of the burner device 5 for heating.

そして、この制御によって、例えば給湯用の液体流通管路13からの出側の熱媒体温度が60℃、暖房用の液体流通管路12の出側の熱媒体温度が60℃の場合においては、バーナ燃焼本数と給湯能力(給湯号数)との関係が、例えば図15の特性線Sa~Sdに示すようになる。なお、特性線Saはバーナ段数1段、特性線Sbはバーナ段数2段、特性線Scはバーナ段数3段、特性線Sdはバーナ段数4段におけるバーナ燃焼本数と前記能力の関係を示している。 With this control, for example, when the temperature of the heat medium on the exit side of the hot water supply liquid circulation line 13 is 60° C. and the temperature of the heat medium on the exit side of the heating liquid circulation line 12 is 60° C., The relationship between the number of burners fired and the hot water supply capacity (hot water supply number) is as shown by characteristic lines Sa to Sd in FIG. 15, for example. The characteristic line Sa shows the relationship between the number of burners and the capacity when the number of burner stages is 1, the characteristic line Sb is the number of burners of 2, the characteristic line Sc is the number of burners of 3, and the characteristic line Sd is the number of burners of 4. .

例えば図15(a)の特性線Saに示されるように、給湯と暖房の同時運転時において、要求される給湯能力が2.5号~6.25号の時には暖房用のバーナ装置5のみ(4本のバーナ)の燃焼でも要求される給湯能力を出すことができるが、特性線Saと特性線Sbとがオーバーラップする4.5号~6.25号の領域(範囲Rab)においては、特性線Sbにしたがった燃焼制御として暖房用のバーナ装置5と給湯用のバーナ装置2a(7本のバーナ)の燃焼でもよい。ただし、燃焼装置において、熱効率を向上させることは重要な点の一つであり、本実施例の熱源装置のような構成において、熱効率はバーナ段数が高いほうが高くなる。 For example, as shown by the characteristic line Sa in FIG. 15(a), only the burner device 5 for heating ( The required hot water supply capacity can be obtained even with combustion of four burners), but in the range of Nos. 4.5 to 6.25 (range Rab) where the characteristic line Sa and the characteristic line Sb overlap, Combustion control according to the characteristic line Sb may be combustion of the heating burner device 5 and the hot water supply burner device 2a (seven burners). However, it is one of the important points to improve the thermal efficiency in the combustion apparatus, and in the configuration like the heat source apparatus of the present embodiment, the higher the number of burner stages, the higher the thermal efficiency.

そこで、例えば要求される給湯号数が5号以上となったらバーナ段数を1段上げて特性線Sbにしたがった燃焼制御に切り替え、それと共に、ガス比例弁18の開度を小さく(例えば最小にして)、暖房用のバーナ装置5(4本のバーナの燃焼面D)と給湯用のバーナ装置2a(3本のバーナの燃焼面A)を燃焼させ(合計7本のバーナ装置の燃焼が行われ)、熱効率が高めとなるような燃焼制御が行われる。なお、特性線Sbは4.5号以上となっているが、制御特性線には、周知の如く、給湯のバーナ装置2のハンチング防止用に(例えば0.5号程度の)ヒステリシスが設けられており、ここでは、バーナ段数を上げる場合は例えば要求される給湯号数が5号以上となったときに特性線Sbに従うようにする。 Therefore, for example, when the required hot water supply number is 5 or higher, the number of burner stages is increased by one to switch to combustion control according to the characteristic line Sb, and at the same time, the opening degree of the gas proportional valve 18 is reduced (for example, minimized). ), the burner device 5 for heating (combustion surface D of four burners) and the burner device 2a for hot water supply (combustion surface A of three burners) are burned (a total of seven burner devices are burned). I), combustion control is performed to increase the thermal efficiency. Although the characteristic line Sb is 4.5 or more, as is well known, the control characteristic line is provided with hysteresis (for example, about 0.5) to prevent hunting of the hot water supply burner device 2. Here, when the number of burner stages is increased, the characteristic line Sb is followed when, for example, the required number of hot water supply is No. 5 or higher.

さらに要求される能力が大きくなれば、その能力に対応させて、要求される能力が大きくなるにつれてガス比例弁18の開度を大きくする。そして、前記と同様に、特性線Sbと特性線Scとがオーバーラップする領域(8.125号~11号)(範囲Rbc)においても、同様に、特性線Sbにしたがった燃焼制御としてもよいし、特性線Scにしたがった燃焼制御でもよいので、前記と同様に熱効率を高めとするために、例えば要求される能力が約8.625号になったらバーナ段数を1段上げる(特性線Scに対応させて給湯用のバーナ装置2bの燃焼面Bも燃焼させて合計12本のバーナ装置を燃焼させる)。 As the required capacity increases, the opening of the proportional gas valve 18 is increased as the required capacity increases. In the same manner as described above, in the region (8.125 to 11) (range Rbc) where the characteristic line Sb and the characteristic line Sc overlap, the combustion control may be similarly performed according to the characteristic line Sb. However, since combustion control according to the characteristic line Sc is also possible, in order to increase the thermal efficiency in the same manner as described above, for example, when the required capacity reaches approximately 8.625, the number of burner stages is increased by one (characteristic line Sc , the combustion surface B of the burner device 2b for hot water supply is also burned to burn a total of 12 burner devices).

また、特性線Scと特性線Sdとがオーバーラップする領域(10.875号~18.75号)(範囲Rcd)においては特性線Scにしたがった燃焼制御としてもよいし、特性線Sdにしたがった燃焼制御でもよいので、前記と同様に熱効率を高めとするために、例えば要求される能力が約11.375号になったらバーナ段数を1段上げる(特性線Sdに対応させて給湯用のバーナ装置2a~2cの燃焼面A~Cと暖房用のバーナ装置5の燃焼面Dを燃焼させて合計16本のバーナ装置を燃焼させる)、といった動作を行うようにする。 Further, in the area (No. 10.875 to No. 18.75) (range Rcd) where the characteristic line Sc and the characteristic line Sd overlap, the combustion control may be performed according to the characteristic line Sc or according to the characteristic line Sd. In order to increase the thermal efficiency in the same manner as described above, for example, when the required capacity reaches about 11.375, the number of burner stages is increased by one (corresponding to the characteristic line Sd, Combustion surfaces A to C of the burner devices 2a to 2c and combustion surface D of the burner device 5 for heating are burned to burn a total of 16 burner devices).

このように、要求される能力が大きくなるにつれて、ガス比例弁18の開度を大きくする制御とバーナ段数を順次大きく(高く)する制御とを行っていくが、図15の特性線Sa~Sd同士がオーバーラップしている領域(範囲Rab、範囲Rb、範囲Rcd)においては、なるべく1つ上のバーナ段数に対応する特性線にしたがった制御としてガス比例弁18の開度を小さくするような制御が行われる。 In this way, as the required capacity increases, the control to increase the opening of the gas proportional valve 18 and the control to sequentially increase (increase) the number of burner stages are performed. In the overlapping regions (range Rab, range Rb, range Rcd), the opening degree of the gas proportional valve 18 is reduced as much as possible as a control according to the characteristic line corresponding to the burner stage number one step higher. control is performed.

一方、要求される能力が小さくなったときには、通常は、以下のような制御を行う。つまり、図15(b)の特性線Sdに示されるように、要求される能力が24号~約10.875号の時には、暖房用のバーナ装置5と給湯用のバーナ装置2a,2b,2cを燃焼させ(合計16本のバーナ装置の燃焼面A,B,C,Dの燃焼が行われ)、能力に対応させて、要求される能力が小さくなるにつれてガス比例弁18の開度を小さくする。そして、要求される能力が約10.875号になったらバーナ段数を1段下げ(特性線Scにしたがう制御とし)、それと共に特性線Scに対応させてガス比例弁18の開度を制御して、暖房用のバーナ装置5の燃焼面Dと給湯用のバーナ装置2a,2bの燃焼面A,Bを燃焼させる。 On the other hand, when the required capacity becomes smaller, the following control is normally performed. That is, as shown by the characteristic line Sd in FIG. 15(b), when the required capacity is No. 24 to about No. 10.875, the heating burner device 5 and the hot water supply burner devices 2a, 2b, and 2c is burned (combustion is performed on the combustion surfaces A, B, C, and D of a total of 16 burner devices), and the opening of the gas proportional valve 18 is decreased as the required capacity decreases, corresponding to the capacity. do. Then, when the required capacity reaches approximately 10.875, the number of burner stages is lowered by one (control according to the characteristic line Sc), and the opening of the gas proportional valve 18 is controlled corresponding to the characteristic line Sc. Then, the combustion surface D of the heating burner device 5 and the combustion surfaces A and B of the hot water supply burner devices 2a and 2b are burned.

さらに要求される能力が小さくなったらガス比例弁18の開度を小さくし、要求される能力が約8.125号になったらバーナ段数を1段下げ(特性線Sbに従う制御とし)、それと共に特性線Sbに対応させてガス比例弁18の開度を制御して、暖房用のバーナ装置5と給湯用のバーナ装置2aを燃焼させる。さらに要求される能力が小さくなったらガス比例弁18の開度を小さくし、要求される能力が約4.5号になったらバーナ段数を1段下げ(特性線Saにしたがう制御とし)、それと共に特性線Saに対応させてガス比例弁18の開度を制御して、暖房用のバーナ装置5bのみを燃焼させる。 When the required capacity becomes smaller, the opening of the gas proportional valve 18 is decreased, and when the required capacity reaches about 8.125, the number of burner stages is lowered by one (control according to the characteristic line Sb). The opening degree of the gas proportional valve 18 is controlled in accordance with the characteristic line Sb to burn the heating burner device 5 and the hot water supply burner device 2a. When the required capacity becomes smaller, the opening of the proportional gas valve 18 is decreased, and when the required capacity reaches about No. 4.5, the number of burner stages is lowered by one (control is performed according to the characteristic line Sa). At the same time, the opening degree of the gas proportional valve 18 is controlled in correspondence with the characteristic line Sa, and only the heating burner device 5b is burned.

つまり、要求される能力が小さくなるにつれて、ガス比例弁18の開度を小さくする制御とバーナ段数を順次小さく(低く)する制御とを行っていき、図15の特性線Sa~Sd同士がオーバーラップしている領域(範囲Rab、範囲Rb、範囲Rcd)において、なるべく1つ上のバーナ段数に対応する特性線にしたがった制御とする(つまり、ぎりぎりまでバーナ段数を小さくしない)ような制御が行われる。 That is, as the required performance becomes smaller, the control to decrease the opening of the gas proportional valve 18 and the control to sequentially decrease (lower) the number of burner stages are performed, and the characteristic lines Sa to Sd in FIG. In the overlapping area (range Rab, range Rb, range Rcd), control should be performed according to the characteristic line corresponding to the burner stage number one step higher (that is, the burner stage number should not be reduced to the limit). done.

