JP4130827B2 - Hot water heating system - Google Patents

Hot water heating system Download PDF

Info

Publication number
JP4130827B2
JP4130827B2 JP2005146540A JP2005146540A JP4130827B2 JP 4130827 B2 JP4130827 B2 JP 4130827B2 JP 2005146540 A JP2005146540 A JP 2005146540A JP 2005146540 A JP2005146540 A JP 2005146540A JP 4130827 B2 JP4130827 B2 JP 4130827B2
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
circulation
circulation path
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005146540A
Other languages
Japanese (ja)
Other versions
JP2006090696A (en
Inventor
佳之 柴山
憲司 中村
和成 田口
祐基 井浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2005146540A priority Critical patent/JP4130827B2/en
Publication of JP2006090696A publication Critical patent/JP2006090696A/en
Application granted granted Critical
Publication of JP4130827B2 publication Critical patent/JP4130827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は、バーナで加熱される熱交換器を有する熱源機と、暖房放熱器とを備え、熱交換器で加熱された温水を循環路を介して暖房放熱器と熱交換器との間に循環させるようにした温水暖房システムに関する。   The present invention comprises a heat source device having a heat exchanger heated by a burner, and a heating radiator, and hot water heated by the heat exchanger is interposed between the heating radiator and the heat exchanger via a circulation path. The present invention relates to a hot water heating system that circulates.

従来、この種の温水暖房システムにおいては、循環路を、熱交換器で加熱された温水を暖房放熱器に送る往き通路と、暖房放熱器を通過した温水を熱交換器に戻す戻り通路とで構成し、戻り通路にシスターンと循環ポンプとを介設している。そして、循環ポンプとして流量可変式ポンプを用い、循環路における温水の循環流量を暖房負荷に応じて制御することにより、循環ポンプの消費電力を節約すると共に、過負荷運転に伴う熱交換器での結露の発生を防止できるようにしたものも知られている(例えば、特許文献1参照)。   Conventionally, in this type of hot water heating system, the circulation path is divided into a forward passage for sending warm water heated by the heat exchanger to the heating radiator, and a return passage for returning the hot water that has passed through the heating radiator to the heat exchanger. The system is constructed, and a cistern and a circulation pump are interposed in the return passage. And by using a variable flow rate pump as the circulation pump and controlling the circulation flow rate of the hot water in the circulation path according to the heating load, the power consumption of the circulation pump can be saved and the heat exchanger in the overload operation can be saved. A device that can prevent the occurrence of condensation is also known (see, for example, Patent Document 1).

ところで、最近は、家庭に設置する暖房放熱器の台数が多くなっており、循環路における温水の循環流量も大きくすることが必要になっている。ここで、通過抵抗の大きい熱交換器を経由して大流量の温水を循環路に循環させるには、循環ポンプとして高揚程のポンプを用いることが必要になる。然し、高揚程の循環ポンプで循環路における所定の循環流量を確保しようとすると、通過抵抗の大きい熱交換器にかなりの圧力がかかり、熱交換器の耐圧性の点で問題を生ずる。また、熱交換器では流路面積が絞られ、所要の循環流量を確保しようとすると、熱交換器内の流速が非常に速くなり、エロージョン現象を生じて、熱交換器の耐久性が悪化する。従って、熱交換器の耐圧性、耐久性を確保する上で、循環路における温水の循環流量を十分に大きくすることは困難である。
特開平11−351589号公報(0014〜0017、図1)
By the way, recently, the number of heating radiators installed in homes is increasing, and it is necessary to increase the circulating flow rate of hot water in the circulation path. Here, in order to circulate a large flow rate of hot water through the circulation path via a heat exchanger having a large passage resistance, it is necessary to use a high-lift pump as a circulation pump. However, if a high circulation pump is used to secure a predetermined circulation flow rate in the circulation path, a considerable pressure is applied to the heat exchanger having a large passage resistance, causing a problem in terms of pressure resistance of the heat exchanger. In addition, in the heat exchanger, the flow path area is reduced, and when trying to secure the required circulation flow rate, the flow rate in the heat exchanger becomes very fast, causing an erosion phenomenon and deteriorating the durability of the heat exchanger. . Therefore, it is difficult to sufficiently increase the circulating flow rate of hot water in the circulation path in order to ensure the pressure resistance and durability of the heat exchanger.
JP 11-351589 A (0014-0017, FIG. 1)

本発明は、以上の点に鑑み、熱交換器の耐圧性、耐久性に悪影響を与えることなく暖房放熱器に対する温水の循環流量を大きくすることができるようにした温水暖房システムを提供することをその課題としている。   In view of the above, the present invention provides a hot water heating system capable of increasing the circulating flow rate of hot water to a heating radiator without adversely affecting the pressure resistance and durability of the heat exchanger. That is the issue.

