JP2019007650A - Heat source apparatus - Google Patents

Heat source apparatus Download PDF

Info

Publication number
JP2019007650A
JP2019007650A JP2017121687A JP2017121687A JP2019007650A JP 2019007650 A JP2019007650 A JP 2019007650A JP 2017121687 A JP2017121687 A JP 2017121687A JP 2017121687 A JP2017121687 A JP 2017121687A JP 2019007650 A JP2019007650 A JP 2019007650A
Authority
JP
Japan
Prior art keywords
combustion
hot water
temperature
rotational speed
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017121687A
Other languages
Japanese (ja)
Other versions
JP6909646B2 (en
Inventor
依久 浦川
Yorihisa Urakawa
依久 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to JP2017121687A priority Critical patent/JP6909646B2/en
Publication of JP2019007650A publication Critical patent/JP2019007650A/en
Application granted granted Critical
Publication of JP6909646B2 publication Critical patent/JP6909646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

To prevent freezing of a fluid passage in a combustion system in which a combustion operation is not carried out in cases where there are a combustion system in which the combustion operation is carried out and the combustion system in which the combustion operation is not carried out.SOLUTION: In cases where a combustion operation is carried out in one combustion system 40 and the combustion operation is not carried out in another combustion system 30, a maximum number of rotations of a blower fan 70 that supplies combustion air to the combustion system 30 in which the combustion operation is carried out, is limited to a maximum number of rotations during freezing which is lower than the maximum number of rotations, when a fluid temperature of a fluid passage in the other combustion system 40 becomes lower than a predetermined reference temperature.SELECTED DRAWING: Figure 1

Description

本発明は、複数の燃焼系統を有する熱源装置に関する。特に、本発明は、燃焼運転が行われている燃焼系統と、燃焼運転が行われていない燃焼系統とがある場合に、燃焼運転が行われていない燃焼系統における流体流路の凍結防止に関する。   The present invention relates to a heat source device having a plurality of combustion systems. In particular, the present invention relates to prevention of freezing of a fluid flow path in a combustion system in which the combustion operation is not performed when there are a combustion system in which the combustion operation is performed and a combustion system in which the combustion operation is not performed.

暖房機能付き給湯装置、追焚き機能付き給湯装置や、暖房及び追焚き機能付き給湯装置などの熱源装置は、バーナユニットと、流体流路を流れる水や熱媒などの流体を熱交換加熱する熱交換器とを各別に有する燃焼系統を複数、備えている。この種の熱源装置は、単一の缶体内を仕切りで複数に区画し、各区画部にバーナユニット及び熱交換器を配設させたり、各バーナユニット及び熱交換器を収容させた缶体を複数、組み合わせたりすることによって構成されている。また、これらの熱源装置では、バーナユニットに燃焼用空気を供給するための送風ファンとして、各燃焼系統に対応させた個別の送風ファンが設けられる場合や、複数の燃焼系統に共通の送風ファンが設けられる場合がある。   Heat source devices such as a hot water supply device with a heating function, a hot water supply device with a reheating function, a hot water supply device with a reheating function and a reheating function, heat that heats and heats a fluid such as water or a heat medium flowing through a fluid flow path. A plurality of combustion systems each having an exchanger are provided. In this type of heat source device, a single can body is partitioned into a plurality of partitions, and a burner unit and a heat exchanger are disposed in each partition portion, or a can body in which each burner unit and a heat exchanger are accommodated. It is configured by combining multiple items. Further, in these heat source devices, when an individual blower fan corresponding to each combustion system is provided as a blower fan for supplying combustion air to the burner unit, or a common blower fan for a plurality of combustion systems is provided. May be provided.

上記のような複数の燃焼系統を有する熱源装置では、冬期において、各燃焼系統の流体流路の凍結を防止するために、凍結防止運転が行われる。例えば、暖房機能付き給湯装置では、外気温を検知する外気温センサを設け、外気温が所定の凍結危険温度よりも低下すると、暖房側の燃焼系統で燃焼運転を行い、流体流路に流体を循環させるとともに、凍結防止運転の間欠休止中に、給湯側の燃焼系統で燃焼運転が行われると、暖房側の燃焼系統の流体流路に流体を循環させることにより、暖房側の燃焼系統の流体流路の凍結を防止している(例えば、特許文献1)。   In a heat source device having a plurality of combustion systems as described above, an anti-freezing operation is performed in winter to prevent freezing of the fluid flow path of each combustion system. For example, in a hot water supply device with a heating function, an outside air temperature sensor that detects the outside air temperature is provided, and when the outside air temperature falls below a predetermined freezing danger temperature, a combustion operation is performed in the combustion system on the heating side, and fluid is supplied to the fluid flow path. When the combustion operation is performed in the hot water supply side combustion system during the intermittent suspension of the freeze prevention operation, the fluid is circulated through the fluid flow path of the heating side combustion system to thereby provide the fluid in the heating side combustion system. Freezing of the flow path is prevented (for example, Patent Document 1).

特開平10−9593号公報Japanese Patent Laid-Open No. 10-9593

ところで、複数の燃焼系統を有する熱源装置は大型の装置であり、装置内で局部的な温度が異なる。それゆえ、外気温センサの設けられる位置によって、外気温に基づく凍結の可能性が各燃焼系統における流体流路の凍結の可能性と必ずしも一致しない場合がある。また、1つの燃焼系統で燃焼運転が終了してから短時間経過後に、他の燃焼系統で燃焼運転が開始される場合、外気温が凍結危険温度より低くても、燃焼運転が行われてない燃焼系統の流体流路の凍結の可能性は低い。そのため、外気温センサで検知される外気温だけでは、実際に凍結が生じやすい燃焼運転が行われていない燃焼系統における流体流路の凍結の可能性を適切に判断できないという問題がある。   By the way, a heat source device having a plurality of combustion systems is a large-sized device, and a local temperature is different in the device. Therefore, depending on the position where the outside air temperature sensor is provided, the possibility of freezing based on the outside air temperature may not necessarily coincide with the possibility of freezing the fluid flow path in each combustion system. In addition, when a combustion operation is started in another combustion system after a short time has elapsed after the combustion operation is completed in one combustion system, the combustion operation is not performed even if the outside air temperature is lower than the freezing danger temperature. The possibility of freezing the fluid flow path of the combustion system is low. Therefore, there is a problem that the possibility of freezing the fluid flow path in the combustion system in which the combustion operation in which freezing is actually likely to occur is not performed can be appropriately determined only by the outside air temperature detected by the outside air temperature sensor.

また、単一の缶体内に複数の燃焼系統が収容されている熱源装置や、各燃焼系統が収容されている複数の缶体が1つの筐体内に設けられた熱源装置では、1つの燃焼系統で燃焼運転を行うために送風ファンを回転させると、燃焼運転が行われていない他の燃焼系統にも低温の空気が流入して、流体流路が冷却されるという問題がある。特に、強制排気式や強制給排気式の熱源装置のように複数の燃焼系統が共通の排気経路や共通の給気経路を使用するものでは、他の燃焼系統から流入する空気によって燃焼運転が行われていない燃焼系統の流体流路で凍結が生じやすい。   Further, in a heat source device in which a plurality of combustion systems are housed in a single can body, or a heat source device in which a plurality of can bodies in which each combustion system is housed is provided in one housing, one combustion system When the blower fan is rotated in order to perform the combustion operation, low temperature air also flows into other combustion systems that are not performing the combustion operation, thereby cooling the fluid flow path. In particular, in a case where a plurality of combustion systems use a common exhaust path or a common air supply path, such as a forced exhaust type or forced supply / exhaust type heat source device, combustion operation is performed by air flowing in from other combustion systems. Freezing is likely to occur in the fluid flow path of the combustion system that is not known.

本発明は上記課題を解決するものであり、本発明の目的は、複数の燃焼系統を有する熱源装置において、燃焼運転が行われている燃焼系統と、燃焼運転が行われていない燃焼系統とがある場合に、燃焼運転が行われていない燃焼系統における流体流路の凍結を効率よく防止することにある。   The present invention solves the above problems, and an object of the present invention is, in a heat source device having a plurality of combustion systems, a combustion system in which combustion operation is performed and a combustion system in which combustion operation is not performed. In some cases, the fluid flow path in the combustion system in which the combustion operation is not performed is efficiently prevented from freezing.

本発明によれば、
バーナを有するバーナユニット、バーナユニットで生成される燃焼排気によって流体流路を流れる流体を熱交換加熱する熱交換器、及び流体流路内を流れる流体の温度を検知する少なくとも1つの流体温度検知部を各別に有する複数の燃焼系統と、
1つまたは複数の燃焼系統のバーナユニットに燃焼用空気を供給する送風ファンと、
燃焼運転を行う燃焼系統のバーナユニットに要求される要求燃焼量に応じて送風ファンの目標回転数を所定の最大回転数以下で制御する通常燃焼制御を行う制御装置と、を備え、
燃焼運転が行われている燃焼系統のバーナユニットに燃焼用空気を供給するために送風ファンを回転させることによって、燃焼運転が行われていない他の燃焼系統にも空気が流入する熱源装置であって、
制御装置は、少なくとも1つの燃焼系統で燃焼運転が行われ、他の燃焼系統で燃焼運転が行われていないときに、燃焼運転が行われていない他の燃焼系統の流体温度検知部で検知される流体温度が所定の基準温度より低くなると、燃焼運転が行われている燃焼系統に燃焼用空気を供給する送風ファンの目標回転数を、最大回転数よりも低下させた凍結時最大回転数以下に制限する熱源装置が提供される。
According to the present invention,
A burner unit having a burner, a heat exchanger that heat-exchanges and heats a fluid that flows through a fluid flow path by combustion exhaust generated by the burner unit, and at least one fluid temperature detection unit that detects the temperature of the fluid flowing in the fluid flow path A plurality of combustion systems each having
A blower fan that supplies combustion air to one or more combustion system burner units;
A control device for performing normal combustion control for controlling the target rotational speed of the blower fan at a predetermined maximum rotational speed or less in accordance with the required combustion amount required for the burner unit of the combustion system performing the combustion operation,
This is a heat source device in which air flows into other combustion systems that are not operating by rotating the blower fan to supply combustion air to the burner unit of the combustion system that is performing the combustion operation. And
When the combustion operation is performed in at least one combustion system and the combustion operation is not performed in the other combustion system, the control device is detected by the fluid temperature detection unit of the other combustion system in which the combustion operation is not performed. When the fluid temperature is lower than the predetermined reference temperature, the target rotational speed of the blower fan that supplies combustion air to the combustion system in which the combustion operation is performed is lower than the maximum rotational speed when the target rotational speed is lower than the maximum rotational speed. A heat source device is provided that restricts to

上記熱源装置によれば、少なくとも1つの燃焼系統で燃焼運転が行われ、他の燃焼系統で燃焼運転が行われていないときに、燃焼運転が行われていない他の燃焼系統の流体温度検知部で検知される流体温度が所定の基準温度より低いかどうかを判断するから、より的確に燃焼運転が行われていない燃焼系統の流体流路の凍結の可能性を判断できる。   According to the heat source device, when the combustion operation is performed in at least one combustion system and the combustion operation is not performed in another combustion system, the fluid temperature detection unit of the other combustion system in which the combustion operation is not performed Therefore, it is possible to determine whether the fluid flow path of the combustion system in which the combustion operation is not performed can be frozen more accurately.

そして、上記熱源装置によれば、燃焼運転を行うバーナユニットに要求される要求燃焼量に応じて送風ファンの目標回転数が所定の最大回転数以下で制御されており、凍結の可能性がある場合、燃焼運転が行われている燃焼系統に燃焼用空気を供給する送風ファンの目標回転数を、最大回転数よりも低下させた凍結時最大回転数以下に制限するから、送風ファンを回転させることによる燃焼運転が行われていない他の燃焼系統への空気の流入が抑えられ、他の燃焼系統の流体流路の凍結の可能性を低減できる。   According to the heat source device, the target rotational speed of the blower fan is controlled to be equal to or lower than the predetermined maximum rotational speed in accordance with the required combustion amount required for the burner unit performing the combustion operation, and there is a possibility of freezing. In this case, the target rotational speed of the blower fan that supplies the combustion air to the combustion system in which the combustion operation is performed is limited to the maximum rotational speed during freezing that is lower than the maximum rotational speed. Thus, the inflow of air to other combustion systems that are not performing the combustion operation is suppressed, and the possibility of freezing the fluid flow paths of other combustion systems can be reduced.

好ましくは、上記熱源装置は、さらに、
外気温を検知する外気温検知部を備え、
制御装置は、外気温検知部で検知される外気温が所定の凍結危険温度より低くなり、且つ燃焼運転が行われていない他の燃焼系統の流体温度検知部で検知される流体温度が所定の基準温度より低くなると、燃焼運転が行われている燃焼系統に燃焼用空気を供給する送風ファンの目標回転数を、最大回転数よりも低下させた凍結時最大回転数以下に制限する。
Preferably, the heat source device further includes:
It has an outside air temperature detector that detects the outside air temperature,
The control device is configured such that the outside air temperature detected by the outside air temperature detecting unit is lower than a predetermined freezing danger temperature and the fluid temperature detected by the fluid temperature detecting unit of another combustion system in which the combustion operation is not performed is the predetermined temperature. When the temperature is lower than the reference temperature, the target rotational speed of the blower fan that supplies the combustion air to the combustion system in which the combustion operation is performed is limited to the maximum rotational speed during freezing that is lower than the maximum rotational speed.

上記熱源装置によれば、流体温度が基準温度より低くなるだけでなく、外気温が所定の凍結危険温度より低いかどうかも判断するから、より的確に凍結の可能性を判断できる。   According to the heat source device, not only the fluid temperature becomes lower than the reference temperature, but also whether or not the outside air temperature is lower than a predetermined freezing danger temperature is determined, so that the possibility of freezing can be determined more accurately.

好ましくは、上記熱源装置において、
複数の燃焼系統のうち少なくとも1つの燃焼系統のバーナユニットは、燃焼量範囲の異なる複数の能力段数を有し、
制御装置は、複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われる場合、低燃焼量側の下段側燃焼量範囲と、それに隣接する高燃焼量側の上段側燃焼量範囲との間に、下段側燃焼量範囲の最大燃焼量が上段側燃焼量範囲の最小燃焼量よりも多くなるように設けられた重ね代を用いて、能力段数を切り替え制御する通常燃焼制御を行い、
複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われ、他の燃焼系統で燃焼運転が行われていないときに、燃焼運転が行われていない他の燃焼系統における流体温度検知部で検知される流体温度が所定の第1基準温度より低くなると、燃焼運転が行われている燃焼系統のバーナユニットに燃焼用空気を供給する送風ファンの目標回転数を、最大回転数から上段側燃焼量範囲との重ね代の範囲内となる所定の低減量、低下させた凍結時最大回転数以下に制限する。
Preferably, in the heat source device,
The burner unit of at least one combustion system among the plurality of combustion systems has a plurality of capacity stages having different combustion amount ranges,
When the combustion operation is performed in a combustion system including a burner unit having a plurality of capacity stages, the control device has a lower combustion amount range on the low combustion amount side and an upper combustion amount range on the high combustion amount side adjacent thereto. In between, the normal combustion control is performed to switch and control the number of capacity stages using the overlap margin provided so that the maximum combustion amount in the lower combustion amount range is larger than the minimum combustion amount in the upper combustion amount range. ,
Fluid temperature detection in other combustion systems where combustion operation is performed when a combustion system is equipped with a burner unit having a plurality of capacity stages and combustion operation is not performed in another combustion system When the fluid temperature detected by the unit becomes lower than the predetermined first reference temperature, the target rotational speed of the blower fan that supplies the combustion air to the burner unit of the combustion system in which the combustion operation is performed is increased from the maximum rotational speed. It is limited to a predetermined reduction amount that falls within the range of the overlap allowance with the side combustion amount range, or lower than the reduced maximum rotation speed during freezing.

燃焼量の調整可能範囲を広げるために複数の能力段数を有するバーナユニットでは、要求燃焼量が所定の能力段数における燃焼量範囲の最大燃焼量より大きくなると、能力段数を1つ増加させる態様で燃焼運転が行われ、要求燃焼量が所定の能力段数の燃焼量範囲の最小燃焼量より小さくなると、能力段数を1つ減少させる態様で燃焼運転が行われる。そのため、低燃焼量側の下段側燃焼量範囲と、それに隣接する高燃焼量側の上段側燃焼量範囲との間に、低燃焼量側の下段側燃焼量範囲の最大燃焼量が高燃焼量側の上段側燃焼量範囲の最小燃焼量よりも多くなるように一定の重ね代を設け、重ね代を用いて能力段数を切り替え制御する通常燃焼制御を行うことにより、能力段数の頻繁な切り替りによるハンチングが防止される。   In a burner unit having a plurality of capacity stages in order to expand the adjustable range of the combustion quantity, combustion is performed in such a manner that the capacity stage is increased by one when the required combustion quantity becomes larger than the maximum combustion quantity in the combustion quantity range at the predetermined capacity stage number. When the operation is performed and the required combustion amount becomes smaller than the minimum combustion amount in the combustion amount range of the predetermined number of capability stages, the combustion operation is performed in a manner that the number of capability stages is decreased by one. Therefore, the maximum combustion amount in the lower combustion amount range on the low combustion amount side is between the lower combustion amount range on the lower combustion amount side and the upper combustion amount range on the higher combustion amount side adjacent thereto. By switching the number of capacity stages using the overlap allowance, a regular overlap control is provided so that the combustion amount is larger than the minimum combustion amount in the upper combustion range of the engine. Hunting due to is prevented.

従って、燃焼量範囲の異なる複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われ、他の燃焼系統で燃焼運転が行われていないときに、流体温度が所定の第1基準温度より低くなって凍結の可能性がある場合、送風ファンの目標回転数を、通常燃焼制御における最大回転数から所定の低減量、低減させた上段側燃焼量範囲との重ね代の範囲内の凍結時最大回転数以下に制限すれば、重ね代の範囲内における燃焼量が要求されても、能力段数が維持されるから、燃焼運転が行われている燃焼系統におけるバーナユニットのハンチングを抑制しながら、燃焼運転が行われていない他の燃焼系統の凍結を防止することができる。   Therefore, when the combustion operation is performed in the combustion system including the burner units having a plurality of capability stages having different combustion amount ranges and the combustion operation is not performed in the other combustion systems, the fluid temperature is a predetermined first reference. If the temperature is lower than the temperature and there is a possibility of freezing, the target rotational speed of the blower fan is within the range of the overlap allowance with the upper combustion amount range reduced by a predetermined reduction amount from the maximum rotational speed in normal combustion control. By limiting the number of revolutions to below the maximum rotation speed during freezing, the number of capacity stages is maintained even if the combustion amount within the range of overlap is required, so hunting of the burner unit in the combustion system in which combustion operation is performed is suppressed. However, it is possible to prevent freezing of other combustion systems that are not performing the combustion operation.

好ましくは、上記熱源装置において、
複数の燃焼系統のうち少なくとも1つの燃焼系統のバーナユニットは、燃焼量範囲の異なる複数の能力段数を有し、
制御装置は、複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われる場合、低燃焼量側の下段側燃焼量範囲と、それに隣接する高燃焼量側の上段側燃焼量範囲との間に、下段側燃焼量範囲の最大燃焼量が上段側燃焼量範囲の最小燃焼量よりも多くなるように設けられた重ね代を用いて、能力段数を切り替え制御する通常燃焼制御を行い、
複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われ、他の燃焼系統で燃焼運転が行われていないときに、燃焼運転が行われていない他の燃焼系統における流体温度検知部で検知される流体温度が所定の第2基準温度より低くなると、燃焼運転が行われている燃焼系統のバーナユニットに燃焼用空気を供給する送風ファンの目標回転数を、最大回転数よりも低い、上段側燃焼量範囲との重ね代の範囲以下の固定された凍結時最大回転数以下に制限する。
Preferably, in the heat source device,
The burner unit of at least one combustion system among the plurality of combustion systems has a plurality of capacity stages having different combustion amount ranges,
When the combustion operation is performed in a combustion system including a burner unit having a plurality of capacity stages, the control device has a lower combustion amount range on the low combustion amount side and an upper combustion amount range on the high combustion amount side adjacent thereto. In between, the normal combustion control is performed to switch and control the number of capacity stages using the overlap margin provided so that the maximum combustion amount in the lower combustion amount range is larger than the minimum combustion amount in the upper combustion amount range. ,
Fluid temperature detection in other combustion systems where combustion operation is performed when a combustion system is equipped with a burner unit having a plurality of capacity stages and combustion operation is not performed in another combustion system When the fluid temperature detected by the unit becomes lower than the predetermined second reference temperature, the target rotational speed of the blower fan that supplies the combustion air to the burner unit of the combustion system in which the combustion operation is performed is set to be higher than the maximum rotational speed. It is limited to a fixed maximum freezing rotation speed that is lower than the range of the overlap allowance with the lower upper combustion amount range.

既述したように、複数の能力段数を有するバーナユニットを備える燃焼系統では、低燃焼量側の下段側燃焼量範囲と、それに隣接する高燃焼量側の上段側燃焼量範囲との間に、下段側燃焼量範囲の最大燃焼量が上段側燃焼量範囲の最小燃焼量よりも多くなるように重ね代を設け、重ね代を用いて能力段数を切り替え制御することにより、ハンチングが防止されている。   As described above, in a combustion system including a burner unit having a plurality of capacity stages, between a lower combustion amount range on the low combustion amount side and an upper combustion amount range on the high combustion amount side adjacent thereto, Hunting is prevented by providing overlap allowance so that the maximum combustion amount in the lower combustion amount range is larger than the minimum combustion amount in the upper combustion amount range, and switching the number of capacity stages using the overlap allowance. .

また、流体温度検知部で検知される流体温度が所定の第2基準温度より低くなって、凍結の可能性が高くなる場合、送風ファンの最大回転数をさらに低下させることにより、燃焼運転が行われていない他の燃焼系統に流入する空気を低減できる一方、上段側燃焼量範囲との重ね代の範囲よりも低い燃焼量に対応するファン回転数まで任意に低下させると、利用可能な下段側燃焼量範囲と上段側燃焼量範囲との間に大きな燃焼量の差が生じ、頻繁な能力段数の切り替りが生じる。   Further, when the fluid temperature detected by the fluid temperature detection unit becomes lower than the predetermined second reference temperature and the possibility of freezing increases, the combustion operation is performed by further reducing the maximum rotational speed of the blower fan. While it is possible to reduce the air that flows into other combustion systems that are not known, the lower side of the lower stage that can be used by arbitrarily reducing the rotational speed of the fan corresponding to the combustion amount lower than the range of overlap with the upper side combustion amount range A large combustion amount difference occurs between the combustion amount range and the upper combustion amount range, and frequent switching of the number of capacity steps occurs.

しかしながら、上記熱源装置によれば、流体温度が低下して凍結の可能性が高くなった場合、燃焼運転が行われている燃焼系統のバーナユニットを燃焼させるにあたって、バーナユニットに燃焼用空気を供給する送風ファンの目標回転数は、最大回転数よりも低い、上段側燃焼量範囲との重ね代の範囲以下の固定された凍結時最大回転数以下に制限される。それゆえ、下段側燃焼量範囲でバーナユニットを燃焼させている場合、上段側燃焼量範囲の最小燃焼量が要求されるまで能力段数が維持される。一方、バーナユニットを上段側燃焼量範囲で燃焼させているとき、下段側燃焼量範囲の固定された凍結時最大回転数に対応する燃焼量が要求されるまで、バーナユニットを上段側燃焼量範囲の最小燃焼量で燃焼させて能力段数が維持される。これにより、ハンチングをできるだけ抑えながら、燃焼運転が行われていない他の燃焼系統の凍結をより確実に防止することができる。   However, according to the above heat source device, when the fluid temperature decreases and the possibility of freezing increases, the combustion air is supplied to the burner unit when burning the burner unit of the combustion system in which the combustion operation is performed. The target rotational speed of the blower fan to be performed is limited to a fixed freezing maximum rotational speed that is lower than the maximum rotational speed and is equal to or less than the range of the overlap allowance with the upper stage combustion amount range. Therefore, when the burner unit is burned in the lower combustion amount range, the capacity stage number is maintained until the minimum combustion amount in the upper combustion amount range is required. On the other hand, when the burner unit is burned in the upper combustion range, the burner unit is in the upper combustion range until a combustion amount corresponding to the maximum rotation speed during freezing in which the lower combustion range is fixed is required. The number of capacity stages is maintained by burning with the minimum amount of combustion. Thereby, it is possible to more reliably prevent freezing of other combustion systems that are not performing the combustion operation while suppressing hunting as much as possible.

以上のように、本発明によれば、複数の燃焼系統を有する熱源装置において、燃焼運転が行われている燃焼系統と、燃焼運転が行われていない燃焼系統とがある場合に、実際に凍結が生じやすい燃焼運転が行われていない燃焼系統における流体流路の流体温度に基づいて凍結の可能性を判断するから、より的確に凍結の虞を予測することができる。そして、本発明によれば、凍結の可能性がある場合、燃焼運転が行われている燃焼系統に燃焼用空気を供給する送風ファンの目標回転数を、最大回転数よりも低下させた凍結時最大回転数に制限するから、送風ファンを回転させることによる燃焼運転が行われていない他の燃焼系統への空気の流入を抑えることができる。これにより、燃焼運転が行われていない燃焼系統の流体流路の凍結を効果的に防止することができる。   As described above, according to the present invention, in a heat source device having a plurality of combustion systems, when there are a combustion system in which the combustion operation is performed and a combustion system in which the combustion operation is not performed, there is actually freezing. Since the possibility of freezing is determined based on the fluid temperature of the fluid flow path in the combustion system in which the combustion operation that is likely to occur is not performed, the possibility of freezing can be predicted more accurately. According to the present invention, when there is a possibility of freezing, when the target rotational speed of the blower fan that supplies the combustion air to the combustion system in which the combustion operation is performed is reduced below the maximum rotational speed Since the maximum number of rotations is limited, it is possible to suppress the inflow of air to other combustion systems in which the combustion operation is not performed by rotating the blower fan. Thereby, freezing of the fluid flow path of the combustion system in which the combustion operation is not performed can be effectively prevented.

図1は、本発明の実施の形態に係る熱源装置の一例を概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an example of a heat source device according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る熱源装置のバーナユニットの燃焼量とファン回転数との関係の一例を示す相関図である。FIG. 2 is a correlation diagram showing an example of the relationship between the amount of combustion of the burner unit of the heat source device according to the embodiment of the present invention and the number of fan rotations. 図3は、本発明の実施の形態に係る熱源装置で凍結の可能性がある場合に送風ファンの最大回転数を低下させるための設定値の一例を示すデータテーブルである。FIG. 3 is a data table showing an example of setting values for reducing the maximum rotational speed of the blower fan when there is a possibility of freezing in the heat source device according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る熱源装置の制御動作の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the control operation of the heat source device according to the embodiment of the present invention.

以下、本発明の実施の形態に係る熱源装置を、浴室等に設けられたカラン等の給湯端末に湯水を供給する給湯運転と、浴槽内の湯水を加熱する追焚き運転と、温水暖房端末(床暖房機、温風暖房機等)に湯水を循環供給する暖房運転とを実行する暖房及び追焚き機能付き給湯装置に適用した場合を例に挙げて説明する。   Hereinafter, the heat source device according to the embodiment of the present invention includes a hot water supply operation for supplying hot water to a hot water supply terminal such as a curan provided in a bathroom, a reheating operation for heating hot water in a bathtub, and a hot water heating terminal ( An example will be described in which the present invention is applied to a heating and hot water supply device with a replenishment function that performs a heating operation that circulates and supplies hot water to a floor heater, a hot air heater, and the like.

図1は、本発明の実施の形態に係る熱源装置の一例を示す概略構成図である。熱源装置1は、例えば、屋内の地下室に設置され、給気口5に接続された給気筒6及び排気口7に接続された排気筒8を介して屋外に連通した筐体10内に、2つの燃焼系統を備える缶体20が配設された強制給排気式の熱源装置である。缶体20の内部は、仕切り部21で区画され、給湯側燃焼系統30と、暖房・追焚き側燃焼系統40とにより構成されている。   FIG. 1 is a schematic configuration diagram illustrating an example of a heat source device according to an embodiment of the present invention. The heat source device 1 is installed in an indoor basement, for example, in a housing 10 that communicates with the outside via a supply cylinder 6 connected to an intake port 5 and an exhaust cylinder 8 connected to an exhaust port 7. This is a forced supply / exhaust heat source device in which a can body 20 having two combustion systems is disposed. The inside of the can body 20 is partitioned by a partition portion 21, and includes a hot water supply side combustion system 30 and a heating / reheating side combustion system 40.

給湯側燃焼系統30には、下から順に、給湯側バーナユニット33、給湯側第1熱交換器31、及び給湯側第2熱交換器32が配置されている。給湯側第1熱交換器31は、給湯側バーナユニット33から放出される燃焼排気から顕熱を回収し、給湯側第2熱交換器32は、給湯側バーナユニット33から放出される燃焼排気から潜熱を回収する。   In the hot water supply side combustion system 30, a hot water supply side burner unit 33, a hot water supply side first heat exchanger 31, and a hot water supply side second heat exchanger 32 are arranged in this order from the bottom. The hot water supply side first heat exchanger 31 recovers sensible heat from the combustion exhaust discharged from the hot water supply side burner unit 33, and the hot water supply side second heat exchanger 32 is recovered from the combustion exhaust discharged from the hot water supply side burner unit 33. Recover latent heat.

給湯側燃焼系統30は、流体流路として、上水道に連通し、給湯側第2熱交換器32の上流端に接続された給水路90と、給湯側第2熱交換器32の下流端及び給湯側第1熱交換器31の上流端とを接続する連結路95と、カラン等の給湯端末P1に連通し、給湯側第1熱交換器31の下流端に接続された給湯路100と、給水路90と給湯路100とをバイパスする給湯バイパス路105とを備える。この構成により、上水道から給水路90に供給される水が、給湯側バーナユニット33から放出される燃焼排気によって給湯側第2熱交換器32及び給湯側第1熱交換器31で熱交換加熱され、加熱された湯水が給湯路100を介して給湯端末P1に供給される。また、給湯側第1熱交換器31と給湯側第2熱交換器32とを接続する連結路95には、凍結防止用のヒータ400,401が設けられている。   The hot water supply side combustion system 30 is connected to the water supply as a fluid flow path, connected to the upstream end of the hot water supply side second heat exchanger 32, the downstream end of the hot water supply side second heat exchanger 32, and the hot water supply. A hot water supply path 100 connected to the downstream end of the hot water supply side first heat exchanger 31, a connection path 95 connecting the upstream end of the first hot heat exchanger 31, a hot water supply terminal P 1 such as a currant, and the water supply A hot water supply bypass passage 105 that bypasses the passage 90 and the hot water supply passage 100 is provided. With this configuration, water supplied from the water supply to the water supply passage 90 is heat-exchanged and heated by the hot water supply side second heat exchanger 32 and the hot water supply side first heat exchanger 31 by the combustion exhaust discharged from the hot water supply side burner unit 33. The heated hot water is supplied to the hot water supply terminal P1 through the hot water supply path 100. In addition, the freezing prevention heaters 400 and 401 are provided in the connecting path 95 that connects the hot water supply side first heat exchanger 31 and the hot water supply side second heat exchanger 32.

給湯路100には、上流側から順に、給湯側第1熱交換器31から出湯される湯水の温度を検知する熱交温度センサ101と、給湯バイパス路105との合流箇所より下流側に供給される湯水の温度を検知する出湯温度センサ103とが設けられている。これらの温度センサ101,103で検知された湯水の温度は、後述する制御回路C1に出力される。従って、これら熱交温度センサ101及び出湯温度センサ103が、給湯側燃焼系統30における流体流路を流れる流体の温度を検知する流体温度検知部として機能する。さらに、給湯路100には、凍結防止用のヒータ403,405が設けられている。   The hot water supply path 100 is supplied to the downstream side from the junction of the hot water temperature sensor 101 for detecting the temperature of hot water discharged from the hot water supply side first heat exchanger 31 and the hot water supply bypass path 105 in order from the upstream side. A hot water temperature sensor 103 for detecting the temperature of the hot water is provided. The temperature of the hot water detected by these temperature sensors 101 and 103 is output to the control circuit C1 described later. Therefore, the heat exchanger temperature sensor 101 and the hot water temperature sensor 103 function as a fluid temperature detector that detects the temperature of the fluid flowing through the fluid flow path in the hot water supply side combustion system 30. Furthermore, the hot water supply path 100 is provided with heaters 403 and 405 for preventing freezing.

給湯側バーナユニット33の下方には、送風ファン70が設けられており、送風ファン70の作動によって、給気口5から筐体10内に吸入された屋外の空気が、給湯側バーナユニット33及び後述する暖房側バーナユニット43に燃焼用空気として供給されるとともに、給湯側バーナユニット33及び暖房側バーナユニット43から放出される燃焼排気が排気口7から排出される。なお、暖房側バーナユニット43の下方にも送風ファンを設け、給湯側バーナユニット33及び暖房側バーナユニット43に個別に燃焼用空気を供給してもよい。   A blower fan 70 is provided below the hot water supply side burner unit 33, and outdoor air sucked into the housing 10 from the air supply port 5 by the operation of the blower fan 70 is supplied to the hot water supply side burner unit 33 and While being supplied as combustion air to a heating side burner unit 43 which will be described later, combustion exhaust discharged from the hot water supply side burner unit 33 and the heating side burner unit 43 is discharged from the exhaust port 7. A blower fan may also be provided below the heating side burner unit 43 to supply combustion air to the hot water supply side burner unit 33 and the heating side burner unit 43 individually.

給湯側バーナユニット33は、それぞれ複数本のバーナを有する3個の給湯側バーナブロック33a,33b,33cから構成されており、各給湯側バーナブロック33a,33b,33cは、図示しないガス供給路から分岐した給湯側ガス分岐路52に接続されている。ガス供給路には、ガス供給路を開閉する元電磁弁51が設けられている。給湯側ガス分岐路52には、給湯側ガス分岐路52の開度を変更する給湯側ガス比例弁53と、給湯側バーナブロック33a,33b,33cへの燃料ガスの供給と遮断を個別に切り替える給湯側切換弁54a,54b,54cとが設けられている。従って、給湯側切換弁54a,54b,54cを選択的に開閉することにより、給湯側バーナユニット33は燃焼量範囲の異なる能力段数のいずれかに切り替えられる。   The hot water supply side burner unit 33 includes three hot water supply side burner blocks 33a, 33b, and 33c each having a plurality of burners, and each hot water supply side burner block 33a, 33b, and 33c is connected to a gas supply path (not shown). The branched hot water supply side gas branch 52 is connected. An original electromagnetic valve 51 for opening and closing the gas supply path is provided in the gas supply path. The hot water supply side gas branch 52 is individually switched between the hot water supply side gas proportional valve 53 for changing the opening degree of the hot water supply side gas branch 52 and the supply and shutoff of the fuel gas to the hot water supply side burner blocks 33a, 33b and 33c. Hot water supply side switching valves 54a, 54b, 54c are provided. Therefore, by selectively opening and closing the hot water supply side switching valves 54a, 54b, 54c, the hot water supply side burner unit 33 is switched to one of the capacity stages having different combustion amount ranges.

給水路90には、上流側から順に、給水路90を流れる水の流量を検知する水量センサ91と、給水路90の開度を変更する水量サーボ92と、給水路90と給湯路100を連通する給湯バイパス路105の開度を変更するバイパスサーボ93とが設けられている。さらに、給水路90には、凍結防止用のヒータ402,404,406が設けられている。   The water supply channel 90 communicates with a water amount sensor 91 that detects the flow rate of water flowing through the water supply channel 90, a water amount servo 92 that changes the opening of the water supply channel 90, and the water supply channel 90 and the hot water supply channel 100 in order from the upstream side. A bypass servo 93 for changing the opening degree of the hot water supply bypass passage 105 is provided. Further, the water supply passage 90 is provided with heaters 402, 404, and 406 for preventing freezing.

また、給湯路100からは湯張り路250が分岐しており、湯張り路250は浴槽P2に接続された風呂戻り路251に連通している。風呂戻り路251は、風呂往き路252とともに浴槽P2と風呂熱交換器221との間で循環回路を構成している。   Further, a hot water filling passage 250 branches from the hot water supply passage 100, and the hot water filling passage 250 communicates with a bath return passage 251 connected to the bathtub P2. The bath return path 251 constitutes a circulation circuit between the bathtub P <b> 2 and the bath heat exchanger 221 together with the bath going-out path 252.

湯張り路250には、上流側から順に、湯張り路250を開閉する湯張り電磁弁261と、湯張り路250から給湯路100への湯水の逆流を阻止するための逆止弁263と、給湯路100から湯張り路250に供給される湯水の流量を検知する湯張り水量センサ262とが設けられている。さらに、湯張り路250には、凍結防止用のヒータ407が設けられている。   In the hot water passage 250, a hot water solenoid valve 261 that opens and closes the hot water passage 250 in order from the upstream side, a check valve 263 for preventing a back flow of hot water from the hot water passage 250 to the hot water supply passage 100, A hot water quantity sensor 262 that detects the flow rate of hot water supplied from the hot water supply path 100 to the hot water supply path 250 is provided. Further, the hot water filling path 250 is provided with a heater 407 for preventing freezing.

風呂戻り路251には、浴槽P2から風呂戻り路251に流入する湯水の温度を検知する風呂戻り温度センサ225と、浴槽P2内の湯水を風呂往き路252及び風呂戻り路251を介して循環させるための風呂ポンプ224と、浴槽P2内の湯水の水位を検知する水位センサ223と、風呂戻り路251に所定流量以上の湯水が流れていることを検知する風呂水流スイッチ222とが設けられている。また、風呂往き路252には、風呂熱交換器221から浴槽P2に流出する湯水の温度を検知する風呂往き温度センサ226が設けられている。さらに、風呂ポンプ224には、凍結防止用のヒータ408が設けられている。   The bath return path 251 circulates the bath return temperature sensor 225 that detects the temperature of hot water flowing into the bath return path 251 from the bathtub P2 and the hot water in the bathtub P2 through the bath return path 252 and the bath return path 251. Bath pump 224, a water level sensor 223 that detects the level of hot water in the bathtub P2, and a bath water flow switch 222 that detects that hot water of a predetermined flow rate or more is flowing in the bath return path 251. . In addition, the bath going-out path 252 is provided with a bath going-out temperature sensor 226 that detects the temperature of the hot water flowing out from the bath heat exchanger 221 to the bathtub P2. Furthermore, the bath pump 224 is provided with a heater 408 for preventing freezing.

暖房・追焚き側燃焼系統40には、下から順に、暖房側バーナユニット43、暖房側第1熱交換器41、及び暖房側第2熱交換器42が配置されている。暖房側第1熱交換器41は、暖房側バーナユニット43から放出される燃焼排気から顕熱を回収し、暖房側第2熱交換器42は、暖房側バーナユニット43から放出される燃焼排気から潜熱を回収する。   In the heating / heating-side combustion system 40, a heating-side burner unit 43, a heating-side first heat exchanger 41, and a heating-side second heat exchanger 42 are arranged in order from the bottom. The heating-side first heat exchanger 41 collects sensible heat from the combustion exhaust discharged from the heating-side burner unit 43, and the heating-side second heat exchanger 42 recovers from the combustion exhaust discharged from the heating-side burner unit 43. Recover latent heat.

暖房・追焚き側燃焼系統40は、流体流路として、暖房側第2熱交換器42の上流端に接続された暖房戻り路200と、暖房側第1熱交換器41の下流端に接続された暖房往き路210と、暖房側第2熱交換器32の下流端と暖房側第1熱交換器41の上流端とをシスターン201を挟んで接続する連絡往き路205及び連絡戻り路206とを備える。   The heating / heating-side combustion system 40 is connected as a fluid flow path to the heating return path 200 connected to the upstream end of the heating-side second heat exchanger 42 and to the downstream end of the heating-side first heat exchanger 41. The heating outbound path 210 and the communication outbound path 205 and the communication return path 206 that connect the downstream end of the heating side second heat exchanger 32 and the upstream end of the heating side first heat exchanger 41 with the cistern 201 interposed therebetween. Prepare.

シスターン201には、給水路90から分岐し、シスターン201に水を補充するための補水路204が接続されている。シスターン201と補水路204との接続部には、補水電磁弁203が設けられており、補水電磁弁203を開くことで、上水道から給水路90に導入された水が供給される。また、補水路204には、凍結防止用のヒータ409が設けられている。   The cistern 201 branches from the water supply channel 90 and is connected to a hydration channel 204 for replenishing the cistern 201 with water. A water replenishing electromagnetic valve 203 is provided at a connection portion between the systern 201 and the water replenishment channel 204, and water introduced from the water supply to the water supply channel 90 is supplied by opening the water replenishing electromagnetic valve 203. In addition, a heater 409 for preventing freezing is provided in the supplemental water channel 204.

暖房往き路210は、高温暖房端末(温風暖房端末等)P3に接続されている。連絡戻り路206には、高温暖房端末P3と暖房・追焚き側燃焼系統40との間で湯水を循環させるための暖房ポンプ211が設けられている。また、連絡戻り路206には、暖房ポンプ211より下流側の中間部から低温分岐路216が分岐し、低温暖房端末(床暖房等)P4を接続するための熱動弁ヘッダ212に繋がっている。さらに、暖房戻り路200には、低温暖房端末P4からの湯水を戻す暖房戻り路217が接続されている。この構成により、暖房ポンプ211を作動させることで、暖房戻り路200を流れる湯水が、暖房側バーナユニット43から放出される燃焼排気によって暖房側第2熱交換器42及び暖房側第1熱交換器41で熱交換加熱され、加熱された湯水が暖房往き路210から各暖房端末P3,P4に循環供給される。   The heating outbound path 210 is connected to a high temperature heating terminal (hot air heating terminal or the like) P3. The communication return path 206 is provided with a heating pump 211 for circulating hot water between the high temperature heating terminal P3 and the heating / reheating side combustion system 40. In addition, a low temperature branch 216 branches from an intermediate portion downstream of the heating pump 211 to the communication return path 206, and is connected to a thermal valve header 212 for connecting a low temperature heating terminal (floor heating or the like) P4. . Further, a heating return path 217 for returning hot water from the low temperature heating terminal P4 is connected to the heating return path 200. With this configuration, by operating the heating pump 211, hot water flowing through the heating return path 200 is heated by the combustion exhaust discharged from the heating-side burner unit 43, and the heating-side second heat exchanger 42 and the heating-side first heat exchanger. In 41, heat exchange heating is performed, and the heated hot water is circulated and supplied from the heating outbound path 210 to each of the heating terminals P3 and P4.

暖房往き路210には、暖房側第1熱交換器41から出湯される湯水の温度を検知する暖房高温温度センサ213が設けられており、連絡往き路206には、シスターン201から低温分岐路216に供給される湯水の温度を検知する暖房低温温度センサ215とが設けられている。これらの温度センサ213,215で検知された湯水の温度は、後述する制御回路C1に出力される。従って、暖房高温温度センサ213及び暖房低温温度センサ215が、暖房・追焚き側燃焼系統40における流体流路を流れる流体の温度を検知する流体温度検知部として機能する。   A heating high temperature sensor 213 for detecting the temperature of hot water discharged from the heating side first heat exchanger 41 is provided in the heating outbound path 210, and the communication outbound path 206 is connected to the low temperature branch path 216 from the systern 201. And a heating low-temperature sensor 215 for detecting the temperature of the hot and cold water supplied to the water. The temperature of the hot water detected by these temperature sensors 213 and 215 is output to the control circuit C1 described later. Therefore, the heating high temperature sensor 213 and the heating low temperature sensor 215 function as a fluid temperature detector that detects the temperature of the fluid flowing through the fluid flow path in the heating / reheating-side combustion system 40.

暖房側バーナユニット43は、それぞれ複数本のバーナを有する2個のバーナブロック43a,43bから構成されており、各バーナブロック43a,43bは、ガス供給路から分岐した暖房側ガス分岐路60に接続されている。暖房側ガス分岐路60には、暖房側ガス分岐路60の開度を変更する暖房側ガス比例弁61と、バーナブロック43a,43bへの燃料ガスの供給と遮断を個別に切り替える暖房側切換弁62a,62bとが設けられている。従って、暖房側切換弁62a,62bを選択的に開閉することにより、暖房側バーナユニット43は燃焼量範囲の異なる能力段数のいずれかに切り替えられる。   The heating-side burner unit 43 is composed of two burner blocks 43a and 43b each having a plurality of burners, and each of the burner blocks 43a and 43b is connected to a heating-side gas branch path 60 branched from the gas supply path. Has been. The heating-side gas branch path 60 includes a heating-side gas proportional valve 61 that changes the opening degree of the heating-side gas branch path 60 and a heating-side switching valve that individually switches between supply and shutoff of fuel gas to the burner blocks 43a and 43b. 62a and 62b are provided. Therefore, by selectively opening and closing the heating side switching valves 62a and 62b, the heating side burner unit 43 is switched to one of the capability stages having different combustion amount ranges.

暖房往き路210から分岐した風呂分岐路240の途中には、既述した風呂熱交換器221が設けられている。風呂熱交換器221において、風呂往き路252内を流通する湯水と風呂分岐路240内を流通する湯水との間で熱交換(液−液熱交換)が行われ、風呂往き路252内を流通する湯水が加熱される。風呂分岐路240には、風呂分岐路240の開度を変更する追焚き流量制御弁220が設けられている。   The bath heat exchanger 221 described above is provided in the middle of the bath branch path 240 branched from the heating outbound path 210. In the bath heat exchanger 221, heat exchange (liquid-liquid heat exchange) is performed between the hot water flowing in the bath going path 252 and the hot water flowing in the bath branching path 240, and flows in the bath going path 252. The hot water is heated. The bath branch path 240 is provided with an additional flow control valve 220 that changes the opening degree of the bath branch path 240.

給気口5近傍には、給気筒6を介して屋外から流入する空気(外気)の温度を検知する外気温センサ11が設けられている。外気温センサ11で検知された外気温は、制御回路C1に出力される。従って、外気温センサ11が、外気温を検知する外気温検知部として機能とする。なお、外気温センサ11は、屋外に設けられてもよいし、筐体10の他の箇所に設けられてもよい。   An outside air temperature sensor 11 that detects the temperature of air (outside air) that flows in from the outside via the supply cylinder 6 is provided in the vicinity of the air inlet 5. The outside air temperature detected by the outside air temperature sensor 11 is output to the control circuit C1. Therefore, the outside air temperature sensor 11 functions as an outside air temperature detecting unit that detects the outside air temperature. Note that the outside air temperature sensor 11 may be provided outdoors or may be provided in another location of the housing 10.

筐体10内に組み込まれた制御回路C1には、リモコン301が接続されており、使用者は、リモコン301を操作して、給湯運転における給湯温度、湯張り運転における湯張り温度、暖房運転における暖房温度、追焚き運転における追焚き温度等を設定することができる。また、図示しないが、制御回路C1には、送風ファン70のファンモータ、元電磁弁51、給湯側ガス比例弁53、給湯側切換弁54a,54b,54c、暖房側ガス比例弁61、暖房側切換弁62a,62b、給湯側バーナユニット33及び暖房側バーナユニット43の各炎孔近傍にて火花放電する点火電極、給湯側バーナユニット33及び暖房側バーナユニット43の点火を検知する炎検知センサ、水量センサ91、水量サーボ92、バイパスサーボ93、補水電磁弁203、湯張り電磁弁261、湯張り水量センサ262、追焚き流量制御弁220、暖房ポンプ211、風呂水流スイッチ222、水位センサ223、風呂ポンプ224、シスターン201の水位電極、熱交温度センサ101、出湯温度センサ103、暖房高温温度センサ213、暖房低温温度センサ215、外気温センサ11、風呂戻り温度センサ225、風呂往き温度センサ226、凍結防止用のヒータ401〜409が電気配線を通じて接続されている。   A remote controller 301 is connected to the control circuit C1 incorporated in the housing 10, and the user operates the remote controller 301 to operate the hot water supply temperature in the hot water supply operation, the hot water temperature in the hot water operation, and the heating operation. The heating temperature, the reheating temperature in the renewal operation, and the like can be set. Although not shown, the control circuit C1 includes a fan motor of the blower fan 70, an original solenoid valve 51, a hot water supply side gas proportional valve 53, a hot water supply side switching valve 54a, 54b, 54c, a heating side gas proportional valve 61, and a heating side. An ignition electrode that sparks in the vicinity of each flame hole of the switching valves 62a and 62b, the hot water supply side burner unit 33, and the heating side burner unit 43, a flame detection sensor that detects ignition of the hot water supply side burner unit 33 and the heating side burner unit 43, Water volume sensor 91, water volume servo 92, bypass servo 93, water filling solenoid valve 203, hot water solenoid valve 261, hot water volume sensor 262, additional flow control valve 220, heating pump 211, bath water flow switch 222, water level sensor 223, bath Pump 224, water level electrode of cistern 201, heat exchange temperature sensor 101, hot water temperature sensor 103, heating high temperature temperature sensor 213, heating low temperature sensor 215, the outside air temperature sensor 11, the bath return temperature sensor 225, a bath forward temperature sensor 226, heater 401 to 409 for antifreeze is connected through an electric wire.

制御回路C1は、図示しないCPU、メモリ、インターフェース回路等により構成された電子回路ユニットであり、メモリに格納された熱源装置1の制御用プログラムをCPUで実行することによって、熱源装置1の全体的な作動を制御する機能を果たす。また、制御回路C1のメモリには、各燃焼系統30,40で各種運転を行うにあたって、各バーナユニット33,43で要求される要求燃焼量を得るための燃料ガス供給量、及び燃料ガス供給量に応じた送風ファン70の目標回転数の設定値を含むデータテーブルや後述する送風ファン70の最大回転数を低下させるためのデータテーブルが格納されている。   The control circuit C1 is an electronic circuit unit configured by a CPU, a memory, an interface circuit, and the like (not shown), and the control program for the heat source device 1 stored in the memory is executed by the CPU, whereby the overall control of the heat source device 1 is performed. It functions to control the operation. Further, in the memory of the control circuit C1, the fuel gas supply amount for obtaining the required combustion amount required in each burner unit 33, 43 and the fuel gas supply amount when performing various operations in each combustion system 30, 40 A data table including a set value of the target rotational speed of the blower fan 70 corresponding to the above and a data table for reducing the maximum rotational speed of the blower fan 70 described later are stored.

例えば、暖房・追焚き側燃焼系統40における暖房運転について説明すると、制御回路C1は、暖房高温温度センサ213及び暖房低温温度センサ215で検知される湯水の温度に応じて、暖房側バーナユニット43で要求される要求燃焼量を演算し、その求めた要求燃焼量が得られるように、暖房側ガス比例弁61の開度、及び暖房側切換弁62a,62bの開閉を制御することで、燃料ガス供給量(燃焼量)を制御し、且つ燃料ガス供給量に対応する燃焼用空気の供給量となるように送風ファン70の目標回転数を制御して、通常燃焼制御を実行するように構成されている。   For example, the heating operation in the heating / heating-side combustion system 40 will be described. The control circuit C1 uses the heating-side burner unit 43 in accordance with the hot water temperature detected by the heating high temperature sensor 213 and the heating low temperature sensor 215. By calculating the required required combustion amount and controlling the opening degree of the heating side gas proportional valve 61 and the opening and closing of the heating side switching valves 62a and 62b so as to obtain the required required combustion amount, the fuel gas The supply amount (combustion amount) is controlled, and the target rotational speed of the blower fan 70 is controlled so as to be the supply amount of combustion air corresponding to the fuel gas supply amount, and normal combustion control is executed. ing.

ここで、既述したように、本実施の形態の暖房側バーナユニット43は燃焼量範囲の異なる複数の能力段数を有しており、暖房側バーナユニット43の通常燃焼制御は、図2に示す燃焼量と送風ファン70のファン回転数との相関関係に基づいて実行されるように構成されている。   Here, as described above, the heating-side burner unit 43 of the present embodiment has a plurality of capacity stages having different combustion amount ranges, and the normal combustion control of the heating-side burner unit 43 is shown in FIG. It is configured to be executed based on the correlation between the combustion amount and the fan rotation speed of the blower fan 70.

具体的には、通常燃焼制御は、要求燃焼量に応じて、バーナブロック43aのみを燃焼させる低燃焼量側の第1段側燃焼量範囲G1と、両バーナブロック43a,43bを燃焼させる第1段側燃焼量範囲G1よりも高燃焼量側の第2段側燃焼量範囲G2とを選択的に切り替えて実行可能に構成されている。これにより、燃焼量を第1段から第2段までの広い燃焼量範囲で調整することができる。従って、図2から理解されるように、暖房側バーナユニット43では、第1段側燃焼量範囲G1が低燃焼量側の下段側燃焼量範囲に対応し、第2段側燃焼量範囲G2が高燃焼量側の上段側燃焼量範囲に対応する。なお、3段以上の能力段数を有する場合、中段の能力段数は、それより低燃焼量側の能力段数に対しては上段側に該当し、それより高燃焼量側の能力段数に対しては下段側に該当する。   Specifically, in the normal combustion control, the first combustion side range G1 on the low combustion amount side for burning only the burner block 43a and the first burner blocks 43a and 43b for burning only the burner block 43a according to the required combustion amount. The second stage combustion amount range G2 on the higher combustion amount side than the stage side combustion amount range G1 is selectively switched and executed. Thereby, the combustion amount can be adjusted in a wide combustion amount range from the first stage to the second stage. Therefore, as understood from FIG. 2, in the heating-side burner unit 43, the first stage combustion amount range G1 corresponds to the lower combustion amount range on the low combustion amount side, and the second stage combustion amount range G2 is Corresponds to the upper combustion amount range of the high combustion amount side. When there are three or more capacity stages, the middle capacity stage corresponds to the upper stage with respect to the lower capacity stage, and the higher capacity stage with respect to the higher capacity stage. Corresponds to the lower side.

また、送風ファン70の目標回転数は、各能力段数の第1段側及び第2段側最小燃焼量G1p,G2p並びに第1段側及び第2段側最大燃焼量G1q,G2qに対応して、所定の燃焼用空気の供給量となるように、第1段側及び第2段側最小回転数R1p,R2p並びに第1段側及び第2段側最大回転数R1q,R2qが設定されており、第1段側最大燃焼量G1qに対応する第1段側最大回転数R1qは第2段側最大燃焼量G2qに対応する第2段側最大回転数R2qよりも高く設定されている。このため、この暖房側バーナユニット43の通常燃焼制御では、第1段側最大回転数R1qが送風ファン70の最大回転数に対応する。さらに、図2に示すように、第1段側燃焼量範囲G1の第1段側最大燃焼量G1qは、第2段側燃焼量範囲G2の第2段側最小燃焼量G2pよりも多くなるように設定されている。これにより、隣接する能力段数の間に燃焼量範囲の重ね代が設けられている。   The target rotational speed of the blower fan 70 corresponds to the first stage side and second stage side minimum combustion amounts G1p, G2p and the first stage side and second stage side maximum combustion amounts G1q, G2q of each capacity stage number. The first stage side and second stage side minimum rotational speeds R1p and R2p and the first stage side and second stage side maximum rotational speeds R1q and R2q are set so that a predetermined amount of combustion air is supplied. The first stage maximum rotational speed R1q corresponding to the first stage maximum combustion amount G1q is set higher than the second stage maximum rotational speed R2q corresponding to the second stage maximum combustion amount G2q. For this reason, in the normal combustion control of the heating side burner unit 43, the first stage side maximum rotational speed R1q corresponds to the maximum rotational speed of the blower fan 70. Further, as shown in FIG. 2, the first stage maximum combustion amount G1q of the first stage side combustion amount range G1 is larger than the second stage minimum combustion amount G2p of the second stage side combustion amount range G2. Is set to Thereby, the overlap amount of the combustion amount range is provided between the adjacent capability stages.

従って、要求燃焼量の増加に伴い、燃焼量を増加させる方向へ能力段数が切り替えられる場合について説明すると、暖房側切換弁62aのみを開弁して、バーナブロック43aのみを燃焼させた燃焼状態では、第1特性ラインL1に基づいて第1段側燃焼量範囲G1の範囲で燃焼量を増加させるべく暖房側ガス比例弁61の開度を大きくしていくとともに、それに対応して送風ファン70の目標回転数を増加させていく。そして、要求燃焼量が第1段側最大燃焼量G1qになり、送風ファン70を第1段側最大回転数R1qで回転させると、さらに暖房側切換弁62bを開弁して、両バーナブロック43a,43bを燃焼させる。このとき、暖房側バーナユニット43全体への燃料ガス供給量は増加されているが、各バーナブロック43a,43bへ供給される燃料ガス供給量は減少するため、それに応じて送風ファン70の目標回転数を減少させる。そして、さらに要求燃焼量の増加に従って、第2特性ラインL2に基づいて第2段側燃焼量範囲G2の範囲で燃焼量を増加させるべく、暖房側ガス比例弁61の開度を大きくするとともに、送風ファン70の目標回転数を増加させていく。なお、第1段側及び第2段側最小燃焼量G1p,G2p、並びに第1段側及び第2段側最大燃焼量G1q,G2qは、暖房側バーナユニット43の燃焼能力、能力段数、使用するバーナの特性などに基づいて適宜選択することができる。   Therefore, the case where the capacity stage number is switched in the direction of increasing the combustion amount as the required combustion amount increases will be described. In the combustion state in which only the heating side switching valve 62a is opened and only the burner block 43a is combusted. Based on the first characteristic line L1, the opening degree of the heating side gas proportional valve 61 is increased so as to increase the combustion amount in the first stage side combustion amount range G1, and the blower fan 70 is correspondingly increased. Increase the target speed. When the required combustion amount becomes the first stage side maximum combustion amount G1q and the blower fan 70 is rotated at the first stage side maximum rotation speed R1q, the heating side switching valve 62b is further opened, and both burner blocks 43a are opened. 43b are burned. At this time, the amount of fuel gas supplied to the entire heating-side burner unit 43 is increased, but the amount of fuel gas supplied to each of the burner blocks 43a and 43b is decreased. Decrease the number. Then, as the required combustion amount further increases, the opening degree of the heating-side gas proportional valve 61 is increased in order to increase the combustion amount in the second stage combustion amount range G2 based on the second characteristic line L2, The target rotational speed of the blower fan 70 is increased. The first stage side and second stage side minimum combustion amounts G1p and G2p, and the first stage side and second stage side maximum combustion amounts G1q and G2q are used for the combustion capacity and the number of capacity stages of the heating side burner unit 43. It can be appropriately selected based on the characteristics of the burner.

一方、要求燃焼量の減少に伴い、燃焼量を減少させる方向へ能力段数が切り替えられる場合について説明すると、暖房側切換弁62a,62bを開弁して、両バーナブロック43a,43bを燃焼させた燃焼状態から、第2特性ラインL2に基づいて燃焼量を減少させるべく、暖房側ガス比例弁61の開度を小さくしていくととともに、それに応じて送風ファン70の目標回転数を減少させていく。そして、要求燃焼量が第2段側最小燃焼量G2pになり、送風ファン70を第2段側最小回転数R2pで回転させると、暖房側切換弁62bを閉弁して、バーナブロック43aのみを燃焼させる。このとき暖房側バーナユニット43全体への燃料ガス供給量は減少されているが、バーナブロック43aへ供給される燃料ガス供給量は増加するため、それに応じて送風ファン70の目標回転数を増加させる。そして、さらに要求燃焼量の減少に従って、第1特性ラインL1に基づいて燃焼量を減少させるべく、暖房側ガス比例弁61の開度を小さくするとともに、送風ファン70の目標回転数を減少させていく。なお、給湯側バーナユニット33は、暖房側バーナユニット43と、燃焼量範囲の異なる能力段数を異なる段数で有しているが、能力段数の切り替えは上記と同様である。   On the other hand, a description will be given of a case where the capacity stage number is switched in the direction of decreasing the combustion amount as the required combustion amount decreases. The heating-side switching valves 62a and 62b are opened, and both the burner blocks 43a and 43b are burned. In order to reduce the combustion amount based on the second characteristic line L2 from the combustion state, the opening degree of the heating side gas proportional valve 61 is decreased and the target rotational speed of the blower fan 70 is decreased accordingly. Go. When the required combustion amount becomes the second stage side minimum combustion amount G2p and the blower fan 70 is rotated at the second stage side minimum rotation speed R2p, the heating side switching valve 62b is closed and only the burner block 43a is closed. Burn. At this time, the amount of fuel gas supplied to the entire heating-side burner unit 43 is reduced, but the amount of fuel gas supplied to the burner block 43a is increased, so that the target rotational speed of the blower fan 70 is increased accordingly. . Further, as the required combustion amount decreases, the opening degree of the heating-side gas proportional valve 61 is decreased and the target rotational speed of the blower fan 70 is decreased so as to decrease the combustion amount based on the first characteristic line L1. Go. Note that the hot water supply side burner unit 33 has a different number of capacity stages with different combustion amount ranges from the heating side burner unit 43, but the capacity number switching is the same as described above.

このように、低燃焼量側の下段側燃焼量範囲の最大燃焼量を、それに隣接する高燃焼量側の上段側燃焼量範囲の最小燃焼量よりも多く設定し、下段側燃焼量範囲と上段側燃焼量範囲との間に重ね代を設けることにより、各バーナユニット33,43の能力段数の頻繁な切り替わりを防止して、燃焼状態の安定化が図られ、ハンチングが防止される。   Thus, the maximum combustion amount in the lower combustion amount range on the low combustion amount side is set to be larger than the minimum combustion amount in the upper combustion amount range on the high combustion amount side adjacent to the lower combustion amount range. By providing an overlap margin with the side combustion amount range, frequent switching of the number of capability stages of the burner units 33 and 43 is prevented, the combustion state is stabilized, and hunting is prevented.

ところで、上記のような熱源装置1では、冬期において各流体流路内の湯水が凍結する可能性があるが、外気温に基づく凍結の可能性と湯水の温度に基づく凍結の可能性は必ずしも一致しない場合がある。そして、例えば、一方の暖房側・追焚き燃焼系統40で燃焼運転が行われ、他方の給湯側燃焼系統30で燃焼運転が行われていない場合、燃焼運転を行うために送風ファン70を回転させると、燃焼運転が行われていない給湯側燃焼系統30に空気が流入して流体流路内の湯水が凍結しやすくなる。特に、複数の燃焼系統30,40は、共通の給気筒6及び排気筒8を有する同一の缶体20内に配設され、共通の送風ファン70により燃焼用空気が供給されるため、凍結の可能性が高くなる。   By the way, in the heat source device 1 as described above, there is a possibility that the hot water in each fluid flow path is frozen in winter, but the possibility of freezing based on the outside air temperature and the possibility of freezing based on the temperature of the hot water are not necessarily the same. May not. For example, when the combustion operation is performed in one heating side / reheating combustion system 40 and the combustion operation is not performed in the other hot water supply side combustion system 30, the blower fan 70 is rotated to perform the combustion operation. Then, air flows into the hot water supply side combustion system 30 where the combustion operation is not performed, so that the hot water in the fluid flow path is easily frozen. In particular, the plurality of combustion systems 30, 40 are disposed in the same can body 20 having the common supply cylinder 6 and the exhaust cylinder 8, and the combustion air is supplied by the common blower fan 70. The possibility increases.

このため、本実施の形態の熱源装置1では、暖房側・追焚き燃焼系統40で燃焼運転が行われているが、給湯側燃焼系統30で燃焼運転が行われていない場合、外気温センサ11で検知される外気温だけでなく、熱交温度センサ101及び出湯温度センサ103で検知される湯水の温度にも基づいて凍結の可能性が判断され、凍結の可能性がある場合、これらの外気温及び湯水の温度に応じて送風ファン70の最大回転数を低下させる。また、給湯側燃焼系統30で燃焼運転が行われているが、暖房側・追焚き燃焼系統40で燃焼運転が行われていない場合、同様に、外気温センサ11で検知される外気温だけでなく、暖房高温温度センサ213及び暖房低温温度センサ215で検知される湯水の温度に基づいて凍結の可能性が判断され、凍結の可能性がある場合、これらの外気温及び湯水の温度に応じて送風ファン70の最大回転数を低下させる。   For this reason, in the heat source device 1 of the present embodiment, the combustion operation is performed in the heating side / reheating combustion system 40, but when the combustion operation is not performed in the hot water supply side combustion system 30, the outside air temperature sensor 11. The possibility of freezing is determined not only based on the outside air temperature detected in step 1 but also on the temperature of hot water detected by the heat exchanger temperature sensor 101 and the hot water temperature sensor 103. If there is a possibility of freezing, The maximum rotational speed of the blower fan 70 is reduced according to the temperature and the temperature of the hot water. Further, when the combustion operation is performed in the hot water supply side combustion system 30, but the combustion operation is not performed in the heating side / reheating combustion system 40, similarly, only the outside air temperature detected by the outside air temperature sensor 11 is used. However, the possibility of freezing is determined based on the temperature of hot water detected by the heating high temperature sensor 213 and the heating low temperature sensor 215, and if there is a possibility of freezing, depending on these outside air temperature and hot water temperature The maximum rotational speed of the blower fan 70 is reduced.

例えば、暖房・追焚き側燃焼系統40で暖房運転が行われ、給湯側燃焼系統30で給湯運転が行われていないとき、外気温センサ11で検知される外気温Th、熱交温度センサ101で検知される湯水の温度Ta、及び出湯温度センサ103で検知される湯水の温度Tbに基づいて、給湯運転が行われていない給湯側燃焼系統30の流体流路の凍結の可能性及びその程度を判断し、凍結の可能性がある場合、図3に示すデータテーブルに基づき、凍結の可能性の程度に応じて、暖房運転が行われている暖房・追焚き側燃焼系統40における暖房側バーナユニット43に燃焼用空気を供給する送風ファン70の最大回転数を所定の低減量、低下させる。なお、図示しないが、給湯側燃焼系統30で給湯運転が行われているが、暖房側・追焚き燃焼系統40で暖房運転、追焚き運転がいずれも行われていない場合についても、同様のテータテーブルが設けられる。   For example, when a heating operation is performed in the heating / reheating side combustion system 40 and a hot water supply operation is not performed in the hot water supply side combustion system 30, the outside air temperature Th detected by the outside air temperature sensor 11 and the heat exchange temperature sensor 101 are detected. Based on the detected hot water temperature Ta and the hot water temperature Tb detected by the tapping temperature sensor 103, the possibility and the degree of freezing of the fluid flow path of the hot water supply side combustion system 30 where the hot water supply operation is not performed are determined. If there is a possibility of freezing based on the data table shown in FIG. 3, the heating-side burner unit in the heating / reheating-side combustion system 40 in which the heating operation is performed according to the degree of the possibility of freezing based on the data table shown in FIG. The maximum rotational speed of the blower fan 70 that supplies combustion air to 43 is reduced by a predetermined reduction amount. Although not shown, the hot water supply operation is performed in the hot water supply side combustion system 30, but the same data is also applied to the case where neither the heating operation nor the additional operation is performed in the heating side / additional combustion system 40. A table is provided.

図3を参照して、本実施の形態の熱源装置1における凍結の可能性及びその程度の判断並びに凍結の可能性がある場合の燃焼制御について概略的に説明すると、上記判断のために、外気温Thに対して複数(ここでは、第1〜第3領域の3段階)の凍結危険温度領域が設定され、湯水の温度Ta,Tbに対して複数(ここでは、第1〜第3領域の3段階)の基準温度領域が設定されている。そして、送風ファン70の最大回転数を、外気温Th及び湯水の温度Ta,Tbが属する温度領域に応じて設定されている所定の低減量で低下させる。例えば、外気温Thが−10℃よりも低下したが、−15℃以上であり、湯水の温度Ta,Tbが10℃よりも低下したが、8℃以上である場合、通常燃焼制御において設定されている送風ファン70の最大回転数を10%低下させる。従って、図2に示すように、送風ファン70の目標回転数を、通常燃焼制御における最大回転数(ここでは、第1段側最大回転数R1q)(約330Hz)を10%低下させた凍結時最大回転数Rsq(10%↓)(約300Hz)以下に制限し、それに対応した各能力段数の燃焼量範囲で燃焼制御が行われる。なお、本実施の形態の暖房側バーナユニット43のように複数の能力段数が設けられ、能力段数に応じて最大回転数が異なる場合、最大回転数を所定の低減量で低下させた凍結時最大回転数が、異なる能力段数の最大回転数よりも高くなることがある(例えば、凍結時最大回転数Rsq(10%↓)と第2段側最大回転数R2q)。従って、この場合、通常燃焼制御における各能力段数の最大回転数が維持される。   Referring to FIG. 3, the determination of the possibility and the degree of freezing in the heat source device 1 of the present embodiment and the combustion control when there is a possibility of freezing will be schematically described. A plurality of (in this case, three stages of first to third regions) freezing risk temperature regions are set for the temperature Th, and a plurality (here, the first to third regions) for the hot water temperatures Ta and Tb. A three-step reference temperature region is set. Then, the maximum rotational speed of the blower fan 70 is decreased by a predetermined reduction amount set according to the temperature range to which the outside air temperature Th and the hot water temperatures Ta and Tb belong. For example, when the outside air temperature Th is lower than −10 ° C. but is −15 ° C. or higher, and the hot water temperatures Ta and Tb are lower than 10 ° C., but 8 ° C. or higher, the normal combustion control is set. The maximum rotational speed of the blower fan 70 is reduced by 10%. Therefore, as shown in FIG. 2, the target rotational speed of the blower fan 70 is set to the maximum rotational speed in the normal combustion control (here, the first-stage maximum rotational speed R1q) (about 330 Hz) at the time of freezing. Combustion control is performed within the combustion amount range of each capability stage corresponding to the maximum rotational speed Rsq (10% ↓) (about 300 Hz) or less. In addition, when a plurality of capacity steps are provided as in the heating-side burner unit 43 of the present embodiment, and the maximum number of rotations varies according to the number of capacity steps, the maximum number of freezing is reduced by a predetermined reduction amount. The number of revolutions may be higher than the maximum number of revolutions of different capacity stages (for example, the maximum number of revolutions Rsq (10% ↓) during freezing and the second stage side maximum number of revolutions R2q). Therefore, in this case, the maximum number of rotations of each capability stage in the normal combustion control is maintained.

同様に、外気温Thが−15℃より低下したが、−20℃以上であり、湯水の温度Ta,Tbが8℃よりも低下したが、6℃以上である場合、通常燃焼制御において設定されている送風ファン70の最大回転数を20%低下させる。従って、図2に示すように、送風ファン70の目標回転数を、通常燃焼制御における最大回転数(約330Hz)を20%低下させた凍結時最大回転数Rsq(20%↓)(約270Hz)以下に制限して燃焼制御が行われる。このように、凍結の可能性がある場合に、送風ファン70の目標回転数を、通常燃焼制御における最大回転数を所定の低減量、低下させた、第1段側燃焼量範囲G1と第2段側燃焼量範囲G2との重ね代の範囲となる凍結時最大回転数Rsq以下に制限すれば、第1段側燃焼量範囲G1で暖房側バーナユニット43を燃焼させているとき、重ね代の範囲内における第2段側燃焼量範囲G2の燃焼量が要求されても、能力段数が維持される。従って、ハンチングを抑制しながら、燃焼運転が行われていない給湯側燃焼系統30の凍結を防止することができる。   Similarly, when the outside air temperature Th is lower than −15 ° C. but is −20 ° C. or higher, and the hot water temperatures Ta and Tb are lower than 8 ° C., but 6 ° C. or higher, the normal combustion control is set. The maximum rotational speed of the blower fan 70 is reduced by 20%. Therefore, as shown in FIG. 2, the target rotational speed of the blower fan 70 is reduced by 20% from the maximum rotational speed (about 330 Hz) in normal combustion control, and the maximum rotational speed Rsq during freezing Rsq (20% ↓) (about 270 Hz). Combustion control is performed with the following restrictions. As described above, when there is a possibility of freezing, the target rotation speed of the blower fan 70 is decreased by a predetermined reduction amount from the maximum rotation speed in the normal combustion control, and the first stage side combustion amount range G1 and the second rotation amount range. By limiting to the maximum freezing rotation speed Rsq that is the range of the overlap allowance with the stage side combustion amount range G2, when the heating-side burner unit 43 is burned in the first stage side combustion amount range G1, Even if the combustion amount in the second stage side combustion amount range G2 within the range is required, the number of capacity stages is maintained. Therefore, freezing of the hot water supply side combustion system 30 in which the combustion operation is not performed can be prevented while suppressing hunting.

さらに、外気温Thが−20℃より低下したが、−25℃以上であり、湯水の温度Ta,Tbが6℃よりも低下したが、4℃以上である場合、通常燃焼制御において設定されている送風ファン70の最大回転数を30%低下させる。このとき、図2に示すように、暖房側バーナユニット43の燃焼運転が低燃焼量側の第1段側燃焼量範囲G1で行われている場合、通常燃焼制御における最大回転数(約330Hz)を30%低下させると、隣接する高燃焼量側の上段側燃焼量範囲との重ね代の範囲の最小回転数(約260Hz)よりも低くなる。そのため、重ね代の範囲以下の固定された凍結時最大回転数Rsq(30%↓)(約230Hz)を設定し、送風ファン70の目標回転数を、固定された凍結時最大回転数Rsq以下に制限して燃焼制御が行われる。これにより、第1段側燃焼量範囲G1で暖房側バーナユニット43を燃焼させているとき、第2段側燃焼量範囲G2の最小燃焼量G2pが要求されるまで、固定された凍結時最大回転数Rsqで燃焼ファン70が回転され、第1段側燃焼量範囲G1の能力段数が維持される。一方、第2段側燃焼量範囲G2で暖房側バーナユニット43を燃焼させているとき、第1段側燃焼量範囲G1の固定された凍結時最大回転数Rsqに対応する燃焼量が要求されるまで、第2段側燃焼量範囲G2の最小燃焼量G2pで燃焼が行われ、第2段側燃焼量範囲G2の能力段数が維持される。従って、高燃焼量側及び低燃焼量側への能力段数の切り替わりを低減でき、ハンチングをできるだけ抑制しながら、燃焼運転が行われていない給湯側燃焼系統30の凍結を確実に防止することができる。   Furthermore, when the outside air temperature Th is lower than −20 ° C., it is −25 ° C. or higher, and the hot water temperatures Ta and Tb are lower than 6 ° C., but when the temperature is 4 ° C. or higher, it is set in the normal combustion control. The maximum rotational speed of the blower fan 70 is reduced by 30%. At this time, as shown in FIG. 2, when the combustion operation of the heating-side burner unit 43 is performed in the first combustion amount range G1 on the low combustion amount side, the maximum rotational speed (about 330 Hz) in the normal combustion control. Is reduced by 30%, it becomes lower than the minimum rotational speed (about 260 Hz) in the range of the overlap margin with the adjacent upper combustion amount range of the high combustion amount side. Therefore, a fixed maximum freezing speed Rsq (30% ↓) (about 230 Hz) below the range of the overlap allowance is set, and the target rotational speed of the blower fan 70 is set below the fixed maximum freezing speed Rsq. Limited combustion control is performed. Thus, when the heating-side burner unit 43 is burned in the first stage combustion amount range G1, the fixed maximum rotation during freezing is required until the minimum combustion amount G2p of the second stage combustion amount range G2 is required. The combustion fan 70 is rotated by a number Rsq, and the capacity stage number in the first stage side combustion amount range G1 is maintained. On the other hand, when the heating-side burner unit 43 is burned in the second stage combustion amount range G2, a combustion amount corresponding to the fixed maximum rotation speed Rsq during freezing in the first stage combustion amount range G1 is required. Until this time, combustion is performed with the minimum combustion amount G2p in the second stage side combustion amount range G2, and the capacity stage number in the second stage side combustion amount range G2 is maintained. Therefore, switching of the number of capacity stages to the high combustion amount side and the low combustion amount side can be reduced, and freezing of the hot water supply side combustion system 30 in which the combustion operation is not performed can be reliably prevented while suppressing hunting as much as possible. .

なお、上記から理解されるように、本実施の形態で、凍結時最大回転数を上段側燃焼量範囲との重ね代の範囲内とする第1基準温度は、10℃に設定されており、凍結時最大回転数を上段側燃焼量範囲との重ね代の範囲以下で固定する第2基準温度は6℃に設定されているが、これらを含めて凍結危険温度及び基準温度並びにそれらの温度領域は燃焼系統30,40の構造や送風ファン70の能力に応じて適宜設定される。また、本実施の形態では、外気温及び湯水の温度はいずれも、第3領域までしか設定されていないが、熱源装置1の設置環境に応じて、さらに低い温度領域を設定してもよい。この場合、送風ファン70の目標回転数は、固定された凍結時最大回転数以下に制限される。   In addition, as understood from the above, in the present embodiment, the first reference temperature that sets the maximum number of revolutions during freezing within the range of overlap with the upper combustion range is set to 10 ° C., The second reference temperature for fixing the maximum number of revolutions during freezing below the range of overlap with the upper combustion amount range is set to 6 ° C. Including these, the freezing dangerous temperature, the reference temperature, and their temperature range Is appropriately set according to the structure of the combustion systems 30 and 40 and the capability of the blower fan 70. In the present embodiment, both the outside air temperature and the hot water temperature are set only up to the third region, but a lower temperature region may be set according to the installation environment of the heat source device 1. In this case, the target rotation speed of the blower fan 70 is limited to a fixed maximum rotation speed during freezing.

このように、本実施の形態の熱源装置1によれば、例えば、暖房・追焚き側燃焼系統40で暖房運転が行われ、給湯側燃焼系統30で給湯運転が行われていないときに、外気温Thが所定の凍結危険温度より低くなる場合だけでなく、実際に凍結が生じやすい燃焼運転が行われていない給湯側燃焼系統30の流体流路における湯水の温度Ta,Tbが所定の基準温度より低くなるかどうかも判断するから、より的確に燃焼運転が行われていない給湯側燃焼系統30の流体流路の凍結の可能性を判断できる。しかも、外気温Th及び流体流路内の湯水の温度Ta,Tbがいずれも複数に分割された凍結危険温度領域及び基準温度領域の範囲内にあるかどうかを判断するから、凍結の可能性の程度も判断できる。   Thus, according to the heat source device 1 of the present embodiment, for example, when the heating operation is performed in the heating / reheating side combustion system 40 and the hot water supply operation is not performed in the hot water supply side combustion system 30, The temperature Ta and Tb of the hot water in the fluid flow path of the hot water supply side combustion system 30 not being subjected to the combustion operation in which freezing is actually likely to occur are not only the case where the temperature Th becomes lower than the predetermined freezing danger temperature. Since it is also determined whether or not it becomes lower, it is possible to determine the possibility of freezing of the fluid flow path of the hot water supply side combustion system 30 where the combustion operation is not performed more accurately. Moreover, since it is determined whether or not the outside air temperature Th and the hot water temperatures Ta and Tb in the fluid flow channel are both within the range of the freezing danger temperature region and the reference temperature region, the possibility of freezing is determined. The degree can also be judged.

そして、上記熱源装置1の通常燃焼制御では、各燃焼系統30,40におけるバーナユニット33,43に要求される要求燃焼量に応じて送風ファン70を所定の最大回転数以下で回転させているが、例えば、暖房・追焚き側燃焼系統40で暖房運転が行われ、給湯側燃焼系統30で給湯運転が行われていないときに、上記外気温Th、湯水の温度Ta,Tbに基づき凍結の可能性があると判断された場合、燃焼運転が行われている暖房・追焚き側燃焼系統40に燃焼用空気を供給する送風ファン70の目標回転数が、最大回転数よりも低下させた凍結時最大回転数以下に制限される。従って、送風ファン70を回転させることによる燃焼運転が行われていない給湯側燃焼系統30への空気の流入が抑えられ、給湯側燃焼系統30の流体流路の凍結の可能性を低減できる。   In the normal combustion control of the heat source device 1, the blower fan 70 is rotated at a predetermined maximum number of rotations or less according to the required combustion amount required for the burner units 33 and 43 in the combustion systems 30 and 40. For example, when the heating operation is performed in the heating / heating-side combustion system 40 and the hot water supply operation is not performed in the hot water supply side combustion system 30, freezing can be performed based on the outside temperature Th and the hot water temperatures Ta and Tb. When the target rotational speed of the blower fan 70 for supplying combustion air to the heating / reheating-side combustion system 40 in which the combustion operation is performed is reduced below the maximum rotational speed Limited to less than maximum speed. Therefore, the inflow of air to the hot water supply side combustion system 30 where the combustion operation by rotating the blower fan 70 is not performed is suppressed, and the possibility of freezing of the fluid flow path of the hot water supply side combustion system 30 can be reduced.

また、本実施の形態では、凍結の可能性の程度が低い場合、送風ファン70の目標回転数を、通常燃焼制御で設定されている最大回転数よりも低い、上段側燃焼量範囲との重ね代の範囲内の凍結時最大回転数以下に制限して燃焼制御が行われる。従って、例えば、暖房・追焚き側燃焼系統40で暖房運転が行われ、給湯側燃焼系統30で給湯運転が行われていないときに、暖房側バーナユニット43のハンチングを防止しつつ、効果的に給湯側燃焼系統30の流体流路の凍結を回避できる。   Further, in the present embodiment, when the possibility of freezing is low, the target rotation speed of the blower fan 70 is overlapped with the upper combustion amount range that is lower than the maximum rotation speed set in the normal combustion control. Combustion control is performed by limiting to the maximum rotation speed during freezing within the range of allowance. Therefore, for example, when the heating operation is performed in the heating / heating-side combustion system 40 and the hot water supply operation is not performed in the hot water supply side combustion system 30, the heating side burner unit 43 is effectively prevented from hunting. Freezing of the fluid flow path of the hot water supply side combustion system 30 can be avoided.

また、本実施の形態では、凍結の可能性の程度が高い場合、送風ファン70の目標回転数を、通常燃焼制御で設定されている最大回転数よりも低い、上段側燃焼量範囲との重ね代の範囲以下の固定された凍結時最大回転数以下に制限して燃焼制御が行われる。従って、例えば、暖房・追焚き側燃焼系統40で暖房運転が行われ、給湯側燃焼系統30で給湯運転が行われていないときに、暖房側バーナユニット43を下段側燃焼量範囲で燃焼させる場合、上段側燃焼量範囲の最小燃焼量が要求されるまで能力段数が維持され、暖房側バーナユニット43を上段側燃焼量範囲で燃焼させる場合、下段側燃焼量範囲の固定された凍結時最大回転数に対応する燃焼量が要求されるまで、上段側燃焼量範囲の最小燃焼量で燃焼させて、能力段数が維持される。従って、暖房側バーナユニット43のハンチングをできるだけ抑制しつつ、効果的に給湯側燃焼系統30の流体流路の凍結を回避できる。   Further, in the present embodiment, when the possibility of freezing is high, the target rotational speed of the blower fan 70 is overlapped with the upper stage combustion amount range that is lower than the maximum rotational speed set in the normal combustion control. Combustion control is performed by limiting the rotation speed to a fixed maximum freezing speed or less that is less than the allowable range. Therefore, for example, when the heating / burning side combustion system 40 performs the heating operation and the hot water supply side combustion system 30 does not perform the hot water supply operation, the heating side burner unit 43 is burned in the lower combustion amount range. When the heating stage burner unit 43 is burned in the upper combustion quantity range until the minimum combustion quantity in the upper combustion quantity range is required, the maximum rotation during freezing when the lower combustion quantity range is fixed. Until the combustion amount corresponding to the number is required, the combustion is performed with the minimum combustion amount in the upper combustion amount range, and the capacity stage number is maintained. Therefore, freezing of the fluid flow path of the hot water supply side combustion system 30 can be effectively avoided while suppressing hunting of the heating side burner unit 43 as much as possible.

次に、本実施の形態の熱源装置1における暖房運転時の制御動作について、図4のフローチャートを参照して説明する。なお、以下では、暖房・追焚き側燃焼系統40で暖房運転が行われ、給湯側燃焼系統30で給湯運転が行われていないときの制御動作を例に挙げて説明するが、給湯側燃焼系統30で給湯運転が行われ、暖房・追焚き側燃焼系統40で暖房運転、追焚き運転がいずれも行われていないときの制御動作は、凍結の可能性の判断において、熱交温度センサ101で検知される湯水の温度Ta及び出湯温度センサ103で検知される湯水の温度Tbの代わりに、暖房高温温度センサ213及び暖房低温温度センサ215で検知される湯水の温度が用いられる以外は同様である。また、追焚き運転が行われる場合、風呂ポンプ224を作動させて、風呂往き路251及び風呂戻り路252で湯水を循環させる以外は、暖房運転と同様である。   Next, the control operation at the time of heating operation in the heat source device 1 of the present embodiment will be described with reference to the flowchart of FIG. In the following description, a control operation when the heating / heating side combustion system 40 performs the heating operation and the hot water supply side combustion system 30 does not perform the hot water supply operation will be described as an example. The control operation when the hot water supply operation is performed at 30 and neither the heating operation nor the additional operation is performed at the heating / reheating side combustion system 40 is performed by the heat exchange temperature sensor 101 in the determination of the possibility of freezing. It is the same except that the temperature of hot water detected by the heating high temperature sensor 213 and the heating low temperature sensor 215 is used instead of the detected hot water temperature Ta and the hot water temperature Tb detected by the tapping temperature sensor 103. . Further, when the reheating operation is performed, it is the same as the heating operation except that the bath pump 224 is operated and hot water is circulated in the bath going-out path 251 and the bath return path 252.

例えば、使用者がリモコン301の暖房運転スイッチをオン操作すると、送風ファン70及び暖房ポンプの作動が開始されて、暖房側バーナユニット43の燃焼運転が開始される。そして、暖房運転が開始されると、まず給湯運転が行われているかどうかが判断される(ステップS1)。給湯運転が行われている場合、給湯側燃焼系統30における流体流路の凍結の可能性は低いため、設定される暖房運転モードに従い、要求燃焼量に応じて送風ファン70を所定の最小回転数と最大回転数の範囲で回転させる通常燃焼制御が実行される(ステップS7)。   For example, when the user turns on the heating operation switch of the remote controller 301, the operation of the blower fan 70 and the heating pump is started, and the combustion operation of the heating-side burner unit 43 is started. When the heating operation is started, it is first determined whether or not the hot water supply operation is performed (step S1). When the hot water supply operation is performed, the possibility of freezing of the fluid flow path in the hot water supply side combustion system 30 is low. Therefore, the blower fan 70 is set to a predetermined minimum rotation speed according to the required combustion amount according to the set heating operation mode. The normal combustion control for rotating the engine within the range of the maximum rotation speed is executed (step S7).

給湯運転が行われていない場合、さらに外気温センサ11で検知される外気温Thが、所定の凍結防止運転開始温度(例えば、3℃)以下であるかどうかが判断される(ステップS2)。外気温Thが凍結防止運転開始温度以下でなければ、同様に、給湯側燃焼系統30における流体流路の凍結の可能性は低いため、通常燃焼制御が実行される(ステップS7)。   When the hot water supply operation is not performed, it is further determined whether or not the outside air temperature Th detected by the outside air temperature sensor 11 is equal to or lower than a predetermined freezing prevention operation start temperature (for example, 3 ° C.) (step S2). If the outside air temperature Th is not equal to or lower than the freezing prevention operation start temperature, similarly, the possibility of freezing the fluid flow path in the hot water supply side combustion system 30 is low, so normal combustion control is executed (step S7).

外気温Thが凍結防止運転開始温度以下になると、給湯側燃焼系統30の流体流路に設けられた凍結防止用のヒータ401〜406に所定の時間間隔(例えば、オン/5分間−オフ/25分間)で通電し、流体流路を加熱する凍結防止運転を開始させる(ステップS3)。なお、図示しないが、凍結防止運転は、外気温Th及び湯水の温度Ta,Tbに応じて、通電時間の時間間隔が変更され、外気温Thが凍結防止運転開始温度より高くなると終了する。   When the outside temperature Th becomes equal to or lower than the freeze prevention operation start temperature, the freeze prevention heaters 401 to 406 provided in the fluid flow path of the hot water supply side combustion system 30 are provided with a predetermined time interval (for example, on / 5 minutes-off / 25). The antifreezing operation for heating the fluid flow path is started (step S3). Although not shown, the freeze prevention operation is terminated when the time interval of the energization time is changed according to the outside air temperature Th and the hot water temperatures Ta and Tb and the outside air temperature Th becomes higher than the freeze prevention operation start temperature.

次いで、外気温Thが所定の凍結危険温度(例えば、−10℃)未満となり、熱交温度センサ101で検知される湯水の温度Ta及び出湯温度センサ103で検知される湯水の温度Tbの少なくともいずれか一方が所定の基準温度(例えば、10℃)未満となると、図3のデータテーブルに基づき、外気温Th及び湯水の温度Ta,Tbに応じて設定されている低減量を決定し、これらの低減量のうち、より回転数が低くなる最も大きな低減量に基づき、送風ファン70の目標回転数を、凍結時最大回転数以下に制限する(ステップS4〜S6)。   Next, the outside air temperature Th becomes less than a predetermined freezing risk temperature (for example, −10 ° C.), and at least one of the hot water temperature Ta detected by the heat exchange temperature sensor 101 and the hot water temperature Tb detected by the tapping temperature sensor 103. When one of them is lower than a predetermined reference temperature (for example, 10 ° C.), the reduction amount set according to the outside air temperature Th and the hot water temperatures Ta and Tb is determined based on the data table of FIG. Based on the largest reduction amount in which the rotational speed becomes lower among the reduction amounts, the target rotational speed of the blower fan 70 is limited to be equal to or less than the maximum rotational speed during freezing (steps S4 to S6).

このように、外気温Thに基づく送風ファン70の最大回転数の低減量と、湯水の温度Ta,Tbに基づく送風ファン70の最大回転数の低減量とが異なる場合、より大きな低減量を用いた凍結時最大回転数に制限することにより、一層確実に燃焼運転が行われていない給湯側燃焼系統30における流体流路の凍結を回避することができる。   Thus, when the reduction amount of the maximum rotation speed of the blower fan 70 based on the outside air temperature Th and the reduction amount of the maximum rotation speed of the blower fan 70 based on the hot water temperatures Ta and Tb are different, a larger reduction amount is used. By limiting to the maximum number of revolutions during freezing, freezing of the fluid flow path in the hot water supply side combustion system 30 in which the combustion operation is not performed can be avoided more reliably.

なお、既述したように、送風ファン70の目標回転数を、上段側燃焼量範囲との重ね代の範囲以下の固定された凍結時最大回転数以下に制限する場合、暖房側バーナユニット43が下段側燃焼量範囲で燃焼していれば、上段側燃焼量範囲の最小燃焼量が要求されるまで下段側燃焼量範囲で燃焼を継続させ、暖房側バーナユニット43を上段側燃焼量範囲で燃焼させていれば、下段側燃焼量範囲の固定された凍結時最大回転数に対応する燃焼量が要求されるまで、上段側燃焼量範囲の最小燃焼量で燃焼を継続させる燃焼制御が行われる。   As described above, when the target rotation speed of the blower fan 70 is limited to the fixed maximum rotation speed during freezing that is equal to or less than the range of overlap with the upper combustion amount range, the heating-side burner unit 43 is If combustion is in the lower combustion range, combustion is continued in the lower combustion range until the minimum combustion amount in the upper combustion range is required, and the heating burner unit 43 is combusted in the upper combustion range. If so, the combustion control is performed to continue the combustion with the minimum combustion amount in the upper combustion amount range until the combustion amount corresponding to the maximum freezing rotation speed in which the lower combustion amount range is fixed is required.

以上詳細に説明したように、本実施の形態によれば、複数の燃焼系統を有する熱源装置において、燃焼運転が行われている燃焼系統と、燃焼運転が行われていない燃焼系統とがある場合に、燃焼運転が行われていない燃焼系統における流体流路の凍結を効率よく防止することができる。   As described above in detail, according to the present embodiment, in the heat source device having a plurality of combustion systems, there are a combustion system in which the combustion operation is performed and a combustion system in which the combustion operation is not performed. In addition, it is possible to efficiently prevent freezing of the fluid flow path in the combustion system in which the combustion operation is not performed.

(その他の実施の形態)
(1)上記実施の形態では、流体流路の流体温度だけでなく、外気温にも基づいて凍結の可能性を判断しているが、流体温度だけに基づいて凍結の可能性を判断してもよい。
(2)上記実施の形態では、凍結の可能性を判断するにあたって、凍結危険温度及び基準温度が複数の凍結危険温度領域及び基準温度領域に分割されているが、温度領域とすることなく、所定の凍結危険温度及び基準温度を用いてもよい。
(3)上記実施の形態では、1つの缶体内に複数の燃焼系統が収容された熱源装置について説明したが、既述したように、各バーナユニット及び熱交換器を収容させた缶体を複数、組み合わせた熱源装置にも本発明を適用することができる。また、上記実施の形態では、複数の燃焼系統が共通の給排気経路を有する強制給排気式の熱源装置について説明したが、排気経路のみを共通にする強制排気式の熱源装置にも本発明を適用することができる。さらに、上記実施の形態では、暖房・追焚き機能付き給湯装置を例に挙げて説明したが、暖房機能付き給湯装置や追焚き機能付き給湯装置のように、複数の燃焼系統を有する熱源装置に本発明を適用することができる。
(4)上記実施の形態では、暖房・追焚き側燃焼系統の流体流路を流れる流体として湯水が用いられているが、不凍液を用いてもよい。
(Other embodiments)
(1) In the above embodiment, the possibility of freezing is determined based not only on the fluid temperature of the fluid flow path but also on the outside air temperature, but the possibility of freezing is determined based only on the fluid temperature. Also good.
(2) In the above embodiment, in determining the possibility of freezing, the freezing danger temperature and the reference temperature are divided into a plurality of freezing danger temperature areas and a reference temperature area. The critical freezing temperature and the reference temperature may be used.
(3) In the above-described embodiment, the heat source device in which a plurality of combustion systems are accommodated in one can body has been described. However, as described above, a plurality of can bodies in which each burner unit and heat exchanger are accommodated. The present invention can also be applied to a combined heat source device. In the above embodiment, the forced supply / exhaust type heat source apparatus has been described in which a plurality of combustion systems have a common supply / exhaust path. However, the present invention is also applied to a forced exhaust type heat source apparatus in which only the exhaust path is shared. Can be applied. Furthermore, in the above-described embodiment, the hot water supply device with a heating / reheating function has been described as an example, but a heat source device having a plurality of combustion systems, such as a hot water supply device with a heating function or a hot water supply device with a reheating function, is described. The present invention can be applied.
(4) In the above embodiment, hot water is used as the fluid flowing through the fluid flow path of the heating / reheating side combustion system, but antifreeze may be used.

1 熱源装置
11 外気温センサ(外気温検知部)
30 給湯側燃焼系統
40 暖房・追焚き側燃焼系統
33 給湯側バーナユニット
31 給湯側第1熱交換器
32 給湯側第2熱交換器
41 暖房側第1熱交換器
42 暖房側第2熱交換器
43 暖房側バーナユニット
70 送風ファン
101 熱交温度センサ
103 出湯温度センサ
213 暖房高温温度センサ
215 暖房低温温度センサ
C1 制御回路
1 Heat source device 11 Outside air temperature sensor (outside air temperature detector)
DESCRIPTION OF SYMBOLS 30 Hot water supply side combustion system 40 Heating and reheating side combustion system 33 Hot water supply side burner unit 31 Hot water supply side 1st heat exchanger 32 Hot water supply side 2nd heat exchanger 41 Heating side 1st heat exchanger 42 Heating side 2nd heat exchanger 43 Heating side burner unit 70 Blower fan 101 Heat exchanger temperature sensor 103 Hot water temperature sensor 213 Heating high temperature sensor 215 Heating low temperature sensor C1 Control circuit

Claims (4)

バーナを有するバーナユニット、バーナユニットで生成される燃焼排気によって流体流路を流れる流体を熱交換加熱する熱交換器、及び流体流路内を流れる流体の温度を検知する少なくとも1つの流体温度検知部を各別に有する複数の燃焼系統と、
1つまたは複数の燃焼系統のバーナユニットに燃焼用空気を供給する送風ファンと、
燃焼運転を行う燃焼系統のバーナユニットに要求される要求燃焼量に応じて送風ファンの目標回転数を所定の最大回転数以下で制御する通常燃焼制御を行う制御装置と、を備え、
燃焼運転が行われている燃焼系統のバーナユニットに燃焼用空気を供給するために送風ファンを回転させることによって、燃焼運転が行われていない他の燃焼系統にも空気が流入する熱源装置であって、
制御装置は、少なくとも1つの燃焼系統で燃焼運転が行われ、他の燃焼系統で燃焼運転が行われていないときに、燃焼運転が行われていない他の燃焼系統の流体温度検知部で検知される流体温度が所定の基準温度より低くなると、燃焼運転が行われている燃焼系統に燃焼用空気を供給する送風ファンの目標回転数を、最大回転数よりも低下させた凍結時最大回転数以下に制限する熱源装置。
A burner unit having a burner, a heat exchanger that heat-exchanges and heats a fluid that flows through a fluid flow path by combustion exhaust generated by the burner unit, and at least one fluid temperature detection unit that detects the temperature of the fluid flowing in the fluid flow path A plurality of combustion systems each having
A blower fan that supplies combustion air to one or more combustion system burner units;
A control device for performing normal combustion control for controlling the target rotational speed of the blower fan at a predetermined maximum rotational speed or less in accordance with the required combustion amount required for the burner unit of the combustion system performing the combustion operation,
This is a heat source device in which air flows into other combustion systems that are not operating by rotating the blower fan to supply combustion air to the burner unit of the combustion system that is performing the combustion operation. And
When the combustion operation is performed in at least one combustion system and the combustion operation is not performed in the other combustion system, the control device is detected by the fluid temperature detection unit of the other combustion system in which the combustion operation is not performed. When the fluid temperature is lower than the predetermined reference temperature, the target rotational speed of the blower fan that supplies combustion air to the combustion system in which the combustion operation is performed is lower than the maximum rotational speed when the target rotational speed is lower than the maximum rotational speed. Heat source device limited to.
請求項1に記載の熱源装置は、さらに、
外気温を検知する外気温検知部を備え、
制御装置は、外気温検知部で検知される外気温が所定の凍結危険温度より低くなり、且つ燃焼運転が行われていない他の燃焼系統の流体温度検知部で検知される流体温度が所定の基準温度より低くなると、燃焼運転が行われている燃焼系統に燃焼用空気を供給する送風ファンの目標回転数を、最大回転数よりも低下させた凍結時最大回転数以下に制限する熱源装置。
The heat source device according to claim 1, further comprising:
It has an outside air temperature detector that detects the outside air temperature,
The control device is configured such that the outside air temperature detected by the outside air temperature detecting unit is lower than a predetermined freezing danger temperature and the fluid temperature detected by the fluid temperature detecting unit of another combustion system in which the combustion operation is not performed is the predetermined temperature. A heat source device that limits a target rotational speed of a blower fan that supplies combustion air to a combustion system in which a combustion operation is performed when the temperature is lower than a reference temperature to be equal to or lower than a maximum rotational speed during freezing that is lower than the maximum rotational speed.
請求項1または2記載の熱源装置において、
複数の燃焼系統のうち少なくとも1つの燃焼系統のバーナユニットは、燃焼量範囲の異なる複数の能力段数を有し、
制御装置は、複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われる場合、低燃焼量側の下段側燃焼量範囲と、それに隣接する高燃焼量側の上段側燃焼量範囲との間に、下段側燃焼量範囲の最大燃焼量が上段側燃焼量範囲の最小燃焼量よりも多くなるように設けられた重ね代を用いて、能力段数を切り替え制御する通常燃焼制御を行い、
複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われ、他の燃焼系統で燃焼運転が行われていないときに、燃焼運転が行われていない他の燃焼系統における流体温度検知部で検知される流体温度が所定の第1基準温度より低くなると、燃焼運転が行われている燃焼系統のバーナユニットに燃焼用空気を供給する送風ファンの目標回転数を、最大回転数から上段側燃焼量範囲との重ね代の範囲内となる所定の低減量、低下させた凍結時最大回転数以下に制限する熱源装置。
The heat source device according to claim 1 or 2,
The burner unit of at least one combustion system among the plurality of combustion systems has a plurality of capacity stages having different combustion amount ranges,
When the combustion operation is performed in a combustion system including a burner unit having a plurality of capacity stages, the control device has a lower combustion amount range on the low combustion amount side and an upper combustion amount range on the high combustion amount side adjacent thereto. In between, the normal combustion control is performed to switch and control the number of capacity stages using the overlap margin provided so that the maximum combustion amount in the lower combustion amount range is larger than the minimum combustion amount in the upper combustion amount range. ,
Fluid temperature detection in other combustion systems where combustion operation is performed when a combustion system is equipped with a burner unit having a plurality of capacity stages and combustion operation is not performed in another combustion system When the fluid temperature detected by the unit becomes lower than the predetermined first reference temperature, the target rotational speed of the blower fan that supplies the combustion air to the burner unit of the combustion system in which the combustion operation is performed is increased from the maximum rotational speed. A heat source device that limits a predetermined reduction amount that falls within a range of overlap with the side combustion amount range, to a lower value than the reduced maximum rotation speed during freezing.
請求項1または2に記載の熱源装置において、
複数の燃焼系統のうち少なくとも1つの燃焼系統のバーナユニットは、燃焼量範囲の異なる複数の能力段数を有し、
制御装置は、複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われる場合、低燃焼量側の下段側燃焼量範囲と、それに隣接する高燃焼量側の上段側燃焼量範囲との間に、下段側燃焼量範囲の最大燃焼量が上段側燃焼量範囲の最小燃焼量よりも多くなるように設けられた重ね代を用いて、能力段数を切り替え制御する通常燃焼制御を行い、
複数の能力段数を有するバーナユニットを備えた燃焼系統で燃焼運転が行われ、他の燃焼系統で燃焼運転が行われていないときに、燃焼運転が行われていない他の燃焼系統における流体温度検知部で検知される流体温度が所定の第2基準温度より低くなると、燃焼運転が行われている燃焼系統のバーナユニットに燃焼用空気を供給する送風ファンの目標回転数を、最大回転数よりも低い、上段側燃焼量範囲との重ね代の範囲以下の固定された凍結時最大回転数以下に制限する熱源装置。
The heat source device according to claim 1 or 2,
The burner unit of at least one combustion system among the plurality of combustion systems has a plurality of capacity stages having different combustion amount ranges,
When the combustion operation is performed in a combustion system including a burner unit having a plurality of capacity stages, the control device has a lower combustion amount range on the low combustion amount side and an upper combustion amount range on the high combustion amount side adjacent thereto. In between, the normal combustion control is performed to switch and control the number of capacity stages using the overlap margin provided so that the maximum combustion amount in the lower combustion amount range is larger than the minimum combustion amount in the upper combustion amount range. ,
Fluid temperature detection in other combustion systems where combustion operation is performed when a combustion system is equipped with a burner unit having a plurality of capacity stages and combustion operation is not performed in another combustion system When the fluid temperature detected by the unit becomes lower than the predetermined second reference temperature, the target rotational speed of the blower fan that supplies the combustion air to the burner unit of the combustion system in which the combustion operation is performed is set to be higher than the maximum rotational speed. A heat source device that restricts to a fixed maximum freezing speed during freezing that is less than the range of the overlap allowance with the lower upper combustion amount range.
JP2017121687A 2017-06-21 2017-06-21 Heat source device Active JP6909646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017121687A JP6909646B2 (en) 2017-06-21 2017-06-21 Heat source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121687A JP6909646B2 (en) 2017-06-21 2017-06-21 Heat source device

Publications (2)

Publication Number Publication Date
JP2019007650A true JP2019007650A (en) 2019-01-17
JP6909646B2 JP6909646B2 (en) 2021-07-28

Family

ID=65029522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121687A Active JP6909646B2 (en) 2017-06-21 2017-06-21 Heat source device

Country Status (1)

Country Link
JP (1) JP6909646B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110671811A (en) * 2019-10-21 2020-01-10 珠海格力电器股份有限公司 Gas water heater and control method thereof
CN115371266A (en) * 2022-08-25 2022-11-22 珠海格力电器股份有限公司 Wall-mounted furnace and control method and device thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324739A (en) * 1994-05-31 1995-12-12 Harman Co Ltd Combustor
JPH109593A (en) * 1996-06-26 1998-01-16 Rinnai Corp Method and apparatus for preventing freezing in gas warm water supply room heating equipment
JP2005321153A (en) * 2004-05-10 2005-11-17 Rinnai Corp Single fan type combined heat source machine
JP2014004096A (en) * 2012-06-22 2014-01-16 Bridgestone Sports Co Ltd Golf club head
JP2014040956A (en) * 2012-08-22 2014-03-06 Noritz Corp Heat source machine
JP2014139496A (en) * 2013-01-21 2014-07-31 Noritz Corp Heat source machine and freezing prevention control method
US20150096504A1 (en) * 2013-10-07 2015-04-09 Rinnai Corporation Circulating-type hot-water supply device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07324739A (en) * 1994-05-31 1995-12-12 Harman Co Ltd Combustor
JPH109593A (en) * 1996-06-26 1998-01-16 Rinnai Corp Method and apparatus for preventing freezing in gas warm water supply room heating equipment
JP2005321153A (en) * 2004-05-10 2005-11-17 Rinnai Corp Single fan type combined heat source machine
JP2014004096A (en) * 2012-06-22 2014-01-16 Bridgestone Sports Co Ltd Golf club head
JP2014040956A (en) * 2012-08-22 2014-03-06 Noritz Corp Heat source machine
JP2014139496A (en) * 2013-01-21 2014-07-31 Noritz Corp Heat source machine and freezing prevention control method
US20150096504A1 (en) * 2013-10-07 2015-04-09 Rinnai Corporation Circulating-type hot-water supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110671811A (en) * 2019-10-21 2020-01-10 珠海格力电器股份有限公司 Gas water heater and control method thereof
CN110671811B (en) * 2019-10-21 2023-10-27 珠海格力电器股份有限公司 Gas water heater and control method thereof
CN115371266A (en) * 2022-08-25 2022-11-22 珠海格力电器股份有限公司 Wall-mounted furnace and control method and device thereof
CN115371266B (en) * 2022-08-25 2024-05-24 珠海格力电器股份有限公司 Wall-mounted furnace, control method and device of wall-mounted furnace

Also Published As

Publication number Publication date
JP6909646B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP4023139B2 (en) Hybrid water heater
JP5580658B2 (en) Heat medium supply device
KR20140139425A (en) Heating system
JP2005061711A (en) Exhaust heat recovering water heater
JP2009257618A (en) Heat pump type water heating system
JP6153328B2 (en) Cogeneration system and heating equipment
JP6909646B2 (en) Heat source device
JP6115754B2 (en) Heat source machine and freeze prevention control method
JP6012530B2 (en) Hot water storage water heater
JP4379385B2 (en) Water heater
JP5846413B2 (en) Cogeneration system
JP2017067375A (en) Heating device
JP5822671B2 (en) Heat medium supply device
JP5814643B2 (en) Hot water storage system
JP6234387B2 (en) Heat source equipment
JP4696835B2 (en) Water heater
JP2015158324A (en) Hot water supplying/heating device
JP2014142112A (en) Hot water storage type water heater
KR20170042486A (en) Heating device
JP2015031457A (en) Hot water supply heater
JP7475297B2 (en) Fluid circulation heating system
JP2002295851A (en) Freeze proofing method of heating apparatus
JP6801991B2 (en) Heating device
JP2006046809A (en) Heat source machine for hot water heating system
JP2015222137A (en) Heating heat source apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210705

R150 Certificate of patent or registration of utility model

Ref document number: 6909646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250