JP4025326B2 - Heat source machine - Google Patents

Heat source machine Download PDF

Info

Publication number
JP4025326B2
JP4025326B2 JP2004275145A JP2004275145A JP4025326B2 JP 4025326 B2 JP4025326 B2 JP 4025326B2 JP 2004275145 A JP2004275145 A JP 2004275145A JP 2004275145 A JP2004275145 A JP 2004275145A JP 4025326 B2 JP4025326 B2 JP 4025326B2
Authority
JP
Japan
Prior art keywords
heating
bath
hot water
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004275145A
Other languages
Japanese (ja)
Other versions
JP2006090592A (en
Inventor
英男 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2004275145A priority Critical patent/JP4025326B2/en
Publication of JP2006090592A publication Critical patent/JP2006090592A/en
Application granted granted Critical
Publication of JP4025326B2 publication Critical patent/JP4025326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、暖房兼風呂追焚き用の熱交換器とこの熱交換器を加熱するバーナとを有する燃焼部を備える熱源機に関する。   The present invention relates to a heat source device including a combustion section having a heat exchanger for heating and bathing and a burner for heating the heat exchanger.

従来、この種の熱源機として、暖房兼風呂追焚き用の熱交換器を、吸熱フィンと、吸熱フィンに互いに接触するように貫通させた暖房用吸熱管及び風呂追焚き用吸熱管とを備えるものに構成し、暖房用吸熱管に暖房放熱器に接続される暖房回路を介して湯水を循環自在とすると共に、風呂追焚き用吸熱管に浴槽に接続される風呂追焚き回路を介して浴槽の湯水を循環自在とし、更に、暖房回路に暖房放熱器と並列のバイパス通路を設けて、風呂追焚き運転時に、暖房運転中であるか否かに係らず、風呂追焚き吸熱管と暖房用吸熱管とに夫々湯水を循環させるようにしたものが知られている(例えば、特許文献1参照)。   Conventionally, as this type of heat source device, a heat exchanger for heating and bath replenishment is provided with a heat absorption fin, a heat absorption tube for heating and a heat absorption tube for bath renewal that are penetrated so as to be in contact with each other. The bath is configured to be able to circulate hot water through a heating circuit connected to the heating radiator to the heat absorption pipe for heating, and to the bath heating circuit connected to the bathtub to the heat absorption pipe for bath heating. In addition, a bypass passage in parallel with the heating radiator is provided in the heating circuit so that the bath reheating heat absorption pipe and the heating can be used regardless of whether or not the heating operation is in progress. There is known one in which hot water is circulated through an endothermic tube (see, for example, Patent Document 1).

このものでは、暖房運転を行わない風呂追焚きの単独運転時、暖房用吸熱管にバイパス通路を経由して湯水が循環され、暖房用吸熱管に流れる湯水がバーナの燃焼熱を吸熱して、暖房用吸熱管の異常加熱が防止される。また、互いに接触する暖房用吸熱管と風呂追焚き用吸熱管とで一種の液々熱交換器が構成され、風呂追焚き運転時は、暖房運転中であるか否かに係らず、風呂追焚き用吸熱管に流れる湯水が燃焼熱及び暖房用吸熱管を介しての熱伝達で加熱され、効率良く追焚きが行われる。   In this case, at the time of independent operation of bathing without heating operation, hot water is circulated through the bypass pipe to the heat absorption pipe for heating, and the hot water flowing to the heat absorption pipe absorbs the combustion heat of the burner, Abnormal heating of the heat absorption pipe for heating is prevented. In addition, a kind of liquid heat exchanger is composed of a heat absorption pipe for heating and a heat absorption pipe for bath replenishment which are in contact with each other. Hot water flowing through the endothermic pipe is heated by combustion heat and heat transfer through the endothermic pipe for heating, and is efficiently chased.

ここで、上記特許文献1に記載のものでは、浴槽から風呂追焚き用吸熱管に戻される湯水の温度を検出する風呂戻り湯温センサを設け、風呂追焚き運転時、風呂戻り湯温センサの検出温度が風呂追焚きの設定湯温に達したところでバーナの燃焼を停止するようにしている。尚、特許文献1には、風呂戻り湯温センサの検出温度が設定湯温に達するまでのバーナの燃焼量の制御は記載されていないが、一般的には、追焚き要求熱量に基づいてバーナの燃焼量を制御している。具体的には、風呂戻り湯温センサの検出温度が低いときはバーナの燃焼量を大きくし、検出温度が設定温度に近付いたときに燃焼量を小さくするようにしている。   Here, in the thing of the said patent document 1, the bath return hot water temperature sensor which detects the temperature of the hot water returned from the bathtub to the heat absorption pipe for bath pursuit is provided, and the bath return hot water temperature sensor of the bath return operation temperature is provided at the time of bath chasing operation. The burner combustion is stopped when the detected temperature reaches the set hot water temperature for bathing. Although Patent Document 1 does not describe control of the burner combustion amount until the detected temperature of the bath return hot water temperature sensor reaches the set hot water temperature, generally, the burner is based on the additional heat demand. The amount of combustion is controlled. Specifically, the burner combustion amount is increased when the temperature detected by the bath return hot water temperature sensor is low, and the combustion amount is decreased when the detected temperature approaches the set temperature.

ところで、風呂追焚き運転時に、暖房運転中であるか否かに係らず、追焚き要求熱量のみに基づいて燃焼量を制御すると、風呂追焚きと暖房との同時運転時に暖房能力が十分に確保できなくなる可能性がある。また、風呂追焚き回路における湯水の循環流量が髪の毛の詰まりや配管抵抗等の何らかの原因で減少した場合、風呂追焚き用吸熱管内で湯温が過度に上昇して、浴槽に送り出される湯温が高くなり過ぎる恐れがある。更に、暖房回路における循環流量が何らかの原因で減少した場合、暖房用吸熱管での沸騰を生ずる恐れもある。
特開平9−318151号公報(0034〜0037、図1、図2)
By the way, if the amount of combustion is controlled based only on the amount of heat required for additional heating regardless of whether or not it is in heating operation, the heating capacity is sufficiently ensured during simultaneous operation of the bath additional heating and heating. It may not be possible. Also, if the circulating water flow rate in the bath chase circuit decreases for some reason such as clogging of hair or piping resistance, the hot water temperature rises excessively in the heat sink for bath chase and the hot water sent to the bathtub becomes May be too high. Furthermore, when the circulating flow rate in the heating circuit decreases for some reason, boiling in the heat absorption pipe for heating may occur.
JP-A-9-318151 (0034-0037, FIG. 1 and FIG. 2)

本発明は、以上の点に鑑み、追焚き能力と暖房能力とを共に確保しつつ、風呂追焚き回路や暖房回路における循環流量の減少により浴槽に送り出される湯温が高くなり過ぎたり、暖房用吸熱管での沸騰を生じたりすることを防止できるようにした熱源機を提供することをその課題としている。   In view of the above points, the present invention, while ensuring both reheating capacity and heating capacity, the hot water temperature sent to the bathtub becomes too high due to a decrease in the circulation flow rate in the bath reheating circuit or heating circuit, An object of the present invention is to provide a heat source device that can prevent boiling in the heat absorption tube.