上記課題を解決するために、本発明は、バーナで加熱される熱交換器を有する熱源機と、暖房放熱器とを備え、熱交換器で加熱された温水を循環路を介して暖房放熱器と熱交換器との間に循環させるようにした温水暖房システムであって、循環路にシスターンを介設するものにおいて、循環路を、熱交換器とシスターンとの間の第1循環路と、シスターンと暖房放熱器との間の第2循環路とに分割し、第1と第2の各循環路に各別の循環ポンプで温水を循環させると共に、熱交換器からシスターンに温水を送る第1循環路の往き通路の下流端と、シスターンから暖房放熱器に温水を送る第2循環路の往き通路の上流端とが合流してシスターンに接続されていることを特徴とする。 In order to solve the above problems, the present invention comprises a heat source device having a heat exchanger heated by a burner, and a heating radiator, and heating water heated by the heat exchanger is passed through a circulation path to the heating radiator. A hot water heating system that circulates between the heat exchanger and the heat exchanger, wherein the circuit is provided with a cistern, and the circulation path is a first circulation path between the heat exchanger and the cistern, The system is divided into a second circulation path between the cistern and the heating radiator, and hot water is circulated through the first and second circulation paths by separate circulation pumps, and the hot water is sent from the heat exchanger to the cistern. The downstream end of the outgoing path of one circulation path and the upstream end of the outgoing path of the second circulation path that sends hot water from the systern to the heating radiator are connected to the systern .

上記の構成によれば、第1循環路において熱交換器により温水に加えられた熱量が第2循環路を介して暖房放熱器に伝達され、暖房が行われる。ここで、熱交換器に対する温水の循環流量は第1循環路に介設する循環ポンプ(第1循環ポンプ)の流量で決まり、暖房放熱器に対する温水の循環流量は第2循環路に介設する循環ポンプ(第2循環ポンプ)の流量で決まる。即ち、熱交換器に対する循環流量と暖房放熱器に対する循環流量とを個別に決定できるようになる。従って、暖房放熱器に対する循環流量を大きくしても、熱交換器に対する循環流量を比較的小さくして、熱交換器の耐圧性、耐久性に悪影響を与えないようにすることができる。換言すれば、熱交換器の耐圧性、耐久性による制限を受けることなく暖房放熱器に対する循環流量を大きくすることが可能になり、多くの暖房放熱器を設置する場合に有利である。   According to said structure, the amount of heat added to warm water by the heat exchanger in the 1st circuit is transmitted to a heating radiator via a 2nd circuit, and heating is performed. Here, the circulation flow rate of the hot water for the heat exchanger is determined by the flow rate of the circulation pump (first circulation pump) provided in the first circulation path, and the circulation flow rate of the hot water for the heating radiator is provided in the second circulation path. It is determined by the flow rate of the circulation pump (second circulation pump). That is, the circulation flow rate for the heat exchanger and the circulation flow rate for the heating radiator can be determined individually. Therefore, even if the circulation flow rate for the heating radiator is increased, the circulation flow rate for the heat exchanger can be made relatively small so as not to adversely affect the pressure resistance and durability of the heat exchanger. In other words, it is possible to increase the circulation flow rate for the heating radiator without being restricted by the pressure resistance and durability of the heat exchanger, which is advantageous when many heating radiators are installed.