以上のように、本実施例では給湯用のバーナ装置2がハンチングしないように、かつ、できるだけ熱効率が高くなるように、バーナ段数制御とガス比例弁18の開弁量制御によるバーナ燃焼制御を行うが、暖房用の液体流通管路12と給湯用の液体流通管路13とが上下方向に互いに接する態様で隣接した二種管路配設部112における熱の分配比によっては、前記のようなバーナ燃焼制御のみでは、給湯用のバーナ装置2のハンチング現象が生じる場合がある。 As described above, in the present embodiment, burner combustion control is performed by controlling the number of stages of the burner and controlling the amount of opening of the gas proportional valve 18 so as to prevent the hot water supply burner device 2 from hunting and to increase the thermal efficiency as much as possible. However, depending on the heat distribution ratio in the two-kind pipe installation portion 112 in which the heating liquid distribution pipe 12 and the hot water supply liquid distribution pipe 13 are in contact with each other in the vertical direction, The hunting phenomenon of the burner device 2 for hot water supply may occur only with burner combustion control.

つまり、二種管路配設部112では、給湯と暖房の同時運転時において、暖房用の液体流通管路12内の熱媒体の温度が給湯用の液体流通管路13内の熱媒体の温度に比して極めて低い場合には、暖房用のバーナ装置5の燃焼熱量を暖房用の液体流通管路12が吸熱する割合が多くなり、給湯用の液体流通管路13側に吸熱量が低下することから、給湯能力が低下する。換言すると、暖房用の液体流通管路12内の熱媒体の温度が給湯用の液体流通管路13内の熱媒体の温度に比して極めて低い場合には、暖房用の液体流通管路12が吸熱する量が多くなり、給湯用の液体流通管路13側の吸熱量が低下することから、給湯能力が低下する。 In other words, in the two-kind pipe arrangement portion 112, the temperature of the heat medium in the liquid circulation pipe 12 for heating is equal to the temperature of the heat medium in the liquid circulation pipe 13 for hot water supply during simultaneous operation of hot water supply and room heating. If it is extremely low compared to , the proportion of the heat absorbed by the heating liquid distribution pipe 12 for the combustion heat amount of the heating burner device 5 increases, and the heat absorption amount decreases on the hot water supply liquid distribution pipe 13 side. As a result, the hot water supply capacity decreases. In other words, when the temperature of the heat medium in the heating liquid circulation pipeline 12 is extremely lower than the temperature of the heat medium in the hot water supply liquid circulation pipeline 13, the heating liquid circulation pipeline 12 The amount of heat absorbed increases, and the amount of heat absorbed on the side of the liquid distribution pipe 13 for hot water supply decreases, so the hot water supply capacity decreases.

このように、暖房用の液体流通管路12が吸熱する割合と給湯用の液体流通管路13が吸熱する割合(分配比)は2者の温度差によって決まるものであり、この現象は、本実施例に適用されている複合熱交換器1の構成においては、二種管路配設部112において暖房用の熱交換器の液体流通管路12の割合が多いために特に顕著となる。 Thus, the ratio of heat absorption by the liquid distribution pipe 12 for heating and the ratio of heat absorption by the liquid distribution pipe 13 for hot water supply (distribution ratio) are determined by the temperature difference between the two. In the configuration of the composite heat exchanger 1 applied to the embodiment, this is particularly noticeable because the ratio of the liquid circulation pipes 12 of the heat exchanger for heating is large in the two-kind pipe installation portion 112 .

例えば図10の特性線a~dに示されるように、暖房用の液体流通管路12内の熱媒体の温度の違いにより、給湯暖房同時運転時のガス比例弁18(比例弁)の開度と給湯能力を示す給湯号数との関係に違いが生じることになり、本実施例においては、燃焼制御手段52が、このような特性線に対応させた燃焼制御(バーナ装置2,5の燃焼制御であり、ガス比例弁18の開弁量制御とガス開閉弁17の開閉制御)を行うようにしている。 For example, as shown by characteristic lines a to d in FIG. and the hot water supply scale indicating the hot water supply capacity. In this embodiment, the combustion control means 52 performs combustion control (combustion of the burner devices 2, 5) corresponding to such a characteristic line. control, which controls the amount of opening of the gas proportional valve 18 and the opening/closing control of the gas on-off valve 17).

なお、図10および後述する図11において、特性線a~dは、いずれも給湯用の液体流通管路13からの出側の温度が60℃である場合の特性線を示している。また、暖房側の温度は、特性線aにおいては、暖房用の液体流通管路12から出た温度(暖房高温サーミスタ40により検出される熱媒体温度)が60℃の場合を示しており、この熱媒体の温度が特性線bは55℃の場合、特性線cは50℃の場合、特性線dは45℃の場合をそれぞれ示している。 In FIG. 10 and FIG. 11, which will be described later, the characteristic lines a to d all show the characteristic lines when the temperature on the exit side from the liquid distribution pipe 13 for supplying hot water is 60.degree. Further, regarding the temperature on the heating side, the characteristic line a indicates the case where the temperature (heat medium temperature detected by the heating high-temperature thermistor 40) coming out of the liquid distribution pipe 12 for heating is 60°C. Characteristic line b indicates a case where the temperature of the heat medium is 55° C., characteristic line c indicates a case of 50° C., and characteristic line d indicates a case of 45° C., respectively.

また、ガス比例弁18の開度と燃焼ファン15の回転数とは例えば略比例するものであり、給湯号数の最低値は2.5号であるため、図10および後述する図11において、2.5号未満の特性線は想像線である(実際には存在しないが、1段目の特性線b~dの延長線を細線により示している)。 Further, the opening degree of the gas proportional valve 18 and the rotational speed of the combustion fan 15 are, for example, substantially proportional, and the minimum hot water supply number is No. 2.5. Characteristic lines below No. 2.5 are imaginary lines (although they do not actually exist, extension lines of characteristic lines b to d in the first row are indicated by thin lines).

本実施例において、例えば図10の特性線a~dのような制御用の特性線に対応させて、給湯用のバーナ装置2(2a,2b,2c)および暖房用のバーナ装置5の燃焼制御が行われるが、バーナ段数3段目段目と4段目との間および、バーナ段数2段目と3段目との間には、特性線a~dのいずれの特性線においても、ハンチング防止用ラップ代が形成されている。 In this embodiment, combustion control of the burner device 2 (2a, 2b, 2c) for hot water supply and the burner device 5 for heating is made to correspond to characteristic lines for control such as characteristic lines a to d in FIG. However, between the third and fourth burner stages and between the second and third burner stages, hunting occurs on any of the characteristic lines a to d. A wrap margin for prevention is formed.

つまり、特性線dは、暖房用の液体流通管路12の出側の熱媒体温度が45℃で特性線a~dの中で最も低いが、バーナ段数2段目と3段目との間にはハンチング防止用ラップ代が形成されているため、特性線dにしたがってバーナ段数2段目での制御が行われているときに、要求される給湯号数が大きくなり、ガス比例弁18の開度(この開度におけるガス圧)が図のA端に達した場には、バーナ段数3段目におけるA’に移動するように制御され、逆に要求される給湯号数が小さくなってバーナ段数3段目におけるガス比例弁18の開度がB端に達した場にはバーナ段数2段目におけるB’に移動するように制御される。 That is, the characteristic line d is the lowest among the characteristic lines a to d when the temperature of the heat medium on the outlet side of the liquid distribution pipe 12 for heating is 45° C., but is between the second and third burner stages. Since a lap allowance for preventing hunting is formed at , when the control is performed at the second stage of the burner stage number according to the characteristic line d, the required hot water supply number increases, and the gas proportional valve 18 When the degree of opening (gas pressure at this degree of opening) reaches end A in the figure, the burner is controlled to move to A' at the third stage of the burner stage, and conversely, the required hot water supply number becomes smaller. When the opening degree of the gas proportional valve 18 reaches the B end at the third burner stage, it is controlled to move to B' at the second burner stage.

このように、特性線dにおけるバーナ段数2段目と3段目との間には、A-B’、A’-B、間にハンチング防止用ラップ代が設けられて(つまり、バーナ段数3段目と2段目の間で給湯能力がラップする領域が設けられて)ハンチングが防止されるが、特性線dにおいては、破線枠Dで示されるように、バーナ段数2段目から1段目に下がる場合のヒステリシスが形成できず、また、特性線dの2段目と1段目とがラップする領域も形成されない。そのため、このままでは給湯用のバーナ装置2aのハンチングを防止することができないために、バーナ段数1段目と2段目間の移動を繰り返すことになってしまう。 In this way, between the second and third burner stages on the characteristic line d, a hunting prevention wrap allowance is provided between AB' and A'-B (that is, the burner stage number 3 A region where the hot water supply capacity overlaps between the second stage and the second stage is provided, and hunting is prevented. A hysteresis that would occur when the line falls to the eye cannot be formed, and a region in which the second stage and the first stage of the characteristic line d overlap is not formed. Therefore, since hunting of the hot water supply burner device 2a cannot be prevented in this state, the movement between the first and second burner stages is repeated.

この関係を、バーナ燃焼本数と給湯能力(給湯号数)との関係により示すと、図15(a)において、暖房用の液体流通管路12の出側の熱媒体温度が45℃近傍の値である場合の特性線Sa’~Sd ’に示されるようになる。特性線Sa’と特性線Sb’に着目すると分かるように、暖房用バーナ装置5のみを燃焼させた場合(特性線Sa’)と、暖房用バーナ装置5に加えて給湯用のバーナ装置2aを燃焼させた場合(特性線Sb’)における給湯能力に差が生じ、破線A枠内の部分のように特性線Sa’と特性線Sb’とのラップ部分(ラップ代)がなく、給湯用のバーナ装置2aのハンチングの発生が懸念される。 This relationship is shown by the relationship between the number of burners and the hot water supply capacity (hot water supply number). In FIG. is shown by the characteristic lines Sa' to Sd' in the case of . As can be seen from the characteristic line Sa' and the characteristic line Sb', when only the heating burner device 5 is burned (characteristic line Sa'), and when the hot water supply burner device 2a is used in addition to the heating burner device 5, When burned (characteristic line Sb'), there is a difference in the hot water supply capacity, and there is no overlap portion (lap allowance) between the characteristic line Sa' and the characteristic line Sb' like the portion within the dashed line A frame, and the hot water supply There is concern about the occurrence of hunting in the burner device 2a.

