JP2006336939A - Hot water heating system - Google Patents

Hot water heating system Download PDF

Info

Publication number
JP2006336939A
JP2006336939A JP2005161889A JP2005161889A JP2006336939A JP 2006336939 A JP2006336939 A JP 2006336939A JP 2005161889 A JP2005161889 A JP 2005161889A JP 2005161889 A JP2005161889 A JP 2005161889A JP 2006336939 A JP2006336939 A JP 2006336939A
Authority
JP
Japan
Prior art keywords
temperature
hot water
heat exchanger
circulation path
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161889A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Shibayama
佳之 柴山
Kazunari Taguchi
和成 田口
Sukeki Inami
祐基 井浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2005161889A priority Critical patent/JP2006336939A/en
Publication of JP2006336939A publication Critical patent/JP2006336939A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase a circulation flow rate of hot water with respect to a heating radiator without adversely affecting pressure tightness and durability of a heat exchanger, and to prevent energy loss due to heat dissipation in the heat exchanger in a hot water heating system provided with a heat source machine 1 having the heat exchanger heated by a burner 4, and the heating radiator 2, and circulating hot water heated by the heat exchanger between the heating radiator and the heat exchanger via a circulation passage. <P>SOLUTION: The circulation passage is divided into a first circulation passage 8 between the heat exchanger 5 and a cistern 7, and a second circulation passage 9 between the cistern 7 and the heating radiator 2, and hot water is circulated through each of the first and second circulation passages by individual pumps 10 and 11. When a temperature of the hot water supplied to the heating radiator 2 is raised to an extinction temperature, combustion of the burner 4 is stopped, and then, after waiting for a delay necessary for preventing after-boiling in the heat exchanger 5, the pump 10 for the first circulation passage is stopped. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、バーナで加熱される熱交換器を有する熱源機と、暖房放熱器とを備え、熱交換器で加熱された温水を循環路を介して暖房放熱器と熱交換器との間に循環させるようにした温水暖房システムに関する。   The present invention comprises a heat source device having a heat exchanger heated by a burner, and a heating radiator, and hot water heated by the heat exchanger is interposed between the heating radiator and the heat exchanger via a circulation path. The present invention relates to a hot water heating system that circulates.

従来、この種の温水暖房システムにおいては、循環路を、熱交換器で加熱された温水を暖房放熱器に送る往き通路と、暖房放熱器を通過した温水を熱交換器に戻す戻り通路とで構成し、戻り通路にシスターンと循環ポンプとを介設している。そして、循環ポンプとして流量可変式ポンプを用い、循環路における温水の循環流量を暖房負荷に応じて制御することにより、循環ポンプの消費電力を節約すると共に、過負荷運転に伴う熱交換器での結露の発生を防止できるようにしたものも知られている(例えば、特許文献1参照)。   Conventionally, in this type of hot water heating system, the circulation path is divided into a forward passage for sending warm water heated by the heat exchanger to the heating radiator, and a return passage for returning the hot water that has passed through the heating radiator to the heat exchanger. The system is constructed, and a cistern and a circulation pump are interposed in the return passage. And by using a variable flow rate pump as the circulation pump and controlling the circulation flow rate of the hot water in the circulation path according to the heating load, the power consumption of the circulation pump can be saved and the heat exchanger in the overload operation can be saved. A device that can prevent the occurrence of condensation is also known (see, for example, Patent Document 1).

ところで、最近は、家庭に設置する暖房放熱器の台数が多くなっており、循環路における温水の循環流量も大きくすることが必要になっている。ここで、通過抵抗の大きい熱交換器を経由して大流量の温水を循環路に循環させるには、循環ポンプとして高揚程のポンプを用いることが必要になる。然し、高揚程の循環ポンプで循環路における所定の循環流量を確保しようとすると、通過抵抗の大きい熱交換器にかなりの圧力がかかり、熱交換器の耐圧性の点で問題を生ずる。また、熱交換器では流路面積が絞られ、所要の循環流量を確保しようとすると、熱交換器内の流速が非常に速くなり、エロージョン現象を生じて、熱交換器の耐久性が悪化する。従って、熱交換器の耐圧性、耐久性を確保する上で、循環路における温水の循環流量を十分に大きくすることは困難である。   By the way, recently, the number of heating radiators installed in homes is increasing, and it is necessary to increase the circulating flow rate of hot water in the circulation path. Here, in order to circulate a large flow rate of hot water through the circulation path via a heat exchanger having a large passage resistance, it is necessary to use a high-lift pump as a circulation pump. However, if a high circulation pump is used to secure a predetermined circulation flow rate in the circulation path, a considerable pressure is applied to the heat exchanger having a large passage resistance, causing a problem in terms of pressure resistance of the heat exchanger. Moreover, in the heat exchanger, the flow path area is reduced, and when trying to secure the required circulation flow rate, the flow rate in the heat exchanger becomes very fast, causing an erosion phenomenon and deteriorating the durability of the heat exchanger. . Therefore, it is difficult to sufficiently increase the circulating flow rate of hot water in the circulation path in order to ensure the pressure resistance and durability of the heat exchanger.

また、従来の温水暖房システムでは、循環路の往き通路に流れる温水の温度を検出する温度センサを設け、この温度センサの検出温度が所定の設定温度に維持されるようにガス比例弁でバーナの燃焼量を制御する温調制御を行っている。然し、暖房放熱器の運転台数の減少等で暖房負荷が小さくなると、バーナの燃焼量を最低にしても、温度センサの検出温度が設定温度より高くなってしまうことがある。この場合は、温度センサの検出温度が設定温度より10℃程度高く設定される消火温度に上昇したときに、循環ポンプの運転を継続させたままバーナの燃焼を停止し、温度センサの検出温度が設定温度より10℃程度低く設定される点火温度に低下したときに、バーナの燃焼を再開させるようにしている。   In addition, the conventional hot water heating system is provided with a temperature sensor for detecting the temperature of the hot water flowing in the outgoing passage of the circulation path, and the gas proportional valve is used to maintain the detected temperature of the temperature sensor at a predetermined set temperature. Temperature control is performed to control the amount of combustion. However, if the heating load is reduced due to a decrease in the number of operating heat radiators or the like, the detected temperature of the temperature sensor may be higher than the set temperature even if the combustion amount of the burner is minimized. In this case, when the temperature detected by the temperature sensor rises to a fire extinguishing temperature that is set about 10 ° C. higher than the set temperature, combustion of the burner is stopped while the operation of the circulation pump is continued, and the temperature detected by the temperature sensor is The combustion of the burner is resumed when the ignition temperature is lowered to about 10 ° C. lower than the set temperature.