尚、第1循環路は、熱交換器からシスターンに温水を送る往き通路と、シスターンから熱交換器に温水を戻す戻り通路とで構成され、第2循環路は、シスターンから暖房放熱器に温水を送る往き通路と、暖房放熱器からシスターンに温水を戻す戻り通路とで構成される。ところで、第1循環路の往き通路からシスターンに流入した温水が第1循環路の戻り通路に短絡的に流れ、熱交換器により温水に加えられた熱量が暖房放熱器にうまく伝達されなくなる虞がある。かかる不具合を解消するため、本発明では、上記の如く第1循環路の往き通路の下流端と第2循環路の往き通路の上流端とを合流してシスターンに接続している。これによれば、熱交換器で加熱された温水が第1循環路の往き通路からシスターンを経由せずに第2循環路の往き通路を介して暖房放熱器に流れ、熱交換器により温水に加えられた熱量が暖房放熱器に確実に伝達される。 The first circulation path is composed of a forward passage for sending warm water from the heat exchanger to the systole and a return passage for returning hot water from the systern to the heat exchanger, and the second circulation path is warm water from the systern to the heating radiator. And a return passage for returning the hot water from the heating radiator to the cistern. By the way, there is a possibility that the hot water that has flowed into the sys- tern from the outgoing path of the first circulation path flows in a short circuit to the return path of the first circulation path, and the amount of heat added to the hot water by the heat exchanger cannot be transmitted well to the heating radiator. is there. In order to solve such a problem , in the present invention, the downstream end of the forward path of the first circulation path and the upstream end of the forward path of the second circulation path are merged and connected to the systern as described above . According to this, the hot water heated by the heat exchanger flows from the outgoing path of the first circulation path to the heating radiator via the outgoing path of the second circulation path without passing through the systern, and is converted into hot water by the heat exchanger. The added heat is reliably transmitted to the heating radiator.

また、多くの暖房放熱器を設置する場合、これら暖房放熱器を含む循環路内の保有水量が多くなり、運転初期に比較的長い間低温の水が熱交換器に循環されて、低温水によりバーナの燃焼排気中の水蒸気の潜熱が奪われ、熱交換器での結露がしばらく続く事態が生ずる。ここで、第1と第2の両循環ポンプのうち少なくとも第1循環ポンプを流量可変式ポンプで構成しておけば、運転初期における熱交換器に対する循環流量を小さくして、結露を抑制できると共に、循環水が温まり結露を生じなくなったところで熱交換器に対する循環流量を増加して、暖房能力を上げることができ、有利である。   In addition, when many heating radiators are installed, the amount of water held in the circulation path including these heating radiators increases, and low temperature water is circulated to the heat exchanger for a relatively long time in the initial stage of operation. The latent heat of the water vapor in the combustion exhaust of the burner is deprived and the dew condensation in the heat exchanger continues for a while. Here, if at least the first circulation pump of both the first and second circulation pumps is constituted by a variable flow rate pump, the circulation flow rate with respect to the heat exchanger in the initial operation can be reduced and condensation can be suppressed. When the circulating water is warmed and no condensation occurs, the circulation flow rate to the heat exchanger can be increased to increase the heating capacity, which is advantageous.

図1を参照して、1は熱源機であり、熱源機1で加熱された温水を床暖房パネルといった暖房放熱器2に循環させて暖房を行う温水暖房システムを構成している。熱源機1には燃焼筐3が設けられており、燃焼筐3内に、バーナ4と、バーナ4で加熱される熱交換器5とを収納している。燃焼筐3内には、燃焼ファン6により燃焼用空気が供給される。バーナ4に燃料ガスを供給するガス通路4aには、ガス元弁4bとガス比例弁4cとが介設されている。   Referring to FIG. 1, reference numeral 1 denotes a heat source machine, which constitutes a hot water heating system that performs heating by circulating hot water heated by the heat source machine 1 to a heating radiator 2 such as a floor heating panel. The heat source device 1 is provided with a combustion housing 3, and a burner 4 and a heat exchanger 5 heated by the burner 4 are accommodated in the combustion housing 3. Combustion air is supplied into the combustion housing 3 by a combustion fan 6. A gas main valve 4 b and a gas proportional valve 4 c are interposed in the gas passage 4 a for supplying fuel gas to the burner 4.

熱交換器5は、バーナ4の直上部に配置した主熱交換器5aと、主熱交換器5aを通過した燃焼排気が流れる排気通路に配置した副熱交換器5bとで構成され、主熱交換器5aの上流側に副熱交換器5bが直列に接続されている。副熱交換器5bでは、燃焼排気中の水蒸気が凝縮して、潜熱が回収される。そして、凝縮水は、副熱交換器5bの直下に配置したドレン受け5cと中和器5dとを介してドレンパイプ5eから排水される。   The heat exchanger 5 includes a main heat exchanger 5a disposed immediately above the burner 4, and a sub heat exchanger 5b disposed in an exhaust passage through which combustion exhaust gas that has passed through the main heat exchanger 5a flows. The auxiliary heat exchanger 5b is connected in series on the upstream side of the exchanger 5a. In the auxiliary heat exchanger 5b, water vapor in the combustion exhaust is condensed and latent heat is recovered. Then, the condensed water is drained from the drain pipe 5e via the drain receiver 5c and the neutralizer 5d arranged immediately below the auxiliary heat exchanger 5b.