上記課題を解決するために、本発明は、暖房兼風呂追焚き用の熱交換器とこの熱交換器を加熱するバーナとを有する燃焼部を備える熱源機であって、熱交換器は、吸熱フィンと、吸熱フィンに互いに接触するように貫通させた暖房用吸熱管及び風呂追焚き用吸熱管とを有し、暖房放熱器に接続される暖房回路を介して暖房用吸熱管に湯水を循環自在とすると共に、浴槽に接続される風呂追焚き回路を介して風呂追焚き用吸熱管に浴槽の湯水を循環自在とし、更に、暖房回路に暖房放熱器と並列のバイパス通路を設けて、風呂追焚き運転時に、暖房運転中であるか否かに係らず、風呂追焚き用吸熱管と暖房用吸熱管とに夫々湯水を循環させるものにおいて、暖房用吸熱管から送り出される湯水の温度を検出する暖房往き湯温センサと、風呂追焚き回路における湯水の循環流量が所定の基準流量以上であるか否かを判別する流量判別手段と、風呂追焚き運転時に、暖房運転中であるか否かに係らず、暖房往き湯温センサの検出温度が所定の目標温度になるようにバーナの燃焼量を制御する燃焼制御手段とを備え、この目標温度は基準目標温度と基準目標温度より低い温度とに可変設定自在であり、流量判別手段により前記循環流量が前記基準流量以上であると判別されることを第1の条件として、第1の条件が不成立である場合は目標温度が基準目標温度より低い温度に設定変更されることを特徴とする。   In order to solve the above-described problems, the present invention provides a heat source device including a combustion unit having a heat exchanger for heating and bathing and a burner for heating the heat exchanger, wherein the heat exchanger It has a fin, a heat absorption pipe for heating and a heat absorption pipe for bathing that are penetrated so as to come into contact with the heat absorption fin, and circulates hot and cold water to the heat absorption pipe for heating through a heating circuit connected to the heating radiator. The hot water in the bathtub can be circulated through the heat sink pipe for bath bathing through a bath bathing circuit connected to the bathtub, and a bypass passage in parallel with the heating radiator is provided in the heating circuit. Detects the temperature of hot water sent from the heating endothermic pipe in the case where the hot water is circulated through the heat absorption pipe for bathing and the endothermic pipe for heating, regardless of whether or not the heating operation is in progress. A hot water sensor and a bath remedy Flow rate discriminating means for discriminating whether or not the circulating flow rate of hot water in the circuit is equal to or higher than a predetermined reference flow rate, and detection of the hot water temperature sensor regardless of whether or not the heating operation is performed during the bath reheating operation Combustion control means for controlling the combustion amount of the burner so that the temperature becomes a predetermined target temperature, and this target temperature can be variably set to a reference target temperature and a temperature lower than the reference target temperature. The first condition is that the circulation flow rate is determined to be equal to or higher than the reference flow rate, and the target temperature is changed to a temperature lower than the reference target temperature when the first condition is not satisfied. To do.

本発明によれば、風呂追焚き回路の循環流量が基準流量以上である場合は、暖房往き湯温(暖房往き湯温センサの検出温度)が比較的高い温度(基準目標温度)になるようにバーナの燃焼量が制御されるため、燃焼量が大きくなると共に、暖房用吸熱管から風呂追焚き用吸熱管への熱移動も大きくなり、大きな追焚き能力が得られる。更に、風呂追焚き運転時に暖房運転を行っても、暖房往き湯温は基準目標温度に維持されるため、所要の暖房能力を得られ、また、暖房回路の循環流量が何らかの原因で減少しても、暖房往き湯温に基づく燃焼量の制御が行われるため、暖房用吸熱管での沸騰が防止される。また、風呂追焚き回路の循環流量が基準流量を下回った場合は、暖房往き湯温が比較的低い温度になるようにバーナの燃焼量が制御されるため、燃焼量が小さくなると共に、暖房用吸熱管から風呂追焚き用吸熱管への熱移動も小さくなる。従って、風呂追焚き用吸熱管で湯温が過度に上昇されることはなく、浴槽に送り出される湯温が高くなり過ぎることを防止できる。   According to the present invention, when the circulation flow rate of the bath reheating circuit is equal to or higher than the reference flow rate, the heating hot water temperature (detected temperature of the heating hot water temperature sensor) is set to a relatively high temperature (reference target temperature). Since the amount of combustion of the burner is controlled, the amount of combustion is increased, and the heat transfer from the heat absorption pipe for heating to the heat absorption pipe for bathing is also increased, so that a large reheating ability is obtained. Furthermore, even if the heating operation is performed during the bath reheating operation, the heating hot water temperature is maintained at the reference target temperature, so that the required heating capacity can be obtained, and the circulation flow rate of the heating circuit decreases for some reason. However, since the combustion amount is controlled based on the temperature of the hot water for the heating, boiling in the heat absorption pipe for heating is prevented. In addition, when the circulation flow rate of the bath reheating circuit is lower than the reference flow rate, the burner combustion amount is controlled so that the heating hot water temperature is relatively low, so the combustion amount is reduced and the heating Heat transfer from the heat absorption tube to the heat absorption tube for bathing is also reduced. Therefore, the hot water temperature is not excessively raised by the heat sink for bathing the bath, and the hot water temperature fed to the bathtub can be prevented from becoming too high.

尚、浴槽から風呂追焚き用吸熱管に戻される湯水の温度を検出する風呂戻り湯温センサを備え、風呂戻り湯温センサの検出温度が風呂追焚きの設定湯温を基準にして定められる所定の基準温度より低いことを第2の条件として、前記第1の条件と第2の条件とが共に成立している場合は目標温度が前記基準目標温度に設定され、第1と第2の両条件の少なくとも一方が不成立である場合は目標温度が基準目標温度より低い温度に設定されるようにしておけば、浴槽から風呂追焚き用吸熱管に戻される湯水の温度(風呂戻り湯温)が基準温度以上に上昇したときにも目標温度が低く設定変更されることになる。従って、風呂戻り湯温が上昇したときの風呂追焚き用吸熱管での過度の加熱により浴槽に送り出される湯温が高くなり過ぎることも防止できる。   In addition, a bath return hot water temperature sensor that detects the temperature of hot water returned from the bathtub to the heat sink for bathing the bath is provided, and the detection temperature of the bath return hot water temperature sensor is determined based on the set hot water temperature for bath bathing. When the first condition and the second condition are both satisfied, the target temperature is set to the reference target temperature, and both the first and second conditions are set. If at least one of the conditions is not met, the temperature of the hot water returned from the bathtub to the heat sink for reheating the bath (bath return hot water temperature) can be set by setting the target temperature to be lower than the reference target temperature. Even when the temperature rises above the reference temperature, the target temperature is set to be low. Therefore, it is possible to prevent the temperature of the hot water sent out to the bathtub from becoming too high due to excessive heating in the end-of-bath heat sink when the bath return hot water temperature rises.

また、本発明においては、暖房回路に、バイパス通路を開くと共に暖房回路の暖房放熱器に至る通路部分を閉じる第1の状態と、バイパス通路を絞ると共に暖房回路の暖房放熱器に至る通路部分を開く第2の状態とに切替え自在な通路切替手段を設け、暖房運転を行わない風呂追焚きの単独運転時は通路切替手段を第1の状態とし、風呂追焚きと暖房との同時運転時は通路切替手段を第2の状態とすることが望ましい。これによれば、風呂追焚きと暖房との同時運転時には、バイパス通路に暖房用熱媒体が流れにくくなって、バイパス通路での放熱ロスによる暖房能力の低下を防止できる。   In the present invention, the heating circuit includes a first state in which the bypass passage is opened and the passage portion reaching the heating radiator of the heating circuit is closed, and the passage portion reaching the heating radiator of the heating circuit while narrowing the bypass passage. There is a passage switching means that can be switched to the second state that opens, and the passage switching means is set to the first state when the bath reheating operation is not performed, and the bath renewal operation and heating are performed simultaneously. It is desirable that the passage switching means be in the second state. This makes it difficult for the heating heat medium to flow through the bypass passage during the simultaneous operation of bathing and heating, and prevents a reduction in heating capacity due to heat dissipation in the bypass passage.