然し、このような制御を行うと、バーナの燃焼停止中の温水の循環により、熱交換器で温水の熱が放熱されてしまい、放熱によるエネルギーロスを生じて、省エネルギーの要請に反することになる。
特開平11−351589号公報(0014〜0017、図1)
However, if such control is performed, the heat of the hot water is dissipated by the heat exchanger due to the circulation of the hot water while the burner is stopped from burning, resulting in energy loss due to the heat dissipation, which is contrary to the demand for energy saving. .
JP 11-351589 A (0014-0017, FIG. 1)

本発明は、以上の点に鑑み、熱交換器の耐圧性、耐久性に悪影響を与えることなく暖房放熱器に対する温水の循環流量を大きくすることができるようにし、且つ、熱交換器での放熱によるエネルギーロスも防止できるようにした温水暖房システムを提供することをその課題としている。   In view of the above points, the present invention makes it possible to increase the circulating flow rate of hot water to a heating radiator without adversely affecting the pressure resistance and durability of the heat exchanger, and to dissipate heat in the heat exchanger. The problem is to provide a hot water heating system that can also prevent energy loss due to heat.

上記課題を解決するために、本発明は、バーナで加熱される熱交換器を有する熱源機と、暖房放熱器とを備え、熱交換器で加熱された温水を循環路を介して暖房放熱器と熱交換器との間に循環させるようにした温水暖房システムであって、循環路にシスターンを介設するものにおいて、循環路は、熱交換器とシスターンとの間の第1循環路と、シスターンと暖房放熱器との間の第2循環路とに分割され、第1循環路に温水を循環させる第1循環ポンプと、第2循環路に温水を循環させる第2循環ポンプとを備えると共に、シスターンから暖房放熱器に温水を送る第2循環路の往き通路に流れる温水の温度を検出する第2循環路用温度センサの検出温度が所定の設定温度より高く設定される消火温度に上昇したときに、第2循環ポンプの運転を継続させたまま、バーナの燃焼を停止すると共に、燃焼停止から所定時間遅らせて第1循環ポンプの運転を停止し、第2循環路用温度センサの検出温度が前記設定温度より低く設定される点火温度に低下したとき、第1循環ポンプの運転とバーナの燃焼とを再開させる制御手段を備えることを特徴とする。   In order to solve the above problems, the present invention comprises a heat source device having a heat exchanger heated by a burner, and a heating radiator, and heating water heated by the heat exchanger is passed through a circulation path to the heating radiator. A hot water heating system that circulates between the heat exchanger and the heat exchanger, wherein the circulation path includes a cistern, and the circulation path includes a first circulation path between the heat exchanger and the cistern, A first circulation pump that is divided into a second circulation path between the systern and the heating radiator and circulates hot water in the first circulation path, and a second circulation pump that circulates hot water in the second circulation path, and The temperature detected by the temperature sensor for the second circulation path that detects the temperature of the hot water flowing in the outgoing path of the second circulation path that sends warm water from the systern to the heating radiator has risen to a fire extinguishing temperature that is set higher than a predetermined set temperature. Sometimes the second circulation pump is in operation Ignition in which the combustion of the burner is stopped while continuing, the operation of the first circulation pump is stopped by delaying the combustion for a predetermined time, and the temperature detected by the temperature sensor for the second circulation path is set lower than the set temperature. Control means for restarting operation of the first circulation pump and combustion of the burner when the temperature is lowered is provided.

上記の構成によれば、第1循環路において熱交換器により温水に加えられた熱量が第2循環路を介して暖房放熱器に伝達され、暖房が行われる。ここで、熱交換器に対する温水の循環流量は第1循環ポンプの流量で決まり、暖房放熱器に対する温水の循環流量は第2循環ポンプの流量で決まる。即ち、熱交換器に対する循環流量と暖房放熱器に対する循環流量とを個別に決定できるようになる。従って、暖房放熱器に対する循環流量を大きくしても、熱交換器に対する循環流量を比較的小さくして、熱交換器の耐圧性、耐久性に悪影響を与えないようにすることができる。換言すれば、熱交換器の耐圧性、耐久性による制限を受けることなく暖房放熱器に対する循環流量を大きくすることが可能になり、多くの暖房放熱器を設置する場合に有利である。   According to said structure, the amount of heat added to warm water by the heat exchanger in the 1st circuit is transmitted to a heating radiator via a 2nd circuit, and heating is performed. Here, the circulation flow rate of the hot water for the heat exchanger is determined by the flow rate of the first circulation pump, and the circulation flow rate of the warm water for the heating radiator is determined by the flow rate of the second circulation pump. That is, the circulation flow rate for the heat exchanger and the circulation flow rate for the heating radiator can be determined individually. Therefore, even if the circulation flow rate for the heating radiator is increased, the circulation flow rate for the heat exchanger can be made relatively small so as not to adversely affect the pressure resistance and durability of the heat exchanger. In other words, it is possible to increase the circulation flow rate for the heating radiator without being restricted by the pressure resistance and durability of the heat exchanger, which is advantageous when many heating radiators are installed.

また、第2循環路用温度センサの検出温度が消火温度に上昇すると、バーナの燃焼が停止されるだけでなく、第1循環ポンプの運転も停止される。従って、第1循環路に温水は循環されず、熱交換器で温水の熱が放熱されることによるエネルギーロスが防止される。   When the temperature detected by the second circulation path temperature sensor rises to the fire extinguishing temperature, not only combustion of the burner is stopped, but also the operation of the first circulation pump is stopped. Therefore, warm water is not circulated through the first circulation path, and energy loss due to heat radiation of the warm water by the heat exchanger is prevented.