また、熱源機1には、シスターン7が設けられている。そして、熱交換器5とシスターン7との間で第1循環路8を介して温水を循環させ、シスターン7と暖房放熱器2との間で第2循環路9を介して温水を循環させるようにしている。尚、第2循環路9には、複数の暖房放熱器2が夫々熱動弁等の弁2aを介して並列に接続されており、各暖房放熱器2の運転スイッチがオンされたときに、該各暖房放熱器2にその弁2aの開弁で温水が循環可能な状態になる。   Further, the heat source device 1 is provided with a cistern 7. Then, the hot water is circulated between the heat exchanger 5 and the cistern 7 via the first circulation path 8, and the hot water is circulated between the cistern 7 and the heating radiator 2 via the second circulation path 9. I have to. A plurality of heating radiators 2 are connected to the second circulation path 9 in parallel via valves 2a such as thermal valves, and when the operation switch of each heating radiator 2 is turned on, Each heating radiator 2 is in a state in which hot water can be circulated by opening the valve 2a.

ところで、暖房放熱器2の設置台数が多い場合、これら暖房放熱器2に対する湯水のトータル循環流量もかなり大きくする必要がある。ここで、熱交換器5と暖房放熱器2との間の循環路が図1に示す比較例の如く第1循環路8と第2循環路9とに分割されておらず、暖房放熱器2に対する湯水の循環流量に等しい流量で熱交換器5に湯水が流れる場合、循環流量を大流量にすると熱交換器5の耐圧性、耐久性に悪影響が及ぶ。そのため、熱交換器5の耐圧性、耐久性を確保する上で暖房放熱器2に対する湯水のトータル循環流量は左程大きくできない。これに対し、比較例では、熱交換器5に対する湯水の循環流量(第1循環路8での湯水循環流量)と暖房放熱器2に対する湯水の循環流量(第2循環路9での湯水循環流量)とを個別に決定できるようになる。そのため、暖房放熱器2に対する湯水のトータル循環流量を大きくしても、熱交換器5に対する湯水の循環流量を比較的小さくして、熱交換器5の耐圧性、耐久性に悪影響を与えないようにすることができる。即ち、熱交換器5の耐圧性、耐久性による制限を受けることなく暖房放熱器2に対する湯水のトータル循環流量を大きくすることが可能になる。 By the way, when the number of installation of the heat radiator 2 is large, it is necessary to considerably increase the total circulation flow rate of hot water with respect to the heat radiator 2. Here, the circulation path between the heat exchanger 5 and the heating radiator 2 is not divided into the first circulation path 8 and the second circulation path 9 as in the comparative example shown in FIG. In the case where hot water flows through the heat exchanger 5 at a flow rate equal to the circulating flow rate of hot water, the pressure resistance and durability of the heat exchanger 5 are adversely affected if the circulation flow rate is increased. Therefore, in order to ensure the pressure resistance and durability of the heat exchanger 5, the total circulating flow rate of hot water for the heating radiator 2 cannot be increased to the left. In contrast, in the comparative example , the hot water circulation flow rate for the heat exchanger 5 (hot water circulation flow rate in the first circulation path 8) and the hot water circulation flow rate for the heating radiator 2 (hot water circulation flow rate in the second circulation path 9). ) And can be determined individually. Therefore, even if the total circulating flow rate of hot water for the heating radiator 2 is increased, the circulating flow rate of hot water for the heat exchanger 5 is made relatively small so that the pressure resistance and durability of the heat exchanger 5 are not adversely affected. Can be. That is, it becomes possible to increase the total circulating flow rate of hot water to the heating radiator 2 without being restricted by the pressure resistance and durability of the heat exchanger 5.