ところで、暖房往き湯温が低い運転初期には、バーナの燃焼量が所定の上限値にまで増加されるが、風呂追焚きと暖房との同時運転時には、暖房用と風呂追焚き用の両吸熱管で効率良く吸熱されて吸熱フィンの温度上昇が遅れ、ドレン(燃焼排気中の水蒸気の結露)が発生しやすくなる。ここで、風呂追焚きや暖房の単独運転時には、騒音を低減するため、燃焼量の上限値は比較的低く設定すべきであるが、風呂追焚きと暖房との同時運転時には、バーナの燃焼量の上限値が単独運転時よりも高く設定されるようにしておけば、吸熱フィンの温度上昇が速くなり、ドレンの発生が抑制される。   By the way, in the initial stage of operation when the temperature of the heating hot water is low, the burner combustion amount is increased to a predetermined upper limit value. However, during simultaneous operation of bath reheating and heating, both heat absorption for heating and bath reheating are performed. The heat is efficiently absorbed by the pipe, and the temperature rise of the heat-absorbing fins is delayed, and drain (condensation of water vapor in the combustion exhaust gas) is likely to occur. Here, the upper limit of the amount of combustion should be set to a relatively low value in order to reduce noise during single operation of bath reheating and heating, but the amount of burner burned during simultaneous operation of bath reheating and heating If the upper limit value is set higher than that during single operation, the temperature rise of the heat-absorbing fins is accelerated, and the generation of drain is suppressed.

尚、後記する実施形態において、上記流量判別手段に相当するのは図2のS12のステップであり、上記燃焼制御手段に相当するのは図2のS14のステップである。   In the embodiment described later, the step corresponding to the flow rate discriminating means is step S12 in FIG. 2, and the step corresponding to the combustion control means is step S14 in FIG.

図1は、単一の缶体1内に、給湯用の第1燃焼部2と、暖房兼風呂追焚き用の第2燃焼部3とを並設した1缶3水路式の複合熱源機を示している。第1燃焼部2と第2燃焼部3は仕切り壁4で区画されている。第1燃焼部2には、給湯用の第1熱交換器21とこれを加熱する第1バーナ22とが設けられ、第2燃焼部3には、暖房兼風呂追焚き用の第2熱交換器31とこれを加熱する第2バーナ32とが設けられている。第1と第2の各燃焼部2,3の下部には、第1と第2の各バーナ22,32の配置部に対し分布板5で仕切られた第1と第2の各給気室23,33が設けられている。そして、第1と第2の各給気室23,33に第1と第2の各燃焼ファン24,34を接続し、各燃焼ファン24,34からの燃焼用空気が各給気室23,33から分布板5に形成した多数の分布孔5aを介して各燃焼部2,3に供給されるようにしている。各バーナ22,32の燃焼排気は、各熱交換器21,31に導かれ、各熱交換器21,31で熱交換した後、両熱交換器21,31の上側の共通の排気フード6に流れ、排気フード6に形成した排気口6aから外部に排出される。   FIG. 1 shows a one-can three-water channel type combined heat source apparatus in which a first combustion section 2 for hot water supply and a second combustion section 3 for heating and bathing are arranged in parallel in a single can body 1. Show. The first combustion unit 2 and the second combustion unit 3 are partitioned by a partition wall 4. The first combustion unit 2 is provided with a first heat exchanger 21 for hot water supply and a first burner 22 for heating the first heat exchanger 21, and the second combustion unit 3 has a second heat exchange for heating and bathing. A vessel 31 and a second burner 32 for heating the vessel 31 are provided. The first and second air supply chambers partitioned by the distribution plate 5 with respect to the arrangement portions of the first and second burners 22 and 32 are provided below the first and second combustion units 2 and 3. 23 and 33 are provided. The first and second combustion fans 24, 34 are connected to the first and second supply chambers 23, 33, and the combustion air from the combustion fans 24, 34 is supplied to the supply chambers 23, 33. 33 is supplied to each combustion section 2 and 3 through a number of distribution holes 5 a formed in the distribution plate 5. The combustion exhaust from the burners 22 and 32 is guided to the heat exchangers 21 and 31, and after exchanging heat with the heat exchangers 21 and 31, the exhaust gas is transferred to the common exhaust hood 6 above the heat exchangers 21 and 31. It flows and is discharged to the outside through an exhaust port 6 a formed in the exhaust hood 6.

第1と第2の各バーナ22,32は、夫々、缶体1の奥行方向(図1の紙面直交方向)に長手の単位バーナ22a,32aを横方向に複数列設して構成されており、これら各単位バーナ22a,32aに各バーナ22,32用のガスマニホールド22b,32bに設けた各ノズル22c,32cを介してガスが供給される。各バーナ22,32のガスマニホールド22b,32bに接続される各バーナ22,32用のガス供給路221,321には、夫々、元弁222,322と比例弁223,323とが介設されている。これら元弁222,322と比例弁223,323は燃焼ファン24,34と共にコントローラ7で制御される。   Each of the first and second burners 22 and 32 is configured by arranging a plurality of longitudinal unit burners 22a and 32a in the horizontal direction in the depth direction of the can 1 (the direction orthogonal to the plane of FIG. 1). The gas is supplied to the unit burners 22a and 32a through the nozzles 22c and 32c provided in the gas manifolds 22b and 32b for the burners 22 and 32, respectively. The gas supply passages 221 and 321 for the burners 22 and 32 connected to the gas manifolds 22b and 32b of the burners 22 and 32 are respectively provided with main valves 222 and 322 and proportional valves 223 and 323, respectively. Yes. These main valves 222 and 322 and proportional valves 223 and 323 are controlled by the controller 7 together with the combustion fans 24 and 34.

第1熱交換器21は、缶体1の奥行方向に多数列設した吸熱フィン21aと、これら吸熱フィン21aを貫通する上下2段の蛇行形状の給湯用吸熱管21bとで構成されている。給湯用吸熱管21bには、上流側の給水路8aと下流側の出湯路8bとが接続されている。給水路8aには、流量センサ81とコントローラ7で制御される流量調節弁82とが設けられ、更に、流量調節弁82の下流側において給水路8aと出湯路8bとを結ぶバイパス通路8cを設け、バイパス通路8cにコントローラ7で制御されるバイパス流量調節弁83を介設している。また、出湯路8bには、上流側の第1出湯温センサ84と、バイパス通路8cの合流部の下流側の第2出湯温センサ85とが設けられている。   The first heat exchanger 21 includes a plurality of endothermic fins 21 a arranged in the depth direction of the can 1, and upper and lower two-stage meandering endothermic pipes 21 b passing through the endothermic fins 21 a. An upstream water supply passage 8a and a downstream outlet hot water passage 8b are connected to the hot water supply heat absorption pipe 21b. The water supply path 8 a is provided with a flow rate sensor 81 and a flow rate adjustment valve 82 controlled by the controller 7, and further provided with a bypass passage 8 c connecting the water supply path 8 a and the hot water supply path 8 b on the downstream side of the flow rate adjustment valve 82. The bypass flow rate adjusting valve 83 controlled by the controller 7 is interposed in the bypass passage 8c. In addition, the first hot water temperature sensor 84 on the upstream side and the second hot water temperature sensor 85 on the downstream side of the joining portion of the bypass passage 8c are provided in the hot water channel 8b.