尚、第2循環路用温度センサの検出温度が消火温度に上昇したときに、バーナの燃焼停止と同時に第1循環ポンプの運転を停止すると、熱交換器での後沸き(熱交換器の余熱で熱交換器に滞留する温水が沸騰する現象)を生ずる。そのため、バーナの燃焼停止から所定時間遅らせて第1循環ポンプの運転を停止することが望ましい。これによれば、熱交換器での後沸きを防止できると共に、バーナの燃焼停止から第1循環ポンプの運転が停止されるまでの間に熱交換器の余熱を温水に吸収でき、エネルギー効率が向上する。   When the temperature detected by the second circulation path temperature sensor rises to the fire extinguishing temperature, if the operation of the first circulation pump is stopped simultaneously with the combustion of the burner, the after-boiling in the heat exchanger (residual heat of the heat exchanger) This causes a phenomenon that hot water staying in the heat exchanger boils). Therefore, it is desirable to stop the operation of the first circulation pump with a predetermined time delay from the combustion stop of the burner. According to this, after-boiling in the heat exchanger can be prevented, and the remaining heat of the heat exchanger can be absorbed in the hot water between the combustion stop of the burner and the operation of the first circulation pump stopped, and energy efficiency is improved. improves.

ところで、第1循環路の温水の温度が過度に上昇したときには、バーナの燃焼を停止すると共に第1循環路に温水を循環させて、熱交換器での沸騰を生ずることを防止する必要がある。そのため、制御手段は、熱交換器からシスターンに温水を送る第1循環路の往き通路に流れる温水の温度を検出する第1循環路用温度センサの検出温度が熱交換器での沸騰防止のために設定される所定の燃焼禁止温度に上昇したとき、第1循環ポンプ及び第2循環ポンプの運転を継続させたまま、バーナの燃焼を停止し、第1循環路用温度センサの検出温度が燃焼禁止温度より低く設定される燃焼許可温度に低下したときに、バーナの燃焼を再開させるように構成されていることが望ましい。   By the way, when the temperature of the hot water in the first circulation path rises excessively, it is necessary to stop the combustion of the burner and circulate the hot water in the first circulation path to prevent boiling in the heat exchanger. . Therefore, the control means detects the temperature of the temperature sensor for the first circulation path that detects the temperature of the hot water flowing in the outgoing path of the first circulation path that sends the warm water from the heat exchanger to the systole to prevent boiling in the heat exchanger. When the temperature rises to a predetermined combustion prohibition temperature, the combustion of the burner is stopped while the operation of the first circulation pump and the second circulation pump is continued, and the detection temperature of the first circulation path temperature sensor is combusted. It is desirable that the combustion of the burner is restarted when the combustion permission temperature is set lower than the prohibited temperature.

図1を参照して、1は熱源機であり、熱源機1で加熱された温水を床暖房パネルといった暖房放熱器2に循環させて暖房を行う温水暖房システムを構成している。熱源機1には燃焼筐3が設けられており、燃焼筐3内に、バーナ4と、バーナ4で加熱される熱交換器5とを収納している。燃焼筐3内には、燃焼ファン6により燃焼用空気が供給される。   Referring to FIG. 1, reference numeral 1 denotes a heat source machine, which constitutes a hot water heating system that performs heating by circulating hot water heated by the heat source machine 1 to a heating radiator 2 such as a floor heating panel. The heat source device 1 is provided with a combustion housing 3, and a burner 4 and a heat exchanger 5 heated by the burner 4 are accommodated in the combustion housing 3. Combustion air is supplied into the combustion housing 3 by a combustion fan 6.

バーナ4に燃料ガスを供給するガス通路40には、ガス元弁41とガス比例弁42とが介設されている。また、バーナ4は複数の単位バーナ4aで構成されている。そして、これら単位バーナ4aを複数組に組み分けし、ガス通路40をガス比例弁42の下流側で単位バーナ4aの各組毎に分岐し、各分岐路に単位バーナ4aの各組に燃料ガスを供給する能力切換弁43を介設している。かくして、これら能力切換弁43の制御とガス比例弁42の制御との組み合わせによりバーナ4の燃焼量を広範囲に可変できるようになる。   A gas main valve 41 and a gas proportional valve 42 are interposed in the gas passage 40 for supplying fuel gas to the burner 4. The burner 4 is composed of a plurality of unit burners 4a. These unit burners 4a are divided into a plurality of sets, the gas passage 40 is branched downstream of the gas proportional valve 42 for each set of unit burners 4a, and fuel gas is supplied to each set of unit burners 4a in each branch path. A capacity switching valve 43 is provided. Thus, the combustion amount of the burner 4 can be varied over a wide range by combining the control of the capacity switching valve 43 and the control of the gas proportional valve 42.

熱交換器5は、バーナ4の直上部に配置した主熱交換器51と、主熱交換器51を通過した燃焼排気が流れる排気通路に配置した副熱交換器52とで構成され、主熱交換器51の上流側に副熱交換器52が直列に接続されている。副熱交換器52では、燃焼排気中の水蒸気が凝縮して、潜熱が回収される。そして、凝縮水は、副熱交換器52の直下に配置したドレン受け52aと中和器52bとを介してドレンパイプ52cから排水される。   The heat exchanger 5 includes a main heat exchanger 51 disposed immediately above the burner 4 and a sub heat exchanger 52 disposed in an exhaust passage through which combustion exhaust gas that has passed through the main heat exchanger 51 flows. A sub heat exchanger 52 is connected in series on the upstream side of the exchanger 51. In the auxiliary heat exchanger 52, water vapor in the combustion exhaust is condensed and latent heat is recovered. Then, the condensed water is drained from the drain pipe 52c via the drain receiver 52a and the neutralizer 52b arranged immediately below the auxiliary heat exchanger 52.