以下、シスターン7と第1及び第2の循環路8,9について詳述する。シスターン7には、補水弁7aを介設した給水管7bを介して水が補給される。そして、シスターン7に低水位と高水位を検出する2つの水位電極7c、7dを付設し、シスターン7内の水位が低水位電極7c以下になったとき補水弁7aを開弁し、水位が高水位電極7dに到達するまで水を補給するようにしている。また、シスターン7には、水位が所定の上限レベルを超えることがないようにオーバーフロー管7eが接続されている。   Hereinafter, the cistern 7 and the first and second circulation paths 8 and 9 will be described in detail. The cistern 7 is replenished with water through a water supply pipe 7b provided with a water refill valve 7a. Then, two water level electrodes 7c and 7d for detecting the low water level and the high water level are attached to the cistern 7, and when the water level in the cistern 7 becomes lower than the low water level electrode 7c, the refill valve 7a is opened, Water is supplied until the water level electrode 7d is reached. Further, an overflow pipe 7e is connected to the systern 7 so that the water level does not exceed a predetermined upper limit level.

第1循環路8は、熱交換器5(主熱交換器5a)を通過した温水をシスターン7に送る往き通路8aと、シスターン7から熱交換器5(副熱交換器5b)に温水を戻す戻り通路8bとで構成され、戻り通路8bに第1循環ポンプ10が介設されている。第2循環路9は、シスターン7から暖房放熱器2に温水を送る往き通路9aと、暖房放熱器2からシスターン7に温水を戻す戻り通路9bとで構成され、往き通路9aに第2循環ポンプ11が介設されている。第1と第2の各循環ポンプ10,11は、DCモータで駆動される流量可変式ポンプで構成される。また、第1循環路8の往き通路8aには、熱交換器5から送り出される温水の温度(熱交換器出口湯温)を検出するサーミスタ12が設けられ、第1循環路8の戻り通路8bには、シスターン7から戻される温水の温度(戻り湯温)を検出するサーミスタ13が設けられている。   The first circulation path 8 returns the hot water that has passed through the heat exchanger 5 (main heat exchanger 5a) to the cis turn 7 and the hot water from the cis turn 7 to the heat exchanger 5 (sub heat exchanger 5b). The return passage 8b includes a first circulation pump 10 interposed in the return passage 8b. The second circulation path 9 is composed of a forward passage 9a for sending warm water from the cis turn 7 to the heating radiator 2 and a return passage 9b for returning the warm water from the heating radiator 2 to the cis turn 7, and the second circulation pump is connected to the forward passage 9a. 11 is interposed. Each of the first and second circulation pumps 10 and 11 is composed of a variable flow rate pump driven by a DC motor. The forward passage 8 a of the first circulation path 8 is provided with a thermistor 12 that detects the temperature of the hot water sent from the heat exchanger 5 (heat exchanger outlet hot water temperature), and the return path 8 b of the first circulation path 8. Is provided with a thermistor 13 for detecting the temperature of the hot water returned from the cistern 7 (returning hot water temperature).

何れかの暖房放熱器2の運転スイッチがオンされると、第1と第2の両循環ポンプ10,11と燃焼ファン6とが駆動され、燃焼ファン6の回転を検知した後、ガス元弁4bが開弁されると共に、図示省略した点火プラグでの火花放電が行われて、バーナ4に点火される。このようにしてバーナ4の燃焼が行われると、第1循環路8において熱交換器5により温水に加えられた熱量がシスターン7と第2循環路9とを介して暖房放熱器2に伝達され、暖房が行われる。   When the operation switch of any of the heating radiators 2 is turned on, the first and second circulation pumps 10 and 11 and the combustion fan 6 are driven, and after detecting the rotation of the combustion fan 6, the gas source valve 4b is opened and spark discharge is performed by a spark plug (not shown) to ignite the burner 4. When the burner 4 is thus burned, the amount of heat added to the hot water by the heat exchanger 5 in the first circulation path 8 is transmitted to the heating radiator 2 via the cistern 7 and the second circulation path 9. The heating is done.