それに対し、本実施例では分岐対応給湯側温度可変手段51を設けた以下の構成により、給湯用のバーナ装置2のハンチングを防止している。つまり、本実施例において、分岐対応給湯側温度可変手段51は、暖房運転と給湯運転とを同時に行う暖房と給湯の同時運転時に、暖房用バーナ装置5のみを燃焼させて二種管路配設部112を加熱するときには、追い焚き循環ポンプ27を動かすことなく追い焚き用液体流量制御弁32を開くことにより、メインの暖房用熱交換器を形成する暖房用の液体流通管路12で加熱された熱媒体を給湯暖房熱的接続用液-水熱交換器33に通して循環させる熱媒体循環経路制御手段として機能する。 On the other hand, in this embodiment, the hunting of the burner device 2 for hot water supply is prevented by the following configuration in which the hot water supply side temperature variable means 51 for branching is provided. That is, in the present embodiment, the branching hot water supply side temperature variable means 51 burns only the heating burner device 5 during simultaneous heating and hot water supply operation in which the heating operation and the hot water supply operation are performed at the same time. When heating the portion 112, by opening the reheating liquid flow rate control valve 32 without operating the reheating circulation pump 27, the liquid is heated in the heating liquid circulation line 12 forming the main heating heat exchanger. It functions as heat medium circulation path control means for circulating the heat medium through the liquid-water heat exchanger 33 for hot water supply and heating thermal connection.

この機能によって、暖房用の液体流通管路12で加熱された熱媒体の熱を、給湯暖房熱的接続用液-水熱交換器33を通して給湯回路45側に加えることができるので、暖房用のバーナ装置5のみを燃焼させたときの給湯能力を向上させることができる。すなわち、前記の構成によって、給湯用熱交換器が暖房用のバーナ装置5から直接的に加熱される熱量と、暖房用のバーナ装置5によって前記メインの暖房用熱交換器で加熱された熱媒体から給湯回路45側に加えられる(間接的に加熱される)熱量とが加わり、給湯側の加熱能力を高くでき、給湯用バーナ装置2のハンチングの発生を抑制できる。 With this function, the heat of the heat medium heated in the heating liquid distribution pipe 12 can be applied to the hot water supply circuit 45 side through the hot water supply heating thermal connection liquid-water heat exchanger 33. The hot water supply capacity can be improved when only the burner device 5 is burned. That is, with the above configuration, the amount of heat directly heated by the hot water supply heat exchanger from the heating burner device 5 and the heat medium heated by the heating burner device 5 in the main heating heat exchanger The amount of heat applied (indirectly heated) to the hot water supply circuit 45 side is added to increase the heating capacity of the hot water supply side, and hunting of the hot water supply burner device 2 can be suppressed.

この点について図10を用いて説明すると、二種管路配設部112では、給湯と暖房の同時運転時において、暖房用の液体流通管路12内の熱媒体の温度が給湯用の液体流通管路13内の熱媒体の温度に比して高い状態から低い状態となった場合、すなわち、例えば暖房装置70,71での熱の消費量が増えたりすると、特性線aの状態から特性線dの状態になり、暖房用のバーナ装置5の燃焼熱量のうち暖房用の液体流通管路12が吸熱する割合が多くなる。これによって、給湯用の液体流通管路13側への吸熱量が低下することから、給湯能力が低下する。 This point will be described with reference to FIG. 10. In the two-kind pipe installation section 112, during simultaneous operation of hot water supply and heating, the temperature of the heat medium in the heating liquid distribution pipe 12 is higher than that of the hot water supply liquid distribution. When the temperature of the heat medium in the pipeline 13 changes from a high state to a low state, that is, when the heat consumption in the heating devices 70 and 71 increases, for example, the characteristic line a changes from the state of the characteristic line a. In the state of d, the proportion of heat absorbed by the heating liquid distribution pipe 12 in the amount of combustion heat of the heating burner device 5 increases. As a result, the amount of heat absorbed to the liquid distribution pipe 13 side for supplying hot water is reduced, so that the ability to supply hot water is reduced.

そこで、前記給湯能力低下を起こさないように、燃焼制御手段52がガス比例弁18の開弁量制御を行なうが、給湯能力低下を阻止できない場合がある。例えば、同時運転時の給湯号数3号時で、特性線aの状態(暖房用の液体流通管路12から出た温度が60℃の状態)では、ガス比例弁18の開弁量は例えば12%であるが、暖房装置70,71での熱の消費量が増えて特性線bの状態(暖房用の液体流通管路12から出た温度が55℃の状態)となると、ガス比例弁18の開弁量は例えば39%となる。 Therefore, the combustion control means 52 controls the opening amount of the gas proportional valve 18 so as not to cause the drop in the hot water supply capacity, but there are cases where the drop in the hot water supply capacity cannot be prevented. For example, when the hot water supply number is No. 3 during simultaneous operation, the valve opening amount of the gas proportional valve 18 is, for example, 12%, but when the amount of heat consumed by the heating devices 70 and 71 increases and becomes the state of the characteristic line b (the state where the temperature of the liquid flowing through the heating liquid circulation line 12 is 55° C.), the gas proportional valve The valve opening amount of 18 is, for example, 39%.

暖房装置70,71での熱の消費量がさらに増えて特性線cの状態(暖房用の液体流通管路12から出た温度が50℃の状態)となるとガス比例弁18の開弁量は例えば66%となるが、暖房装置70,71での熱の消費量がさらに増えて特性線dの状態(暖房用の液体流通管路12から出た温度が50℃の状態)となるとガス比例弁18の開弁量は例えば上限の90%を超えてしまい、供給熱量の増量が十分にできずに給湯能力が低下する。 When the amount of heat consumed by the heating devices 70 and 71 further increases and the state of the characteristic line c (the state where the temperature of the liquid flowing through the heating liquid flow line 12 is 50° C.) is reached, the valve opening amount of the gas proportional valve 18 is For example, it is 66%, but when the amount of heat consumption in the heating devices 70 and 71 further increases and the state of the characteristic line d (the temperature of the liquid flowing out of the heating liquid distribution pipe 12 is 50° C.), the gas proportionality The opening amount of the valve 18 exceeds the upper limit of 90%, for example, and the amount of heat supplied cannot be increased sufficiently, resulting in a drop in hot water supply capacity.

このことから、暖房装置70,71での熱の消費量を減らせば給湯能力低下を阻止できる。暖房装置70,71での熱の消費量を減らす方法としては、例えば、追い焚き用液体流量制御弁32を開く方法がある。こうすると、熱媒体が管路60から分岐された分岐通路(管路)65に流れ、暖房装置70に送られる(流量が減って)送られる熱の総量が減ることで暖房装置70での熱の消費量を減らすことができる。この結果、暖房装置70からの戻り温度は追い焚き用液体流量制御弁32を開く前と比して下がる。他方、給湯暖房熱的接続用液-水熱交換器33から出る熱媒体の温度も低い(暖房装置71のみの運転時は、こちらのみ発生)。 Therefore, if the amount of heat consumed by the heating devices 70 and 71 is reduced, the drop in hot water supply capacity can be prevented. As a method of reducing heat consumption in the heating devices 70 and 71, for example, there is a method of opening the liquid flow control valve 32 for reheating. By doing this, the heat medium flows into the branch passage (pipe line) 65 branched from the pipe line 60, and the total amount of heat sent to the heating device 70 (flow rate is reduced) is reduced. consumption can be reduced. As a result, the return temperature from the heating device 70 is lower than before the reheating liquid flow control valve 32 is opened. On the other hand, the temperature of the heat medium coming out of the liquid-water heat exchanger 33 for hot water supply/heating thermal connection is also low (when only the heating device 71 is in operation, only this heat medium is generated).

この結果、暖房用の液体流通管路12内を通る熱媒体が暖房用のバーナ装置の燃焼熱量を多く吸熱するが、系の温度としては低下するので、暖房装置70や暖房装置71に送られる熱媒体の温度低下に伴って暖房装置70,71での熱の消費量(放熱量)を減らすことができ、給湯能力低下を阻止できる。浴槽湯水循環ポンプ27を停止状態で追い焚き用液体流量制御弁32を開くということは、前記暖房装置70,71での熱の消費量を減らす効果と、前述の給湯暖房熱的接続用液-水熱交換器33での暖房回路7側の熱を給湯側に吸熱させて回収させる効果のダブル効果によって給湯能力を大きくすることができる。 As a result, the heat medium passing through the heating liquid distribution pipe 12 absorbs a large amount of the combustion heat of the heating burner device, but the temperature of the system drops, so the heat medium is sent to the heating device 70 and the heating device 71. As the temperature of the heat medium drops, the amount of heat consumed (the amount of heat released) in the heating devices 70 and 71 can be reduced, and a drop in the hot water supply capacity can be prevented. Opening the reheating liquid flow rate control valve 32 while the bathtub hot water circulation pump 27 is stopped has the effect of reducing the amount of heat consumed by the heating devices 70 and 71, and the above-mentioned hot water supply and heating thermal connection liquid- The hot water supply capacity can be increased by the double effect of absorbing and recovering the heat on the heating circuit 7 side in the water heat exchanger 33 to the hot water supply side.

例えば、図1の特性線Sa’と特性線Sb’には、給湯用の液体流通管路13からの出側の温度が60℃、暖房用の液体流通管路12の出側の熱媒体温度が45℃の場合に、分岐対応給湯側温度可変手段51がメインの暖房用熱交換器を形成する暖房用の液体流通管路12を通った熱媒体を給湯暖房熱的接続用液-水熱交換器33に通して循環させた場合の、バーナ段数1段目と2段絵目における燃焼バーナ本数と給湯号数との関係例が示されている(特性線Sc’、Sd’も、給湯用の液体流通管路13からの出側の温度が60℃、暖房用の液体流通管路12の出側の熱媒体温度が45℃の場合の、燃焼バーナ本数と給湯号数との関係例を示す)。特性線Sa’、Sb’を比較すると明らかなように、バーナ段数1段目(暖房用のバーナ装置5のみの燃焼)とバーナ段数2段目(暖房用のバーナ装置5と給湯用のバーナ装置2aの燃焼)との間にラップする領域を形成することができ、給湯用のバーナ装置2(2a)のハンチングが生じる不具合を防止することができる。 For example, characteristic line Sa' and characteristic line Sb' in FIG. is 45° C., the branch corresponding hot water supply side temperature variable means 51 transfers the heat medium through the heating liquid distribution pipe 12 forming the main heating heat exchanger to the hot water supply heating thermal connection liquid-water heat An example of the relationship between the number of combustion burners and the number of hot water supply grades in the first and second stages of the burner stage is shown when the hot water is circulated through the exchanger 33 (characteristic lines Sc' and Sd' are also An example of the relationship between the number of combustion burners and the number of hot water supply when the temperature on the outlet side of the liquid distribution pipe 13 for heating is 60° C. and the temperature of the heat medium on the outlet side of the liquid distribution pipe 12 for heating is 45° C. ). As is clear from the comparison of the characteristic lines Sa' and Sb', the first burner stage (combustion only in the heating burner device 5) and the second burner stage (burner device 5 for heating and the burner device for hot water supply) 2a) can be formed, and the problem of hunting of the hot water supply burner device 2 (2a) can be prevented.