流量センサ81、第1出湯温センサ84及び第2出湯温センサ85の検出信号はコントローラ7に入力される。そして、出湯路8bの下流端の出湯栓86を開いて第1熱交換器21に通水したとき、流量センサ81の検出流量が所定の下限流量以上になったところで、第1燃焼ファン24を駆動すると共に、第1バーナ22用の元弁222を開弁して第1バーナ22にガスを供給し、図外の点火プラグによる火花放電で第1バーナ22に点火する。その後、第1出湯温センサ84の検出温度が所定の高温になるように、比例弁223を介して第1バーナ22の燃焼量を制御すると共に、流量調節弁82を介して第1熱交換器21への通水量を制御し、更に、第2出湯温センサ85の検出温度がリモコンで設定した出湯設定温度になるように、バイパス流量調節弁83を介してバイパス通路8cに流れる水量(バイパスミキシング量)を制御する。   Detection signals from the flow sensor 81, the first hot water temperature sensor 84, and the second hot water temperature sensor 85 are input to the controller 7. When the hot water tap 86 at the downstream end of the hot water outlet 8b is opened and water is passed through the first heat exchanger 21, the first combustion fan 24 is turned on when the flow rate detected by the flow rate sensor 81 exceeds a predetermined lower limit flow rate. While driving, the main valve 222 for the first burner 22 is opened to supply gas to the first burner 22, and the first burner 22 is ignited by spark discharge by a spark plug (not shown). Thereafter, the combustion amount of the first burner 22 is controlled via the proportional valve 223 so that the temperature detected by the first hot water temperature sensor 84 becomes a predetermined high temperature, and the first heat exchanger via the flow rate adjustment valve 82. The amount of water flowing to the bypass passage 8c via the bypass flow rate adjustment valve 83 (bypass mixing) is controlled so that the detected water temperature of the second hot water temperature sensor 85 becomes the preset hot water temperature set by the remote controller. Control).

第2熱交換器31は、缶体1の奥行方向に多数列設した吸熱フィン31aと、これら吸熱フィン31aを貫通する上下2段の蛇行形状の暖房用吸熱管31bと、上下の暖房用吸熱管31b間に該吸熱管31bに接触するように挟み込まれた状態で吸熱フィン31aを貫通する蛇行形状の風呂追焚き用吸熱管31cとで構成されている。暖房用吸熱管31bは、暖房回路9を介して浴室暖房用等の暖房放熱器10に接続され、また、風呂追焚き用吸熱管31cは、風呂追焚き回路11を介して浴槽12に接続される。尚、本実施形態では、第1熱交換器21の吸熱フィン21aと第2熱交換器31の吸熱フィン31aとを共通のフィンで構成しているが、これら吸熱フィン21a,31aを各別のフィンで構成することも勿論可能である。   The second heat exchanger 31 includes a plurality of endothermic fins 31a arranged in the depth direction of the can body 1, two upper and lower meandering heating endothermic tubes 31b penetrating the endothermic fins 31a, and upper and lower endothermic heat sinks. The heat absorption pipe 31c has a meandering shape and passes through the heat absorption fin 31a so as to be in contact with the heat absorption pipe 31b between the pipes 31b. The heating endothermic pipe 31b is connected to the heating radiator 10 for bathroom heating or the like via the heating circuit 9, and the bath reheating endothermic pipe 31c is connected to the bathtub 12 via the bath reheating circuit 11. The In addition, in this embodiment, although the heat sink fin 21a of the 1st heat exchanger 21 and the heat sink fin 31a of the 2nd heat exchanger 31 are comprised by the common fin, these heat sink fins 21a and 31a are each different. Of course, it is possible to use fins.

暖房回路9は、暖房用吸熱管31bで加熱された湯水を暖房放熱器10に送る暖房往き通路9aと、暖房放熱器10を通過した湯水を暖房用吸熱管31bに戻す暖房戻り通路9bとで構成されている。暖房戻り通路9bには、シスターン91とコントローラ7で制御される暖房ポンプ92とが介設され、暖房ポンプ92の作動で暖房放熱器10と暖房用吸熱管31bとに暖房回路9を介して湯水が循環される。また、暖房回路9には、暖房往き通路9aとシスターン91とを接続する、暖房放熱器9と並列のバイパス通路9cが設けられている。本実施形態でバイパス通路9cは、互いに並列の第1と第2の一対の通路9c1,9c2で構成されている。そして、暖房往き通路9aに、第1バイパス通路9c1の分岐部に位置させて、第1バイパス通路9c1を開くと共に暖房回路9の暖房放熱器10に至る通路部分を閉じる第1の状態と、第1バイパス通路9c1を閉じると共に暖房回路9の暖房放熱器10に至る通路部分を開く第2の状態とに切替え自在な通路切替手段である、コントローラ7で制御される三方弁93を設けている。また、暖房往き通路9aの上流側には、暖房用吸熱管31bから送り出される湯水の温度(暖房往き湯温)を検出する暖房往き湯温センサ94が設けられている。   The heating circuit 9 includes a heating forward passage 9a that sends hot water heated by the heating heat absorption pipe 31b to the heating radiator 10, and a heating return passage 9b that returns hot water that has passed through the heating radiator 10 to the heat absorption pipe 31b. It is configured. In the heating return passage 9b, a systern 91 and a heating pump 92 controlled by the controller 7 are interposed, and hot water is supplied to the heating radiator 10 and the heating endothermic pipe 31b by the operation of the heating pump 92 via the heating circuit 9. Is circulated. Further, the heating circuit 9 is provided with a bypass passage 9c in parallel with the heating radiator 9 that connects the heating forward passage 9a and the cistern 91. In this embodiment, the bypass passage 9c is composed of a first and second pair of passages 9c1 and 9c2 that are parallel to each other. Then, in the heating forward passage 9a, the first state is located at the branch portion of the first bypass passage 9c1, the first bypass passage 9c1 is opened and the passage portion reaching the heating radiator 10 of the heating circuit 9 is closed, A three-way valve 93 controlled by the controller 7 is provided which is a passage switching means which can be switched to a second state in which the passage portion reaching the heating radiator 10 of the heating circuit 9 is closed while closing the one bypass passage 9c1. In addition, a heating hot water temperature sensor 94 that detects the temperature of the hot water sent from the heating heat absorption pipe 31b (heating hot water temperature) is provided on the upstream side of the heating outgoing passage 9a.

ところで、三方弁93を第2の状態に切替えたとき、第1バイパス通路9c1は閉じられるが、第2バイパス通路9c2は開かれており、バイパス通路9c全体として絞られた状態になる。第2バイパス通路9c2は、暖房放熱器10での詰まりを生じたときにも暖房ポンプ92を保護(空回り防止)するのに必要な最低限の循環流量を確保し得るようにするためのものであり、管路抵抗が大きく、第2バイパス通路9c2に流れる通常時の湯水の流量は極少量になる。尚、三方弁93を第2の状態に切替えたときに、三方弁93の第1バイパス通路9c1用の弁部でのリークを生ずるようにしておけば、即ち、第1バイパス通路9c1が絞られるようにしておけば、第2バイパス通路9c2を省略することも可能である。また、第1バイパス通路9c1に介設した開閉弁とバイパス通路9cの分岐部下流側の暖房往き通路9aの部分に介設した開閉弁とで通路切替手段を構成することも可能である。   By the way, when the three-way valve 93 is switched to the second state, the first bypass passage 9c1 is closed, but the second bypass passage 9c2 is opened, and the entire bypass passage 9c is restricted. The second bypass passage 9c2 is for ensuring a minimum circulating flow rate necessary for protecting the heating pump 92 (preventing idling) even when the heating radiator 10 is clogged. Yes, the pipe resistance is high, and the normal flow rate of hot water flowing through the second bypass passage 9c2 is extremely small. Note that when the three-way valve 93 is switched to the second state, leakage occurs in the valve portion for the first bypass passage 9c1 of the three-way valve 93, that is, the first bypass passage 9c1 is throttled. By doing so, the second bypass passage 9c2 can be omitted. It is also possible to configure a passage switching means with an opening / closing valve provided in the first bypass passage 9c1 and an opening / closing valve provided in a portion of the heating forward passage 9a on the downstream side of the branch portion of the bypass passage 9c.

風呂追焚き回路11は、風呂追焚き用吸熱管31cで加熱された湯水を浴槽12に送る風呂往き通路11aと、浴槽12から風呂追焚き用吸熱管31cに湯水を戻す風呂戻り通路11bとで構成されている。風呂戻り通路11bにはコントローラ7で制御される風呂ポンプ111が介設されており、風呂ポンプ111の作動で浴槽12と風呂追焚き用吸熱管31cとに風呂追焚き回路11を介して湯水が循環される。また、前記出湯路8bから分岐した注湯路11cを逆止弁112を介して風呂戻り通路11bに接続し、注湯路11cに介設したコントローラ7で制御される注湯弁113を開弁することにより、第1熱交換器21で加熱された湯水を浴槽12に注湯できるようにしている。また、風呂戻り通路11bには、風呂追焚き回路11における湯水の循環流量を検出する風呂流量センサ114と、浴槽12から風呂追焚き用吸熱管31cに戻される湯水の温度(風呂戻り湯温)を検出する風呂戻り湯温センサ115とが設けられている。   The bath chase circuit 11 includes a bath going-out passage 11a that sends hot water heated by the bath chase endothermic pipe 31c to the bathtub 12, and a bath return passage 11b that returns hot water from the bathtub 12 to the bath chase endothermic pipe 31c. It is configured. A bath pump 111 controlled by the controller 7 is installed in the bath return passage 11b, and hot water is supplied to the bathtub 12 and the bath-heating endothermic pipe 31c through the bath-heating circuit 11 by the operation of the bath pump 111. Circulated. Further, the pouring passage 11c branched from the hot water feeding passage 8b is connected to the bath return passage 11b through the check valve 112, and the pouring valve 113 controlled by the controller 7 provided in the pouring passage 11c is opened. By doing so, hot water heated by the first heat exchanger 21 can be poured into the bathtub 12. Further, in the bath return passage 11b, a bath flow rate sensor 114 for detecting the circulating flow rate of hot water in the bath reheating circuit 11 and the temperature of the hot water returned from the bathtub 12 to the heat retreating pipe 31c for bath reheating (bath return hot water temperature). And a bath return hot water temperature sensor 115 for detecting the above.

暖房往き湯温センサ94、風呂流量センサ114及び風呂戻り湯温センサ115の検出信号はコントローラ7に入力される。そして、コントローラ7は、リモコンによる風呂追焚きや暖房の運転指示が行われたとき、図2に示す制御を行う。これを詳述するに、先ず、S1のステップで風呂追焚きの運転指示の有無を判別し、風呂追焚きの運転指示があるときは、S2のステップで暖房の運転指示の有無を判別する。そして、暖房の運転指示があるとき、即ち、暖房と風呂追焚きの同時運転時には、S3のステップで三方弁93を第2の状態に切替えて、バイパス通路9cを絞ると共に暖房回路9の暖房放熱器10に至る通路部分を開き、更に、S4のステップで第2バーナ32の燃焼量の上限値Gmaxを比較的高い値GH(例えば、15000kcal/h)に設定する。また、暖房の運転指示がないとき、即ち、風呂追焚きの単独運転時には、S5のステップで三方弁93を第1の状態に切替えて、バイパス通路9cを開くと共に暖房回路9の暖房放熱器10に至る通路部分を閉じ、更に、S6のステップで第2バーナ32の燃焼量の上限値Gmaxを比較的低い値GL(例えば、12000kcal/h)に設定する。   Detection signals from the heating / outgoing hot water temperature sensor 94, the bath flow rate sensor 114, and the bath return hot water temperature sensor 115 are input to the controller 7. The controller 7 performs the control shown in FIG. 2 when an instruction for bathing or heating is performed by the remote controller. To describe this in detail, first, in step S1, the presence / absence of a bath-heating operation instruction is determined. When there is a bath-heating operation instruction, the presence / absence of a heating operation instruction is determined in step S2. When there is a heating operation instruction, that is, during simultaneous operation of heating and bath renewal, the three-way valve 93 is switched to the second state in step S3, the bypass passage 9c is throttled and the heating circuit 9 dissipates heat. The passage portion reaching the vessel 10 is opened, and the upper limit value Gmax of the combustion amount of the second burner 32 is set to a relatively high value GH (for example, 15000 kcal / h) in step S4. When there is no operation instruction for heating, that is, when the bath reheating operation is independent, the three-way valve 93 is switched to the first state in step S5, the bypass passage 9c is opened and the heating radiator 10 of the heating circuit 9 is opened. In step S6, the upper limit value Gmax of the combustion amount of the second burner 32 is set to a relatively low value GL (for example, 12000 kcal / h).

S4またはS6のステップでのGmaxの設定処理が行われると、S7のステップで暖房と風呂の両ポンプ92,111を駆動し、次に、S8のステップで風呂流量センサ114により検出される風呂追焚き回路11における湯水の循環流量(風呂循環流量)Qが風呂ポンプ111の作動確認のために設定される所定の下限流量QL以上になったか否かを判別し、Q≧QLになったとき、S9のステップで第2燃焼ファン34を駆動すると共に、第2バーナ32用の元弁322を開弁して第2バーナ32に点火する。   When the Gmax setting process in step S4 or S6 is performed, both the heating and bath pumps 92 and 111 are driven in step S7, and then the bath additional detection detected by the bath flow sensor 114 in step S8. It is determined whether or not the circulation flow rate (bath circulation flow rate) Q of hot water in the firing circuit 11 is equal to or higher than a predetermined lower limit flow rate QL set for confirming the operation of the bath pump 111, and when Q ≧ QL, In step S9, the second combustion fan 34 is driven, and the main valve 322 for the second burner 32 is opened to ignite the second burner 32.

次に、S10のステップで風呂戻り湯温センサ115の検出温度(風呂戻り湯温)TFが風呂追焚きの設定湯温TFSより低いか否かを判別し、TF<TFSであれば、S11のステップで風呂戻り湯温TFが設定湯温より数度(例えば2℃)低く設定される基準温度TFKより低いか否かを判別し、TF<TFKであれば、S12のステップで風呂循環流量Qが所定の基準流量QK以上であるか否かを判別する。尚、基準流量QKについては後で詳述する。Q≧QKであれば、S13のステップで目標温度TDMを基準目標温度TDKに設定し、S14のステップで暖房往き湯温センサ94の検出温度(暖房往き湯温)TDが目標温度TDMになるように比例弁323を介して第2バーナ32の燃焼量を制御する。尚、基準目標温度TDKは、基本的に暖房放熱器10の要求湯温に合わせた温度(例えば、80℃)に設定されるが、暖房放熱器10に湯水が循環されない風呂追焚きの単独運転時には、基準目標温度TDKを暖房放熱器10の要求湯温より高い温度(例えば、85℃)に設定し、風呂追焚き能力を高められるようにすることが望ましい。   Next, in step S10, it is determined whether or not the detected temperature (bath return hot water temperature) TF of the bath return hot water temperature sensor 115 is lower than the set hot water temperature TFS for bath reheating. If TF <TFS, the process proceeds to S11. In step S12, it is determined whether or not the bath return hot water temperature TF is lower than a reference temperature TFK that is set a few degrees (eg, 2 ° C.) lower than the set hot water temperature. If TF <TFK, the bath circulation flow rate Q is determined in step S12. Is greater than or equal to a predetermined reference flow rate QK. The reference flow rate QK will be described later in detail. If Q ≧ QK, the target temperature TDM is set to the reference target temperature TDK in step S13, and the detected temperature (heating hot water temperature) TD of the heating hot water temperature sensor 94 becomes the target temperature TDM in step S14. The combustion amount of the second burner 32 is controlled via the proportional valve 323. Note that the reference target temperature TDK is basically set to a temperature (for example, 80 ° C.) that matches the required hot water temperature of the heating radiator 10, but the bath reheating operation in which hot water is not circulated through the heating radiator 10 is performed. In some cases, it is desirable to set the reference target temperature TDK to a temperature (for example, 85 ° C.) higher than the required hot water temperature of the heating radiator 10 so that the bath replenishment ability can be enhanced.

かくして、風呂循環流量Qが基準流量QK以上である場合、風呂戻り湯温TFが基準温度TFKより低い間は、暖房往き湯温TDが基準目標温度TDKという比較的高い温度になるように第2バーナ32の燃焼量が制御されるため、燃焼量が大きくなると共に、暖房用吸熱管31bから風呂追焚き用吸熱管31cへの熱移動も大きくなり、大きな追焚き能力が得られる。更に、風呂追焚き運転時に暖房運転を行っても、暖房往き湯温TDは基準目標温度TDKに維持され、且つ、バイパス通路9cが絞られてバイパス通路9cでの放熱ロスが抑制されるため、所要の暖房能力を得られる。また、暖房回路9の循環流量が何らかの原因で減少しても、暖房往き湯温TDに基づく燃焼量の制御が行われるため、暖房用吸熱管31bでの沸騰が防止される。   Thus, when the bath circulation flow rate Q is equal to or higher than the reference flow rate QK, while the bath return hot water temperature TF is lower than the reference temperature TFK, the second heating hot water temperature TD is set to a relatively high temperature that is the reference target temperature TDK. Since the amount of combustion in the burner 32 is controlled, the amount of combustion is increased, and the heat transfer from the heating endothermic tube 31b to the bath endothermic endothermic tube 31c is increased, thereby obtaining a large pursuit ability. Further, even if the heating operation is performed during the bath reheating operation, the heating hot water temperature TD is maintained at the reference target temperature TDK, and the bypass passage 9c is throttled to suppress the heat radiation loss in the bypass passage 9c. The required heating capacity can be obtained. Further, even if the circulation flow rate of the heating circuit 9 decreases for some reason, the combustion amount is controlled based on the heating hot water temperature TD, so that boiling in the heating endothermic pipe 31b is prevented.

ところで、風呂戻り湯温TFが基準温度TFK以上になった場合や、風呂循環流量Qが髪の毛の詰まり等で減少した場合、暖房往き湯温TDが基準目標温度TDKになるように第2バーナ32の燃焼量を制御していると、風呂追焚き用吸熱管31c内で湯温が過度に上昇して、浴槽12に送り出される湯温が高くなり過ぎる恐れがある。ここで、暖房用吸熱管31bは風呂追焚き用吸熱管31cを上下から挟むように設けられているため、風呂追焚き用吸熱管31cよりも熱を吸収し易く、風呂追焚き用吸熱管31cの吸収熱量は第2バーナ32の燃焼量の1/3程度になる。第2バーナ32の燃焼量が15000kcal/hである場合の風呂追焚き用吸熱管31cの吸収熱量を余裕を見て6000kcal/h(100kcal/分)とすると、風呂戻り湯温TFが40℃のときに風呂追焚き用吸熱管31cから送り出される湯温を90℃以下に抑えるには、風呂循環流量を毎分2リットル以上にする必要がある。そこで、このようにして求められる過熱防止に必要な循環流量を上記基準流量QKに設定している。   By the way, when the bath return hot water temperature TF becomes equal to or higher than the reference temperature TFK, or when the bath circulation flow rate Q decreases due to clogging of the hair, the second burner 32 so that the heating hot water temperature TD becomes the reference target temperature TDK. When the amount of combustion is controlled, the hot water temperature rises excessively in the bath reheating endothermic pipe 31c, and the hot water temperature sent to the bathtub 12 may become too high. Here, since the heat absorption pipe 31b for heating is provided so as to sandwich the heat absorption pipe 31c for bathing from above and below, it absorbs heat more easily than the heat absorption pipe 31c for bathing, and the heat absorption pipe 31c for bathing. The amount of heat absorbed is about 1/3 of the combustion amount of the second burner 32. Assuming that the amount of heat absorbed by the heat absorption pipe 31c for bath reheating when the combustion amount of the second burner 32 is 15000 kcal / h is 6000 kcal / h (100 kcal / min) with a margin, the bath return hot water temperature TF is 40 ° C. In order to keep the temperature of the hot water sent out from the end-of-bath heat sink 31c below 90 ° C., it is necessary to set the bath circulation flow rate to 2 liters or more per minute. Accordingly, the reference flow rate QK is set to the circulation flow rate required for preventing overheating as described above.

そして、S11のステップで風呂戻り湯温TFが基準温度TFK以上と判別された場合や、S12のステップで風呂循環流量Qが基準流量QK未満と判別された場合は、S15のステップに進んで風呂循環流量Qが上記下限流量QL以上であるか否かを判別し、Q≧QLであれば、S16のステップで目標温度TDMを基準目標温度TDKより所定温度ΔT(例えば、15℃)だけ低い温度に設定した後、S14のステップに進む。かくして、TF≧TFKになった場合やQ<QKになった場合は、暖房往き湯温TDがTDK−ΔTになるように第2バーナ32の燃焼量が制御される。その結果、燃焼量が小さくなると共に、暖房用吸熱管31bから風呂追焚き用吸熱管31cへの熱移動も小さくなり、風呂追焚き用吸熱管31cで湯温が過度に上昇されなくなり、浴槽に送り出される湯温が高くなり過ぎることが防止される。   If it is determined in step S11 that the bath return hot water temperature TF is equal to or higher than the reference temperature TFK, or if it is determined in step S12 that the bath circulation flow rate Q is less than the reference flow rate QK, the process proceeds to step S15. It is determined whether or not the circulation flow rate Q is equal to or higher than the lower limit flow rate QL. If Q ≧ QL, the target temperature TDM is lower than the reference target temperature TDK by a predetermined temperature ΔT (for example, 15 ° C.) in step S16. Then, the process proceeds to step S14. Thus, when TF ≧ TFK or when Q <QK, the combustion amount of the second burner 32 is controlled so that the heating hot water temperature TD becomes TDK−ΔT. As a result, the amount of combustion is reduced, and the heat transfer from the heat absorption pipe 31b for heating to the heat absorption pipe 31c for bathing is also reduced, and the hot water temperature is not excessively raised in the heat sinking pipe 31c for bathing. It is prevented that the hot water temperature sent out becomes too high.

S10のステップで風呂戻り湯温TFが設定湯温TFS以上と判別された場合や、S15のステップで風呂循環流量Qが下限流量QL未満と判別された場合は、S17のステップに進んで風呂追焚きの停止処理を行う。この停止処理により、風呂追焚きの単独運転時には風呂ポンプ111と暖房ポンプ92とが停止されると共に第2バーナ32が消火され、また、風呂追焚きと暖房の同時運転時には風呂ポンプ111が停止され、その後、暖房単独運転時の後記するS23のステップに進む。尚、風呂追焚き回路11における湯水の循環を停止した状態で第2バーナ32を燃焼させても、暖房用吸熱管31bに流れる湯水により風呂追焚き用吸熱管31cの熱が奪われるため、風呂追焚き用吸熱管31cでの沸騰は生じない。   If it is determined in step S10 that the bath return hot water temperature TF is equal to or higher than the set hot water temperature TFS, or if it is determined in step S15 that the bath circulation flow rate Q is less than the lower limit flow rate QL, the process proceeds to step S17. Stops whispering. By this stop processing, the bath pump 111 and the heating pump 92 are stopped and the second burner 32 is extinguished when the bath reheating operation is performed alone, and the bath pump 111 is stopped when the bath reheating operation and heating are performed simultaneously. Then, it progresses to the step of S23 mentioned later at the time of heating independent operation. Even if the second burner 32 is burned in a state where the circulation of hot water in the bath reheating circuit 11 is stopped, the heat of the heat relieving pipe 31c for bath retreating is taken away by the hot water flowing in the heat absorption pipe 31b. Boiling in the reheating endothermic tube 31c does not occur.

S1のステップで風呂追焚きの運転指示がないと判別されたときは、S18のステップに進んで暖房の運転指示の有無を判別する。そして、暖房の運転指示があるとき、即ち、暖房の単独運転時は、S19のステップで三方弁93を第2の状態に切替えて、バイパス通路9cを絞ると共に暖房回路9の暖房放熱器10に至る通路部分を開き、更に、S20のステップで第2バーナ32の燃焼量の上限値Gmaxを比較的低い値GLに設定する。次に、S21のステップで暖房ポンプ92を駆動し(風呂ポンプ111は停止)、更に、S22のステップで第2燃焼ファン34を駆動すると共に、第2バーナ32用の元弁322を開弁して第2バーナ32に点火する。そして、S23のステップで暖房往き湯温TDが目標温度TDMになるように比例弁323を介して第2バーナ32の燃焼量を制御する。尚、この場合、目標温度TDMは暖房放熱器10の要求湯温に合わせた温度に設定される。   If it is determined in step S1 that there is no bath reheating operation instruction, the process proceeds to step S18 to determine whether there is a heating operation instruction. When there is a heating operation instruction, that is, when heating is performed alone, the three-way valve 93 is switched to the second state in step S19 to throttle the bypass passage 9c and to the heating radiator 10 of the heating circuit 9. Further, the upper passage value Gmax of the combustion amount of the second burner 32 is set to a relatively low value GL in step S20. Next, in step S21, the heating pump 92 is driven (the bath pump 111 is stopped), and in step S22, the second combustion fan 34 is driven, and the main valve 322 for the second burner 32 is opened. Then, the second burner 32 is ignited. Then, in step S23, the combustion amount of the second burner 32 is controlled via the proportional valve 323 so that the heating hot water temperature TD becomes the target temperature TDM. In this case, the target temperature TDM is set to a temperature that matches the required hot water temperature of the heating radiator 10.

ところで、暖房往き湯温TDが低い運転初期には、第2バーナ32の燃焼量が上限値Gmaxにまで増加されるが、風呂追焚きと暖房との同時運転時には、暖房用と風呂追焚き用の両吸熱管31b,31cで効率良く吸熱されて吸熱フィン31aの温度上昇が遅れ、ドレンが発生しやすくなる。然し、本実施形態では、風呂追焚きと暖房との同時運転時には、第2バーナ32の燃焼量の上限値Gmaxが比較的高い値GHに設定されるため、吸熱フィン31aの温度上昇が速くなり、ドレンの発生が抑制される。風呂追焚きや暖房の単独運転時は、上限値Gmaxが比較的低い値GLに設定されるが、これは騒音の低減のためである。   By the way, in the initial stage of operation when the heating hot water temperature TD is low, the combustion amount of the second burner 32 is increased to the upper limit value Gmax, but during the simultaneous operation of bath reheating and heating, for heating and bath reheating. The heat absorption pipes 31b and 31c efficiently absorb heat, the temperature rise of the heat absorption fins 31a is delayed, and drainage is likely to occur. However, in the present embodiment, the upper limit value Gmax of the combustion amount of the second burner 32 is set to a relatively high value GH during the simultaneous operation of the bath reheating and heating, so that the temperature rise of the heat absorption fins 31a becomes faster. , The generation of drain is suppressed. At the time of bathing or heating alone, the upper limit value Gmax is set to a relatively low value GL, which is to reduce noise.

尚、上記実施形態では、S16のステップでの目標温度TDMの設定変更に用いる基準目標温度TDKに対する低下温度ΔTを一定にしているが、ΔTを基準流量QKと風呂循環流量Qとの偏差に応じて変化させるようにしても良い。これによれば、基準流量QKを比較的高く設定し、風呂循環流量Qが大きく減少する前から目標温度TDMを徐々に減少できるようになり、浴槽12に送り出される湯温の上昇をより確実に防止できる。   In the above embodiment, the decrease temperature ΔT with respect to the reference target temperature TDK used for changing the setting of the target temperature TDM in step S16 is made constant, but ΔT depends on the deviation between the reference flow rate QK and the bath circulation flow rate Q. May be changed. According to this, the reference flow rate QK is set relatively high, the target temperature TDM can be gradually decreased before the bath circulation flow rate Q is greatly reduced, and the rise of the hot water temperature delivered to the bathtub 12 is more reliably ensured. Can be prevented.

また、流量センサ114を用いずに、風呂追焚き回路11に上記下限流量QL以上でオンする第1の水流スイッチと、上記基準流量QK以上でオンする第2の水流スイッチとを設け、S8のステップで第1の水流スイッチがオンしたか否かを判別し、第1の水流スイッチがオンしたときにS9のステップに進み、また、S12のステップで第2の水流スイッチがオンしたか否かを判別し、第2の水流スイッチがオフのときにS15のステップに進み、ここで第1の水流スイッチがオンしたか否かを判別し、第1の水流スイッチがオフのときS16のステップに進むようにしても良い。これによれば、流量センサ114を用いる場合に比しコストが安くなる。   Further, without using the flow rate sensor 114, the bath reheating circuit 11 is provided with a first water flow switch that is turned on when the flow rate is equal to or higher than the lower limit flow rate QL and a second water flow switch that is turned on when the flow rate is higher than the reference flow rate QK. It is determined whether or not the first water flow switch is turned on in step. When the first water flow switch is turned on, the process proceeds to step S9, and whether or not the second water flow switch is turned on in step S12. When the second water flow switch is off, the process proceeds to step S15, where it is determined whether or not the first water flow switch is turned on. When the first water flow switch is off, the process proceeds to step S16. You may make it go. According to this, the cost is lower than when the flow sensor 114 is used.

尚、S15のステップは、バーナ点火後の風呂ポンプ111の故障に対するフェールセーフのために設けたステップであり、省略することも可能である。この場合、上記第1の水流スイッチを省略し、S8のステップで上記第2の水流スイッチがオンしたか否かを判別し、第2の水流スイッチがオンしたときにS9のステップに進み、また、S12のステップで第2の水流スイッチがオンしたか否かを判別し、第2の水流スイッチがオフのときにS16のステップに進むようにしても良い。これによれば、一層のコストダウンを図ることができる。   The step S15 is a step provided for fail-safe against the failure of the bath pump 111 after the burner ignition, and can be omitted. In this case, the first water flow switch is omitted, it is determined whether or not the second water flow switch is turned on in step S8, and the process proceeds to step S9 when the second water flow switch is turned on. In step S12, it may be determined whether or not the second water flow switch is turned on, and the process may proceed to step S16 when the second water flow switch is turned off. According to this, further cost reduction can be achieved.

以上、給湯用の第1燃焼部2と暖房兼風呂追焚き用の第2燃焼部3とを単一の缶体1に収納した1缶式熱源機に本発明を適用した実施形態について説明したが、第1燃焼部2と第2燃焼部3とを各別の缶体に収納する2缶式熱源機、更には、第1燃焼部2を省略した熱源機にも同様に本発明に本発明を適用できる。   As described above, the embodiment in which the present invention is applied to the single-can type heat source device in which the first combustion section 2 for hot water supply and the second combustion section 3 for heating and bath replenishment are housed in a single can body 1 has been described. However, the present invention is also applied to a two-can type heat source device in which the first combustion unit 2 and the second combustion unit 3 are housed in separate cans, and further to a heat source device in which the first combustion unit 2 is omitted. The invention can be applied.

本発明の実施形態の熱源機の構成を示す説明図。Explanatory drawing which shows the structure of the heat-source equipment of embodiment of this invention. 暖房・風呂追焚きの制御を示すフロー図。The flowchart which shows control of heating and bath reheating.

符号の説明Explanation of symbols

3…燃焼部、31…暖房兼風呂追焚き用の熱交換器、31a…吸熱フィン、31b…暖房用吸熱管、31c…風呂追焚き用吸熱管、32…バーナ、7…コントローラ、9…暖房回路、9c…バイパス通路、93…三方弁(通路切替手段)、94…暖房往き湯温センサ、11…風呂追焚き回路、114…流量センサ、115…風呂戻り湯温センサ、12…浴槽。   DESCRIPTION OF SYMBOLS 3 ... Combustion part, 31 ... Heat exchanger for heating and bath pursuit, 31a ... Endothermic fin, 31b ... Endothermic pipe for heating, 31c ... Endothermic pipe for bath pursuit, 32 ... Burner, 7 ... Controller, 9 ... Heating Circuit 9c: Bypass passage 93: Three-way valve (passage switching means) 94 Heating hot water temperature sensor 11 Bath reheating circuit 114 Flow rate sensor 115 Bath return hot water temperature sensor 12 Bath

Claims (4)

暖房兼風呂追焚き用の熱交換器とこの熱交換器を加熱するバーナとを有する燃焼部を備える熱源機であって、熱交換器は、吸熱フィンと、吸熱フィンに互いに接触するように貫通させた暖房用吸熱管及び風呂追焚き用吸熱管とを有し、暖房放熱器に接続される暖房回路を介して暖房用吸熱管に湯水を循環自在とすると共に、浴槽に接続される風呂追焚き回路を介して風呂追焚き用吸熱管に浴槽の湯水を循環自在とし、更に、暖房回路に暖房放熱器と並列のバイパス通路を設けて、風呂追焚き運転時に、暖房運転中であるか否かに係らず、風呂追焚き用吸熱管と暖房用吸熱管とに夫々湯水を循環させるものにおいて、
暖房用吸熱管から送り出される湯水の温度を検出する暖房往き湯温センサと、
風呂追焚き回路における湯水の循環流量が所定の基準流量以上であるか否かを判別する流量判別手段と、
風呂追焚き運転時に、暖房運転中であるか否かに係らず、暖房往き湯温センサの検出温度が所定の目標温度になるようにバーナの燃焼量を制御する燃焼制御手段とを備え、
この目標温度は基準目標温度と基準目標温度より低い温度とに可変設定自在であり、流量判別手段により前記循環流量が前記基準流量以上であると判別されることを第1の条件として、第1の条件が不成立である場合は目標温度が基準目標温度より低い温度に設定変更されることを特徴とする熱源機。
A heat source device comprising a combustion section having a heat exchanger for heating and bathing and a burner for heating the heat exchanger, the heat exchanger penetrating the heat absorption fin and the heat absorption fin so as to contact each other A heat absorption pipe for heating and a heat absorption pipe for replenishing a bath, and hot water can be circulated to the heat absorption pipe for heating through a heating circuit connected to the heating radiator, and a bath addition connected to the bathtub. Whether bath water can be freely circulated through the heat sink for bath reheating through the fired circuit, and a bypass passage in parallel with the heating radiator is provided in the heating circuit to determine whether the heater is in heating operation during the bath reheating operation. Regardless of whether the hot water is circulated through the heat sink for bathing and the heat sink for heating,
A hot water temperature sensor for detecting the temperature of hot water sent from the heat absorption pipe for heating,
Flow rate discriminating means for discriminating whether or not the circulating water flow rate in the bath reheating circuit is equal to or higher than a predetermined reference flow rate;
Combustion control means for controlling the combustion amount of the burner so that the detected temperature of the heating hot water temperature sensor becomes a predetermined target temperature regardless of whether the heating operation is in progress during the bath reheating operation,
The target temperature can be variably set to a reference target temperature and a temperature lower than the reference target temperature, and the first condition is that the flow rate determining means determines that the circulating flow rate is equal to or higher than the reference flow rate. If the condition is not satisfied, the target temperature is set and changed to a temperature lower than the reference target temperature.
前記浴槽から前記風呂追焚き用吸熱管に戻される湯水の温度を検出する風呂戻り湯温センサを備え、風呂戻り湯温センサの検出温度が風呂追焚きの設定湯温を基準にして定められる所定の基準温度より低いことを第2の条件として、前記第1の条件と第2の条件とが共に成立している場合は前記目標温度が前記基準目標温度に設定され、第1と第2の両条件の少なくとも一方が不成立である場合は目標温度が基準目標温度より低い温度に設定されることを特徴とする請求項1記載の熱源機。   A bath return hot water temperature sensor for detecting a temperature of hot water returned from the bathtub to the bath-heating heat sink, and a detection temperature of the bath return hot-water temperature sensor is determined based on a set temperature of the bath-heating water bath When the first condition and the second condition are both satisfied, the target temperature is set to the reference target temperature, and the first and second conditions are set to be lower than the reference temperature. The heat source machine according to claim 1, wherein when at least one of the two conditions is not satisfied, the target temperature is set to a temperature lower than the reference target temperature. 前記暖房回路に、前記バイパス通路を開くと共に暖房回路の暖房放熱器に至る通路部分を閉じる第1の状態と、バイパス通路を絞ると共に暖房回路の暖房放熱器に至る通路部分を開く第2の状態とに切替え自在な通路切替手段を設け、暖房運転を行わない風呂追焚きの単独運転時は通路切替手段を第1の状態とし、風呂追焚きと暖房との同時運転時は通路切替手段を第2の状態とすることを特徴とする請求項1または2記載の熱源機。   A first state in which the bypass passage is opened in the heating circuit and a passage portion reaching the heating radiator of the heating circuit is closed, and a second state in which the bypass passage is narrowed and the passage portion reaching the heating radiator in the heating circuit is opened. The passage switching means can be switched freely, and the passage switching means is set to the first state when the bath reheating operation is not performed, and the passage switching means is set to the first state when the bath reheating operation and heating are performed simultaneously. The heat source apparatus according to claim 1, wherein the heat source apparatus is in a state of 2. 風呂追焚きと暖房との同時運転時には、前記バーナの燃焼量の上限値が風呂追焚きや暖房の単独運転時よりも高く設定されることを特徴とする請求項1〜3の何れか1項に記載の熱源機。   4. The burn-up and heating operation at the same time is set such that an upper limit value of the burner combustion amount is set higher than that at the time of bath-heating or heating operation alone. The heat source machine described in 1.
JP2004275145A 2004-09-22 2004-09-22 Heat source machine Active JP4025326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004275145A JP4025326B2 (en) 2004-09-22 2004-09-22 Heat source machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004275145A JP4025326B2 (en) 2004-09-22 2004-09-22 Heat source machine

Publications (2)

Publication Number Publication Date
JP2006090592A JP2006090592A (en) 2006-04-06
JP4025326B2 true JP4025326B2 (en) 2007-12-19

Family

ID=36231747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004275145A Active JP4025326B2 (en) 2004-09-22 2004-09-22 Heat source machine

Country Status (1)

Country Link
JP (1) JP4025326B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919181B2 (en) * 2012-12-12 2016-05-18 リンナイ株式会社 Hot water heating system
JP6685662B2 (en) * 2015-06-12 2020-04-22 パーパス株式会社 Heat exchanger and heat source machine

Also Published As

Publication number Publication date
JP2006090592A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
US20100282440A1 (en) Fluid Heater
JP2002267254A (en) Hot-water supply apparatus
JP7217628B2 (en) Heat source device
JP4025326B2 (en) Heat source machine
JP6449687B2 (en) Heat source equipment
JP5135318B2 (en) Water heater
JP4182432B2 (en) Combustion device
JP4867273B2 (en) Water heater
JP3907032B2 (en) Water heater
JP2017122533A (en) Bath water heater
JP4692814B2 (en) Heat source equipment
KR960004846B1 (en) Warm water storage heater and the installation equipped with such a storage heater
JP6331687B2 (en) Heat source machine
JP2019095160A (en) Water heater
GB2501586A (en) Safety cooling circuit for a solid fuel boiler
JP2006038401A (en) Compound heat source machine
JP2008075886A (en) Water heater
JP5170470B2 (en) Water heater
JP7235502B2 (en) Heat source device
JP7195812B2 (en) Heat source device
JP2003130446A (en) Heat source machine for hot-water heating
JP7267738B2 (en) Heat source device
JP3834431B2 (en) Heat exchanger
JP4257605B2 (en) Combined heat source machine
JP2006336939A (en) Hot water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Ref document number: 4025326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250