ここで、運転初期は、第1循環ポンプ10の回転数を低くし、熱交換器出口湯温が所定温度(例えば60℃)以上になるように第1循環路8での温水循環流量を小さくする。これにより、主熱交換器5aでの結露を防止できる。一方、第2循環ポンプ11の回転数は高くし、第2循環路9での湯水循環流量を大きくして、暖房放熱器2の温度の立上りを早める。そして、戻り湯温の上昇に伴い第1循環ポンプ10の回転数を上昇させ、第1循環路8での湯水循環流量を増加させて暖房能力を上げる。戻り湯温が所定の設定温度に達した後は、戻り湯温が設定湯温に維持されるようにガス比例弁4cによりバーナ4の燃焼量を制御する。また、第2循環ポンプ11の回転数を制御し、第2循環路9での温水循環流量を暖房放熱器2の運転台数に応じて可変し、暖房能力と省エネ性との両立を図る。   Here, at the initial stage of operation, the number of rotations of the first circulation pump 10 is lowered, and the hot water circulation flow rate in the first circulation path 8 is decreased so that the hot water temperature at the outlet of the heat exchanger becomes a predetermined temperature (for example, 60 ° C.) or higher. To do. Thereby, dew condensation in the main heat exchanger 5a can be prevented. On the other hand, the rotation speed of the second circulation pump 11 is increased, the hot water circulation flow rate in the second circulation path 9 is increased, and the temperature rise of the heating radiator 2 is accelerated. Then, as the return hot water temperature rises, the rotation speed of the first circulation pump 10 is increased, and the hot water circulation flow rate in the first circulation path 8 is increased to increase the heating capacity. After the return hot water temperature reaches a predetermined set temperature, the combustion amount of the burner 4 is controlled by the gas proportional valve 4c so that the return hot water temperature is maintained at the set hot water temperature. Moreover, the rotation speed of the 2nd circulation pump 11 is controlled, the warm water circulation flow rate in the 2nd circulation path 9 is varied according to the number of operation of the heating radiator 2, and coexistence with heating capability and energy-saving property is aimed at.

ところで、上記比較例では、第1循環路8の往き通路8a及び戻り通路8bと第2循環路9の往き通路9a及び戻り通路9bとが夫々個別にシスターン7に接続されている。このものでは、第1循環路8の往き通路8aからシスターン7に流入した温水が第1循環路8の戻り通路8bに短絡的に流れ、熱交換器5により温水に加えられた熱量が暖房放熱器2にうまく伝達されなくなる虞がある。 By the way, in the comparative example , the forward passage 8a and the return passage 8b of the first circulation path 8 and the forward passage 9a and the return path 9b of the second circulation path 9 are individually connected to the cistern 7. In this configuration, the hot water that has flowed into the cistern 7 from the forward passage 8a of the first circulation path 8 flows in a short-circuited manner into the return passage 8b of the first circulation path 8, and the amount of heat added to the warm water by the heat exchanger 5 is the heat radiation. There is a risk that it will not be transmitted well to the vessel 2.

図2は、かかる不具合を解消した本発明の実施形態を示している。尚、上記比較例と同一の部材には上記と同一の符号を付している。実施形態では、第1循環路8の往き通路8aの下流端と第2循環路9の往き通路9aの上流端とを合流させた合流通路14を設け、第1と第2の両循環路8,9の往き通路8a,9aを合流通路14を介してシスターン7に接続している。これによれば、第1循環路8での湯水循環流量より第2循環路9での湯水循環流量の方が大きい場合には、熱交換器5で加熱された温水の全てが、シスターン7を経由せずに、第1循環路8の往き通路8aから第2循環路9の往き通路9aを介して暖房放熱器2に供給され、熱交換器5により温水に加えられた熱量が効率良く暖房放熱器2に伝達される。第1循環路8での湯水循環流量より第2循環路9での湯水循環流量の方が小さい場合には、熱交換器5で加熱された温水のうち第2循環路9での湯水循環流量を上回る部分がシスターン7に流れ、熱交換器5により温水に加えられた熱量の一部がシスターン7に伝達される。その結果、熱交換器5に戻される温水の温度(戻り湯温)が上昇して、バーナ4の燃焼量が減少し、エネルギー効率は良好に維持される。 FIG. 2 shows an embodiment of the present invention in which such a problem is solved. In addition, the same code | symbol as the above is attached | subjected to the member same as the said comparative example . In the present embodiment, a merging passage 14 is provided in which the downstream end of the forward passage 8a of the first circulation path 8 and the upstream end of the forward passage 9a of the second circulation path 9 are joined, and both the first and second circulation paths are provided. The forward passages 8 a and 9 a of the eighth and ninth passages are connected to the systern 7 via the junction passage 14. According to this, when the hot water circulation flow rate in the second circulation path 9 is larger than the hot water circulation flow rate in the first circulation path 8, all of the hot water heated by the heat exchanger 5 causes the cistern 7. Without being routed, the amount of heat supplied to the heating radiator 2 from the outgoing passage 8a of the first circulation path 8 through the outgoing passage 9a of the second circulation path 9 and added to the hot water by the heat exchanger 5 is efficiently heated. It is transmitted to the radiator 2. When the hot water circulation flow rate in the second circulation path 9 is smaller than the hot water circulation flow rate in the first circulation path 8, the hot water circulation flow rate in the second circulation path 9 among the hot water heated by the heat exchanger 5. The portion exceeding the flow amount flows into the cistern 7, and a part of the amount of heat added to the hot water by the heat exchanger 5 is transmitted to the cistern 7. As a result, the temperature of the hot water returned to the heat exchanger 5 (return hot water temperature) rises, the amount of combustion of the burner 4 decreases, and the energy efficiency is maintained well.