また、熱源機1には、シスターン7が設けられている。そして、熱交換器5とシスターン7との間で第1循環路8を介して温水を循環させ、シスターン7と暖房放熱器2との間で第2循環路9を介して温水を循環させるようにしている。尚、第2循環路9には、複数の暖房放熱器2が夫々熱動弁等の弁2aを介して並列に接続されており、各暖房放熱器2の運転スイッチがオンされたときに、該各暖房放熱器2にその弁2aの開弁で温水が循環可能な状態になる。   Further, the heat source device 1 is provided with a cistern 7. Then, the hot water is circulated between the heat exchanger 5 and the cistern 7 via the first circulation path 8, and the hot water is circulated between the cistern 7 and the heating radiator 2 via the second circulation path 9. I have to. A plurality of heating radiators 2 are connected to the second circulation path 9 in parallel via valves 2a such as thermal valves, and when the operation switch of each heating radiator 2 is turned on, Each heating radiator 2 is in a state in which hot water can be circulated by opening the valve 2a.

ところで、暖房放熱器2の設置台数が多い場合、これら暖房放熱器2に対する湯水のトータル循環流量もかなり大きくする必要がある。ここで、熱交換器5と暖房放熱器2との間の循環路が本実施形態の如く第1循環路8と第2循環路9とに分割されておらず、暖房放熱器2に対する湯水の循環流量に等しい流量で熱交換器5に湯水が流れる場合、循環流量を大流量にすると熱交換器5の耐圧性、耐久性に悪影響が及ぶ。そのため、熱交換器5の耐圧性、耐久性を確保する上で暖房放熱器2に対する湯水のトータル循環流量は然程大きくできない。これに対し、本実施形態では、熱交換器5に対する湯水の循環流量(第1循環路8での湯水循環流量)と暖房放熱器2に対する湯水の循環流量(第2循環路9での湯水循環流量)とを個別に決定できるようになる。そのため、暖房放熱器2に対する湯水のトータル循環流量を大きくしても、熱交換器5に対する湯水の循環流量を比較的小さくして、熱交換器5の耐圧性、耐久性に悪影響を与えないようにすることができる。即ち、熱交換器5の耐圧性、耐久性による制限を受けることなく暖房放熱器2に対する湯水のトータル循環流量を大きくすることが可能になる。   By the way, when the number of installation of the heat radiator 2 is large, it is necessary to considerably increase the total circulation flow rate of hot water with respect to the heat radiator 2. Here, the circulation path between the heat exchanger 5 and the heating radiator 2 is not divided into the first circulation path 8 and the second circulation path 9 as in this embodiment, and hot water for the heating radiator 2 is not divided. When hot water flows through the heat exchanger 5 at a flow rate equal to the circulation flow rate, if the circulation flow rate is increased, the pressure resistance and durability of the heat exchanger 5 are adversely affected. Therefore, in order to ensure the pressure resistance and durability of the heat exchanger 5, the total circulating flow rate of hot water with respect to the heating radiator 2 cannot be increased so much. On the other hand, in this embodiment, the hot water circulation flow rate for the heat exchanger 5 (hot water circulation flow rate in the first circulation path 8) and the hot water circulation flow rate for the heating radiator 2 (hot water circulation in the second circulation path 9). Flow rate) can be determined individually. Therefore, even if the total circulating flow rate of hot water for the heating radiator 2 is increased, the circulating flow rate of hot water for the heat exchanger 5 is made relatively small so that the pressure resistance and durability of the heat exchanger 5 are not adversely affected. Can be. That is, it becomes possible to increase the total circulating flow rate of hot water to the heating radiator 2 without being restricted by the pressure resistance and durability of the heat exchanger 5.

以下、シスターン7と第1及び第2の循環路8,9について詳述する。シスターン7には、補水弁71を介設した給水管70を介して水が補給される。そして、シスターン7に低水位と高水位を検出する2つの水位電極72、73を付設し、シスターン7内の水位が低水位電極72以下になったとき補水弁71を開弁し、水位が高水位電極73に到達するまで水を補給するようにしている。また、シスターン7には、水位が所定の上限レベルを超えることがないようにオーバーフロー管74が接続されている。   Hereinafter, the cistern 7 and the first and second circulation paths 8 and 9 will be described in detail. The cistern 7 is replenished with water through a water supply pipe 70 provided with a water refill valve 71. Then, two water level electrodes 72 and 73 for detecting the low water level and the high water level are attached to the cistern 7, and when the water level in the cistern 7 becomes equal to or lower than the low water level electrode 72, the water refill valve 71 is opened, and the water level is high. Water is supplied until the water level electrode 73 is reached. Further, an overflow pipe 74 is connected to the cistern 7 so that the water level does not exceed a predetermined upper limit level.

第1循環路8は、熱交換器5(主熱交換器51)を通過した温水をシスターン7に送る往き通路8aと、シスターン7から熱交換器5(副熱交換器52)に温水を戻す戻り通路8bとで構成され、戻り通路8bに第1循環ポンプ10が介設されている。第2循環路9は、シスターン7から暖房放熱器2に温水を送る往き通路9aと、暖房放熱器2からシスターン7に温水を戻す戻り通路9bとで構成され、往き通路9aに第2循環ポンプ11が介設されている。また、第2循環路9の往き通路9aには、第2循環ポンプ11の上流側と下流側を結ぶバイパス通路9cが設けられている。これによれば、第2循環ポンプ11の運転中に何らかの異常で往き通路9aから戻り通路9bへの温水の流れが遮断された場合にも、第2循環ポンプ11にバイパス通路9cを介しての温水の循環で所要量の温水が流れ、第2循環ポンプ11が保護される。尚、第1と第2の各循環ポンプ10,11は、DCモータで駆動される流量可変式ポンプで構成されている。   The first circulation path 8 returns the warm water from the cis turn 7 to the heat exchanger 5 (sub heat exchanger 52) and the forward passage 8a that sends the warm water that has passed through the heat exchanger 5 (main heat exchanger 51) to the cis turn 7. The return passage 8b includes a first circulation pump 10 interposed in the return passage 8b. The second circulation path 9 is composed of a forward passage 9a for sending warm water from the cis turn 7 to the heating radiator 2 and a return passage 9b for returning the warm water from the heating radiator 2 to the cis turn 7, and the second circulation pump is connected to the forward passage 9a. 11 is interposed. Further, a bypass passage 9 c that connects the upstream side and the downstream side of the second circulation pump 11 is provided in the forward passage 9 a of the second circulation path 9. According to this, even when the flow of hot water from the return passage 9a to the return passage 9b is interrupted due to some abnormality during the operation of the second circulation pump 11, the second circulation pump 11 is connected to the second circulation pump 11 via the bypass passage 9c. The required amount of hot water flows through the circulation of the hot water, and the second circulation pump 11 is protected. Each of the first and second circulation pumps 10 and 11 is a variable flow rate pump driven by a DC motor.

シスターン7には、第2循環路9の戻り通路9bからシスターン7に戻された低温の温水が第2循環路9の往き通路9aに短絡的に流れることを防止するため、第2循環路9の往き通路9aの接続部と戻り通路9bの接続部との間に位置する邪魔板75が設けられている。また、本実施形態では、第1循環路8の往き通路8aの下流端と、第2循環路9の往き通路9aの上流端とを合流させてシスターン7に接続している。そのため、第1循環路8での湯水循環流量より第2循環路9での湯水循環流量の方が大きい場合には、熱交換器5で加熱された温水の全てが、シスターン7を経由せずに、第1循環路8の往き通路8aから第2循環路9の往き通路9aを介して暖房放熱器2に供給され、熱交換器5により温水に加えられた熱量が効率良く暖房放熱器2に伝達される。第1循環路8での湯水循環流量より第2循環路9での湯水循環流量の方が小さい場合には、熱交換器5で加熱された温水のうち第2循環路9での湯水循環流量を上回る部分がシスターン7に流れ、熱交換器5により温水に加えられた熱量の一部がシスターン7に伝達される。その結果、熱交換器5に戻される温水の温度が上昇して、バーナ4の燃焼量が減少し、エネルギー効率は良好に維持される。尚、第1循環路8の往き通路8aの下流端と第2循環路9の往き通路9aの上流端とをシスターン7に個別に接続し、熱交換器5で加熱された温水をシスターン7を経由して第2循環路9の往き通路9aに流すことも可能である。   In the cis turn 7, in order to prevent the low temperature hot water returned to the cis turn 7 from the return passage 9 b of the second circulation path 9 from flowing into the forward passage 9 a of the second circulation path 9, the second circulation path 9 A baffle plate 75 is provided between the connecting portion of the forward passage 9a and the connecting portion of the return passage 9b. Further, in the present embodiment, the downstream end of the forward passage 8 a of the first circulation path 8 and the upstream end of the forward passage 9 a of the second circulation path 9 are joined and connected to the cistern 7. Therefore, when the hot water circulation flow rate in the second circulation path 9 is larger than the hot water circulation flow rate in the first circulation path 8, all of the hot water heated by the heat exchanger 5 does not pass through the cistern 7. Furthermore, the amount of heat supplied to the heating radiator 2 from the outgoing passage 8a of the first circulation path 8 through the outgoing passage 9a of the second circulation path 9 and added to the hot water by the heat exchanger 5 is efficiently increased. Is transmitted to. When the hot water circulation flow rate in the second circulation path 9 is smaller than the hot water circulation flow rate in the first circulation path 8, the hot water circulation flow rate in the second circulation path 9 among the hot water heated by the heat exchanger 5. The portion exceeding the flow amount flows into the cistern 7, and a part of the amount of heat added to the hot water by the heat exchanger 5 is transmitted to the cistern 7. As a result, the temperature of the hot water returned to the heat exchanger 5 rises, the amount of combustion of the burner 4 decreases, and energy efficiency is maintained favorably. In addition, the downstream end of the forward passage 8a of the first circulation path 8 and the upstream end of the forward passage 9a of the second circulation path 9 are individually connected to the cis turn 7, and the hot water heated by the heat exchanger 5 is passed through the cis turn 7. It is also possible to flow to the forward passage 9a of the second circulation path 9 via the route.

また、第1循環路8の往き通路8aには、熱交換器5から送り出される温水の温度を検出する第1循環路用温度センサ12が設けられ、第2循環路9の往き通路9aには、暖房放熱器5に供給される温水の温度を検出する第2循環路用温度センサ13が設けられている。   The first circulation path 8 is provided with a first circulation path temperature sensor 12 for detecting the temperature of the hot water sent from the heat exchanger 5, and the second circulation path 9 has a forward path 9 a. A second circulation path temperature sensor 13 for detecting the temperature of the hot water supplied to the heating radiator 5 is provided.

熱源機1には制御手段たるコントローラ14が設けられており、何れかの暖房放熱器2の運転スイッチがオンされたとき、コントローラ14により図2に示す暖房運転制御が行われる。尚、図2において、YT1Hは、熱交換器5での沸騰を防止するために設定された燃焼禁止温度(例えば、90℃)であり、YT1Lは、燃焼禁止温度より低く設定された燃焼許可温度(例えば、68℃)であり、YT2Hは、暖房放熱器2に供給すべき温水の設定温度より10℃程度高く設定された消火温度であり、YT2Lは、暖房放熱器2に供給すべき温水の設定温度より10℃程度低く設定された点火温度である。   The heat source unit 1 is provided with a controller 14 as control means, and when the operation switch of any of the heating radiators 2 is turned on, the heating operation control shown in FIG. In FIG. 2, YT1H is a combustion prohibition temperature (for example, 90 ° C.) set to prevent boiling in the heat exchanger 5, and YT1L is a combustion permission temperature set lower than the combustion prohibition temperature. YT2H is a fire extinguishing temperature set about 10 ° C higher than the set temperature of hot water to be supplied to the heating radiator 2, and YT2L is hot water to be supplied to the heating radiator 2. The ignition temperature is set to be about 10 ° C. lower than the set temperature.