ところで、暖房運転と給湯運転とを同時に行う同時運転時における給湯側に供給する熱量(output;アウトプット)は、二種管路配設部112において給湯用の液体流通管路13が直接吸熱する熱と、二種管路配設部112において、一度、暖房用の液体流通管路12が熱を吸熱した後、給湯暖房熱的接続用液-水熱交換器33を介して給湯側に伝えられる熱と、必要に応じ潜熱回収用の給湯熱交換器4が回収する熱の合計である。なお、本実施例では、潜熱回収用の給湯熱交換器4を設けて熱源装置を形成しているが、潜熱回収用の給湯熱交換器4は設けられない場合もある。 By the way, the amount of heat (output) supplied to the hot water supply side during simultaneous operation in which the heating operation and the hot water supply operation are performed at the same time is directly absorbed by the liquid distribution pipe 13 for hot water supply in the two-kind pipe installation part 112. Heat and in the two-kind pipe installation portion 112, once the heat is absorbed by the liquid distribution pipe 12 for heating, it is transferred to the hot water supply side via the hot water supply heating thermal connection liquid-water heat exchanger 33. It is the sum of the heat received and the heat recovered by the hot water supply heat exchanger 4 for recovering latent heat as needed. In this embodiment, the hot water supply heat exchanger 4 for latent heat recovery is provided to form the heat source device, but the hot water supply heat exchanger 4 for latent heat recovery may not be provided.

そして、二種管路配設部112において、一度、暖房用の液体流通管路12が吸熱した後に、給湯暖房熱的接続用液-水熱交換器33を介して給湯側に伝えられる熱(前者)よりも、二種管路配設部112において給湯用の液体流通管路13が直接熱を吸熱して得る熱(後者)の方が効率がよい。したがって、熱源装置1において、給湯回路45側に供給される熱量(output;アウトプット)が同じであっても、後者の方の比率を高くして前者の方の比率を下げた方が、バーナ装置2,5を介して熱源装置1に供給される熱量(input;インプット)を少なくすることができる(ガス管16を通して供給されるエネルギの熱利用効率を向上することができる)。 Then, in the two-kind pipe arrangement portion 112, once the liquid distribution pipe 12 for heating absorbs heat, heat is transmitted to the hot water supply side via the hot water supply heating thermal connection liquid-water heat exchanger 33 ( The heat (the latter) obtained by directly absorbing the heat in the hot water supply liquid distribution pipe 13 in the two-kind pipe installation portion 112 is more efficient than the former). Therefore, in the heat source device 1, even if the amount of heat (output) supplied to the hot water supply circuit 45 side is the same, it is better to increase the ratio of the latter and decrease the ratio of the former. The amount of heat (input) supplied to the heat source device 1 via the devices 2 and 5 can be reduced (the heat utilization efficiency of the energy supplied through the gas pipe 16 can be improved).

そのため、本実施例においては、熱源装置の熱効率を考慮し、給湯暖房熱的接続用液-水熱交換器33を介して給湯側に熱を伝えることにより給湯能力制御のラップ代を取ることを制御の主とするわけではなく、給湯暖房熱的接続用液-水熱交換器33を介して給湯側に伝えられる熱によって前記ラップ代が適度に形成できるように、追い焚き用液体流量制御弁32の開度を適度にして前記ラップ代を適度に形成するようにしている。つまり、追い焚き用液体流量制御弁32の開度が大きければ給湯暖房熱的接続用液-水熱交換器33を介して給湯側に伝えられる熱量が大きくなり、前記給湯能力制御のラップ代を大きくとれるが、熱源装置の熱効率も考慮して追い焚き用液体流量制御弁32の開度が適切な(ちょうどよい)開度となるようにしている。 Therefore, in this embodiment, in consideration of the thermal efficiency of the heat source device, the heat is transferred to the hot water supply side via the hot water supply/heating thermal connection liquid-water heat exchanger 33 to obtain a lap allowance for the hot water supply capacity control. The reheating liquid flow rate control valve is used so that the wrap allowance can be appropriately formed by the heat transmitted to the hot water supply side through the hot water supply and heating thermal connection liquid-water heat exchanger 33, not the main control. The degree of opening of 32 is moderated so that the lap margin is moderately formed. That is, if the opening of the reheating liquid flow control valve 32 is large, the amount of heat transmitted to the hot water supply side via the hot water supply heating thermal connection liquid-water heat exchanger 33 becomes large, and the lap charge of the hot water supply capacity control is reduced. Although it can be large, the degree of opening of the reheating liquid flow rate control valve 32 is set to an appropriate (just right) degree of opening in consideration of the thermal efficiency of the heat source device.

なお、図11には、本実施例とは異なるバーナ燃焼制御プログラムの例が示されており、同図の破線枠E、Fに示されるように、特性線c、dにおいて、バーナ段数2段目と1段目の間に給湯号数が同じ領域がない場合もある。この場合も、本実施例のように、燃焼制御手段52による前記バーナ燃焼制御のみでは給湯用のバーナ装置2aがハンチングすることになってしまうが、その制御に加え、分岐対応給湯側温度可変手段51による前記熱媒体循環経路制御手段としての機能によって、暖房用液体流通管路12を通って加熱された熱媒体を給湯暖房熱的接続用液-水熱交換器33に通して循環させることにより、同様の効果を奏することができる。 FIG. 11 shows an example of a burner combustion control program different from that of this embodiment. In some cases, there may not be an area with the same hot water supply number between the first stage and the first stage. In this case, as in the present embodiment, only the burner combustion control by the combustion control means 52 results in hunting of the hot water supply burner device 2a. 51 functions as the heat medium circulation path control means to circulate the heat medium heated through the heating liquid circulation pipe 12 through the hot water supply and heating thermal connection liquid-water heat exchanger 33. , a similar effect can be obtained.

また、給湯と暖房の同時運転時には、給湯温度を優先して制御するようにしており、暖房戻り温度(暖房低温サーミスタ41により検出される熱媒体温度)を監視してバーナ燃焼制御を行っているのではないので(暖房側は温度制御を行わずになりゆきの温度となるので)、暖房戻り温度(暖房低温サーミスタ41により検出される熱媒体温度)が何℃になるかは定かではなく、暖房高温サーミスタ40の検出温度も定かではない。そのため、図10、図11においては、特性線a~dまでの4本の特性線を制御特性線として与える例を示しているが、給湯暖房同時運転時のガス比例弁18(比例弁)の開度と給湯能力を示す給湯号数との関係は無限にあり、暖房戻り温度しだいで常に変わってくるものであり、その関係に合わせた制御を行うようにしてもよい。 In addition, when hot water supply and heating are simultaneously operated, the hot water supply temperature is preferentially controlled, and the heating return temperature (heat medium temperature detected by the heating low temperature thermistor 41) is monitored to perform burner combustion control. (because the temperature on the heating side does not control the temperature, and the temperature is the same), it is not certain what degree the heating return temperature (heat medium temperature detected by the heating low temperature thermistor 41) will be. The detected temperature of the high temperature thermistor 40 is also uncertain. Therefore, in FIGS. 10 and 11, four characteristic lines a to d are shown as control characteristic lines. There is an infinite relationship between the degree of opening and the hot water supply number indicating the hot water supply capacity, and it always changes according to the heating return temperature, and control may be performed in accordance with this relationship.

分岐対応給湯側温度可変手段51は、追い焚き用液体流量制御弁32を制御することにより、分岐通路65側に分岐する液体の有無と流量の少なくとも一方を可変し、それにより、給湯暖房熱的接続用液-水熱交換器33を介して暖房回路7側から給湯回路45側に与える熱量を可変することにより該給湯回路45側を流れる水の温度を可変する。さらに、分岐対応給湯側温度可変手段51は、浴槽湯水の追い焚き時に追い焚き循環ポンプ27を動かすと共に、追い焚き用液体流量制御弁32を開いて追い焚き終了後には追い焚き用液体流量制御弁32を閉じる制御も行う。 The branching hot water supply side temperature variable means 51 controls the reheating liquid flow rate control valve 32 to vary at least one of the presence or absence of the liquid branched to the branch passage 65 side and the flow rate, thereby increasing the temperature of the hot water supply and heating. By varying the amount of heat supplied from the heating circuit 7 side to the hot water supply circuit 45 side via the liquid-water heat exchanger 33 for connection, the temperature of the water flowing through the hot water supply circuit 45 side is varied. Further, the branching hot water supply side temperature variable means 51 operates the reheating circulation pump 27 when reheating the hot water in the bathtub, and opens the reheating liquid flow control valve 32 to open the reheating liquid flow control valve after reheating is completed. 32 is also controlled.

分岐対応給湯側温度可変手段51は、給湯回路45側を流れる水の温度を高めるときには追い焚き循環ポンプ27を動かすことなく、メインの暖房用熱交換器を通った液体を分岐通路65側に通すようにするか通す液体流量を多くするように、追い焚き用液体流量制御弁32の制御を行う。一方、給湯回路45側を流れる水の温度を高くする必要がないときにはメインの暖房用熱交換器11を通った液体を分岐通路65側に通さないか通す熱媒体流量を少なくするように追い焚き用液体流量制御弁32の制御を行う。 The branch-compatible hot water supply side temperature variable means 51 passes the liquid that has passed through the main heating heat exchanger to the branch passage 65 side without operating the reheating circulation pump 27 when increasing the temperature of the water flowing through the hot water supply circuit 45 side. The reheating liquid flow rate control valve 32 is controlled so as to increase the liquid flow rate. On the other hand, when it is not necessary to increase the temperature of the water flowing through the hot water supply circuit 45 side, the liquid that has passed through the main heating heat exchanger 11 is not passed to the branch passage 65 side, or reheating is performed so as to reduce the heat medium flow rate. It controls the liquid flow control valve 32 for the liquid.

分岐対応給湯側温度可変手段51は、熱交換後水温検出手段133により検出される熱交換後水温の検出温度と、水量センサ19の検出流量と、前記給水温度検出手段の検出温度とに基づいて、給湯暖房熱的接続用液-水熱交換器33の熱交換能力を推定する熱交換能力推定手段を有している(図示せず)。そして、該熱交換能力推定手段により推定される熱交換能力に基づいて、例えば給湯回路45側を流れる水の温度を高くするための追い焚き用液体流量制御弁32の開弁量調節等、追い焚き用液体流量制御弁32の開閉や開弁量の制御を行う。 The branching hot water supply side temperature varying means 51 is based on the post-heat exchange water temperature detected by the post-heat exchange water temperature detection means 133, the flow rate detected by the water quantity sensor 19, and the temperature detected by the water supply temperature detection means. , has heat exchange capacity estimation means for estimating the heat exchange capacity of the liquid-water heat exchanger 33 for hot water supply/heating thermal connection (not shown). Then, based on the heat exchange capacity estimated by the heat exchange capacity estimating means, for example, adjustment of the opening amount of the reheating liquid flow control valve 32 for increasing the temperature of the water flowing through the hot water supply circuit 45 side, etc. It controls the opening and closing of the heating liquid flow rate control valve 32 and the valve opening amount.

具体的には、例えば熱交換能力推定手段は、熱交換後水温検出手段133により検出される熱交換後水温の検出温度がTout、水量センサ19の検出流量と給湯回路45におけるバイパス比により求められる給湯暖房熱的接続用液-水熱交換器33を通る水の流量がQ、前記給水温度検出手段の検出温度がTinであった場合、給水温度が潜熱回収用の給湯熱交換器4によって加温される温度ΔT(例えば1~2℃の範囲内の予め与えられる温度)に基づき、給湯暖房熱的接続用液-水熱交換器33の熱交換能力を、{Tout-(Tin+ΔT)}Qの式により求める。 Specifically, for example, the heat exchange capacity estimating means is obtained by Tout, which is the detected temperature of the water temperature after heat exchange detected by the after-heat-exchange water temperature detecting means 133, the detected flow rate of the water quantity sensor 19, and the bypass ratio in the hot water supply circuit 45. When the flow rate of water passing through the hot water supply and heating thermal connection liquid-water heat exchanger 33 is Q and the detected temperature of the water supply temperature detection means is Tin, the water supply temperature is heated by the hot water supply heat exchanger 4 for latent heat recovery. Based on the temperature ΔT to be heated (for example, a predetermined temperature within the range of 1 to 2° C.), the heat exchange capacity of the hot water supply and heating thermal connection liquid-water heat exchanger 33 is expressed as {Tout−(Tin+ΔT)}Q Calculated by the formula

そして、分岐対応給湯側温度可変手段51は、分岐対応給湯側温度可変手段51の調整によって、{(暖房用のバーナ装置5から暖房回路が得た熱量)-(熱交換能力推定手段により推定される熱交換能力)}≧3,500(Kcal/h) を保持するように、追い焚き用液体流量制御弁32の開弁量の制御を行う。ここで、(暖房用のバーナ装置5から暖房回路が得た熱量)=(暖房用のバーナ装置5の燃焼による熱量)―(放熱ロス)―(暖房用のバーナ装置5から給湯用の液体流通管路12が直接吸熱する熱量)である。 Then, the branching hot water supply side temperature varying means 51 adjusts {(heat amount obtained by the heating circuit from the heating burner device 5) - (estimated by the heat exchange capacity estimating means). The opening amount of the reheating liquid flow rate control valve 32 is controlled so as to maintain the heat exchange capacity) ≥ 3,500 (Kcal/h). Here, (amount of heat obtained by the heating circuit from the burner device 5 for heating) = (amount of heat generated by combustion of the burner device 5 for heating) - (radiation loss) - (circulation of liquid for hot water supply from the burner device 5 for heating is the amount of heat directly absorbed by the pipeline 12).

なお、前記設定基準値の値は特に限定されるものではないが、本実施例では、暖房回路に接続される浴室暖房機が暖房運転を行えるように決定した値としている。つまり、分岐対応給湯側温度可変手段51の調整によって、暖房用のバーナ装置5から得た熱量のうち、暖房回路に残す熱量 = 「暖房能力」が3,500(Kcal/h)を下回らないようにすることで、暖房側の能力が給湯側に多く供給されることによって暖房回路側において浴室暖房機への熱量供給が十分に行われなくなり、浴室暖房機から冷風が送風されてしまうことになって浴室暖房機が停止してしまうため、設定基準値を前記のように設定している。 Although the setting reference value is not particularly limited, in the present embodiment, the value is determined so that the bathroom heater connected to the heating circuit can perform the heating operation. In other words, by adjusting the branching hot water supply side temperature variable means 51, the amount of heat left in the heating circuit out of the amount of heat obtained from the burner device 5 for heating = "heating capacity" should not fall below 3,500 (Kcal/h). As a result, a large amount of the capacity of the heating side is supplied to the hot water supply side, so that the amount of heat supplied to the bathroom heater is not sufficiently performed on the heating circuit side, and cold air is blown from the bathroom heater. Since the heater will stop, the setting reference value is set as described above.

また、上述の分岐対応給湯側温度可変手段51の調整によっての給湯能力を十分には大きくすることができず、湯温の低下が見込まれる場合には、想定される給湯用の液体流通管路13からの出側の温度(熱交出側サーミスタ23で検出されるであろう低下後の推定湯温)と、入水温度と、リモコン装置53に設定されている給湯設定温度とに基づいて演算されるバイパスサーボ21のバイパス比と、バイパスサーボ21の制御可能なバイパス比とに基づき、演算されるバイパスサーボ21のバイパス比が制御可能なバイパス比範囲内である場合には、上記設定基準値に基づいて暖房回路に熱量を残した後でバイパスサーボ21のバイパス比を調整する。 In addition, if the hot water supply capacity cannot be sufficiently increased by adjusting the branching hot water supply side temperature variable means 51 described above and the hot water temperature is expected to drop, the assumed hot water supply liquid distribution pipe line Calculated based on the temperature on the output side from 13 (estimated hot water temperature after the drop that will be detected by the heat exchange output side thermistor 23), the incoming water temperature, and the set hot water supply temperature set in the remote control device 53. Based on the bypass ratio of the bypass servo 21 calculated and the controllable bypass ratio of the bypass servo 21, when the bypass ratio of the bypass servo 21 calculated is within the controllable bypass ratio range, the set reference value After leaving heat in the heating circuit, the bypass ratio of the bypass servo 21 is adjusted.

なお、演算されるバイパスサーボ21のバイパス比が制御可能なバイパス比でない場合には、上記演算されるバイパスサーボ21のバイパス比が制御可能なバイパス比となるまで水量サーボ20で流量を調節(流量を減少)させた後に、記設定基準値に基づいて暖房回路に熱量を残した後でバイパス比を調整するとよい。 If the calculated bypass ratio of the bypass servo 21 is not a controllable bypass ratio, the water volume servo 20 adjusts the flow rate until the calculated bypass ratio of the bypass servo 21 becomes a controllable bypass ratio (flow rate is reduced), the bypass ratio may be adjusted after the amount of heat is left in the heating circuit based on the set reference value.

また、暖房回路7の熱媒体(温水)を分岐通路65側に流す際に、浴槽湯水の追い焚きが行われると、給湯暖房熱的接続用液-水熱交換器33を介して暖房回路7側から給湯回路45側に与える熱量が小さくなってしまうが、そのようなタイミングになることは多くはなく、追い焚き循環回路26における水の循環動作を停止したまま熱媒体を分岐通路65側に流すようにしており、このようにすることによって、暖房回路7の熱媒体から追い焚き循環回路26側に熱を殆ど移動させることなく暖房回路7の熱媒体の熱を給湯側に伝えて給湯能力の補充を行うことができる。 In addition, when the hot water in the bathtub is reheated when the heat medium (hot water) of the heating circuit 7 is flowed to the branch passage 65 side, Although the amount of heat supplied from the side to the hot water supply circuit 45 side becomes smaller, such a timing is not often encountered, and the heat medium is transferred to the branch passage 65 side while the water circulation operation in the reheating circulation circuit 26 is stopped. By doing so, the heat of the heat medium of the heating circuit 7 is transferred to the hot water supply side without almost transferring the heat from the heat medium of the heating circuit 7 to the reheating circulation circuit 26 side, and the hot water supply capacity is improved. can be replenished.

なお、上述の給湯能力の補充時であって、ガス比例弁18の開度が上限である90%以下の場合には、追い焚き循環ポンプ27の回転数を下げて限定運転させ(浴槽75の湯水に熱量を与え)、浴槽75の湯水に熱量を与えても給湯暖房熱的接続用液-水熱交換器33を介して暖房回路7側から給湯回路45側に与える熱量を維持できるように追い焚き用液体流量制御弁32の開度を上げ、合わせて暖房用の液体流通管路内を通る熱媒体の温度が低下するのに合わせて、ガス比例弁18の開度を開き、浴槽75の湯水に熱量を与えた分を補充させるようにしてもよい。 When the hot water supply capacity is replenished and the opening of the gas proportional valve 18 is less than the upper limit of 90%, the rotation speed of the reheating circulation pump 27 is lowered to operate the bath tub 75 in a limited manner. heat quantity to the hot water), and even if heat quantity is given to the hot water in the bathtub 75, the heat quantity given from the heating circuit 7 side to the hot water supply circuit 45 side via the hot water supply heating thermal connection liquid-water heat exchanger 33 can be maintained. As the reheating liquid flow rate control valve 32 is increased and the temperature of the heat medium passing through the heating liquid distribution pipe is lowered, the proportional gas valve 18 is opened and the bathtub 75 is opened. You may make it replenish the part which gave heat quantity to hot water.

図8には、本発明に係る熱源装置の第2実施例のシステム構成において、実施例1と異なる部位を含む一部領域の図が示されている。第2実施例は前記第1実施例とほぼ同様に構成されており、第2実施例が第1実施例と異なる特徴的なことは、潜熱回収用の給湯熱交換器4の出側の通路の給湯暖房熱的接続用液-水熱交換器33への熱的接続構成を図1とは異なる構成としたことである。 FIG. 8 shows a diagram of a partial area including parts different from those of the first embodiment in the system configuration of the second embodiment of the heat source device according to the present invention. The second embodiment has substantially the same structure as the first embodiment. 1 is different from that shown in FIG.

図8に示す例においては、給湯暖房熱的接続用液-水熱交換器33には、暖房用循環ポンプ9の駆動によって、複合熱交換器1の暖房用の液体流通管路12から出た熱い熱媒体(ここでは水)が導入されて図8の矢印Bに示すように流通し、給湯動作時に、潜熱回収用の給湯熱交換器4からは、矢印Bとは逆方向(矢印B’の方向)を流れるように水が給湯暖房熱的接続用液-水熱交換器33に導入されて流通する。 In the example shown in FIG. 8, in the hot water supply and heating thermal connection liquid-water heat exchanger 33, by driving the circulation pump 9 for heating, A hot heat medium (here, water) is introduced and flows as indicated by arrow B in FIG. ) is introduced into the hot water supply/heating thermal connection liquid-water heat exchanger 33 and circulated.

つまり、暖房用の液体流通管路12側から給湯暖房熱的接続用液-水熱交換器33に導入される熱媒体は給湯暖房熱的接続用液-水熱交換器33の給水側出口から流入し、潜熱回収用の給湯熱交換器4から給湯暖房熱的接続用液-水熱交換器33に導入される水は給湯暖房熱的接続用液-水熱交換器33の熱媒体出口(水出口)から流入し、この水と液体流通管路12からの前記熱媒体とが互いに逆方向に流通するという対向熱交換器により給湯暖房熱的接続用液-水熱交換器33が形成されている。例えば暖房用の液体流通管路12から加熱された熱い熱媒体(ここでは熱い湯)を給湯暖房熱的接続用液-水熱交換器33に導入しながら潜熱回収用の給湯熱交換器4から給湯暖房熱的接続用液-水熱交換器33に温めの湯や水を導入すると暖房回路7側の熱を給湯回路45側に移動させる(給湯側が暖房側の熱を吸熱する)ことができる。 That is, the heat medium introduced into the hot water supply/heating thermal connection liquid-water heat exchanger 33 from the heating liquid distribution pipe 12 side is introduced from the water supply side outlet of the hot water supply/heating thermal connection liquid-water heat exchanger 33. The water that flows in and is introduced from the hot water supply heat exchanger 4 for latent heat recovery into the hot water supply/heating thermal connection liquid-water heat exchanger 33 is the heat medium outlet ( A liquid-water heat exchanger 33 for hot water supply/heating thermal connection is formed by opposing heat exchangers in which the water flows in from the water outlet) and the heat medium from the liquid distribution pipe 12 flows in opposite directions. ing. For example, while introducing a hot heat medium (here, hot water) heated from the heating liquid distribution pipe 12 into the hot water supply heating thermal connection liquid-water heat exchanger 33, the hot water supply heat exchanger 4 for latent heat recovery When warm hot water or water is introduced into the hot water supply/heating thermal connection liquid-water heat exchanger 33, the heat on the heating circuit 7 side can be transferred to the hot water supply circuit 45 side (the hot water supply side can absorb the heat on the heating side). .

図9には、本発明に係る熱源装置の第3実施例のシステム構成が示されており、以下、第3実施例について説明する。なお、第3実施例の説明において、前記第1、第2実施例と同一名称部分には同一符号を付し、その重複説明は省略または簡略化する。 FIG. 9 shows the system configuration of a heat source device according to a third embodiment of the present invention, and the third embodiment will be described below. In the description of the third embodiment, the same reference numerals are given to the parts with the same names as those of the first and second embodiments, and redundant description thereof will be omitted or simplified.

第3実施例は、図9に示されるように、第1、第2実施例において複合熱交換器1の液体流通管路13(メインの給湯熱交換器)の入側に設けられていた給湯暖房熱的接続用液-水熱交換器33を複合熱交換器1を形成する給湯用の液体流通管路13(メインの給湯熱交換器)の出側に設けて構成されている。 In the third embodiment, as shown in FIG. 9, the hot water supply system provided on the inlet side of the liquid distribution pipe line 13 (main hot water supply heat exchanger) of the composite heat exchanger 1 in the first and second embodiments A liquid-water heat exchanger 33 for heating thermal connection is provided on the outlet side of the hot water supply liquid circulation pipe 13 (main hot water supply heat exchanger) forming the composite heat exchanger 1 .

また、第3実施例では、前記第2実施例と同様に、対向熱交換器により給湯暖房熱的接続用液-水熱交換器33が形成されている。つまり、第3実施例において、給湯暖房熱的接続用液-水熱交換器33は、暖房用の液体流通管路12側から給湯暖房熱的接続用液-水熱交換器33に導入される熱媒体は給湯暖房熱的接続用液-水熱交換器33の給水側出口から流入し、潜熱回収用の給湯熱交換器4から給湯暖房熱的接続用液-水熱交換器33に導入される水は給湯暖房熱的接続用液-水熱交換器33の熱媒体出口(水出口)から流入し、この水と液体流通管路12からの前記熱媒体とが互いに逆方向に流通するという対向熱交換器と成している。 Further, in the third embodiment, as in the second embodiment, the liquid-water heat exchanger 33 for hot water supply and heating thermal connection is formed by opposed heat exchangers. That is, in the third embodiment, the hot water supply/heating thermal connection liquid-water heat exchanger 33 is introduced into the hot water supply/heating thermal connection liquid-water heat exchanger 33 from the heating liquid distribution pipe line 12 side. The heat medium flows from the water supply side outlet of the hot water supply and heating thermal connection liquid-water heat exchanger 33, and is introduced from the hot water supply heat exchanger 4 for latent heat recovery into the hot water supply and heating thermal connection liquid-water heat exchanger 33. The water flowing in flows in from the heat medium outlet (water outlet) of the liquid-water heat exchanger 33 for hot water supply and heating thermal connection, and the water and the heat medium from the liquid distribution pipe 12 flow in opposite directions to each other. It consists of an opposed heat exchanger.

第3実施例も前記第1実施例および第2実施例とほぼ同様の効果を奏することができる。 The third embodiment can also achieve substantially the same effects as those of the first and second embodiments.

なお、本発明は、前記各実施例に限定されるものでなく、本発明の技術的範囲を逸脱しない範囲において様々な態様を採り得る。例えば、本発明の熱源装置は、図3、図8、図9等に示されるような構成に形成されるものであるが、熱源装置のシステム構成の詳細は特に限定されるものでなく適宜設定されるものであり、前記各実施例に設けたような潜熱回収用の熱交換器を省略することもできる。 It should be noted that the present invention is not limited to the above embodiments, and can take various forms without departing from the technical scope of the present invention. For example, the heat source device of the present invention is configured as shown in FIGS. It is possible to omit the latent heat recovery heat exchanger provided in each of the above embodiments.

また、前記各実施例では、給湯の入水温度を検出する入水温検出手段を設けずに、入水温度を演算によって求める方式を適用したが、入水温度をリアルタイムで検出する入水温度検出手段を設けてもよい。 In addition, in each of the above-described embodiments, a method of obtaining the temperature of the incoming water by calculation was applied without providing the incoming water temperature detecting means for detecting the incoming water temperature of the hot water supply. good too.

さらに、給湯暖房熱的接続用液-水熱交換器33は、必ずしも分岐通路65に設けるとは限らず、前記メインの暖房用熱交換器を通って加熱された熱媒体と前記メインの給湯熱交換器の入側の通路と出側の通路のいずれかを通る熱媒体とを熱的に接続する態様で設けられればよい。 Furthermore, the liquid-water heat exchanger 33 for hot water supply and heating thermal connection is not necessarily provided in the branch passage 65, and the heat medium heated through the main heating heat exchanger and the main hot water supply heat are not necessarily provided in the branch passage 65. It may be provided in such a manner as to thermally connect the heat medium passing through either the inlet-side passage or the outlet-side passage of the exchanger.

さらに、前記各実施例では、分岐対応給湯側温度可変手段51は、暖房運転と給湯運転とを同時に行う暖房と給湯の同時運転時に、暖房用バーナ装置5のみを燃焼させて二種管路配設部112を加熱するときには、追い焚き用液体流量制御弁32を開くことにより、メインの暖房用熱交換器を形成する暖房用の液体流通管路12で加熱された熱媒体を給湯暖房熱的接続用液-水熱交換器33に通して循環させるようにしたが、以下のような制御を行うようにしてもよい。 Furthermore, in each of the above-described embodiments, the branching hot water supply side temperature variable means 51 burns only the heating burner device 5 during simultaneous heating and hot water supply operation in which the heating operation and the hot water supply operation are performed at the same time. When the installation portion 112 is heated, by opening the reheating liquid flow control valve 32, the heat medium heated in the heating liquid distribution pipe 12 forming the main heating heat exchanger is used for hot water supply and heating. Although the liquid is circulated through the connecting liquid-water heat exchanger 33, the following control may be performed.

つまり、分岐対応給湯側温度可変手段51は、暖房運転と給湯運転とを同時に行う暖房と給湯の同時運転時に、暖房用バーナ装置5のみを燃焼させて二種管路配設部112を加熱するときであって、かつ、前記暖房用の液体流通管路12の熱媒体の温度が低いことにより給湯用のバーナ装置2のハンチングが生じると判断されるときに、追い焚き用液体流量制御弁32を開くことにより、メインの暖房用熱交換器を形成する暖房用の液体流通管路12で加熱された熱媒体を給湯暖房熱的接続用液-水熱交換器33に通して循環させるようにしてもよい。 In other words, the branching hot water supply side temperature varying means 51 burns only the heating burner device 5 and heats the two-kind pipe installation portion 112 during the simultaneous heating and hot water supply operation in which the heating operation and the hot water supply operation are performed at the same time. and when it is determined that hunting of the hot water supply burner device 2 occurs due to the low temperature of the heat medium in the heating liquid circulation line 12, the reheating liquid flow rate control valve 32 By opening, the heat medium heated in the heating liquid circulation line 12 forming the main heating heat exchanger is circulated through the hot water supply heating thermal connection liquid-water heat exchanger 33. may

また、例えば、暖房用循環ポンプ9の回転数を変更すること(回転数を下げること)で、二種管路配設部112における熱の分配比を強制的に変更してもよい。すなわち、二種管路配設部112の暖房用の液体流通管路12の流量が減ると熱媒体の温度上昇の程度が大きくなり、吸熱しにくくなる。その代りに、給湯用の液体流通管路13が熱を多く吸熱することとなり、熱の分配比が変わる。そこで、このような制御を行うようにしてもよい。 Further, for example, the heat distribution ratio in the two-kind pipe installation portion 112 may be forcibly changed by changing the rotation speed of the heating circulation pump 9 (reducing the rotation speed). That is, when the flow rate of the heating liquid distribution pipe line 12 of the second type pipe line installation portion 112 decreases, the temperature of the heat medium rises to a large extent, making it difficult for the heat medium to absorb heat. Instead, the hot water supply liquid distribution pipe 13 absorbs a large amount of heat, and the heat distribution ratio changes. Therefore, such control may be performed.

例えば、図10の4段目は、特性線a~特性線dは暖房温度による影響が少ない(各特性線が密である)が、1段目は暖房温度による影響が大きい(各特性線が粗である)。給湯回路45における吸熱が、1段目は全段が二種管路配設部112での吸熱であるのに対し、2段目以降は一種管路配設部111での吸熱が増えるために、相対的に暖房用の液体流通管路12の吸熱の影響が小さくなるからである。そこで、暖房用循環ポンプ9の回転数を下げることで、二種管路配設部112における暖房用の液体流通管路12の吸熱量を下げ、給湯側の吸熱量に対する影響を下げると、1段目の各特性線が粗から密となり、図10における破線枠Dをなくすことができ、ハンチング防止用ラップ代が形成される。 For example, in the fourth row of FIG. 10, the characteristic lines a to d are less affected by the heating temperature (each characteristic line is dense), but the first row is more affected by the heating temperature (each characteristic line is rough). Since the heat absorption in the hot water supply circuit 45 is absorbed in the second-class pipeline installation part 112 in all stages in the first stage, the heat absorption in the first-stage pipeline installation part 111 increases in the second stage and later. , the effect of heat absorption in the heating liquid distribution pipe 12 is relatively small. Therefore, by reducing the rotational speed of the heating circulation pump 9, the amount of heat absorbed by the heating liquid distribution pipe 12 in the second type pipe installation portion 112 is reduced, and the influence on the amount of heat absorbed on the hot water supply side is reduced. Each characteristic line of the tier changes from coarse to dense, the dashed frame D in FIG. 10 can be eliminated, and a lap allowance for hunting prevention is formed.

また、例えば、図3、図9の破線に示されるように、往き側の通路としての管路60と戻り側の通路としての管路61との間をバイパスするバイパス管120に設けられるバイパス電磁弁121を開弁させることで暖房装置70に送る熱媒体の量を減らすことで暖房装置70での熱の消費量を減らし、ハンチング防止用ラップ代を形成してもよい。さらに、暖房装置71の運転時に開弁される低温能力切り替え弁(熱動弁)118を閉弁し、低温暖房装置71に送る熱媒体の温度を下げることで暖房装置71での熱の消費量を減らし、ハンチング防止用ラップ代を形成してもよい。 Further, for example, as shown by the dashed lines in FIGS. 3 and 9, a bypass electromagnetic provided in a bypass pipe 120 that bypasses between a pipe 60 as a passage on the going side and a pipe 61 as a passage on the return side. By opening the valve 121 to reduce the amount of heat medium sent to the heating device 70, the amount of heat consumed by the heating device 70 may be reduced, and the wrap allowance for hunting prevention may be formed. Furthermore, by closing the low-temperature capacity switching valve (thermal valve) 118 that is opened when the heating device 71 is in operation and lowering the temperature of the heat medium sent to the low-temperature heating device 71, the amount of heat consumed by the heating device 71 is may be reduced to form a lap allowance for hunting prevention.

さらに、前記各実施例のように、複数の給湯用のバーナ装置2を有する構成の場合に、もしも、例えば暖房用の液体流通管路12の熱媒体温度の低下に伴って、給湯用のバーナ装置2の段数を切り替えるためのバーナ段数可変プログラムにおける上下に隣り合う段数において給湯能力(給湯号数)が同じとなる領域がない状態が生じた場合には、上下に隣り合う段数において給湯能力が同じ領域が形成されるように、熱媒体循環経路制御手段が、メインの暖房用熱交換器を通って加熱された熱媒体を給湯暖房熱的接続用液-水熱交換器33に通して循環させ、暖房回路7を循環する熱媒体の熱を給湯回路45側に伝えるようにすれば、給湯能力が切り替わる時のハンチングの発生を抑制できる。 Furthermore, in the case of the configuration having a plurality of hot water supply burner devices 2 as in each of the above embodiments, if, for example, the temperature of the heat medium in the liquid circulation pipe 12 for heating decreases, the hot water supply burner In the burner stage variable program for switching the stage number of the device 2, if there is no region where the hot water supply capacity (hot water supply scale) is the same in the vertically adjacent stage numbers, the hot water supply capacity is changed in the vertically adjacent stage numbers. The heat medium circulation path control means circulates the heat medium heated through the main heating heat exchanger through the hot water supply heating thermal connection liquid-water heat exchanger 33 so that the same area is formed. By transmitting the heat of the heat medium circulating in the heating circuit 7 to the hot water supply circuit 45 side, the occurrence of hunting when the hot water supply capacity is switched can be suppressed.

さらに、本発明の熱源装置は、太陽熱を集熱する集熱機能等の他の機能や、貯湯槽等の構成を有していてもよい。 Furthermore, the heat source device of the present invention may have other functions such as a heat collecting function for collecting solar heat, and a configuration such as a hot water storage tank.

さらに、本発明の熱源装置は、例えば前記各実施例で設けたガス燃焼を行うバーナ装置の代わりに、石油燃焼用のバーナ装置を設けてもよい。 Further, the heat source device of the present invention may be provided with a burner device for burning oil instead of the burner device for gas combustion provided in each of the above embodiments.

さらに、前記各実施例では、給湯用の液体流通管路13から出る温度を60℃としたが、この温度は例えば60℃固定とするとは限らず、給湯設定温度に応じて可変する値としてもかまわない。 Furthermore, in each of the above embodiments, the temperature of the liquid flowing out of the hot water supply pipe 13 is set at 60° C., but this temperature is not limited to a fixed value of 60° C., for example, and may be variable according to the set temperature of the hot water supply. I don't mind.

本発明は、小型でも給湯と暖房の能力を十分に得ることができ、給湯や暖房の単独運転時における熱交換器内の熱媒体の沸騰も抑制できるので、家庭用や業務用の熱源装置として利用できる。 INDUSTRIAL APPLICABILITY The present invention can provide sufficient hot water supply and heating capacity even in a small size, and can suppress boiling of the heat medium in the heat exchanger during single operation of hot water supply and heating, so it can be used as a heat source device for home and business use. Available.

1 熱源装置
2,2a,2b,2c 給湯用のバーナ装置
4 潜熱回収用の給湯熱交換器
5 暖房用のバーナ装置
6 潜熱回収用の暖房用熱交換器
7 暖房回路
8 暖房用液体循環通路
9 暖房用循環ポンプ
14,17 ガス電磁弁
15 燃焼ファン
18 ガス比例弁
24 出湯サーミスタ
25 風呂熱交換器
32 追い焚き用液体流通制御弁
33 給湯暖房接続用液-水熱交換器
40 暖房高温サーミスタ
41 暖房低温サーミスタ
51 分岐対応給湯側温度可変手段
52 燃焼制御手段
54 制御手段
55 ポンプ駆動制御手段
111 一種管路配設部
112 二種管路配設部
1 heat source device 2, 2a, 2b, 2c burner device for hot water supply 4 heat exchanger for hot water supply for latent heat recovery 5 burner device for heating 6 heat exchanger for latent heat recovery for heating 7 heating circuit 8 liquid circulation passage for heating 9 Heating circulation pump 14, 17 Gas solenoid valve 15 Combustion fan 18 Gas proportional valve 24 Hot water supply thermistor 25 Bath heat exchanger 32 Liquid flow control valve for reheating 33 Liquid-water heat exchanger for hot water supply and heating connection 40 Heating high temperature thermistor 41 Heating Low-temperature thermistor 51 Hot water supply side temperature variable means for branching 52 Combustion control means 54 Control means 55 Pump drive control means 111 First-class pipeline installation section 112 Second-class pipeline installation section

Claims (7)

給湯熱交換器と該給湯熱交換器によって熱媒体である水を加熱して給湯先に給湯する機能を備えた給湯回路と、暖房用熱交換器と該暖房用熱交換器を通して液体の熱媒体を循環させる暖房用循環ポンプとを備えた暖房回路とを備え、外部に接続される暖房装置に前記暖房回路から前記熱媒体を供給して該熱媒体を前記暖房回路に通して循環させる構成を有し、前記給湯熱交換器は該給湯熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの給湯熱交換器を有し、前記暖房用熱交換器は該暖房用熱交換器を形成する液体流通管路によってバーナ装置の燃焼ガスの顕熱を回収するメインの暖房用熱交換器を有し、前記メインの給湯熱交換器を形成する給湯用の液体流通管路のみが配設された一種管路配設部と、前記メインの給湯熱交換器の液体流通管路が前記メインの暖房用熱交換器の液体流通管路によって上下に挟まれる態様で互いに接して配設されて形成された二種管路配設部とを有して前記給湯熱交換器と前記暖房用熱交換器が複合熱交換器と成し、該複合熱交換器の下部側には給湯用バーナ装置と暖房用バーナ装置とが区分け配置されて前記給湯用バーナ装置によって前記一種管路配設部が加熱され前記暖房用バーナ装置によって前記二種管路配設部の二種の液体流通管路が加熱される構成と成しており、前記給湯用バーナ装置と前記暖房用バーナ装置のそれぞれに対応させてバーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁が設けられるとともに、両方のバーナ装置へのガス供給割合を一律に可変するガス比例弁が設けられており、暖房運転と給湯運転とを同時に行う暖房と給湯の同時運転時に要求される給湯能力に対応させて前記暖房用バーナ装置のみを燃焼させるか該暖房用バーナ装置に加えて前記給湯用バーナ装置も燃焼させるかを制御する燃焼バーナ決定制御と該燃焼バーナ決定制御により決定された燃焼バーナの燃焼において前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを予め定められたバーナ燃焼制御プログラムにしたがって行う燃焼制御手段を有し、前記メインの暖房用熱交換器を通って加熱された熱媒体と前記メインの給湯熱交換器の入側の通路と出側の通路のいずれかを通る熱媒体とを熱的に接続する給湯暖房熱的接続用液-水熱交換器が設けられており、前記暖房と給湯の同時運転時に前記暖房用バーナ装置のみを燃焼させて前記二種管路配設部を加熱するときには前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させる熱媒体循環経路制御手段を有することを特徴とする熱源装置。 A hot water supply heat exchanger, a hot water supply circuit having a function of heating water as a heat medium by the hot water supply heat exchanger and supplying hot water to a hot water supply destination, a heating heat exchanger, and a liquid heat medium through the heating heat exchanger a heating circuit comprising a heating circulation pump that circulates the heat medium, supplying the heat medium from the heating circuit to a heating device connected to the outside, and circulating the heat medium through the heating circuit. The hot water heat exchanger has a main hot water heat exchanger for recovering sensible heat of the combustion gas of the burner device by a liquid flow conduit forming the hot water heat exchanger, and the heating heat exchanger A hot water supply liquid forming the main hot water supply heat exchanger, having a main heating heat exchanger for recovering sensible heat of the combustion gas of the burner device through a liquid flow conduit forming the heating heat exchanger. A first-class pipeline installation portion in which only a circulation pipeline is arranged, and a liquid circulation pipeline of the main hot water supply heat exchanger are vertically sandwiched by the liquid circulation pipeline of the main heating heat exchanger. The hot water supply heat exchanger and the heating heat exchanger form a composite heat exchanger, and the lower portion of the composite heat exchanger has a two-kind pipe arrangement portion arranged in contact with each other. A burner device for hot water supply and a burner device for heating are separately arranged on the side. A gas on-off valve for supplying and shutting off the fuel gas to the burner device corresponding to each of the hot water supply burner device and the heating burner device. is provided, and a gas proportional valve that uniformly varies the gas supply ratio to both burner devices is provided. Combustion burner determination control for controlling whether to burn only the heating burner device or to burn the hot water supply burner device in addition to the heating burner device, and the combustion burner determined by the combustion burner determination control. In combustion, corresponding to the required hot water supply capacity, the opening of the gas proportional valve is increased as the required hot water supply capacity increases, and the opening of the gas proportional valve is decreased as the required hot water supply capacity decreases. combustion control means for performing temperature control according to a predetermined burner combustion control program; Thermally connecting the passage with the heat transfer medium passing through one of the exit passages A liquid-water heat exchanger for hot water supply and heating thermal connection is provided, and when the heating and hot water supply are simultaneously operated, only the heating burner device is burned to heat the two-kind pipe installation portion. A heat source apparatus comprising heat medium circulation path control means for circulating a heat medium for circulating a heating circuit through the liquid-water heat exchanger for hot water supply and heating thermal connection. 前記熱媒体循環経路制御手段は、前記暖房と給湯の同時運転時に前記暖房用バーナ装置のみを燃焼させて前記二種管路配設部を加熱するときには前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させる代わりに、前記暖房と給湯の同時運転時に前記暖房用バーナ装置のみを燃焼させて前記二種管路配設部を加熱するときに前記熱媒体の温度が低いことにより前記給湯用バーナ装置のハンチングが生じると判断されるときに前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させる構成としたことを特徴とする請求項1記載の熱源装置。 The heat medium circulation path control means controls the heat medium for circulating in the heating circuit when heating only the heating burner device during the simultaneous operation of heating and hot water supply to heat the two-kind pipe installation portion. When, instead of circulating through a heating thermal connection liquid-water heat exchanger, only the heating burner device is burned during the simultaneous operation of the heating and hot water supply to heat the two-kind pipe installation part When it is determined that hunting of the hot water supply burner device occurs due to the low temperature of the heat medium, the heat medium circulating in the heating circuit is circulated through the liquid-water heat exchanger for hot water supply/heating thermal connection. 2. The heat source device according to claim 1, wherein the heat source device is configured to 前記熱媒体循環経路制御手段は、前記給湯暖房熱的接続用液-水熱交換器による熱交換量が予め定められる設定熱交換量となるように前記給湯暖房熱的接続用液-水熱交換器に通す熱媒体流量を制御することを特徴とする請求項1または請求項2記載の熱源装置。 The heat medium circulation path control means controls the hot water supply/heating thermal connection liquid-water heat exchange so that the amount of heat exchanged by the hot water supply/heating thermal connection liquid/water heat exchanger becomes a predetermined set heat exchange amount. 3. The heat source device according to claim 1, wherein the flow rate of the heat medium passing through the vessel is controlled. 前記メインの暖房用熱交換器の出側には該メインの暖房用熱交換器を通った液体を前記暖房装置側に向けて流通させる往き側の通路が形成され、前記暖房装置を通った液体を前記メインの暖房用熱交換器側に戻す戻り側の通路が形成され、前記往き側の通路から分岐された分岐通路の先端側が前記戻り側の通路に接続されて、前記分岐通路に前記給湯暖房熱的接続用液-水熱交換器が設けられていることを特徴とする請求項1または請求項2または請求項3記載の熱源装置。 On the outlet side of the main heat exchanger for heating, an outgoing passage is formed for circulating the liquid that has passed through the main heat exchanger for heating toward the heating device. to the main heating heat exchanger side is formed, and the tip end of the branched passage branched from the going-side passage is connected to the return-side passage, and the hot water supply is connected to the branched passage 4. The heat source device according to claim 1, 2 or 3, further comprising a liquid-water heat exchanger for heating thermal connection. 前記給湯用バーナ装置は複数のバーナ装置を備え、該複数のバーナ装置と前記暖房用バーナ装置のそれぞれに対応させてバーナ装置への燃料ガスの供給と遮断とを行うガス開閉弁が設けられるとともに、全てのバーナ装置へのガス供給割合を一律に可変するガス比例弁が設けられており、要求される給湯能力に対応させて前記複数の給湯用バーナ装置のうちの燃焼バーナ個数であるバーナ段数を予め定められたバーナ段数可変プログラムに従って前記要求給湯能力が大きくなるにつれて大きくし前記要求給湯能力が小さくくなるにつれて前記バーナ段数を小さくするバーナ段数制御と前記要求給湯能力に対応させて該要求給湯能力が大きくなるにつれて前記ガス比例弁の開度を大きくし前記要求給湯能力が小さくなるにつれて前記ガス比例弁の開度を小さくする比例弁開度制御とを行う燃焼制御手段を有し、該燃焼制御手段は暖房運転と給湯運転とを同時に行う同時運転時に前記要求給湯能力が予め定められる設定能力未満のときには前記暖房用バーナ装置のみを燃焼させ前記設定能力以上となった時には前記暖房用バーナ装置の燃焼に加えて前記給湯用バーナ装置を前記バーナ段数可変プログラムに従って燃焼させる構成としたことを特徴とする請求項1乃至請求項4のいずれか一つに記載の熱源装置。 The hot water supply burner device includes a plurality of burner devices, and is provided with gas on-off valves for supplying and shutting off the fuel gas to the burner device corresponding to the plurality of burner devices and the heating burner device, respectively. , a gas proportional valve for uniformly varying the ratio of gas supply to all the burner devices is provided, and the number of burner stages, which is the number of combustion burners among the plurality of hot water supply burner devices, is set in correspondence with the required hot water supply capacity. is increased according to a predetermined burner stage number variable program as the required hot water supply capacity increases, and the burner stage number is decreased as the required hot water supply capacity decreases, and the required hot water supply is made to correspond to the required hot water supply capacity. combustion control means for performing proportional valve opening control for increasing the opening of the gas proportional valve as the capacity increases and decreasing the opening of the gas proportional valve as the required hot water supply capacity decreases; The control means burns only the heating burner device when the requested hot water supply capacity is less than a predetermined set capacity during simultaneous operation in which the heating operation and the hot water supply operation are performed simultaneously, and when the required hot water supply capacity exceeds the set capacity, the heating burner device. 5. The heat source apparatus according to any one of claims 1 to 4, wherein the hot water supply burner device burns in accordance with the burner stage number variable program in addition to the combustion of . 前記バーナ段数可変プログラムの上下に隣り合う段数において給湯能力が同じとなる領域がない場合には同じ領域が形成されるように前記熱媒体循環経路制御手段が前記暖房回路を循環させる熱媒体を前記給湯暖房熱的接続用液-水熱交換器に通して循環させ、前記暖房回路を循環する熱媒体の熱を前記給湯回路側に伝えることを特徴とする請求項5記載の熱源装置。 If there is no region in which the hot water supply capacity is the same in the burner stage number variable program, the heat medium circulation path control means circulates the heat medium in the heating circuit so that the same area is formed. 6. The heat source device according to claim 5, wherein the heat medium is circulated through a liquid-water heat exchanger for hot water supply and heating thermal connection, and the heat of the heat medium circulating in the heating circuit is transmitted to the hot water supply circuit side. 前記メインの給湯熱交換器と前記メインの暖房用熱交換器の少なくとも一方には前記バーナ装置の燃焼ガスの潜熱を回収する潜熱回収用熱交換器が接続されていることを特徴とする請求項1乃至請求項6のいずれか一つに記載の熱源装置。 A latent heat recovery heat exchanger for recovering latent heat of combustion gas of the burner device is connected to at least one of the main hot water supply heat exchanger and the main heating heat exchanger. The heat source device according to any one of claims 1 to 6.
JP2018245900A 2018-12-27 2018-12-27 Heat source device Active JP7217628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018245900A JP7217628B2 (en) 2018-12-27 2018-12-27 Heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018245900A JP7217628B2 (en) 2018-12-27 2018-12-27 Heat source device

Publications (2)

Publication Number Publication Date
JP2020106227A JP2020106227A (en) 2020-07-09
JP7217628B2 true JP7217628B2 (en) 2023-02-03

Family

ID=71450668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018245900A Active JP7217628B2 (en) 2018-12-27 2018-12-27 Heat source device

Country Status (1)

Country Link
JP (1) JP7217628B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341028B2 (en) 2019-10-28 2023-09-08 リンナイ株式会社 heat source device
CN116358170B (en) * 2023-06-01 2023-08-04 南京普兰特换热设备有限公司 Automatic regulation and control gas hot-blast stove and gas hot-blast stove regulation and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740113A1 (en) 1995-04-24 1996-10-30 Apparatenfabriek Warmtebouw B.V. Combined heating boiler with improved performance
JP2016038155A (en) 2014-08-07 2016-03-22 株式会社ガスター Heat source device
JP2016164472A (en) 2015-03-06 2016-09-08 株式会社ガスター Heat source device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109597A (en) * 1996-06-21 1998-01-16 Harman Co Ltd Hot water supplying and room heating apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740113A1 (en) 1995-04-24 1996-10-30 Apparatenfabriek Warmtebouw B.V. Combined heating boiler with improved performance
JP2016038155A (en) 2014-08-07 2016-03-22 株式会社ガスター Heat source device
JP2016164472A (en) 2015-03-06 2016-09-08 株式会社ガスター Heat source device

Also Published As

Publication number Publication date
JP2020106227A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP4893070B2 (en) Return hot water recovery method and hot water supply system
JP7217628B2 (en) Heat source device
JP4752347B2 (en) Hot water storage water heater
JP6449687B2 (en) Heat source equipment
JP7267739B2 (en) Heat source device
JP3931918B2 (en) Gas hot water heater
JP5135318B2 (en) Water heater
JP2017044442A (en) Composite heat source machine
JP7195812B2 (en) Heat source device
JP7267738B2 (en) Heat source device
JP7235502B2 (en) Heat source device
JP5385649B2 (en) Bathroom heating equipment
JP6449688B2 (en) Heat source equipment
JP6209111B2 (en) Heat source equipment
JP2008082633A (en) Hot water supply device and plate type heat exchanger
JP6488157B2 (en) Heat source equipment
JP2005226957A (en) Heating device
JP3853196B2 (en) Hot water heater / heat source machine
JP7151205B2 (en) Heating heat source machine
JP4025326B2 (en) Heat source machine
JP2006038401A (en) Compound heat source machine
JP4602062B2 (en) Water heater
JP2019070500A (en) Heating heat source machine
JP2015222137A (en) Heating heat source apparatus
JP2019117009A (en) Hot water supply heating system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190918

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20191118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230124

R150 Certificate of patent or registration of utility model

Ref document number: 7217628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150