尚、実施形態では、第2循環路9に、第2循環ポンプ11の上流側と下流側とを結ぶバイパス通路9cを設けている。これによれば、第2循環ポンプ11の運転中に何らかの異常で往き通路9aから戻り通路9bへの温水の流れが遮断された場合にも、第2循環ポンプ11にバイパス通路9cを介しての温水の循環で所要量の温水が流れ、第2循環ポンプ11が保護される。 In the present embodiment, a bypass passage 9 c that connects the upstream side and the downstream side of the second circulation pump 11 is provided in the second circulation path 9. According to this, even when the flow of hot water from the return passage 9a to the return passage 9b is interrupted due to some abnormality during the operation of the second circulation pump 11, the second circulation pump 11 is connected to the second circulation pump 11 via the bypass passage 9c. The required amount of hot water flows through the circulation of the hot water, and the second circulation pump 11 is protected.

以上、本発明の実施形態を図面を参照して説明したが、本発明は実施形態のものに限定されない。例えば、上記実施形態では、熱交換器5を主熱交換器5aと副熱交換器5bとで構成しているが、副熱交換器5bは省略しても良い。また、上記実施形態では、第1と第2の両循環ポンプ10,11を共にDCポンプで駆動される流量可変式ポンプで構成しているが、コストダウンを図るため、第2循環ポンプ11をACモータで駆動される定流量ポンプで構成することも可能である。また、上記実施形態では、第1循環路8の戻り通路8bに設けたサーミスタ13で検出される戻り湯温が設定温度に維持されるようにバーナ4の燃焼量を制御しているが、第2循環路9の往き通路9aにサーミスタを設け、このサーミスタで検出される暖房放熱器2への供給湯温が所定の設定温度に維持されるようにバーナ4の燃焼量を制御しても良い。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment. For example, in the above embodiment, the heat exchanger 5 is constituted by the main heat exchanger 5a and the sub heat exchanger 5b, but the sub heat exchanger 5b may be omitted. In the above embodiment, both the first and second circulation pumps 10 and 11 are constituted by variable flow rate pumps that are driven by a DC pump. It is also possible to configure with a constant flow pump driven by an AC motor. In the above embodiment, the combustion amount of the burner 4 is controlled so that the return hot water temperature detected by the thermistor 13 provided in the return passage 8b of the first circulation path 8 is maintained at the set temperature. (2) A thermistor may be provided in the forward passage 9a of the circulation path 9, and the combustion amount of the burner 4 may be controlled so that the hot water temperature supplied to the heating radiator 2 detected by the thermistor is maintained at a predetermined set temperature. .

比較例の温水暖房システムの構成を示す説明図。Explanatory drawing which shows the structure of the hot water heating system of a comparative example . 本発明の実施形態の温水暖房システムの構成を示す説明図。Explanatory view showing a configuration of a hot water heating system implementation embodiment of the present invention.

符号の説明Explanation of symbols

1…熱源機、2…暖房放熱器、4…バーナ、5…熱交換器、7…シスターン、8…第1循環路、8a…第1循環路の往き通路、9…第2循環路、9a…第2循環路の往き通路、10…第1循環ポンプ、11…第2循環ポンプ。   DESCRIPTION OF SYMBOLS 1 ... Heat source machine, 2 ... Heating radiator, 4 ... Burner, 5 ... Heat exchanger, 7 ... Sistern, 8 ... 1st circuit, 8a ... Outbound path of 1st circuit, 9 ... 2nd circuit, 9a ... the second circulation path, 10 ... the first circulation pump, 11 ... the second circulation pump.