暖房運転制御では、先ず、S1のステップで第2循環ポンプ11の運転を開始すると共に、S2のステップで第1循環ポンプ10の運転を開始する。次に、S3のステップで第1循環路用温度センサ12の検出温度T1が燃焼禁止温度YT1H以上であるか否かを判別する。最初はT1<YT1Hであるため、後述するS4、S5のステップを飛び越してS6のステップに進み、バーナ4の燃焼を開始する。燃焼開始に際しては、先ず、燃焼ファン6を駆動し、燃焼ファン6の回転を検知した後、ガス元弁41を開弁すると共に、図示省略した点火プラグでの火花放電を行い、バーナ4に点火する。   In the heating operation control, first, the operation of the second circulation pump 11 is started in step S1, and the operation of the first circulation pump 10 is started in step S2. Next, in step S3, it is determined whether or not the detected temperature T1 of the first circulation path temperature sensor 12 is equal to or higher than the combustion prohibition temperature YT1H. At first, since T1 <YT1H, step S4 and S5 described later are skipped and the process proceeds to step S6, where combustion of the burner 4 is started. When starting combustion, first, the combustion fan 6 is driven, the rotation of the combustion fan 6 is detected, the gas source valve 41 is opened, spark discharge is performed with a spark plug (not shown), and the burner 4 is ignited. To do.

バーナ4の燃焼を開始すると、次に、S7のステップで温調制御を行う。温調制御では、第2循環路用温度センサ13の検出温度T2が上記設定温度に維持されるように、第2循環路用温度センサ13の検出温度T2に基づいてガス比例弁42と能力切換弁43とによりバーナ4の燃焼量を制御する。また、暖房運転初期は、第1循環路用温度センサ12の検出温度T1が所定温度(例えば60℃)以上になるように、第1循環ポンプ10の回転数を低くして第1循環路8での温水循環流量を小さくし、主熱交換器5aでの結露を防止する。また、第2循環路9での温水循環流量が暖房放熱器2の運転台数に応じて変化するように第2循環ポンプ11の回転数を制御する。   When combustion of the burner 4 is started, temperature control is then performed in step S7. In the temperature control, the gas proportional valve 42 and capacity switching are performed based on the detected temperature T2 of the second circulation path temperature sensor 13 so that the detected temperature T2 of the second circulation path temperature sensor 13 is maintained at the set temperature. The combustion amount of the burner 4 is controlled by the valve 43. In addition, at the initial stage of the heating operation, the first circulation path 8 is reduced by reducing the rotation speed of the first circulation pump 10 so that the detected temperature T1 of the first circulation path temperature sensor 12 is equal to or higher than a predetermined temperature (for example, 60 ° C.). The hot water circulation flow rate is reduced in order to prevent condensation in the main heat exchanger 5a. Moreover, the rotation speed of the 2nd circulation pump 11 is controlled so that the warm water circulation flow rate in the 2nd circulation path 9 changes according to the driving | running number of the heating radiator 2. FIG.

ところで、暖房放熱器2の運転台数の減少等で暖房負荷が小さくなると、バーナ4の燃焼量を最小(失火防止のために必要な最小燃焼量)にしても、第2循環路用温度センサ13の検出温度T2が設定温度より高くなることがある。そのため、S8のステップで第2循環路用温度センサ13の検出温度T2が消火温度YT2H以上になったか否かを判別し、T2≧YT2Hになったときは、S9のステップでガス元弁41を閉弁してバーナ4の燃焼を停止する。そして、S10のステップで燃焼停止から所定時間経過したと判別されたときに、S11のステップで第1循環ポンプ10の運転を停止する。次に、S12のステップで第2循環路用温度センサ13の検出温度T2が点火温度YT2L以下になったか否かを判別し、T2≦YT2Lになったときに、S2のステップに戻って第1循環ポンプ10の運転を再開する。この場合、第1循環路用温度センサ12の検出温度T1は燃焼禁止温度YT1H未満になっており、そのため、S3のステップからS6のステップに進んでバーナ4の燃焼が再開される。   By the way, when the heating load is reduced due to a decrease in the number of operating heat radiators 2 or the like, the second circulation path temperature sensor 13 is set even if the combustion amount of the burner 4 is minimized (minimum combustion amount necessary for preventing misfire). The detected temperature T2 may be higher than the set temperature. Therefore, it is determined in step S8 whether or not the detected temperature T2 of the second circulation path temperature sensor 13 is equal to or higher than the fire extinguishing temperature YT2H. If T2 ≧ YT2H, the gas source valve 41 is switched in step S9. The valve is closed and combustion of the burner 4 is stopped. Then, when it is determined in step S10 that a predetermined time has elapsed since the combustion stop, the operation of the first circulation pump 10 is stopped in step S11. Next, in step S12, it is determined whether or not the detected temperature T2 of the second circulation path temperature sensor 13 has become equal to or lower than the ignition temperature YT2L. When T2 ≦ YT2L, the process returns to step S2 and returns to the first. The operation of the circulation pump 10 is resumed. In this case, the detected temperature T1 of the first circulation path temperature sensor 12 is lower than the combustion prohibition temperature YT1H. Therefore, the process proceeds from step S3 to step S6, and combustion of the burner 4 is resumed.

このように、第2循環路用温度センサ13の検出温度T2が消火温度YT2Hに上昇すると、先ずバーナ4の燃焼が停止され、その後所定時間経過したところで第1循環ポンプ10の運転が停止され、以後、第2循環路用温度センサ13の検出温度T2が点火温度YT2Lに低下するまで第1循環ポンプ10は運転停止状態に維持される。ここで、第2循環ポンプ11は運転を継続しており、第2循環路9での温水の循環により暖房放熱器2において温水の熱が放熱されるが、第1循環ポンプ10の運転停止で第1循環路8には温水が循環されなくなるため、熱交換器5で温水の熱が放熱されることはなく、エネルギーロスが防止される。尚、上記所定時間は、熱交換器5での後沸き(熱交換器5の余熱で熱交換器5に滞留する温水が沸騰する現象)を防止するのに必要十分な時間(例えば、5秒)に設定されている。従って、バーナ4の燃焼停止に対し第1循環ポンプ10の運転停止を遅らせても、熱交換器5での温水の熱の放熱は生じず、むしろ熱交換器5の余熱を温水に吸収でき、エネルギー効率が向上する。   Thus, when the detected temperature T2 of the second circulation path temperature sensor 13 rises to the fire extinguishing temperature YT2H, the combustion of the burner 4 is first stopped, and then the operation of the first circulation pump 10 is stopped when a predetermined time has elapsed. Thereafter, the first circulation pump 10 is maintained in the operation stop state until the detected temperature T2 of the second circulation path temperature sensor 13 decreases to the ignition temperature YT2L. Here, the operation of the second circulation pump 11 is continued, and the heat of the warm water is radiated in the heating radiator 2 by the circulation of the warm water in the second circulation path 9, but the operation of the first circulation pump 10 is stopped. Since hot water is no longer circulated through the first circulation path 8, heat of the hot water is not radiated by the heat exchanger 5, and energy loss is prevented. The predetermined time is a time (for example, 5 seconds) necessary and sufficient for preventing post-boiling in the heat exchanger 5 (a phenomenon in which hot water staying in the heat exchanger 5 is boiled due to residual heat of the heat exchanger 5). ) Is set. Therefore, even if the operation stop of the first circulation pump 10 is delayed with respect to the combustion stop of the burner 4, heat of the hot water in the heat exchanger 5 is not dissipated, but the remaining heat of the heat exchanger 5 can be absorbed into the hot water. Energy efficiency is improved.

上記S8のステップで第2循環路用温度センサ13の検出温度T2が消火温度YT2H未満と判別されたときには、S3のステップに戻る。そして、通常は、S3のステップからS6のステップとS7のステップとS8のステップとを経由してS3のステップに戻る処理が繰り返される。然し、何らかの原因で第1循環路用温度センサ12の検出温度T1が燃焼禁止温度YT1H以上になったときは、S3のステップからS4のステップに進んでバーナ4の燃焼が停止される。この場合、第1循環ポンプ10の運転は停止されない。そのため、熱交換器5での温水の放熱が行われて、沸騰の危険性が速やかに回避される。また、第2循環ポンプ11も継続して運転され、暖房放熱器2による暖房は中断しない。その後、S5のステップで第1循環路用温度センサ12の検出温度T1が燃焼許可温度YT1L以下に低下したと判別されたときに、S6のステップでバーナ4の燃焼を再開する。   When it is determined in step S8 that the detected temperature T2 of the second circulation path temperature sensor 13 is lower than the fire extinguishing temperature YT2H, the process returns to step S3. Usually, the process of returning from the step S3 to the step S3 through the step S6, the step S7, and the step S8 is repeated. However, when the detected temperature T1 of the first circulation path temperature sensor 12 becomes equal to or higher than the combustion prohibition temperature YT1H for some reason, the process proceeds from step S3 to step S4 and combustion of the burner 4 is stopped. In this case, the operation of the first circulation pump 10 is not stopped. Therefore, the heat exchanger 5 dissipates the hot water, and the danger of boiling is quickly avoided. Moreover, the 2nd circulation pump 11 is also continuously operated and the heating by the heating radiator 2 is not interrupted. Thereafter, when it is determined in step S5 that the detected temperature T1 of the first circulation path temperature sensor 12 has fallen below the combustion permission temperature YT1L, the combustion of the burner 4 is restarted in step S6.

以上、本発明の実施形態を図面を参照して説明したが、本発明は実施形態のものに限定されない。例えば、上記実施形態では、熱交換器5を主熱交換器51と副熱交換器52とで構成しているが、副熱交換器52は省略しても良い。また、上記実施形態では、第1と第2の両循環ポンプ10,11を共にDCポンプで駆動される流量可変式ポンプで構成しているが、コストダウンを図るため、第2循環ポンプ11をACモータで駆動される定流量ポンプで構成することも可能である。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment. For example, in the above embodiment, the heat exchanger 5 includes the main heat exchanger 51 and the sub heat exchanger 52, but the sub heat exchanger 52 may be omitted. In the above embodiment, both the first and second circulation pumps 10 and 11 are constituted by variable flow rate pumps that are driven by a DC pump. It is also possible to configure with a constant flow pump driven by an AC motor.

本発明の実施形態の温水暖房システムの構成を示す説明図。Explanatory drawing which shows the structure of the hot water heating system of embodiment of this invention. 実施形態の温水暖房システムで実行する暖房運転制御の内容を示すフロー図。The flowchart which shows the content of the heating operation control performed with the hot water heating system of embodiment.

符号の説明Explanation of symbols

1…熱源機、2…暖房放熱器、4…バーナ、5…熱交換器、7…シスターン、8…第1循環路、8a…第1循環路の往き通路、9…第2循環路、9a…第2循環路の往き通路、10…第1循環ポンプ、11…第2循環ポンプ、12…第1循環路用温度センサ、13…第2循環路用温度センサ、14…コントローラ(制御手段)、T1…第1循環路用温度センサの検出温度、T2…第2循環路用温度センサの検出温度、YT1H…燃焼禁止温度、YT1L…燃焼許可温度、YT2H…消火温度、YT2L…点火温度。   DESCRIPTION OF SYMBOLS 1 ... Heat source machine, 2 ... Heating radiator, 4 ... Burner, 5 ... Heat exchanger, 7 ... Sistern, 8 ... 1st circuit, 8a ... Outbound path of 1st circuit, 9 ... 2nd circuit, 9a DESCRIPTION OF SYMBOLS ... Outward passage of 2nd circulation path, 10 ... 1st circulation pump, 11 ... 2nd circulation pump, 12 ... Temperature sensor for 1st circulation paths, 13 ... Temperature sensor for 2nd circulation paths, 14 ... Controller (control means) , T1 ... detected temperature of the first circulation path temperature sensor, T2 ... detected temperature of the second circulation path temperature sensor, YT1H ... combustion prohibited temperature, YT1L ... combustion permission temperature, YT2H ... fire extinguishing temperature, YT2L ... ignition temperature.

Claims (3)

バーナで加熱される熱交換器を有する熱源機と、暖房放熱器とを備え、熱交換器で加熱された温水を循環路を介して暖房放熱器と熱交換器との間に循環させるようにした温水暖房システムであって、循環路にシスターンを介設するものにおいて、
循環路は、熱交換器とシスターンとの間の第1循環路と、シスターンと暖房放熱器との間の第2循環路とに分割され、
第1循環路に温水を循環させる第1循環ポンプと、第2循環路に温水を循環させる第2循環ポンプとを備えると共に、
シスターンから暖房放熱器に温水を送る第2循環路の往き通路に流れる温水の温度を検出する第2循環路用温度センサの検出温度が所定の設定温度より高く設定される消火温度に上昇したときに、第2循環ポンプの運転を継続させたまま、バーナの燃焼を停止すると共に、第1循環ポンプの運転を停止し、第2循環路用温度センサの検出温度が前記設定温度より低く設定される点火温度に低下したとき、第1循環ポンプの運転とバーナの燃焼とを再開させる制御手段を備えることを特徴とする温水暖房システム。
A heat source device having a heat exchanger heated by a burner and a heating radiator are provided so that hot water heated by the heat exchanger is circulated between the heating radiator and the heat exchanger via a circulation path. In a hot water heating system that has a systern in the circulation path,
The circulation path is divided into a first circulation path between the heat exchanger and the cistern, and a second circulation path between the cistern and the heating radiator,
A first circulation pump for circulating hot water in the first circulation path and a second circulation pump for circulating hot water in the second circulation path;
When the temperature detected by the temperature sensor for the second circulation path that detects the temperature of the hot water flowing in the outgoing path of the second circulation path that sends warm water from the systern to the heating radiator rises to a fire extinguishing temperature that is set higher than a predetermined set temperature In addition, the combustion of the burner is stopped while the operation of the second circulation pump is continued, the operation of the first circulation pump is stopped, and the detected temperature of the second circulation path temperature sensor is set lower than the set temperature. A hot water heating system comprising control means for restarting the operation of the first circulation pump and the combustion of the burner when the ignition temperature is reduced to the ignition temperature.
前記第2循環路用温度センサの検出温度が前記消火温度に上昇したときに、前記バーナの燃焼停止から所定時間遅らせて前記第1循環ポンプの運転を停止することを特徴とする請求項1記載の温水暖房システム。   The operation of the first circulation pump is stopped after a predetermined time delay from the combustion stop of the burner when the temperature detected by the second circulation path temperature sensor rises to the fire extinguishing temperature. Hot water heating system. 前記制御手段は、前記熱交換器から前記シスターンに温水を送る前記第1循環路の往き通路に流れる温水の温度を検出する第1循環路用温度センサの検出温度が熱交換器での沸騰防止のために設定される所定の燃焼禁止温度に上昇したとき、前記第1循環ポンプ及び前記第2循環ポンプの運転を継続させたまま、前記バーナの燃焼を停止し、第1循環路用温度センサの検出温度が燃焼禁止温度より低く設定される燃焼許可温度に低下したときに、バーナの燃焼を再開させるように構成されていることを特徴とする請求項1または2記載の温水暖房システム。   The control means detects the temperature of the hot water flowing in the outgoing path of the first circulation path that sends warm water from the heat exchanger to the cistern, and the temperature detected by the temperature sensor for the first circulation path prevents boiling in the heat exchanger. When the temperature rises to a predetermined combustion prohibition temperature set for the purpose, the combustion of the burner is stopped while the operation of the first circulation pump and the second circulation pump is continued, and the first circulation path temperature sensor 3. The hot water heating system according to claim 1, wherein the combustion of the burner is resumed when the detected temperature of the gas falls to a combustion permission temperature set lower than the combustion inhibition temperature.
JP2005161889A 2005-06-01 2005-06-01 Hot water heating system Pending JP2006336939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161889A JP2006336939A (en) 2005-06-01 2005-06-01 Hot water heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161889A JP2006336939A (en) 2005-06-01 2005-06-01 Hot water heating system

Publications (1)

Publication Number Publication Date
JP2006336939A true JP2006336939A (en) 2006-12-14

Family

ID=37557644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161889A Pending JP2006336939A (en) 2005-06-01 2005-06-01 Hot water heating system

Country Status (1)

Country Link
JP (1) JP2006336939A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019494A (en) * 2008-07-10 2010-01-28 Rinnai Corp Latent heat recovery type heat source machine
JP2010019493A (en) * 2008-07-10 2010-01-28 Rinnai Corp Latent heat recovery type heat source machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019494A (en) * 2008-07-10 2010-01-28 Rinnai Corp Latent heat recovery type heat source machine
JP2010019493A (en) * 2008-07-10 2010-01-28 Rinnai Corp Latent heat recovery type heat source machine

Similar Documents

Publication Publication Date Title
JP2005061711A (en) Exhaust heat recovering water heater
US20100282440A1 (en) Fluid Heater
JP2010151429A (en) Hot water storage and supply system
JP2007120865A (en) Single-drum two-waterway hot water supply system
US10989442B2 (en) Heating and hot water supply device
JP2006336939A (en) Hot water heating system
JP2003240345A (en) Waste heat recovery hot water supply system
JP5741912B2 (en) Combustion device
JP6331461B2 (en) Hot water heater
JP6111861B2 (en) Hot water storage system
JP5822671B2 (en) Heat medium supply device
JP3907032B2 (en) Water heater
JP2019007650A (en) Heat source apparatus
JP6865141B2 (en) Combustion device
JP2010151428A (en) Hot water storage and supply system
JP4130827B2 (en) Hot water heating system
JP6863724B2 (en) Hot water supply system
JP4408770B2 (en) Hot water storage heat recovery system
JP2013100791A (en) Cogeneration apparatus
JP6893114B2 (en) Hot water supply and heating heat source machine
JP4025326B2 (en) Heat source machine
JP2005147580A (en) Gas combustion room heater and water heater
JP2001201063A (en) Condensation prevention controller of hot water circulation boiler
JP7079608B2 (en) Heating system
JP2003254612A (en) Cogeneration system and snow melting facility using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080604

A131 Notification of reasons for refusal

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A02