Claims (2)

バーナで加熱される熱交換器を有する熱源機と、暖房放熱器とを備え、熱交換器で加熱された温水を循環路を介して暖房放熱器と熱交換器との間に循環させるようにした温水暖房システムであって、循環路にシスターンを介設するものにおいて、
循環路を、熱交換器とシスターンとの間の第1循環路と、シスターンと暖房放熱器との間の第2循環路とに分割し、第1と第2の各循環路に各別の循環ポンプで温水を循環させると共に、
熱交換器からシスターンに温水を送る第1循環路の往き通路の下流端と、シスターンから暖房放熱器に温水を送る第2循環路の往き通路の上流端とが合流してシスターンに接続されていることを特徴とする温水暖房システム。
A heat source device having a heat exchanger heated by a burner and a heating radiator are provided so that hot water heated by the heat exchanger is circulated between the heating radiator and the heat exchanger via a circulation path. In a hot water heating system that has a systern in the circulation path,
The circulation path is divided into a first circulation path between the heat exchanger and the cistern and a second circulation path between the cistern and the heating radiator, and each of the first and second circulation paths is divided into While circulating hot water with a circulation pump ,
The downstream end of the outgoing path of the first circulation path that sends warm water from the heat exchanger to the systole and the upstream end of the outgoing path of the second circulation path that sends hot water from the systern to the heating radiator are joined together and connected to the systern. hot water heating system, characterized in that there.
前記第1循環路に温水を循環させる第1循環ポンプと、前記第2循環路に温水を循環させる第2循環ポンプとのうち少なくとも第1循環ポンプは流量可変式ポンプで構成されることを特徴とする請求項記載の温水暖房システム。 Of the first circulation pump that circulates hot water in the first circulation path and the second circulation pump that circulates hot water in the second circulation path, at least the first circulation pump is constituted by a variable flow rate pump. The hot water heating system according to claim 1 .
JP2005146540A 2004-08-26 2005-05-19 Hot water heating system Expired - Fee Related JP4130827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005146540A JP4130827B2 (en) 2004-08-26 2005-05-19 Hot water heating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004247147 2004-08-26
JP2005146540A JP4130827B2 (en) 2004-08-26 2005-05-19 Hot water heating system

Publications (2)

Publication Number Publication Date
JP2006090696A JP2006090696A (en) 2006-04-06
JP4130827B2 true JP4130827B2 (en) 2008-08-06

Family

ID=36231849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005146540A Expired - Fee Related JP4130827B2 (en) 2004-08-26 2005-05-19 Hot water heating system

Country Status (1)

Country Link
JP (1) JP4130827B2 (en)

Also Published As

Publication number Publication date
JP2006090696A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4603482B2 (en) Hot water system
JP2005061711A (en) Exhaust heat recovering water heater
EP1669696A2 (en) Cooling/heating apparatus using cogeneration system
US20100282440A1 (en) Fluid Heater
JP2010151429A (en) Hot water storage and supply system
GB2463512A (en) Flue gas heat recovery system
JP2007146676A (en) Cogeneration system
KR100637041B1 (en) Multi heating system using internal combustion engine and heat exchanger applied thereto
JP4130827B2 (en) Hot water heating system
JP4833707B2 (en) Waste heat recovery device
JP2006336939A (en) Hot water heating system
JP2019007650A (en) Heat source apparatus
JP2010151428A (en) Hot water storage and supply system
JP3778199B2 (en) Gas hot water heater
JP3898407B2 (en) Condensation prevention control device for hot water circulating boiler
JP5029128B2 (en) Combined heat source machine
JP4408770B2 (en) Hot water storage heat recovery system
JP4269168B2 (en) Heat source machine for hot water heating system
JP4356632B2 (en) Combustion device
JP4867274B2 (en) Water heater
JP4670462B2 (en) Combustion apparatus and operation method thereof
JP3872901B2 (en) One can multi-channel water heater
JP2007101052A (en) Hot water supply apparatus
JP4715438B2 (en) Water heater
JP2006329541A (en) Hot-water heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080523

R150 Certificate of patent or registration of utility model

Ref document number: 4130827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees