JP4696835B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP4696835B2
JP4696835B2 JP2005304182A JP2005304182A JP4696835B2 JP 4696835 B2 JP4696835 B2 JP 4696835B2 JP 2005304182 A JP2005304182 A JP 2005304182A JP 2005304182 A JP2005304182 A JP 2005304182A JP 4696835 B2 JP4696835 B2 JP 4696835B2
Authority
JP
Japan
Prior art keywords
water supply
hot water
heat exchanger
circuit
circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005304182A
Other languages
Japanese (ja)
Other versions
JP2007113811A (en
Inventor
浩人 福井
博 北西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005304182A priority Critical patent/JP4696835B2/en
Publication of JP2007113811A publication Critical patent/JP2007113811A/en
Application granted granted Critical
Publication of JP4696835B2 publication Critical patent/JP4696835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、バーナの燃焼熱により加熱する給湯用熱交換器と、燃焼排ガスの潜熱を回収する潜熱回収熱用交換器を備えた給湯装置に関し、特に、前記給湯用熱交換器と潜熱回収用熱交換器で加熱された湯水を循環する給湯循環回路に利用側熱交換器を設けた給湯装置に関するものである。   The present invention relates to a hot water supply heat exchanger that is heated by combustion heat of a burner, and a hot water supply device that includes a latent heat recovery heat exchanger that recovers latent heat of combustion exhaust gas, and in particular, the hot water supply heat exchanger and the latent heat recovery device. The present invention relates to a hot water supply apparatus in which a use side heat exchanger is provided in a hot water supply circulation circuit for circulating hot water heated by a heat exchanger.

従来この種の燃焼装置としては、特許文献1のように、給水路を通して供給される水をバーナの燃焼により加熱して給湯路に給湯する給湯用熱交換器と、入路を通して供給される加熱対象流体を前記バーナの燃焼により加熱して出路に流出する流体用熱交換器とが設けられている給湯装置であって、前記給湯用熱交換器が前記バーナの燃焼排ガスの顕熱を回収する給湯用顕熱熱交換部と、その給湯用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配置され、前記バーナの燃焼排ガスの潜熱を回収する給湯用潜熱熱交換部とを備えて構成され、前記流体用熱交換器が、前記バーナの燃焼排ガスの顕熱を回収する流体用顕熱熱交換部と、その流体用顕熱熱交換部よりも前記バーナの燃焼排ガスの流動方向の下流側に配置され、前記バーナの燃焼排ガスの潜熱を回収する流体用潜熱熱交換部とを備えて構成され、前記給湯用顕熱熱交換部と流体用顕熱熱交換部とが、互いに熱伝導する状態で一体的に形成され、かつ、前記給湯用潜熱熱交換部と流体用潜熱熱交換部とが、互いに熱伝導する状態で一体的に形成された給湯装置が開示されている(例えば、特許文献1参照)。
特開2002−267262号公報
Conventionally, as this type of combustion apparatus, as disclosed in Patent Document 1, a hot water supply heat exchanger that heats water supplied through a water supply path by combustion of a burner to supply hot water to the hot water supply path, and heating supplied through an inlet path A hot water supply apparatus provided with a fluid heat exchanger that heats a target fluid by combustion of the burner and flows out to an outlet, and the hot water heat exchanger recovers sensible heat of combustion exhaust gas of the burner A sensible heat exchange unit for hot water supply, and a latent heat heat exchange unit for hot water supply that is disposed downstream of the sensible heat exchange unit for hot water supply in the flow direction of the combustion exhaust gas of the burner and recovers the latent heat of the combustion exhaust gas of the burner The fluid heat exchanger recovers sensible heat of the combustion exhaust gas of the burner, and the combustion exhaust gas of the burner than the fluid sensible heat exchange unit. Arranged downstream of the flow direction of And a fluid latent heat exchange part for recovering the latent heat of the combustion exhaust gas of the burner, and the sensible heat exchange part for hot water supply and the sensible heat exchange part for fluid are integrated in a state of conducting heat to each other. And a hot water supply device in which the latent heat heat exchange part for hot water supply and the latent heat heat exchange part for fluid are integrally formed in a state of conducting heat to each other are disclosed (for example, see Patent Document 1). .
JP 2002-267262 A

しかしながら、前記従来の給湯装置は、バーナの燃焼ガスの流出経路中に給湯用熱交換器と流体用熱交換器をそれぞれ配置し、前記給湯用熱交換器に給湯用顕熱熱交換部と給湯用潜熱熱交換部を設け、前記流体用熱交換器に流体用顕熱熱交換部と流体用潜熱熱交換部を設けた構成としているため、顕熱熱交換部と潜熱熱交換部にそれぞれ給湯用熱交換器と流体用熱交換器を一体的に形成する必要があり、給湯用熱交換器及び流体用熱交換器として極めて複雑な構成を強いられるものであった。特に、潜熱熱交換部の構成として、耐食性を高めるためにステンレスパイプと銅管を用いた2重管構造とする場合などはその加工性に課題を有するものであった。   However, in the conventional hot water supply apparatus, a hot water heat exchanger and a fluid heat exchanger are respectively arranged in the flow path of the combustion gas of the burner, and a sensible heat exchanger for hot water supply and a hot water supply are provided in the hot water heat exchanger. And a fluid sensible heat exchange section and a fluid latent heat exchange section are provided in the fluid heat exchanger, so that hot water is supplied to the sensible heat exchange section and the latent heat exchange section respectively. Therefore, the heat exchanger for fluid and the heat exchanger for fluid need to be formed integrally, and a very complicated configuration has been imposed as a heat exchanger for hot water supply and a heat exchanger for fluid. In particular, when the structure of the latent heat exchange section is a double pipe structure using a stainless steel pipe and a copper pipe in order to improve the corrosion resistance, there is a problem in workability.

また、バーナで加熱される経路として、給湯用と流体用の2つの経路を形成しているため、配管構成が複雑になるとともに、単独運転時に運転停止側の熱交換器内の残水の沸騰が発生するという課題を有するものであった。   In addition, since two paths for hot water supply and fluid are formed as the paths heated by the burner, the piping configuration becomes complicated and the boiling of the residual water in the heat exchanger on the shutdown side during single operation It has a problem of generating.

本発明は前記従来の課題を解決するもので、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供する。また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and forms one heating path with a hot water supply heat exchanger and a latent heat recovery heat exchanger, and uses circulating water in the heating path to form a heating circuit or a bath circuit. By adopting a structure for supplying heat, it is possible to configure a use-side heat exchanger that is not related to the heat exchanger for hot water supply and the latent heat recovery heat exchanger. It is possible to provide a hot water supply device that is easy to use and prioritizes hot water supply performance by realizing a reduction in weight and weight and making the heating path mainly a hot water supply circuit. In addition, by adopting a single heating path configuration mainly composed of a hot water supply circuit, the configuration for improving the corrosion resistance of the latent heat recovery heat exchanger is solved while solving the problem of residual water boiling in the heat exchanger during single operation. It is an object of the present invention to provide a hot water supply device that is easy and has high efficiency and reduced running costs.

前記従来の課題を解決するために、本発明の給湯装置は、給水路より供給される水をバーナの燃焼により加熱し出湯路に湯水を供給する給湯用熱交換器と、前記バーナの燃焼排ガス経路中に配置し燃焼排ガスの潜熱を回収する潜熱回収用熱交換器とを備え、前記給湯用熱交換器と潜熱回収用熱交換器を直列に接続して、給水路から潜熱回収用熱交換器を通り給湯用熱交換器を経て出湯路に至る給湯回路を形成するとともに、前記出湯路から分岐し循環ポンプを介して利用側熱交換器に供給した後、前記潜熱回収用熱交換器に戻し、潜熱回収用熱交換器から給湯用熱交換器を通り循環ポンプを介して利用側熱交換器に至る給湯循環回路を形成し、前記給湯回路を利用するか、または、給湯循環回路を利用するか、または、給湯回路と給湯循環回路を同時に利用するか、を選択できるようにし、前記給水路に前記給湯循環回路を完全閉回路とするための給湯循環回路閉手段と、前記給湯循環回路に循環流量を検出するための循環流量検出手段とを設け、制御手段は前記給湯循環回路閉手段を閉とし、前記循環ポンプを所定の条件で駆動させ、その時の前記給湯循環回路内の循環流量を前記循環流量検出手段で検出することで、前記給湯循環回路の破損による漏水有無を検知できるようにしたものである。   In order to solve the above-mentioned conventional problems, a hot water supply apparatus of the present invention includes a hot water supply heat exchanger that heats water supplied from a water supply channel by combustion of a burner and supplies hot water to a hot water supply channel, and combustion exhaust gas of the burner A latent heat recovery heat exchanger disposed in the path for recovering the latent heat of the combustion exhaust gas, and connecting the hot water supply heat exchanger and the latent heat recovery heat exchanger in series to exchange heat for latent heat recovery from the water supply channel A hot water supply circuit that passes through the heat exchanger through the hot water supply heat exchanger to the hot water supply passage, and is branched from the hot water supply passage and supplied to the use side heat exchanger via the circulation pump, and then to the latent heat recovery heat exchanger. Return, form a hot water supply circulation circuit from the latent heat recovery heat exchanger through the hot water supply heat exchanger to the user side heat exchanger through the circulation pump, and use the hot water supply circuit or use the hot water supply circulation circuit Or hot water supply circuit and hot water circulation cycle A hot water supply circuit closing means for making the hot water supply circuit completely closed in the water supply passage, and a circulating flow rate detection for detecting a circulating flow rate in the hot water supply circuit And the control means closes the hot water supply circulation circuit closing means, drives the circulation pump under a predetermined condition, and detects the circulation flow rate in the hot water supply circulation circuit at that time by the circulation flow rate detection means. The presence or absence of water leakage due to breakage of the hot water supply circulation circuit can be detected.

これによって、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成としているため、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯装置を提供することができる。   Thereby, one heating path is formed by the heat exchanger for hot water supply and the heat exchanger for latent heat recovery, and the heat amount is supplied to the heating circuit and the bath circuit using the circulating water of the heating path. Enables the configuration of the use side heat exchanger that is not related to the hot water supply heat exchanger or the latent heat recovery heat exchanger. By using a hot water supply circuit as a main route, it is possible to provide an easy-to-use hot water supply device that prioritizes hot water supply performance, and by adopting a single heating route configuration mainly consisting of a hot water supply circuit, It is possible to provide a hot water supply apparatus that solves the problem of residual water boiling in the exchanger, facilitates the structure for improving the corrosion resistance of the latent heat recovery heat exchanger, and achieves high efficiency and reduced running costs.

さらに、給水路に給湯循環回路を完全閉回路とするための給湯循環回路閉手段を設け、循環ポンプを駆動させることで、給湯循環回路の破損による微少漏れを検知することが可能になり、漏水が発生していることを早期に発見することができる。本給湯装置における給水路は、酸性結露水と接し腐食が原因となる配管破損が懸念される潜熱回収用熱交換部を通り、各利用側熱交換器部では水道水とは異なる2次側流路と接しているため、従来の給湯装置よりも配管破損等で漏水が発生した場合は問題となる要因を含むため、給湯側回路からの配管破損時の漏水を検知することは極めて重要である。   Furthermore, by providing a hot water supply circuit closing means for making the hot water supply circuit completely closed in the water supply channel and driving the circulation pump, it becomes possible to detect minute leakage due to breakage of the hot water supply circuit. Can be detected at an early stage. The water supply path in this hot water supply apparatus passes through the heat exchange part for latent heat recovery, which is in contact with acidic dew condensation water and is feared to be damaged by corrosion, and the secondary side flow different from tap water in each use side heat exchanger part Because it is in contact with the road, there are factors that cause problems when water leaks due to pipe breakage, etc., compared to conventional hot water supply equipment, so it is extremely important to detect water leaks when pipe breakage from the hot water supply side circuit .

本発明の給湯装置は、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができる。また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯装置を提供することができる。   The hot water supply apparatus of the present invention is configured to form one heating path with a hot water supply heat exchanger and a latent heat recovery heat exchanger, and to supply heat to a heating circuit or a bath circuit using circulating water in the heating path. This makes it possible to configure the heat exchanger on the use side that is not related to the heat exchanger for hot water supply or the latent heat recovery heat exchanger, and realizes downsizing and weight reduction of equipment by simplifying the main body configuration including the piping configuration. In addition, it is possible to provide an easy-to-use hot water supply apparatus that prioritizes hot water supply performance by using the hot water supply circuit as a main component of the heating path. In addition, by adopting a single heating path configuration mainly composed of a hot water supply circuit, the configuration for improving the corrosion resistance of the latent heat recovery heat exchanger is solved while solving the problem of residual water boiling in the heat exchanger during single operation. It is possible to provide a hot water supply device that is easy and highly efficient with reduced running costs.

さらに、給水路に給湯循環回路を完全閉回路とするための給湯循環回路閉手段を設け、循環ポンプを駆動させることで、給湯循環回路の破損による微少漏れを検知することが可能になり、漏水が発生していることを早期に発見することができる。本給湯装置における給水路は、酸性結露水と接し腐食が原因となる配管破損が懸念される潜熱回収用熱交換部を通り、各利用側熱交換器部では水道水とは異なる2次側流路と接しているため、従来の
給湯装置よりも配管破損等で漏水が発生した場合は問題となる要因を含むため、給湯側回路からの配管破損時の漏水を検知することは極めて重要である。
Furthermore, by providing a hot water supply circuit closing means for making the hot water supply circuit completely closed in the water supply channel and driving the circulation pump, it becomes possible to detect minute leakage due to breakage of the hot water supply circuit. Can be detected at an early stage. The water supply path in this hot water supply apparatus passes through the heat exchange part for latent heat recovery, which is in contact with acidic dew condensation water and is feared to be damaged by corrosion, and the secondary side flow different from tap water in each use side heat exchanger part Because it is in contact with the road, there are factors that cause problems when water leaks due to pipe breakage, etc., compared to conventional hot water supply equipment, so it is extremely important to detect water leaks when pipe breakage from the hot water supply side circuit .

第1の発明は、給水路より供給される水をバーナの燃焼により加熱し出湯路に湯水を供給する給湯用熱交換器と、前記バーナの燃焼排ガス経路中に配置し燃焼排ガスの潜熱を回収する潜熱回収用熱交換器とを備え、前記給湯用熱交換器と潜熱回収用熱交換器を直列に接続して、給水路から潜熱回収用熱交換器を通り給湯用熱交換器を経て出湯路に至る給湯回路を形成するとともに、前記出湯路から分岐し循環ポンプを介して利用側熱交換器に供給した後、前記潜熱回収用熱交換器に戻し、潜熱回収用熱交換器から給湯用熱交換器を通り循環ポンプを介して利用側熱交換器に至る給湯循環回路を形成し、前記給湯回路を利用するか、または、給湯循環回路を利用するか、または、給湯回路と給湯循環回路を同時に利用するか、を選択できるようにし、前記給水路に前記給湯循環回路を完全閉回路とするための給湯循環回路閉手段と、前記給湯循環回路に循環流量を検出するための循環流量検出手段とを設け、制御手段は前記給湯循環回路閉手段を閉とし、前記循環ポンプを所定の条件で駆動させ、その時の前記給湯循環回路内の循環流量を前記循環流量検出手段で検出することで、前記給湯循環回路の破損による漏水有無を検知できるようにしたとを特徴としたもので、給湯用熱交換器と潜熱回収用熱交換器で1つの加熱経路を形成し、前記加熱経路の循環水を利用して暖房回路や風呂回路に熱量を供給する構成とすることで、前記給湯用熱交換器や潜熱回収用熱交換器に関連しない利用側熱交換器の構成を可能とし、配管構成を含む本体構成の簡素化により器具の小型化、軽量化を実現するとともに、前記加熱経路を給湯回路を主体とすることで給湯性能を優先した使い勝手のよい給湯装置を提供することができ、また、給湯回路を主体とする1つの加熱経路構成とすることで、単独運転時における熱交換器内の残水沸騰問題を解消するとともに、潜熱回収用熱交換器の耐食性向上のための構成を容易にし、高効率でランニングコストの低減を図った給湯装置を提供することができる。   A first aspect of the invention is a hot water supply heat exchanger that heats water supplied from a water supply channel by combustion of a burner and supplies hot water to a hot water supply channel, and recovers the latent heat of the combustion exhaust gas disposed in the combustion exhaust gas path of the burner. A latent heat recovery heat exchanger that connects the hot water supply heat exchanger and the latent heat recovery heat exchanger in series, passes through the latent heat recovery heat exchanger from the water supply channel, passes through the hot water supply heat exchanger, Forming a hot water supply circuit leading to the road, and after branching from the hot water supply path and supplying to the use side heat exchanger via the circulation pump, returning to the latent heat recovery heat exchanger and from the latent heat recovery heat exchanger for hot water supply A hot water supply circulation circuit that passes through the heat exchanger and reaches the user-side heat exchanger through the circulation pump is formed, the hot water supply circuit is used, the hot water supply circulation circuit is used, or the hot water supply circuit and the hot water supply circulation circuit Can be used at the same time And a hot water supply circuit closing means for making the hot water supply circuit into a completely closed circuit and a circulating flow rate detecting means for detecting a circulating flow rate in the hot water supply circuit, the control means comprising the hot water supply circuit The circulation circuit closing means is closed, the circulation pump is driven under a predetermined condition, and the circulation flow rate in the hot water supply circulation circuit at that time is detected by the circulation flow rate detection means. It is characterized by the fact that it can be detected, and a heating path is formed by a heat exchanger for hot water supply and a heat exchanger for recovering latent heat, and a heating circuit and a bath circuit using the circulating water of the heating path It is possible to configure the use-side heat exchanger not related to the hot water supply heat exchanger or the latent heat recovery heat exchanger, and to simplify the main body configuration including the piping configuration. Smaller and lighter At the same time, it is possible to provide an easy-to-use hot water supply apparatus that prioritizes hot water supply performance by using the hot water supply circuit as a main component, and by adopting a single heating path configuration mainly including the hot water supply circuit. Provides a hot water supply system that eliminates the problem of residual water boiling in the heat exchanger during stand-alone operation, facilitates the structure for improving the corrosion resistance of the heat exchanger for latent heat recovery, and reduces the running cost with high efficiency can do.

さらに、前記給水路に前記給湯循環回路を完全閉回路とするための給湯循環回路閉手段と、前記給湯循環回路に循環流量を検出するための循環流量検出手段とを設け、制御手段は前記給湯循環回路閉手段を閉とし、前記循環ポンプを所定の条件で駆動させ、その時の前記給湯循環回路内の循環流量を前記循環流量検出手段で検出することで、給湯循環回路の配管破損による微少漏れを検知することが可能になり、漏水が発生していることを早期に発見することができる。   Further, the hot water supply circuit includes a hot water supply circuit closing means for making the hot water supply circuit completely closed, and a circulating flow rate detecting means for detecting a circulation flow rate in the hot water supply circuit, and the control means includes the hot water supply circuit. The circulation circuit closing means is closed, the circulation pump is driven under a predetermined condition, and the circulation flow rate in the hot water supply circulation circuit at that time is detected by the circulation flow rate detection means. Can be detected, and it can be detected at an early stage that water leakage has occurred.

第2の発明は、利用側熱交換器として複数個設ける場合、給湯循環回路に対して各熱交換器を並列に接続し、給湯用熱交換器から供給される湯水温度が略同一となるようにしたことを特徴とするもので、給湯用熱交換器と潜熱回収用熱交換器で構成する給湯循環回路に複数の利用側熱交換器を並列に接続して使用することで、給湯循環回路の通路抵抗を小さくすることができ、循環ポンプの小型化・軽量化が可能になる。   In the second invention, when a plurality of use-side heat exchangers are provided, the heat exchangers are connected in parallel to the hot water supply circulation circuit so that the hot water temperatures supplied from the hot water supply heat exchangers are substantially the same. A hot water supply circulation circuit by connecting a plurality of use side heat exchangers in parallel to a hot water supply circulation circuit composed of a hot water supply heat exchanger and a latent heat recovery heat exchanger. Therefore, the circulation pump can be made smaller and lighter.

第3の発明は、出湯路の給湯循環回路からの分岐部を利用側熱交換器の上流側に配置したことを特徴とするもので、分岐部を給湯用熱交換器のすぐ下流に配置させることで、給湯回路を単独で利用する場合には、出湯路の流路圧力損失を小さくでき、かつ早く出湯路に湯を供給することができる。   The third invention is characterized in that the branching portion from the hot water supply circulation circuit of the hot water supply passage is arranged upstream of the use side heat exchanger, and the branching portion is arranged immediately downstream of the hot water supply heat exchanger. Thus, when the hot water supply circuit is used alone, the flow pressure pressure loss of the hot water supply passage can be reduced and hot water can be supplied to the hot water supply passage quickly.

第4の発明は、出湯路の給湯循環回路からの分岐部を利用側熱交換器の下流側に配置したことを特徴とするもので、分岐部を利用側熱交換器の下流に配置させることで、給湯回路と給湯循環回路を同時に利用する場合には、前記第3の発明に比べて給湯循環回路により大流量を供給することができるので、利用側熱交換器により多くの熱量を供給することができる。   The fourth invention is characterized in that the branch portion from the hot water supply circulation circuit of the hot water outlet is arranged downstream of the use side heat exchanger, and the branch portion is arranged downstream of the use side heat exchanger. Thus, when the hot water supply circuit and the hot water supply circulation circuit are used at the same time, a larger flow rate can be supplied by the hot water supply circulation circuit than in the third aspect of the invention, so that a larger amount of heat is supplied by the use side heat exchanger. be able to.

第5の発明は、給湯循環回路閉手段を、給水路において、給湯用熱交換器と潜熱回収用熱交換器を迂回するように前記給水路と出湯路を連通して設けたバイパス通路との分岐部より下流側に配置したことを特徴とするもので、給湯循環回路の配管破損による漏水検知を行う場合、制御手段は給湯循環回路閉手段を閉として給湯循環回路を独立した完全閉回路としたうえで循環ポンプを駆動させ、独立した完全閉回路の給湯循環回路での漏水検知を行うことができる。   According to a fifth aspect of the present invention, there is provided a hot water supply circuit closing means including a bypass passage provided in communication between the water supply passage and the hot water supply passage so as to bypass the hot water supply heat exchanger and the latent heat recovery heat exchanger in the water supply passage. It is characterized in that it is arranged downstream from the bifurcation part.When water leakage is detected due to pipe breakage in the hot water supply circulation circuit, the control means closes the hot water supply circuit close means and makes the hot water supply circulation circuit independent. In addition, the circulation pump can be driven to detect water leakage in an independent fully closed hot water supply circulation circuit.

第6の発明は、給湯循環回路閉手段として、完全閉止機能を有するバイパス制御弁でその機能を兼ねさせたことを特徴とする。前記バイパス制御弁は、通常、給湯用熱交換器と潜熱回収用熱交換器を迂回するように前記給水路と出湯路を連通して設けたバイパス通路に配置され、前記バイパス通路を流れる水の流量を制御するためのものである。ここでは前記バイパス制御弁を前記バイパス通路ではなく、給湯用熱交換器と潜熱回収用熱交換器を迂回するように前記給水路と出湯路を連通して設けた前記バイパス通路との分岐部より下流側に配置することで、前記バイパス通路を流れる水の流量を間接的に制御することができる。すなわち、バイパス通路に流す水の流量を大きくしたければ、給水路側に設けたバイパス制御弁の開度を小さくすることで潜熱回収用熱交換器および給湯用熱交換器に流す水の流量を小さくし、バイパス通路に流す水の流量を大きくすることができる。また、逆にバイパス通路に流す水の流量を小さくしたければ、給水路側に設けたバイパス制御弁の開度を大きくすることで潜熱回収用熱交換器および給湯用熱交換器に流す水の流量を大きくし、バイパス通路に流す水の流量を大きくすることができる。また、前記バイパス制御弁には完全閉止機能を備えることで、給湯循環回路の配管破損による漏水検知を行う場合、制御手段は前記給水路に備えられた前記バイパス制御弁を閉として給湯循環回路を独立した完全閉回路としたうえで循環ポンプを駆動させ、独立した完全閉回路の給湯循環回路での漏水検知を行うことができる。給湯循環回路閉手段として新たな開閉弁を備えるのではなく、既設のバイパス制御弁の配置位置を給水路側に移動させて配置することで給湯循環回路閉手段の機能を兼ねさせることにより、コストダウンを図ることができる。   The sixth invention is characterized in that, as a hot water supply circulation circuit closing means, a bypass control valve having a complete closing function also serves as the function. The bypass control valve is usually disposed in a bypass passage provided by connecting the water supply passage and the hot water supply passage so as to bypass the hot water supply heat exchanger and the latent heat recovery heat exchanger, and water flowing through the bypass passage is provided. This is for controlling the flow rate. Here, the bypass control valve is not the bypass passage, but a branch portion between the water supply passage and the hot water discharge passage provided so as to bypass the hot water supply heat exchanger and the latent heat recovery heat exchanger. By arrange | positioning in the downstream, the flow volume of the water which flows through the said bypass channel can be controlled indirectly. That is, to increase the flow rate of water flowing to the bypass passage, the flow rate of water flowing to the latent heat recovery heat exchanger and the hot water supply heat exchanger is decreased by decreasing the opening degree of the bypass control valve provided on the water supply channel side. In addition, the flow rate of water flowing through the bypass passage can be increased. Conversely, if you want to reduce the flow rate of water flowing to the bypass passage, the flow rate of water flowing to the latent heat recovery heat exchanger and hot water heat exchanger is increased by increasing the opening of the bypass control valve provided on the water supply channel side. The flow rate of water flowing through the bypass passage can be increased. Further, since the bypass control valve is provided with a complete closing function, when detecting water leakage due to pipe breakage in the hot water supply circulation circuit, the control means closes the bypass control valve provided in the water supply passage and closes the hot water supply circulation circuit. It is possible to detect water leakage in the hot water supply circulation circuit of an independent fully closed circuit by driving the circulation pump after making it an independent fully closed circuit. Rather than providing a new on-off valve as the hot water supply circuit closing means, the existing bypass control valve is moved to the water supply channel side to serve as a hot water supply circuit closing means, thereby reducing costs. Can be achieved.

第7の発明は、給湯循環回路閉手段は、給水路において、給湯用熱交換器と潜熱回収用熱交換器を迂回するように前記給水路と出湯路を連通して設けたバイパス通路との分岐部に配置したことを特徴とするもので、給湯循環回路の配管破損による漏水検知を行う場合、制御手段は給湯循環回路閉手段を閉として給湯循環回路を独立した完全閉回路としたうえで循環ポンプを駆動させ、独立した完全閉回路の給湯循環回路での漏水検知を行うことができる。   According to a seventh aspect of the present invention, the hot water supply circuit closing means includes: a bypass passage provided in communication between the hot water supply passage and the hot water supply passage so as to bypass the hot water supply heat exchanger and the latent heat recovery heat exchanger. It is characterized by the fact that it is placed at the branching section. When water leakage is detected due to pipe breakage in the hot water supply circulation circuit, the control means should be closed with the hot water supply circulation circuit closing means and the hot water supply circulation circuit independent. The circulation pump can be driven to detect water leakage in an independent fully closed hot water supply circulation circuit.

第8の発明は、給水路において、給湯用熱交換器と潜熱回収用熱交換器を迂回するように前記給水路と出湯路を連通して設けたバイパス通路との分岐部に配置する給湯循環回路閉手段の機能を、完全閉止機能を有するバイパス制御弁を前記分岐部に配置させることでその機能を兼ねさせたことを特徴とする。前記分岐部にバイパス制御弁を配置させることで、潜熱回収用熱交換器および給湯用熱交換器に流す水の流量とバイパス通路に流す水の流量との分配割合を制御する機能と、潜熱回収用熱交換器および給湯用熱交換器に流す側の給水路を完全閉止する機能とを兼ね備えることができる。   According to an eighth aspect of the present invention, in the water supply passage, hot water supply circulation is arranged at a branch portion between the water supply passage and the outlet passage that is provided so as to bypass the hot water supply heat exchanger and the latent heat recovery heat exchanger. The function of the circuit closing means is also provided by disposing a bypass control valve having a complete closing function in the branch portion. By disposing a bypass control valve at the branching section, a function of controlling a distribution ratio between the flow rate of water flowing to the latent heat recovery heat exchanger and the hot water supply heat exchanger and the flow rate of water flowing to the bypass passage, and latent heat recovery And a function of completely closing the water supply channel on the side flowing to the heat exchanger for hot water and the heat exchanger for hot water supply.

第9の発明は、給湯循環回路内に配置する循環ポンプを特にDC駆動方式とし、制御手段は、前記循環ポンプの駆動負荷の大きさで給湯循環回路の破損による漏水有無を検知するようにしたことを特徴とする。たとえば、給湯循環回路の破損による漏水有無を検知する場合、制御手段は給湯循環回路閉手段を閉として完全閉回路とし、前記DC駆動方式の循環ポンプを所定の回転数で駆動させる。この時、給湯循環回路から漏水が発生していれば、やがて閉回路となった給湯循環回路から水が流出して前記給湯循環回路内の水は減少していく。この場合、循環ポンプが搬送する循環流量は小さくなるため、同一回転数で駆
動させるときの駆動負荷は小さくなる。制御手段はこの状態を検出して、給湯循環回路の破損による漏水有無を検出することができる。
According to a ninth aspect of the present invention, the circulating pump disposed in the hot water supply circulation circuit is in particular a DC drive system, and the control means detects the presence or absence of water leakage due to the breakage of the hot water supply circulation circuit by the magnitude of the driving load of the circulation pump. It is characterized by that. For example, when detecting the presence or absence of water leakage due to breakage of the hot water supply circulation circuit, the control means closes the hot water supply circulation circuit closing means to form a complete closed circuit, and drives the DC-driven circulation pump at a predetermined rotational speed. At this time, if water leaks from the hot water supply circulation circuit, water will eventually flow out of the hot water supply circulation circuit that has become a closed circuit, and the water in the hot water supply circulation circuit will decrease. In this case, since the circulation flow rate conveyed by the circulation pump becomes small, the driving load when driving at the same rotation speed becomes small. The control means can detect this state and detect the presence or absence of water leakage due to breakage of the hot water supply circulation circuit.

第10の発明は、装置運転状態に応じた適切なタイミングで、給湯循環回路閉手段を閉とし、循環ポンプを駆動させることで給湯循環回路の破損による漏水有無を検知する機能を制御手段に備えたものである。たとえば、給湯栓にユーザが要求する湯を供給する給湯運転を行っている場合には、給湯循環回路閉手段を閉とすると、給湯栓に湯を供給することができなくなる。したがって、装置運転状態に応じた適切なタイミングで、給湯循環回路の破損による漏水有無検知を行うことで、ユーザの使用勝手を優先させることができる。   In a tenth aspect of the present invention, the controller has a function of detecting the presence or absence of water leakage due to breakage of the hot water supply circuit by closing the hot water supply circuit closing means and driving the circulation pump at an appropriate timing according to the operating state of the apparatus. It is a thing. For example, when a hot water supply operation for supplying hot water requested by a user to a hot water tap is performed, hot water cannot be supplied to the hot water tap if the hot water circulation circuit closing means is closed. Therefore, it is possible to give priority to the user's usability by detecting the presence or absence of water leakage due to breakage of the hot water supply circulation circuit at an appropriate timing according to the apparatus operating state.

第11の発明は、制御手段が、給湯循環回路からの漏水有りの場合に、その旨をたとえば遠隔操作リモートコントローラ等の外部報知手段に報知し、装置の運転を停止させる動作を行うことで、ユーザに漏水有りの状態を知らせて、漏水による拡大被害を抑えることができる。   In the eleventh aspect of the invention, when there is water leakage from the hot water supply circulation circuit, the control means notifies the external notification means such as a remote control remote controller to that effect, and performs an operation to stop the operation of the apparatus. The user can be informed of the state of water leakage, and the expansion damage due to water leakage can be suppressed.

第12の発明は、給湯循環回路において出湯路との分岐部より上流側に、前記給湯循環回路の循環流量を検出させるための循環流量検出手段を設けることで、ユーザが給湯栓を開とした場合に、前記循環流量検出手段でその水流を検出することができる。   In a twelfth aspect of the present invention, a circulation flow rate detection means for detecting a circulation flow rate of the hot water supply circulation circuit is provided upstream of a branch portion with the hot water supply path in the hot water supply circulation circuit, so that the user opens the hot water tap. In this case, the water flow can be detected by the circulating flow rate detecting means.

第13の発明は、制御手段が、給湯循環回路に配置された循環流量検出手段で検出される流量が所定値以上になった時に、バーナの燃焼を開始させることで、給湯用熱交換器の水管内に確実に通水が行われてからバーナの燃焼を開始させることができるので、空焚き発生等の危険な状態を回避することができる。   In a thirteenth aspect of the invention, the control means starts combustion of the burner when the flow rate detected by the circulation flow rate detection means arranged in the hot water supply circulation circuit exceeds a predetermined value. Since burning of the burner can be started after water has been reliably passed into the water pipe, dangerous conditions such as the occurrence of airing can be avoided.

(実施の形態1)
図1は、本発明の第1、第2、第4、第5、第9、第10、第11、第12、および第13の実施の形態における給湯装置の構造図を示すものである。
(Embodiment 1)
FIG. 1 shows a structural diagram of a hot water supply apparatus according to the first, second, fourth, fifth, ninth, tenth, eleventh, twelfth and thirteenth embodiments of the present invention.

図1において、給水路A1Aより供給された水は、給水路分岐部18で給水路B1Bとバイパス通路4に分岐される。給水路B1Bより供給された水はバーナ26の燃焼により加熱され、熱交サーミスタ15が所定の温度となるように上昇された後、出湯路3に供給される。一方、給水路A1Aから供給された水は、流量調整を行うバイパス制御弁9を有するバイパス通路4を通って前記出湯路3に供給される。そして、前記出湯路3を流れる高温水と、前記バイパス通路を流れる水は、出湯サーミスタ17で検出される湯温が所望の温度となるように混合され、給湯栓13より出湯される給湯回路を構成している。   In FIG. 1, the water supplied from the water supply channel A <b> 1 </ b> A is branched into the water supply channel B <b> 1 </ b> B and the bypass channel 4 at the water supply channel branching section 18. The water supplied from the water supply channel B1B is heated by the combustion of the burner 26, and the heat exchange thermistor 15 is raised to a predetermined temperature and then supplied to the hot water supply channel 3. On the other hand, the water supplied from the water supply channel A1A is supplied to the hot water supply channel 3 through the bypass channel 4 having the bypass control valve 9 for adjusting the flow rate. The hot water flowing through the hot water supply passage 3 and the water flowing through the bypass passage are mixed so that the hot water temperature detected by the hot water discharge thermistor 17 becomes a desired temperature, and a hot water supply circuit discharged from the hot water tap 13 is provided. It is composed.

給湯栓13が開かれて入水流量センサ5で所定量(たとえば2.8L/min)以上の入水流量が検出されると、バーナ26はガス元電磁弁22、ガス比例弁23、ガス切替弁24が配設されたガス供給路21より燃料ガスが供給され、燃焼用ファン25により燃焼用空気が供給されて、予め定められたシーケンスに従い燃焼動作が行われる。ここで前記入水流量センサ5としては、たとえば通水流量に応じて流路中に設けた羽根車が回転し、その回転に応じた出力パルスで実流量を計測する流量センサの構成が考えられる。そして、バーナ26の燃焼により発生する燃焼ガスは燃焼室30を通って排気通路31を経由し排気口32から装置外に排出される。この燃焼ガスの排気経路に燃焼ガスの顕熱を回収する給湯用熱交換器33と燃焼排ガスの潜熱を回収する潜熱回収用熱交換器34を配設している。具体的には、バーナ26の下流側の燃焼室30に給湯用熱交換器33を設け、その下流側の排気通路31に潜熱回収用熱交換器34を設け、前記給水路B1Bより供給される水を、まず潜熱回収用熱交換器34に供給して燃焼排ガス中の潜熱を回収した後、給湯用熱交換器33に供給しバーナ26の燃焼により所定の高温水に温度上昇させて出湯路3
に供給する。このように従来の給湯用熱交換器33による顕熱回収に加え、燃焼排ガスの潜熱回収を行う潜熱回収用熱交換器34を設けることで、総合的な熱効率を高めることによって省エネルギー化を図るものである。
When the hot-water tap 13 is opened and the incoming flow rate sensor 5 detects an incoming flow rate of a predetermined amount (for example, 2.8 L / min) or more, the burner 26 has a gas source solenoid valve 22, a gas proportional valve 23, and a gas switching valve 24. The fuel gas is supplied from the gas supply path 21 in which is disposed, the combustion air is supplied by the combustion fan 25, and the combustion operation is performed according to a predetermined sequence. Here, as the incoming water flow rate sensor 5, for example, a configuration of a flow rate sensor that measures an actual flow rate with an output pulse corresponding to the rotation of an impeller provided in the flow path according to the flow rate of water can be considered. . The combustion gas generated by the combustion of the burner 26 passes through the combustion chamber 30, passes through the exhaust passage 31, and is discharged from the exhaust port 32 to the outside of the apparatus. A hot water supply heat exchanger 33 that recovers sensible heat of the combustion gas and a latent heat recovery heat exchanger 34 that recovers the latent heat of the combustion exhaust gas are disposed in the exhaust path of the combustion gas. Specifically, a hot water supply heat exchanger 33 is provided in the combustion chamber 30 on the downstream side of the burner 26, a latent heat recovery heat exchanger 34 is provided in the exhaust passage 31 on the downstream side, and the heat supply passage B1B is supplied. Water is first supplied to the latent heat recovery heat exchanger 34 to recover the latent heat in the combustion exhaust gas, and then supplied to the hot water supply heat exchanger 33 and heated to a predetermined high temperature water by the combustion of the burner 26, and the hot water outlet. 3
To supply. In this way, in addition to the sensible heat recovery by the conventional hot water supply heat exchanger 33, by providing the latent heat recovery heat exchanger 34 for recovering the latent heat of the combustion exhaust gas, energy saving is achieved by improving the overall thermal efficiency. It is.

次に図1において、循環ポンプ7を介して利用側熱交換器に、潜熱回収用熱交換器34および給湯用熱交換器33で加熱された高温水を供給した後、前記潜熱回収用熱交換器34の上流側給水路B1Bに戻し、潜熱回収用熱交換器34から給湯用熱交換器33を通り循環ポンプ7を介して利用側熱交換器に至る給湯循環回路2を構成している。なお、前記給水路B1Bには、流路開閉を行う給水路B開閉弁19が備えられている。前記給水路B開閉弁19を閉とした場合、前記給湯循環回路2は給水路B1Bから切り離され完全に独立した閉回路とすることができる。前記給湯循環回路2は、利用側熱交換器の1次側回路として高温水を供給することで利用側熱交換器の2次側負荷に熱量を供給することが可能である。ここでは利用側熱交換器として、暖房や浴室乾燥等を行う暖房端末機に温水を供給するための暖房回路41を2次側とする暖房用熱交換器52と、浴槽77の浴槽水を加熱する風呂回路61を2次側とする風呂用熱交換器80とを2つ設けた場合を示している。給湯循環回路2を並列に分岐して、前記暖房用熱交換器52と風呂用熱交換器80の各1次側回路として供給することで、各利用側熱交換器に供給される高温水温度が略同一とすることが可能である。またここでは、前記風呂用熱交換器80の1次側回路に流路開閉を行う風呂開閉弁78を設けた場合を示している。前記風呂開閉弁78を設けることで、前記風呂用熱交換器80の1次側回路に高温水を供給したい場合にのみ前記風呂開閉弁78を開とすることで、前記暖房用熱交換器52の1次側回路により多くの高温水を供給することが可能となり、暖房出力を増加させることができる。   Next, in FIG. 1, high-temperature water heated by the latent heat recovery heat exchanger 34 and the hot water supply heat exchanger 33 is supplied to the use side heat exchanger via the circulation pump 7, and then the latent heat recovery heat exchange is performed. Returning to the upstream side water supply channel B1B of the heat exchanger 34, the hot water supply circulation circuit 2 from the latent heat recovery heat exchanger 34 through the hot water supply heat exchanger 33 to the use side heat exchanger via the circulation pump 7 is configured. The water supply path B1B is provided with a water supply path B on-off valve 19 that opens and closes the flow path. When the water supply passage B on-off valve 19 is closed, the hot water supply circulation circuit 2 can be separated from the water supply passage B1B to be a completely independent closed circuit. The hot water supply circulation circuit 2 can supply heat to the secondary load of the use side heat exchanger by supplying high temperature water as a primary side circuit of the use side heat exchanger. Here, as the use-side heat exchanger, a heating heat exchanger 52 having a heating circuit 41 for supplying warm water to a heating terminal that performs heating, bathroom drying, or the like as a secondary side, and the bathtub water of the bathtub 77 are heated. In this example, two bath heat exchangers 80 having the bath circuit 61 to be used as the secondary side are provided. The hot water circulation circuit 2 is branched in parallel and supplied as primary circuits of the heat exchanger 52 for heating and the heat exchanger 80 for bath, whereby the high-temperature water temperature supplied to each use-side heat exchanger Can be substantially the same. Here, a case where a bath opening / closing valve 78 for opening / closing a flow path is provided in the primary side circuit of the bath heat exchanger 80 is shown. By providing the bath opening / closing valve 78, the heating heat exchanger 52 is opened by opening the bath opening / closing valve 78 only when high temperature water is desired to be supplied to the primary circuit of the bath heat exchanger 80. It is possible to supply a large amount of high-temperature water to the primary side circuit, thereby increasing the heating output.

前記出湯路3は前記給湯循環回路2において、前記暖房用熱交換器52や前記風呂用熱交換器80の利用側熱交換器の下流側から分岐した状態としている。このように分岐部を利用側熱交換器の下流に配置させることで、前記給湯回路と前記給湯循環回路2を同時に使用する場合には、前記給湯循環回路2により多くの高温水を供給することができるので、利用側熱交換器の2次側回路により多くの熱量を供給することができるという特徴を有する。   In the hot water supply circulation circuit 2, the hot water supply passage 3 is branched from the downstream side of the use side heat exchanger of the heating heat exchanger 52 and the bath heat exchanger 80. In this way, by arranging the branch portion downstream of the use side heat exchanger, when the hot water supply circuit and the hot water supply circulation circuit 2 are used simultaneously, a large amount of high temperature water is supplied to the hot water supply circulation circuit 2. Therefore, a large amount of heat can be supplied to the secondary side circuit of the use side heat exchanger.

暖房回路41は、前記暖房用熱交換器52の2次側に浴室乾燥機などの暖房端末機の負荷を接続して閉回路を形成し、暖房循環ポンプ50で2次側温水を循環させることにより、前記暖房用熱交換器52において1次側である前記給湯循環回路2を流れる高温水から熱量を供給される。   The heating circuit 41 connects a load of a heating terminal such as a bathroom dryer to the secondary side of the heating heat exchanger 52 to form a closed circuit, and circulates the secondary side hot water by the heating circulation pump 50. Thus, in the heating heat exchanger 52, the amount of heat is supplied from the high-temperature water flowing through the hot water supply circulation circuit 2 which is the primary side.

風呂回路81は、前記風呂用熱交換器80の2次側に浴槽を接続して閉回路を形成し、風呂循環ポンプ75で浴槽水を循環させることにより、前記風呂用熱交換器80において1次側である前記給湯循環回路2を流れる高温水から熱量を供給され、風呂追い焚きを行う。また、浴槽77へ所定湯量の湯張りを行う注湯流路64として、バイパス通路4の下流側の出湯路3から風呂回路61に連通する経路を形成している。   The bath circuit 81 is connected to the secondary side of the bath heat exchanger 80 to form a closed circuit, and the bath water is circulated by the bath circulation pump 75 so that 1 in the bath heat exchanger 80. The amount of heat is supplied from the high-temperature water flowing through the hot water supply circulation circuit 2 on the next side, and the bath is replenished. In addition, as a pouring flow path 64 for filling the bathtub 77 with a predetermined amount of hot water, a path communicating from the hot water discharge path 3 on the downstream side of the bypass path 4 to the bath circuit 61 is formed.

中和回路は、前記潜熱回収用熱交換器34で発生する酸性結露水を中和して装置外へ排出する機能を有する。前記給水路B1Bから供給される水が前記潜熱回収用熱交換器34で燃焼排ガスによって熱交換される際に、燃焼排ガスが水によって冷やされ結露水が発生する。この結露水には、燃焼排ガス中のCOやNOxなどの成分が溶解し、通常ph2〜3の酸性を呈する。発生した酸性結露水は、受け皿101で回収され酸性結露水路102を通って、内部に炭酸カルシウムなどの中和剤103を有する中和タンク104に導かれて中和された後、ドレン水路105から装置外へ排出される。 The neutralization circuit has a function of neutralizing the acid condensed water generated in the latent heat recovery heat exchanger 34 and discharging it to the outside of the apparatus. When the water supplied from the water supply channel B1B is heat-exchanged by the combustion exhaust gas in the latent heat recovery heat exchanger 34, the combustion exhaust gas is cooled by water, and condensed water is generated. In this condensed water, components such as CO 2 and NOx in the combustion exhaust gas are dissolved, and usually exhibits acidity of ph2 to 3. The generated acidic dew condensation water is collected by the tray 101, passes through the acid dew condensation water channel 102, is guided to the neutralization tank 104 having a neutralizing agent 103 such as calcium carbonate inside, and neutralized, and then from the drain water channel 105. It is discharged out of the device.

以上のように構成された給湯装置について、以下その動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、給湯運転時には、給湯栓13を開くと給水路A1Aに配設した入水流量センサ5が通水を検知し、この通水信号で燃焼用ファン25が動作し同時にガス元電磁弁22、ガス比例弁23が開き、バーナ26に燃料ガスと燃焼用空気が供給され、点火器27による点火プラグ28の火花放電により着火し、フレームロッド29による着火認識動作によって燃焼が開始する。また燃焼負荷に応じたバーナ26での燃焼量は、ガス切替弁24を開閉することで調節される。この燃焼ガスの排気動作の過程において、燃焼室30に配設した給湯用熱交換器33と排気通路31に配設した潜熱回収用熱交換器34で給水路B1Bより供給される水が加熱される。   First, during the hot water supply operation, when the hot water tap 13 is opened, the incoming water flow rate sensor 5 disposed in the water supply channel A1A detects water flow, and the combustion fan 25 is operated by this water flow signal and simultaneously the gas source solenoid valve 22 and the gas. The proportional valve 23 is opened, fuel gas and combustion air are supplied to the burner 26, ignited by spark discharge of the ignition plug 28 by the igniter 27, and combustion is started by the ignition recognition operation by the frame rod 29. The amount of combustion in the burner 26 according to the combustion load is adjusted by opening and closing the gas switching valve 24. In the process of exhausting the combustion gas, the water supplied from the water supply passage B1B is heated by the hot water supply heat exchanger 33 provided in the combustion chamber 30 and the latent heat recovery heat exchanger 34 provided in the exhaust passage 31. The

給湯用熱交換器33で加熱された湯水は、前記給湯用熱交換器33と潜熱回収用熱交換器34を迂回するように給水路A1Aと出湯路3を連通して設けたバイパス通路4に配設したバイパス制御弁9により入水側の水と混合される。混合された湯は、浴室リモコン92や台所リモコン93などの遠隔操作用リモートコントローラで設定した給湯設定温度になるように出湯サーミスタ17の信号によりバイパス制御弁9の開度を調節し、給湯栓13より給湯される。   The hot water heated by the hot water supply heat exchanger 33 passes through the water supply passage A1A and the hot water supply passage 3 so as to bypass the hot water supply heat exchanger 33 and the latent heat recovery heat exchanger 34. The bypass control valve 9 provided is mixed with water on the incoming side. The opening of the bypass control valve 9 is adjusted by a signal from the hot water thermistor 17 so that the mixed hot water has a hot water supply set temperature set by a remote controller for remote operation such as a bathroom remote controller 92 or a kitchen remote controller 93, and the hot water tap 13 More hot water is supplied.

このように、給湯単独運転を選択する場合は、遠隔操作用リモートコントローラで所望の温度を設定し、給湯栓13を開くことで自動的に設定された湯温の給湯温水を確保することができる。   Thus, when selecting hot water supply independent operation, a desired temperature can be set with the remote controller for remote operation, and the hot water supply hot water set automatically can be secured by opening the hot water tap 13. .

次に暖房運転時には、浴室乾燥機などの暖房端末機に内蔵された制御器(図示せず)や暖房リモコン94からの運転指令で、暖房回路41に設けた暖房循環ポンプ50が駆動し、この運転指令に連動して給湯循環回路2の湯水を循環させる循環ポンプ7が駆動し、前記給湯循環回路2内に設けられた循環流量検出手段6で検出される循環流量が所定量(たとえば2.8L/min)以上となると、バーナ26の着火動作により燃焼が開始する。ここで前記循環流量検出手段6としては、入水流量センサ5と同様な構成を持つ流量センサの構成が考えられる。給湯用熱交換器33で加熱された高温水は循環ポンプ7で暖房用熱交換器52の1次側に供給され、水−水熱交換構成により熱交換され2次側の暖房回路41へ伝熱される。   Next, at the time of heating operation, a heating circulation pump 50 provided in the heating circuit 41 is driven by an operation command from a controller (not shown) built in a heating terminal such as a bathroom dryer or a heating remote controller 94. A circulation pump 7 that circulates hot water in the hot water supply circulation circuit 2 is driven in conjunction with the operation command, and the circulation flow rate detected by the circulation flow rate detection means 6 provided in the hot water supply circulation circuit 2 is a predetermined amount (for example, 2. 8 L / min) or more, combustion starts by the ignition operation of the burner 26. Here, as the circulating flow rate detecting means 6, a configuration of a flow rate sensor having the same configuration as the incoming water flow rate sensor 5 can be considered. The high-temperature water heated by the hot water supply heat exchanger 33 is supplied to the primary side of the heating heat exchanger 52 by the circulation pump 7 and is heat-exchanged by the water-water heat exchange configuration and transmitted to the secondary side heating circuit 41. Be heated.

図1の暖房回路41は、2種類の異なる温度の温水を暖房端末機に供給することができる2温度タイプの構成を示している。暖房用熱交換器52で加熱された暖房回路41の温水は、浴室乾燥機などの高温端末機に用いる場合には暖房往流路42を通ってそのまま供給される。また、床暖房温水マットなどの低温端末機に用いる場合には、暖房戻流路44を通って暖房タンク53に蓄えられた各暖房端末機からの戻り温水が、逆止弁49を有する低温バイパス流路45を流れる高温水と混合され、低温暖房往流路43を通って供給される。   The heating circuit 41 of FIG. 1 shows a two-temperature type configuration that can supply hot water having two different temperatures to the heating terminal. The hot water of the heating circuit 41 heated by the heating heat exchanger 52 is supplied as it is through the heating forward flow path 42 when used in a high-temperature terminal such as a bathroom dryer. When used in a low-temperature terminal such as a floor heating hot water mat, the return hot water from each heating terminal stored in the heating tank 53 through the heating return passage 44 is a low-temperature bypass having a check valve 49. It is mixed with the high temperature water flowing through the flow path 45 and supplied through the low temperature heating forward flow path 43.

暖房タンク53には、蒸発等によって減少した暖房回路41内の保有水量を検知する減水電極54と、保有満水量を検知する満水電極55とが備えられ、給水路A1Aから分岐し補給水電磁弁48を有する補給水路47が接続されている。 前記減水電極54がOFFし、前記暖房タンク53の保有水量が前記減水電極54未満となると、補給水電磁弁48が開となり、満水電極55がONするまで補給水路47から水が暖房タンク53に供給される仕組みになっている。   The heating tank 53 is provided with a water reducing electrode 54 that detects the amount of retained water in the heating circuit 41 that has decreased due to evaporation or the like, and a full water electrode 55 that detects the amount of retained water, and branches from the water supply channel A1A to supply water. A make-up water channel 47 having 48 is connected. When the water-reducing electrode 54 is turned off and the amount of water held in the heating tank 53 is less than the water-reducing electrode 54, the make-up water electromagnetic valve 48 is opened, and water from the make-up water channel 47 enters the heating tank 53 until the full-water electrode 55 is turned on. It is a mechanism to be supplied.

暖房用熱交換器52で熱交換された高温水は潜熱回収用熱交換器34の上流側給水路B1Bに戻し、給湯循環回路2を形成し、暖房端末機からの暖房運転指令が発せいられている間、所定の温度に維持して高温水循環を継続する。   The high-temperature water heat-exchanged by the heating heat exchanger 52 is returned to the upstream water supply channel B1B of the latent heat recovery heat exchanger 34 to form the hot water supply circulation circuit 2, and a heating operation command is issued from the heating terminal. During this time, the hot water circulation is continued while maintaining the predetermined temperature.

風呂追い焚き運転時には、浴室リモコン92などの遠隔操作用リモートコントローラで風呂追い焚き運転の指示を行うと、風呂回路61に設けた風呂循環ポンプ75が駆動し、水流検知部74で浴槽水の循環が検知されると、その検知信号で給湯循環回路2を循環させる循環ポンプ7が駆動し、風呂開閉弁78が開となり、循環流量検出手段6で検出される循環流量が所定量(たとえば2.8L/min)以上となると、バーナ26の着火動作により燃焼が開始する。ここで前記水流検知部74としては、たとえば流路中に設けられマグネットが取り付けられたバタフライ部が、所定(たとえば2.8L/min)以上の通水流量で押し上げられ電気導通することで水流を検知する流量スイッチの構成が考えられる。   At the time of bath rebirth operation, when a bath rebirth operation instruction is given by a remote controller for remote operation such as the bathroom remote controller 92, the bath circulation pump 75 provided in the bath circuit 61 is driven, and the water flow detector 74 circulates the bath water. Is detected, the circulation pump 7 for circulating the hot water supply circulation circuit 2 is driven by the detection signal, the bath opening / closing valve 78 is opened, and the circulation flow rate detected by the circulation flow rate detection means 6 is a predetermined amount (for example, 2. 8 L / min) or more, combustion starts by the ignition operation of the burner 26. Here, as the water flow detection unit 74, for example, a butterfly unit provided in a flow path and attached with a magnet is pushed up at a water flow rate of a predetermined (for example, 2.8 L / min) or more to be electrically connected, thereby generating a water flow. A configuration of a flow rate switch to be detected is conceivable.

給湯用熱交換器33で加熱された高温水は循環ポンプ7で、風呂開閉弁78が開となった風呂用熱交換器80の1次側に供給され、水−水熱交換構成により熱交換され2次側の風呂回路61へ伝熱される。風呂用熱交換器80で受熱した風呂回路61の熱は、浴槽77の浴槽水温度を上昇させ所定の追い焚き湯温を確保する。そして、風呂用熱交換器80で熱交換された高温水は、潜熱回収用熱交換器34の上流側給水路B1Bに戻し、給湯循環回路2を形成し、遠隔操作用リモートコントローラで設定された所定の追い焚き温度を風呂戻サーミスタ79で検出するまで所定の湯温に維持して循環を継続する。   The high-temperature water heated by the hot water supply heat exchanger 33 is supplied by the circulation pump 7 to the primary side of the bath heat exchanger 80 in which the bath open / close valve 78 is opened, and heat exchange is performed by the water-water heat exchange configuration. Then, heat is transferred to the bath circuit 61 on the secondary side. The heat of the bath circuit 61 received by the bath heat exchanger 80 raises the bath water temperature of the bathtub 77 to ensure a predetermined reheating water temperature. And the high temperature water heat-exchanged with the heat exchanger 80 for baths returns to the upstream water supply path B1B of the heat exchanger 34 for latent heat recovery, forms the hot water supply circulation circuit 2, and was set with the remote controller for remote operation Circulation is continued while maintaining a predetermined hot water temperature until a predetermined reheating temperature is detected by the bath return thermistor 79.

なお給湯循環回路2中に設けた循環流量検出手段6は、前記のように暖房運転時および風呂追い焚き運転時に、バーナ26の着火動作を行う流量検出手段の機能に加え、循環ポンプ7を駆動負荷可変なDCポンプの構成とするならば、暖房運転時、風呂追い焚き運転時、あるいはそれらの同時運転時に、各利用側熱交換器の2次側負荷に応じて、循環ポンプ7の駆動負荷を変化させ最適な高温水流量を供給させる機能を持たせることができる。   The circulating flow rate detection means 6 provided in the hot water supply circulation circuit 2 drives the circulation pump 7 in addition to the function of the flow rate detection means for igniting the burner 26 during the heating operation and the bath reheating operation as described above. If the configuration of the load-variable DC pump is adopted, the driving load of the circulation pump 7 depends on the secondary side load of each use-side heat exchanger during heating operation, bath reheating operation, or simultaneous operation thereof. It is possible to provide a function of supplying an optimal high-temperature water flow rate by changing.

以上のように本実施の形態においては、給湯回路と利用側熱交換器の1次側回路である給湯循環回路を1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により装置の小型・軽量化を実現することができる。また利用側熱交換器として複数個設ける場合、給湯循環回路に対して各利用側熱交換器を並列に接続することで給湯用熱交換器から供給される湯水温度が略同一とすることができる。さらに潜熱回収により効率アップを図ることで、給湯性能と利用側熱交換器の加熱性能を同時に確保することができる。   As described above, in the present embodiment, the hot water supply circuit and the hot water supply circulation circuit that is the primary circuit of the use side heat exchanger are configured by one heating path, thereby simplifying the main body configuration including the piping configuration. It is possible to reduce the size and weight of the device. When a plurality of use side heat exchangers are provided, the temperature of hot water supplied from the hot water supply heat exchanger can be made substantially the same by connecting each use side heat exchanger in parallel to the hot water supply circulation circuit. . Further, by improving the efficiency by recovering latent heat, it is possible to simultaneously ensure the hot water supply performance and the heating performance of the use side heat exchanger.

次に、給湯循環回路2を給水路B1Bから切り離して独立した閉回路とし、循環ポンプ7を駆動させることで前記給湯循環回路2の破損による漏水有無を検知する方法について述べる。   Next, a method of detecting the presence or absence of water leakage due to breakage of the hot water supply circulation circuit 2 by driving the circulation pump 7 by separating the hot water supply circulation circuit 2 from the water supply path B1B and making it an independent closed circuit will be described.

図1において、給湯用熱交換器33と潜熱回収用熱交換器34を直列接続し、循環ポンプ7を介して利用側熱交換器に至る給湯循環回路2と、前記給湯循環回路2から分岐して出湯路3に至る給湯回路とを有する本給湯装置の構成において、前記給湯循環回路2の配管破損によって漏水が発生した場合、ユーザが知らない間に水を無駄にすることや、上水と汚水が混ざるという危険性が存在する。   In FIG. 1, a hot water supply heat exchanger 33 and a latent heat recovery heat exchanger 34 are connected in series and branched from the hot water supply circulation circuit 2 and the hot water supply circulation circuit 2 reaching the user side heat exchanger via the circulation pump 7. In the configuration of the hot water supply apparatus having a hot water supply circuit extending to the hot water supply path 3, if water leakage occurs due to piping breakage of the hot water supply circulation circuit 2, water is wasted without the user knowing, There is a danger of sewage mixing.

潜熱回収用熱交換器34の水管部で配管破損が発生すると、給水圧により漏水が発生する。この漏水は受け皿101で回収され、酸性結露水路102、中和タンク104、およびドレン水路105を経由して装置外へ排出される。すなわち前記潜熱回収用熱交換器34の水管部破損により漏水が発生した場合には、ユーザが知らない間に水を無駄にすることになる。   When a pipe breakage occurs in the water pipe portion of the latent heat recovery heat exchanger 34, water leakage occurs due to the water supply pressure. This water leakage is collected by the tray 101 and discharged outside the apparatus through the acidic dew condensation water channel 102, the neutralization tank 104, and the drain water channel 105. That is, when water leaks due to damage to the water pipe portion of the latent heat recovery heat exchanger 34, water is wasted without the user's knowledge.

また利用側熱交換器の水管部で配管破損が発生した場合には、前記のようにユーザが知らない間に水を無駄にすることに加え、上水と汚水が混ざるという危険性が存在する。図1においては、利用側熱交換器として、暖房用熱交換器52と風呂用熱交換器80とを考
えているが、前記暖房用熱交換器52では1次側回路として上水が流れる給湯循環回路2と2次側回路として汚水である暖房用循環水が流れる暖房回路41とが接しており、前記風呂用熱交換器80では1次側回路として上水が流れる給湯循環回路2と2次側回路として汚水である浴槽水が流れる風呂回路61とが接している。ここで各利用側熱交換器の給湯循環回路2の配管破損が発生した場合、給水圧により1次側回路から2次側回路へ漏水が発生してユーザが知らない間に水を無駄にすることや、断水などが発生して1次側回路の給水圧が低下した場合には、1次側回路と2次側回路の水圧のバランスで2次側回路の汚水が1次側回路の上水側に流れ、上水と汚水が混ざる危険性が発生する。
In addition, when a pipe breakage occurs in the water pipe portion of the use side heat exchanger, there is a risk that water and sewage are mixed in addition to wasting water without the user's knowledge as described above. . In FIG. 1, the heating heat exchanger 52 and the bath heat exchanger 80 are considered as the use side heat exchangers. However, in the heating heat exchanger 52, hot water is supplied as a primary circuit. The circulation circuit 2 and the heating circuit 41 through which the circulating water for heating as sewage flows are in contact as the secondary circuit, and the hot water supply circulation circuits 2 and 2 through which the clean water flows as the primary circuit in the bath heat exchanger 80. A bath circuit 61 through which bathtub water, which is dirty water, flows is in contact with the secondary circuit. Here, when a pipe breakage of the hot water supply circulation circuit 2 of each use side heat exchanger occurs, water leakage occurs from the primary side circuit to the secondary side circuit due to the feed water pressure, and water is wasted without the user's knowledge. If the water supply pressure of the primary side circuit is reduced due to water outage or the like, the sewage of the secondary side circuit is above the primary side circuit due to the balance of the water pressure of the primary side circuit and the secondary side circuit. There is a risk that water will flow to the water side and water and sewage will be mixed.

以上のことより、本給湯装置においては、1次側回路である給湯循環回路2の配管破損による漏水有無を検知する機能が必要となる。以下、本給湯装置において、給湯循環回路2の配管破損による漏水有無を検知する具体的方法について述べる。   From the above, in this hot water supply apparatus, a function for detecting the presence or absence of water leakage due to pipe breakage of the hot water supply circulation circuit 2 which is the primary side circuit is required. Hereinafter, in this hot water supply apparatus, a specific method for detecting the presence or absence of water leakage due to pipe breakage of the hot water supply circulation circuit 2 will be described.

まず、制御手段91は、給湯装置設置後に施工業者等が行う試運転動作時に、給湯循環回路2の循環流量を学習する。この給湯循環回路2の循環流量学習は、風呂開閉弁78を開とした場合と、閉とした場合との2種類で行う。風呂開閉弁78を開とするのは、風呂追い焚き運転時に、前記風呂開閉弁78を開とすることに対応させた場合を想定している。これら2種類の循環流量学習値をたとえば下記のようにq(0)、およびq(0)する。 First, the control means 91 learns the circulation flow rate of the hot water supply circulation circuit 2 during a trial operation performed by a contractor or the like after installing the hot water supply device. The circulation flow rate learning of the hot water supply circulation circuit 2 is performed in two types, when the bath opening / closing valve 78 is opened and when it is closed. The reason why the bath opening / closing valve 78 is opened is based on the case where the bath opening / closing valve 78 is opened during the bath chasing operation. These two types of circulating flow learning values are, for example, q 1 (0) and q 2 (0) as described below.

(0):風呂開閉弁78を開とした場合の循環流量学習値(たとえば10L/min)
(0):風呂開閉弁78を閉とした場合の循環流量学習値(たとえば7L/min)
次に、給湯循環回路2の配管破損による漏水有無検知の方法について述べる。漏水有無検知は、装置運転状態に応じた適切なタイミングで行うことが必要である。すなわち装置運転を行っていないときに漏水有無検知を行う。具体的には、浴室リモコン92、台所リモコン93、暖房リモコン94などの遠隔操作用リモートコントローラの運転スイッチがOFFとなっている状態の時に行うものとする。なお、漏水有無検知を行っている最中に、これらの遠隔操作用リモートコントローラの運転スイッチがONされた場合には、直ちに漏水有無検知動作を中断するものとする。同じく、ユーザが遠隔操作用リモートコントローラの運転スイッチがOFFの状態で給湯栓13を開とした場合も、出湯路3を通して給湯循環回路2内の水が給湯栓13から出てしまうため、漏水有無検知動作を中断するものとする。なお、この時のユーザが給湯栓13を開とした行為は、入水流量センサ5で検知可能である。また、制御手段91が漏水有無検知を行うのは、所定期間(たとえば10日)に最大所定回(たとえば1回)とする。漏水有無検知動作が途中で中断された場合にはその漏水有無検知動作は無効とする。
q 1 (0): Circulating flow rate learning value when the on-off valve 78 is opened (for example, 10 L / min)
q 2 (0): Circulating flow rate learning value when bath opening / closing valve 78 is closed (for example, 7 L / min)
Next, a method for detecting the presence or absence of water leakage due to piping breakage in the hot water supply circulation circuit 2 will be described. It is necessary to detect the presence or absence of water leakage at an appropriate timing according to the operating state of the apparatus. That is, the presence / absence of water leakage is detected when the apparatus is not operating. Specifically, it is performed when the operation switches of remote controllers for remote operation such as the bathroom remote controller 92, the kitchen remote controller 93, and the heating remote controller 94 are OFF. In addition, when the operation switch of these remote control remote controllers is turned on during the leakage detection, the leakage detection operation is immediately interrupted. Similarly, when the user opens the hot water tap 13 with the operation switch of the remote controller for remote operation turned off, the water in the hot water circulation circuit 2 comes out from the hot water tap 13 through the hot water supply passage 3, so there is water leakage. The detection operation shall be interrupted. Note that the act of the user opening the hot water tap 13 at this time can be detected by the incoming water flow rate sensor 5. In addition, the controller 91 detects the presence or absence of water leakage at a maximum predetermined number of times (for example, once) within a predetermined period (for example, 10 days). If the leak detection operation is interrupted, the leak detection operation is invalid.

上記のような装置運転状態に応じた適切なタイミングで給湯循環回路2の漏水有無検知動作を行う場合、制御手段91は、まず給水路B1Bに設けられた給水路B開閉弁19を閉とする。ここで前記給水路B開閉弁19としては、負荷電圧で瞬時に弁の開閉を行う直動式開閉弁の構成が考えられる。給水路B開閉弁19が閉となると、給湯循環回路2は水が供給される給水路B1Bと切り離され、独立した閉回路となる。この状態で、制御手段91は循環ポンプ7を駆動させ、その時に給湯循環回路2内に設けられた循環流量検出手段6で検出される循環流量を計測し、試運転時に学習した循環流量であるq(0)、およびq(0)と比較することで、潜熱回収用熱交換器34および各利用側熱交換器の給湯循環回路2側の水管破損による漏水有無を検知する。 When performing the water leakage presence / absence detection operation of the hot water supply circulation circuit 2 at an appropriate timing according to the apparatus operating state as described above, the control unit 91 first closes the water supply channel B on / off valve 19 provided in the water supply channel B1B. . Here, as the water supply channel B on-off valve 19, a configuration of a direct-acting on-off valve that opens and closes the valve instantaneously with a load voltage can be considered. When the water supply path B on-off valve 19 is closed, the hot water supply circulation circuit 2 is disconnected from the water supply path B1B to which water is supplied, and becomes an independent closed circuit. In this state, the control means 91 drives the circulation pump 7, measures the circulation flow rate detected by the circulation flow rate detection means 6 provided in the hot water supply circulation circuit 2 at that time, and is the circulation flow rate q learned during the trial operation. By comparing with 1 (0) and q 2 (0), the presence or absence of water leakage due to water pipe breakage on the hot water supply circuit 2 side of the latent heat recovery heat exchanger 34 and each use side heat exchanger is detected.

まず風呂開閉弁78を閉とし、潜熱回収用熱交換器34の水管部破損による漏水有無検知の方法を述べる。潜熱回収用熱交換器34の水管破損が発生した場合、水管の外側は大
気開放されているため、この状態で循環ポンプ7を駆動させると前記循環ポンプ7の吐出圧によって、やがて給湯循環回路2内の水は水管外へすべて排出されてしまう。この状態を循環流量検出手段6で検出することで漏水有無検知を行うことができる。すなわち、制御手段91が漏水有無検知動作を開始してから、所定の最大漏水有無検知動作継続時間(たとえば30分)以内に、循環流量検出手段6で検出される循環流量qが、循環流量学習値q(0)(たとえば7L/min)に対して所定の割合α(たとえばα=0.6とすると、この時q=4.2L/min)に達し、それ以降も循環流量qが低下を続けて所定の割合α(たとえばα=0.3とすると、この時q=2.1L/min)に達した場合、制御手段91は潜熱回収用熱交換器34の水管部で配管破損により漏水が発生していることを検出することができる。
First, the method for detecting the presence or absence of water leakage due to breakage of the water pipe portion of the heat exchanger 34 for recovering latent heat will be described with the bath open / close valve 78 closed. When the water pipe of the latent heat recovery heat exchanger 34 is broken, the outside of the water pipe is open to the atmosphere. Therefore, when the circulation pump 7 is driven in this state, the hot water supply circulation circuit 2 is eventually driven by the discharge pressure of the circulation pump 7. All the water inside is drained out of the water pipe. By detecting this state with the circulating flow rate detection means 6, it is possible to detect the presence or absence of water leakage. That is, the circulating flow rate q 2 detected by the circulating flow rate detecting unit 6 is within a predetermined maximum water leakage presence / absence detecting operation duration (for example, 30 minutes) after the control unit 91 starts the leakage detecting operation. A predetermined ratio α 1 (for example, α 1 = 0.6 with respect to the learning value q 2 (0) (for example, 7 L / min) reaches q 2 = 4.2 L / min at this time, and the circulation thereafter. When the flow rate q 2 continues to decrease and reaches a predetermined rate α 2 (for example, α 2 = 0.3, at this time q 2 = 2.1 L / min), the control means 91 performs the latent heat recovery heat exchanger. It is possible to detect the occurrence of water leakage due to pipe breakage at 34 water pipe portions.

次に同じく風呂開閉弁78を閉とし、暖房用熱交換器52の水管部破損による漏水有無検知の方法を述べる。暖房用熱交換器52の水管破損が発生した場合、2次側回路である暖房回路41は暖房タンク53で大気開放されているため、循環ポンプ7を駆動させた場合、給湯循環回路2内の内圧と暖房タンク53内の暖房循環水のヘッド差が釣り合うところまで給湯循環回路2内の水は暖房側回路へ排出される。この時、装置内に配置される暖房タンク53の給湯循環回路2に対するヘッド差はせいぜい0.5m未満程度となるように設計しておく。循環ポンプ7を駆動させ、給湯循環回路2の内圧と暖房タンク53内の暖房循環水のヘッド差が釣り合った時の循環流量検出手段6によって検出される循環流量をq(2k−1)とする。ここでkは自然数とする。次に、循環ポンプ7を駆動させたその状態で、同時に暖房循環ポンプ50を所定時間(たとえば5分間)駆動させる。前記暖房循環ポンプ50の吐出圧は通常0.1MPa程度(ヘッド差として10m程度に対応する)であるので、今度は暖房側回路から給湯循環回路2側へ水が移動する。この時に循環流量検出手段6によって検出される循環流量をq(2k)とする。ここでkは自然数とする。 Next, a method for detecting the presence or absence of water leakage due to breakage of the water pipe portion of the heat exchanger 52 for heating will be described with the bath opening / closing valve 78 closed. When a water pipe breakage of the heat exchanger 52 for heating occurs, the heating circuit 41 as a secondary side circuit is opened to the atmosphere in the heating tank 53. Therefore, when the circulation pump 7 is driven, The water in the hot water supply circulation circuit 2 is discharged to the heating side circuit until the internal pressure and the head difference of the heating circulation water in the heating tank 53 are balanced. At this time, the head difference with respect to the hot water supply circuit 2 of the heating tank 53 arranged in the apparatus is designed to be less than about 0.5 m at most. The circulation flow rate detected by the circulation flow rate detection means 6 when the circulation pump 7 is driven and the internal pressure of the hot water supply circulation circuit 2 and the head difference of the heating circulation water in the heating tank 53 are balanced is q 2 (2k−1). To do. Here, k is a natural number. Next, in the state where the circulation pump 7 is driven, the heating circulation pump 50 is simultaneously driven for a predetermined time (for example, 5 minutes). Since the discharge pressure of the heating circulation pump 50 is normally about 0.1 MPa (corresponding to about 10 m as a head difference), water moves from the heating side circuit to the hot water supply circulation circuit 2 side this time. At this time, the circulating flow rate detected by the circulating flow rate detection means 6 is defined as q 2 (2k). Here, k is a natural number.

ここで、循環流量学習値q(0)、循環ポンプ7のみを駆動させた時の循環流量q(2k−1)、および循環ポンプ7のみを駆動させた後に暖房循環ポンプ50を同時に駆動させた時の循環流量q(2k)を比較する。 Here, the circulation flow rate learning value q 2 (0), the circulation flow rate q 2 (2k−1) when only the circulation pump 7 is driven, and the heating circulation pump 50 are simultaneously driven after driving only the circulation pump 7. The circulation flow rate q 2 (2k) is compared.

まず、暖房用熱交換器52の水管破損がない正常な場合は、これら3つの値は同じ値となる。すなわち、
(0)≒q(2k−1)≒q(2k) ・・・(条件1)
ここでq(2k−1)およびq(2k)のq(0)に対する誤差は、それぞれ所定値(たとえば±5%)未満であるとする。
First, when there is no damage to the water pipe of the heat exchanger 52 for heating, these three values are the same value. That is,
q 2 (0) ≈q 2 (2k−1) ≈q 2 (2k) (Condition 1)
Here, it is assumed that the errors of q 2 (2k−1) and q 2 (2k) with respect to q 2 (0) are less than a predetermined value (for example, ± 5%).

次に、暖房用熱交換器52の水管破損により漏水が発生する場合には、下記条件を満たす。   Next, when water leakage occurs due to a water pipe breakage of the heat exchanger 52 for heating, the following condition is satisfied.

(2k−1)<β(0)、かつq(2k−1)<β(2k)・・・(条件2)
ただし(条件2)において、βおよびβはある所定値(たとえばβ=0.7、およびβ=0.9)とする。
q 2 (2k−1) <β 1 q 2 (0) and q 2 (2k−1) <β 2 q 2 (2k) (Condition 2)
However, in (Condition 2), β 1 and β 2 are set to certain predetermined values (for example, β 1 = 0.7 and β 2 = 0.9).

制御手段91が行う漏水有無検知動作としては、循環ポンプ7のみを駆動させてq(2k−1)の測定、循環ポンプ7のみを駆動させた後に暖房循環ポンプ50を同時に駆動させてq(2k)の測定を、所定回数(たとえばk=1、2、3の場合に対応させる。)連続して行い、(条件1)を満たしていれば漏水無しと判定し、(条件2)を満たしていれば漏水有りと判定することができる。 As the water leakage presence / absence detection operation performed by the control means 91, only the circulation pump 7 is driven to measure q 2 (2k−1), and after only the circulation pump 7 is driven, the heating circulation pump 50 is simultaneously driven to q 2. The measurement of (2k) is continuously performed a predetermined number of times (for example, corresponding to the case of k = 1, 2, 3). If (Condition 1) is satisfied, it is determined that there is no water leakage, and (Condition 2) If it satisfies, it can be determined that there is water leakage.

最後に風呂開閉弁78を開とし、風呂用熱交換器80の水管部破損による漏水有無検知の方法を述べる。まず、制御手段91は、風呂循環ポンプ75を駆動させ、水流検知部74のON/OFFを判定することで、浴槽77内の浴槽水有無を確認する。前記水流検知部74がONの場合には、浴槽77に浴槽水が存在し、この場合に漏水有無検知動作を行うと風呂往流路62や風呂戻流路63の風呂配管設置条件などによって判定が困難であるため、漏水有無検知動作は水流検知部74がOFFである浴槽77に浴槽水が存在しない場合にのみ行うものとする。風呂用熱交換器80の水管破損が発生した場合、浴槽は大気開放されているため、この状態で循環ポンプ7を駆動させると前記循環ポンプ7の吐出圧によって、やがて給湯循環回路2内の水は浴槽へ排出されてしまう。この状態を循環流量検出手段6で検出することで漏水有無検知を行うことができる。すなわち、制御手段91が漏水有無検知動作を開始してから、所定の最大漏水有無検知動作継続時間(たとえば30分)以内に、循環流量検出手段6で検出される循環流量qが、循環流量学習値q(0)(たとえば10L/min)に対して所定の割合γ(たとえばγ=0.6とすると、q=6.0L/min)に達し、それ以降も循環流量qが低下を続けて所定の割合γ(たとえばγ=0.3とすると、q=3.0L/min)に達した場合、制御手段91は潜熱回収用熱交換器34の水管部で配管破損により漏水が発生していることを検出することができる。 Finally, a method for detecting the presence or absence of water leakage due to breakage of the water pipe portion of the bath heat exchanger 80 will be described with the bath opening / closing valve 78 open. First, the control means 91 drives the bath circulation pump 75 and determines whether the water flow detector 74 is on or off, thereby confirming the presence or absence of bathtub water in the bathtub 77. When the water flow detection unit 74 is ON, there is bathtub water in the bathtub 77. In this case, when the water leakage presence / absence detection operation is performed, the determination is made based on the bath piping installation conditions of the bath forward flow path 62 and the bath return flow path 63. Therefore, the water leakage presence / absence detection operation is performed only when there is no bathtub water in the bathtub 77 in which the water flow detection unit 74 is OFF. When the water pipe of the bath heat exchanger 80 is broken, the bathtub is open to the atmosphere. Therefore, when the circulation pump 7 is driven in this state, the water in the hot water supply circuit 2 is eventually discharged by the discharge pressure of the circulation pump 7. Will be discharged into the bathtub. By detecting this state with the circulating flow rate detection means 6, it is possible to detect the presence or absence of water leakage. That is, the circulating flow rate q 1 detected by the circulating flow rate detecting unit 6 is within the predetermined maximum water leakage presence / absence detecting operation continuation time (for example, 30 minutes) after the control unit 91 starts the water leakage presence / absence detecting operation. A predetermined ratio γ 1 (for example, γ 1 = 0.6 with respect to the learning value q 1 (0) (for example, 10 L / min) reaches q 1 = 6.0 L / min), and the circulation flow rate q thereafter. 1 continues to decrease and reaches a predetermined rate γ 2 (for example, assuming that γ 2 = 0.3, q 1 = 3.0 L / min), the control means 91 controls the water pipe portion of the latent heat recovery heat exchanger 34. It is possible to detect that water leakage has occurred due to pipe breakage.

さて、循環ポンプ7として、特にDC駆動方式のものを適用した場合の漏水有無検知方法について述べる。DC駆動方式の循環ポンプ7の場合、制御手段91は所定の回転数(たとえば3000rpm)で循環ポンプ7を駆動させる場合の負荷(仕事量)を検出することが可能である。給湯循環回路2で漏水が発生して給湯循環回路2内の水が減少すると、所定の回転数で駆動させるための負荷が減少するので、この状態を検出して給湯循環回路2内の漏水有無検知を行うことができる。   Now, a method for detecting the presence / absence of water leakage when the DC pump system is used as the circulation pump 7 will be described. In the case of the DC-driven circulation pump 7, the control means 91 can detect a load (work amount) when the circulation pump 7 is driven at a predetermined rotational speed (for example, 3000 rpm). If water leakage occurs in the hot water supply circulation circuit 2 and the water in the hot water supply circulation circuit 2 decreases, the load for driving at a predetermined number of revolutions decreases. Detection can be performed.

まず、制御手段91は、給湯装置設置後に施工業者等が行う試運転動作時に、給水路B1Bに設けられた給水路B開閉弁19を閉とし、DC駆動方式である循環ポンプ7を所定の回転数(たとえば3000rpm)で駆動させたときの負荷(仕事量)を検出し学習する。この負荷の学習は、風呂開閉弁78を開とした場合と、閉とした場合との2種類で行う。風呂開閉弁78を開とするのは、風呂追い焚き運転時に、前記風呂開閉弁78を開とすることに対応させた場合を想定している。これら2種類の負荷学習値をたとえば下記のようにw(0)、およびw(0)する。 First, the control means 91 closes the water supply path B on-off valve 19 provided in the water supply path B1B and makes the circulation pump 7 that is a DC drive system at a predetermined rotational speed during a test operation performed by a contractor after the hot water supply apparatus is installed. A load (work amount) when driven at (for example, 3000 rpm) is detected and learned. This load learning is performed in two types: when the bath opening / closing valve 78 is opened and when it is closed. The reason why the bath opening / closing valve 78 is opened is based on the case where the bath opening / closing valve 78 is opened during the bath chasing operation. These two types of load learning values are set to w 1 (0) and w 2 (0) as follows, for example.

(0):風呂開閉弁78を開とした場合の負荷学習値
(0):風呂開閉弁78を閉とした場合の負荷学習値
次に、給湯循環回路2の配管破損による漏水有無検知の方法について述べる。漏水有無検知は、装置運転状態に応じた適切なタイミングで行うことが必要である。すなわち装置運転を行っていないときに漏水有無検知を行う。具体的には、浴室リモコン92、台所リモコン93、暖房リモコン94などの遠隔操作用リモートコントローラの運転スイッチがOFFとなっている状態の時に行うものとする。なお、漏水有無検知を行っている最中に、これらの遠隔操作用リモートコントローラの運転スイッチがONされた場合には、直ちに漏水有無検知動作を中断するものとする。同じく、ユーザが遠隔操作用リモートコントローラの運転スイッチがOFFの状態で給湯栓13を開とした場合も、出湯路3を通して給湯循環回路2内の水が給湯栓13から出てしまうため、漏水有無検知動作を中断するものとする。なお、この時のユーザが給湯栓13を開とした行為は、入水流量センサ5で検知可能である。また、制御手段91が漏水有無検知を行うのは、所定期間(たとえば10日)に最大所定回(たとえば1回)とする。漏水有無検知動作が途中で中断された場合にはその漏水有無検知動作は無効とする。
w 1 (0): Load learning value when bath opening / closing valve 78 is opened w 2 (0): Load learning value when bath opening / closing valve 78 is closed Next, water leakage due to piping breakage of hot water supply circulation circuit 2 A method of presence / absence detection will be described. It is necessary to detect the presence or absence of water leakage at an appropriate timing according to the operating state of the apparatus. That is, the presence / absence of water leakage is detected when the apparatus is not operating. Specifically, it is performed when the operation switches of remote controllers for remote operation such as the bathroom remote controller 92, the kitchen remote controller 93, and the heating remote controller 94 are OFF. In addition, when the operation switch of these remote control remote controllers is turned on during the leakage detection, the leakage detection operation is immediately interrupted. Similarly, when the user opens the hot water tap 13 with the operation switch of the remote controller for remote operation turned off, the water in the hot water circulation circuit 2 comes out from the hot water tap 13 through the hot water supply passage 3, so there is water leakage. The detection operation shall be interrupted. Note that the act of the user opening the hot water tap 13 at this time can be detected by the incoming water flow rate sensor 5. In addition, the controller 91 detects the presence or absence of water leakage at a maximum predetermined number of times (for example, once) within a predetermined period (for example, 10 days). If the leak detection operation is interrupted, the leak detection operation is invalid.

上記のような装置運転状態に応じた適切なタイミングで給湯循環回路2の漏水有無検知動作を行う場合、制御手段91は、まず給水路B1Bに設けられた給水路B開閉弁19を閉とする。ここで前記給水路B開閉弁19としては、負荷電圧で瞬時に弁の開閉を行う直動式開閉弁の構成が考えられる。給水路B開閉弁19が閉となると、給湯循環回路2は水が供給される給水路Bと切り離され、独立した閉回路となる。この状態で、制御手段91はDC駆動方式である循環ポンプ7を所定の回転数(たとえば3000rpm)で駆動させ、その時の循環ポンプ7の負荷を計測し、試運転時に学習した負荷であるw(0)、およびw(0)と比較することで、潜熱回収用熱交換器34および各利用側熱交換器の給湯循環回路2側の水管破損による漏水有無を検知する。 When performing the water leakage presence / absence detection operation of the hot water supply circulation circuit 2 at an appropriate timing according to the apparatus operating state as described above, the control unit 91 first closes the water supply channel B on / off valve 19 provided in the water supply channel B1B. . Here, as the water supply channel B on-off valve 19, a configuration of a direct-acting on-off valve that opens and closes the valve instantaneously with a load voltage can be considered. When the water supply path B on-off valve 19 is closed, the hot water supply circulation circuit 2 is disconnected from the water supply path B to which water is supplied, and becomes an independent closed circuit. In this state, the control means 91 drives the circulation pump 7 which is a DC drive system at a predetermined rotation speed (eg, 3000 rpm), measures the load of the circulation pump 7 at that time, and learns w 1 ( 0) and w 2 (0), the presence or absence of water leakage due to water pipe breakage on the hot water supply circuit 2 side of each latent heat recovery heat exchanger 34 and each use side heat exchanger is detected.

まず風呂開閉弁78を閉とし、潜熱回収用熱交換器34の水管部破損による漏水有無検知の方法を述べる。潜熱回収用熱交換器34の水管破損が発生した場合、水管の外側は大気開放されているため、この状態で循環ポンプ7を駆動させると前記循環ポンプ7の吐出圧によって、やがて給湯循環回路2内の水は水管外へすべて排出されてしまう。この状態における循環ポンプ7の負荷を検出することで漏水有無検知を行うことができる。すなわち、制御手段91が漏水有無検知動作を開始してから、所定の最大漏水有無検知動作継続時間(たとえば30分)以内に、循環ポンプ7の負荷wが、循環流量学習値w(0)に対して所定の割合a(たとえばa=0.6)に達し、それ以降も負荷wが低下を続けて所定の割合a(たとえばa=0.3)に達した場合、制御手段91は潜熱回収用熱交換器34の水管部で配管破損により漏水が発生していることを検出することができる。 First, the method for detecting the presence or absence of water leakage due to breakage of the water pipe portion of the heat exchanger 34 for recovering latent heat will be described with the bath open / close valve 78 closed. When the water pipe of the latent heat recovery heat exchanger 34 is broken, the outside of the water pipe is open to the atmosphere. Therefore, when the circulation pump 7 is driven in this state, the hot water supply circulation circuit 2 is eventually driven by the discharge pressure of the circulation pump 7. All the water inside is drained out of the water pipe. By detecting the load of the circulation pump 7 in this state, it is possible to detect the presence or absence of water leakage. That is, the load w 2 of the circulation pump 7 is set to the circulating flow rate learning value w 2 (0) within a predetermined maximum water leakage presence / absence detection operation duration (for example, 30 minutes) after the control unit 91 starts the water leakage presence / absence detection operation. ) Reaches a predetermined ratio a 1 (for example, a 1 = 0.6), and thereafter the load w 2 continues to decrease and reaches a predetermined ratio a 2 (for example, a 2 = 0.3). The control means 91 can detect that water leakage has occurred due to piping breakage in the water pipe portion of the heat exchanger 34 for recovering latent heat.

次に同じく風呂開閉弁78を閉とし、暖房用熱交換器52の水管部破損による漏水有無検知の方法を述べる。暖房用熱交換器52の水管破損が発生した場合、2次側回路である暖房回路41は暖房タンク53で大気開放されているため、循環ポンプ7を駆動させた場合、給湯循環回路2内の内圧と暖房タンク53内の暖房循環水のヘッド差が釣り合うところまで給湯循環回路2内の水は暖房側回路へ排出される。この時、装置内に配置される暖房タンク53の給湯循環回路2に対するヘッド差はせいぜい0.5m未満程度となるように設計しておく。循環ポンプ7を駆動させ、給湯循環回路2の内圧と暖房タンク53内の暖房循環水のヘッド差が釣り合った時の循環ポンプ7の負荷をw(2k−1)とする。ここでkは自然数とする。次に、循環ポンプ7を駆動させたその状態で、同時に暖房循環ポンプ50を所定時間(たとえば5分間)駆動させる。前記暖房循環ポンプ50の吐出圧は通常0.1MPa程度(ヘッド差として10m程度に対応する)であるので、今度は暖房側回路から給湯循環回路2側へ水が移動する。この時の循環ポンプ7の負荷をw(2k)とする。ここでkは自然数とする。 Next, a method for detecting the presence or absence of water leakage due to breakage of the water pipe portion of the heat exchanger 52 for heating will be described with the bath opening / closing valve 78 closed. When a water pipe breakage of the heat exchanger 52 for heating occurs, the heating circuit 41 as a secondary side circuit is opened to the atmosphere in the heating tank 53. Therefore, when the circulation pump 7 is driven, The water in the hot water supply circulation circuit 2 is discharged to the heating side circuit until the internal pressure and the head difference of the heating circulation water in the heating tank 53 are balanced. At this time, the head difference with respect to the hot water supply circuit 2 of the heating tank 53 arranged in the apparatus is designed to be less than about 0.5 m at most. The circulation pump 7 is driven, and the load of the circulation pump 7 when the internal pressure of the hot water supply circulation circuit 2 and the head difference of the heating circulating water in the heating tank 53 are balanced is defined as w 2 (2k−1). Here, k is a natural number. Next, in the state where the circulation pump 7 is driven, the heating circulation pump 50 is simultaneously driven for a predetermined time (for example, 5 minutes). Since the discharge pressure of the heating circulation pump 50 is normally about 0.1 MPa (corresponding to about 10 m as a head difference), water moves from the heating side circuit to the hot water supply circulation circuit 2 side this time. The load of the circulation pump 7 at this time is w 2 (2k). Here, k is a natural number.

ここで、負荷学習値w(0)、循環ポンプ7のみを駆動させた時の負荷w(2k−1)、および循環ポンプ7のみを駆動させた後に暖房循環ポンプ50を同時に駆動させた時の負荷w(2k)を比較する。 Here, the load learning value w 2 (0), the load w 2 (2k−1) when only the circulation pump 7 is driven, and the heating circulation pump 50 are simultaneously driven after driving only the circulation pump 7. Compare the hourly load w 2 (2k).

まず、暖房用熱交換器52の水管破損がない正常な場合は、これら3つの値は同じ値となる。すなわち、
(0)≒w(2k−1)≒w(2k) ・・・(条件3)
ここでw(2k−1)およびw(2k)のw(0)に対する誤差は、それぞれ所定値(たとえば±5%)未満であるとする。
First, when there is no damage to the water pipe of the heat exchanger 52 for heating, these three values are the same value. That is,
w 2 (0) ≈w 2 (2k−1) ≈w 2 (2k) (Condition 3)
Here, it is assumed that the error of w 2 (2k−1) and w 2 (2k) with respect to w 2 (0) is less than a predetermined value (for example, ± 5%).

次に、暖房用熱交換器52の水管破損により漏水が発生する場合には、下記条件を満たす。   Next, when water leakage occurs due to a water pipe breakage of the heat exchanger 52 for heating, the following condition is satisfied.

(2k−1)<b(0)、かつw(2k−1)<b(2k)・・・(条件4)
ただし(条件4)において、bおよびbはある所定値(たとえばb=0.7、およびb=0.9)とする。
w 2 (2k−1) <b 1 w 2 (0) and w 2 (2k−1) <b 2 w 2 (2k) (Condition 4)
However, in (Condition 4), b 1 and b 2 are set to certain predetermined values (for example, b 1 = 0.7 and b 2 = 0.9).

制御手段91が行う漏水有無検知動作としては、循環ポンプ7のみを駆動させてw(2k−1)の測定、循環ポンプ7のみを駆動させた後に暖房循環ポンプ50を同時に駆動させてw(2k)の測定を、所定回数(たとえばk=1、2、3の場合に対応させる。)連続して行い、(条件3)を満たしていれば漏水無しと判定し、(条件4)を満たしていれば漏水有りと判定することができる。 As the water leakage presence / absence detection operation performed by the control means 91, only the circulation pump 7 is driven to measure w 2 (2k−1), and only the circulation pump 7 is driven, and then the heating circulation pump 50 is simultaneously driven to w 2. The measurement of (2k) is continuously performed a predetermined number of times (for example, corresponding to the case of k = 1, 2, 3). If (Condition 3) is satisfied, it is determined that there is no water leakage, and (Condition 4) is If it satisfies, it can be determined that there is water leakage.

最後に風呂開閉弁78を開とし、風呂用熱交換器80の水管部破損による漏水有無検知の方法を述べる。まず、制御手段91は、風呂循環ポンプ75を駆動させ、水流検知部74のON/OFFを判定することで、浴槽77内の浴槽水有無を確認する。前記水流検知部74がONの場合には、浴槽77に浴槽水が存在し、この場合に漏水有無検知動作を行うと風呂往流路62や風呂戻流路63の風呂配管設置条件などによって判定が困難であるため、漏水有無検知動作は水流検知部74がOFFである浴槽77に浴槽水が存在しない場合にのみ行うものとする。風呂用熱交換器80の水管破損が発生した場合、浴槽は大気開放されているため、この状態で循環ポンプ7を駆動させると前記循環ポンプ7の吐出圧によって、やがて給湯循環回路2内の水は浴槽へ排出されてしまう。この状態を循環流量検出手段6で検出することで漏水有無検知を行うことができる。すなわち、制御手段91が漏水有無検知動作を開始してから、所定の最大漏水有無検知動作継続時間(たとえば30分)以内に、循環ポンプ7の負荷wが、循環流量学習値w(0)に対して所定の割合c(たとえばc=0.6)に達し、それ以降も負荷wが低下を続けて所定の割合c(たとえばc=0.3)に達した場合、制御手段91は潜熱回収用熱交換器34の水管部で配管破損により漏水が発生していることを検出することができる。 Finally, a method for detecting the presence or absence of water leakage due to breakage of the water pipe portion of the bath heat exchanger 80 will be described with the bath opening / closing valve 78 open. First, the control means 91 drives the bath circulation pump 75 and determines whether the water flow detector 74 is on or off, thereby confirming the presence or absence of bathtub water in the bathtub 77. When the water flow detection unit 74 is ON, there is bathtub water in the bathtub 77. In this case, when the water leakage presence / absence detection operation is performed, the determination is made based on the bath piping installation conditions of the bath forward flow path 62 and the bath return flow path 63. Therefore, the water leakage presence / absence detection operation is performed only when there is no bathtub water in the bathtub 77 in which the water flow detection unit 74 is OFF. When the water pipe of the bath heat exchanger 80 is broken, the bathtub is open to the atmosphere. Therefore, when the circulation pump 7 is driven in this state, the water in the hot water supply circuit 2 is eventually discharged by the discharge pressure of the circulation pump 7. Will be discharged into the bathtub. By detecting this state with the circulating flow rate detection means 6, it is possible to detect the presence or absence of water leakage. That is, the load w 1 of the circulation pump 7 is set to the circulating flow rate learning value w 1 (0) within a predetermined maximum water leakage presence / absence detection operation duration (for example, 30 minutes) after the control unit 91 starts the water leakage presence / absence detection operation. ) Reaches a predetermined ratio c 1 (for example, c 1 = 0.6), and thereafter the load w 1 continues to decrease and reaches a predetermined ratio c 2 (for example, c 2 = 0.3). The control means 91 can detect that water leakage has occurred due to piping breakage in the water pipe portion of the heat exchanger 34 for recovering latent heat.

以上のようにして検出された、潜熱回収用熱交換器34部、暖房用熱交換器52部、および風呂用熱交換器80部における各漏水は、各熱交換器部での漏水エラーとして、浴室リモコン92や台所リモコン93などの遠隔操作用リモートコントローラに代表される外部報知手段に報知し、装置の運転を停止させる。   As described above, each leakage in the latent heat recovery heat exchanger 34 parts, the heating heat exchanger 52 parts, and the bath heat exchanger 80 parts is a water leakage error in each heat exchanger part. An external notification means represented by a remote controller for remote operation such as a bathroom remote controller 92 or a kitchen remote controller 93 is notified to stop the operation of the apparatus.

以上のように本実施の形態においては、制御手段91は、装置運転状態に応じた適切なタイミングで、給水路B1Bに設けられた給水路B開閉弁19を閉として給湯循環回路2を給水路B1Bから切り離して完全な閉回路とし、循環ポンプ7を駆動させて循環流量検出手段6で検出される循環流量を、試運転時の循環流量学習値と比較することで、給湯循環回路2の水管部における漏水有無を検出することができる。あるいは、特に循環ポンプ7としてDC駆動式のものを採用する場合、給水路B1Bに設けられた給水路B開閉弁19を閉として給湯循環回路2を給水路B1Bから切り離して完全な閉回路とし、循環ポンプ7を所定の回転数で回転させたときの負荷を、試運転時の負荷と比較することで、給湯循環回路2の水管部における漏水有無を検出することができる。また、この漏水有無検知動作で漏水有りと判定された場合には、制御手段91は外部報知手段にその旨を報知し、装置の運転を停止させる動作を行うことで、ユーザに漏水有りの状態を知らせて、漏水による拡大被害を抑えることができる。   As described above, in the present embodiment, the control means 91 closes the water supply path B on / off valve 19 provided in the water supply path B1B and closes the hot water supply circulation circuit 2 at the appropriate timing according to the operating state of the apparatus. The water pipe portion of the hot water supply circulation circuit 2 is separated from the B1B to form a completely closed circuit, and the circulation pump 7 is driven to compare the circulation flow rate detected by the circulation flow rate detection means 6 with the circulation flow rate learning value at the time of trial operation. The presence or absence of water leakage can be detected. Alternatively, particularly when a DC drive type is adopted as the circulation pump 7, the water supply passage B on-off valve 19 provided in the water supply passage B1B is closed and the hot water supply circulation circuit 2 is separated from the water supply passage B1B to form a complete closed circuit. By comparing the load when the circulation pump 7 is rotated at a predetermined rotational speed with the load during the trial operation, it is possible to detect the presence or absence of water leakage in the water pipe portion of the hot water supply circulation circuit 2. In addition, when it is determined that there is water leakage in the water leakage presence / absence detection operation, the control unit 91 notifies the external notification unit of the fact and performs an operation to stop the operation of the apparatus, so that the user has a state of water leakage. To prevent the damage caused by water leakage.

次に上述した漏水有無検知動作が途中で解除された場合や、漏水有無検知動作が終了した場合において、装置運転が再開される時の給湯運転動作について述べる。漏水有無検知動作の途中で、浴室リモコン92、台所リモコン93、暖房リモコン94などの遠隔操作用リモートコントローラの運転スイッチがONとなると、制御手段91は即座に漏水有無検知動作を中止し、給水路B開閉弁19を開とする。また漏水有無検知動作が終了した場
合にも、制御手段91は即座に給水路B開閉弁19を開とする。このように漏水有無検知動作が途中で解除された場合や、漏水有無検知動作が終了した場合の給湯運転時には、制御手段91は、ユーザが給湯栓13を開として装置内に通水された状態は入水流量センサ5で検出するが、バーナ26の着火については、給湯循環回路2において出湯路2の給湯循環回路2との分岐部より上流に設けられた循環流量検出手段6で検出される流量が、所定値(たとえば1.0L/min)以上となった時に行うものとする。このように循環流量検出手段6での流量検出値でバーナ26の着火を行うことで、給水路B開閉弁19が故障なく確実に開の状態であることを確認することができる。
Next, the hot water supply operation when the operation of the apparatus is resumed when the above-described leakage detection operation is canceled or when the leakage detection operation is terminated will be described. When the operation switch of the remote controller for remote control such as the bathroom remote controller 92, the kitchen remote controller 93, the heating remote controller 94, etc. is turned ON during the water leakage presence / absence detection operation, the control means 91 immediately stops the water leakage presence / absence detection operation. The B on-off valve 19 is opened. Further, even when the water leakage presence / absence detection operation is completed, the control means 91 immediately opens the water supply channel B on-off valve 19. As described above, when the water leakage presence / absence detection operation is canceled halfway or during the hot water supply operation when the water leakage presence / absence detection operation is completed, the control means 91 is in a state in which the user opens the hot water tap 13 and passes water through the apparatus. However, the ignition of the burner 26 is detected by the circulating flow rate detecting means 6 provided upstream of the hot water supply circuit 2 upstream of the branch point of the hot water supply circuit 2 with the hot water supply circuit 2. Is performed when the value becomes a predetermined value (for example, 1.0 L / min) or more. Thus, by igniting the burner 26 with the flow rate detection value in the circulating flow rate detection means 6, it can be confirmed that the water supply channel B on-off valve 19 is reliably open without failure.

以上のように、漏水有無検知動作が途中で解除された場合や、漏水有無検知動作が終了した場合、装置運転が再開される時の給湯運転動作における、バーナ26の着火動作時を循環流量検出手段6で行うことで、給水路B開閉弁19が開となって給湯用熱交換器33の水管に確実に通水されたことを確認することができるため、給水路B開閉弁19が故障などで閉となった状態でバーナ26に着火した場合の空焚き等を防止することができる。   As described above, when the water leakage presence / absence detection operation is canceled in the middle, or when the water leakage presence / absence detection operation is completed, the circulating flow rate detection is performed during the ignition operation of the burner 26 in the hot water supply operation when the apparatus operation is resumed. By using the means 6, it is possible to confirm that the water supply path B on-off valve 19 is opened and water is reliably passed through the water pipe of the hot water supply heat exchanger 33. When the burner 26 is ignited in a closed state by, for example, it is possible to prevent air blow or the like.

(実施の形態2)
図2は、本発明の第1、第2、第4、第5、第6、第9、第10、第11、第12、および第13の実施の形態における給湯装置の構造図を示すものである。
(Embodiment 2)
FIG. 2 shows a structural diagram of a hot water supply apparatus according to the first, second, fourth, fifth, sixth, ninth, tenth, eleventh, twelfth and thirteenth embodiments of the present invention. It is.

図2において、前記(実施の形態1)で示した図1における給湯装置の構造と異なるところは、全閉機能を有するバイパス制御弁9をバイパス通路4に配置するのではなく、給水路B1Bに配置させ、給水路B1Bを流れる水量とバイパス通路4を流れる水量を調整する機能と、給湯循環回路2を完全閉回路とする給湯循環回路閉手段の機能とを、前記バイパス制御弁9で兼ねさせたところである。給湯循環回路閉手段の機能を既設のバイパス制御弁9で兼ねさせることで、図1における給水路B開閉弁19のような別の給湯循環回路閉手段を設ける必要はないので、図2における装置構成を採用すればコストダウンを図ることができる。   In FIG. 2, the difference from the structure of the hot water supply apparatus in FIG. 1 shown in the above (Embodiment 1) is that the bypass control valve 9 having a fully-closed function is not disposed in the bypass passage 4 but in the water supply channel B1B. The bypass control valve 9 serves as a function of adjusting the amount of water flowing through the water supply channel B1B and the amount of water flowing through the bypass passage 4 and the function of the hot water supply circuit closing means that makes the hot water supply circuit 2 completely closed. That's right. Since the existing bypass control valve 9 also functions as the hot water circulation circuit closing means, there is no need to provide another hot water circulation circuit closing means such as the water supply path B on-off valve 19 in FIG. If the configuration is adopted, the cost can be reduced.

以上のように構成された給湯装置について、以下その動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、給湯運転時には、給湯栓13を開くと給水路A1Aに配設した入水流量センサ5が通水を検知する。通常、給水路B1Bに設けられたバイパス制御弁9はある所定の開度(たとえば中間程度の開度)を保っており、給水路1Bより供給された水は潜熱回収用熱交換器34、給湯用熱交換器33を通って循環流量検出手段6で通水が検知される。ここで循環流量検出手段6としては入水流量センサ5と同様な構成とする。循環流量検出手段6から所定値(たとえば1L/min)以上の通水信号が検出されると、燃焼用ファン25が動作し同時にガス元電磁弁22、ガス比例弁23が開き、バーナ26に燃料ガスと燃焼用空気が供給され、点火器27による点火プラグ28の火花放電により着火し、フレームロッド29による着火認識動作によって燃焼が開始する。前記(実施の形態1)では入水流量センサ5の通水信号により燃焼動作を開始していたが、本実施の形態では循環流量検出手段6の通水信号により燃焼動作を開始させている。バイパス制御弁9を給水路B1Bに設けているため、バイパス制御弁9が全閉のまま故障していた場合、給湯用熱交換器33には通水が行われない。この状態で燃焼動作が開始すると空焚きが発生して危険であるため、これを防止することが目的である。入水流量センサ5の通水検知から所定時間(たとえば1秒)以内に循環流量検出手段6での通水検知が得られない場合、制御手段91はバイパス制御弁9の故障を判定して燃焼動作は行わない。   First, during the hot water supply operation, when the hot water tap 13 is opened, the incoming water flow rate sensor 5 disposed in the water supply channel A1A detects water flow. Normally, the bypass control valve 9 provided in the water supply channel B1B maintains a certain predetermined opening (for example, an intermediate opening), and the water supplied from the water supply channel 1B is a latent heat recovery heat exchanger 34, hot water supply Water flow is detected by the circulating flow rate detection means 6 through the heat exchanger 33. Here, the circulating flow rate detecting means 6 has the same configuration as the incoming water flow rate sensor 5. When a water flow signal of a predetermined value (for example, 1 L / min) or more is detected from the circulating flow rate detection means 6, the combustion fan 25 operates and at the same time, the gas source solenoid valve 22 and the gas proportional valve 23 are opened and fuel is supplied to the burner 26. Gas and combustion air are supplied, ignition is performed by spark discharge of the spark plug 28 by the igniter 27, and combustion is started by an ignition recognition operation by the frame rod 29. In (Embodiment 1), the combustion operation is started by the water flow signal of the incoming water flow rate sensor 5, but in this embodiment, the combustion operation is started by the water flow signal of the circulating flow rate detection means 6. Since the bypass control valve 9 is provided in the water supply channel B <b> 1 </ b> B, when the bypass control valve 9 is in a fully closed state and fails, water is not supplied to the hot water supply heat exchanger 33. If the combustion operation is started in this state, airing occurs and it is dangerous, and the purpose is to prevent this. When the water flow detection in the circulating flow rate detection means 6 is not obtained within a predetermined time (for example, 1 second) from the water flow detection of the incoming water flow rate sensor 5, the control means 91 determines the failure of the bypass control valve 9 and performs the combustion operation. Do not do.

燃焼負荷に応じたバーナ26での燃焼量は、ガス切替弁24を開閉することで調節される。この燃焼ガスの排気動作の過程において、燃焼室30に配設した給湯用熱交換器33と排気通路31に配設した潜熱回収用熱交換器34で給水路B1Bより供給される水が加
熱される。
The amount of combustion in the burner 26 according to the combustion load is adjusted by opening and closing the gas switching valve 24. In the process of exhausting the combustion gas, the water supplied from the water supply passage B1B is heated by the hot water supply heat exchanger 33 provided in the combustion chamber 30 and the latent heat recovery heat exchanger 34 provided in the exhaust passage 31. The

給湯用熱交換器33で加熱された湯水は、給水路B1Bに設けられたバイパス制御弁9の開度調整により間接的に調整されたバイパス通路4を通る入水側の水と混合される。混合された湯は、浴室リモコン92や台所リモコン93などの遠隔操作用リモートコントローラで設定した給湯設定温度になるように出湯サーミスタ17の信号によりバイパス制御弁9の開度を調節し、給湯栓13より給湯される。   The hot water heated by the hot water supply heat exchanger 33 is mixed with the water on the incoming side passing through the bypass passage 4 that is indirectly adjusted by adjusting the opening of the bypass control valve 9 provided in the water supply passage B1B. The opening of the bypass control valve 9 is adjusted by a signal from the hot water thermistor 17 so that the mixed hot water has a hot water supply set temperature set by a remote controller for remote operation such as a bathroom remote controller 92 or a kitchen remote controller 93, and the hot water tap 13 More hot water is supplied.

このように、給湯単独運転を選択する場合は、遠隔操作用リモートコントローラで所望の温度を設定し、給湯栓13を開くことで自動的に設定された湯温の給湯温水を確保することができる。   Thus, when selecting hot water supply independent operation, a desired temperature can be set with the remote controller for remote operation, and the hot water supply hot water set automatically can be secured by opening the hot water tap 13. .

なお、暖房運転時および風呂追い焚き運転時の各運転時における装置動作については、前記(実施の形態1)と同様であり省略する。また、給湯運転、暖房運転、風呂追い焚き運転はそれぞれの組合せで同時に行うことが可能である。また、給湯回路と利用側熱交換器の1次側回路である給湯循環回路を1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により装置の小型・軽量化を実現できることや、利用側熱交換器として複数個設ける場合、給湯循環回路に対して各利用側熱交換器を並列に接続することで給湯用熱交換器から供給される湯水温度が略同一とすることができることや、潜熱回収により効率アップを図ることで、給湯性能と利用側熱交換器の加熱性能を同時に確保することができる効果においても、前記(実施の形態1)と同様である。   In addition, about the apparatus operation | movement at the time of each operation | movement at the time of heating operation and a bath chase operation, it is the same as that of the above (Embodiment 1), and abbreviate | omits. Further, the hot water supply operation, the heating operation, and the bath reheating operation can be performed simultaneously in each combination. In addition, the hot water supply circuit and the hot water supply circulation circuit, which is the primary circuit of the use side heat exchanger, are configured by a single heating path, so that the apparatus configuration can be reduced in size and weight by simplifying the main body configuration including the piping configuration. In addition, when a plurality of use side heat exchangers are provided, the temperature of hot water supplied from the hot water supply heat exchanger may be substantially the same by connecting each use side heat exchanger in parallel to the hot water supply circulation circuit. This is also the same as the above (Embodiment 1) in the effect that the hot water supply performance and the heating performance of the use side heat exchanger can be secured at the same time by improving the efficiency by recovering latent heat.

次に、給湯循環回路2を給水路B1Bから切り離して独立した閉回路とし、循環ポンプ7を駆動させることで前記給湯循環回路2の破損による漏水有無を検知する方法について述べる。   Next, a method of detecting the presence or absence of water leakage due to breakage of the hot water supply circulation circuit 2 by driving the circulation pump 7 by separating the hot water supply circulation circuit 2 from the water supply path B1B and making it an independent closed circuit will be described.

(実施の形態1)で述べたような装置運転状態に応じた適切なタイミングで給湯循環回路2の漏水有無検知動作を行う場合、制御手段91は、給水路B1Bに設けられたバイパス制御弁9を閉とする。そして、前記(実施の形態1)のように、制御手段91は、潜熱回収用熱交換器34の水管部破損による漏水有無検知、暖房用熱交換器52の水管部破損による漏水有無検知、風呂用熱交換器80の水管部破損による漏水有無検知、の各漏水有無検知動作を行い、漏水有りと検知された場合には、浴室リモコン92や台所リモコン93などの遠隔操作用リモートコントローラに代表される外部報知手段に報知し、装置の運転を停止させる。   When performing the water leakage presence / absence detection operation of the hot water supply circulation circuit 2 at an appropriate timing according to the apparatus operating state as described in (Embodiment 1), the control means 91 is a bypass control valve 9 provided in the water supply channel B1B. Is closed. Then, as in the first embodiment, the control means 91 detects the presence or absence of water leakage due to breakage of the water pipe portion of the latent heat recovery heat exchanger 34, the presence or absence of water leakage due to breakage of the water pipe portion of the heating heat exchanger 52, the bath Detecting the presence or absence of water leakage by detecting the presence or absence of water leakage due to damage to the water pipe part of the heat exchanger 80. If it is detected that there is water leakage, it is represented by a remote controller for remote operation such as the bathroom remote control 92 or the kitchen remote control 93. To the external notification means to stop the operation of the apparatus.

以上のように本実施の形態においては、制御手段91は、装置運転状態に応じた適切なタイミングで、給水路B1Bに設けられたバイパス制御弁9を閉として給湯循環回路2を給水路B1Bから切り離して完全な閉回路とし、循環ポンプ7を駆動させて給湯循環回路2の水管部における漏水有無を検出することができる。また、この漏水有無検知動作で漏水有りと判定された場合には、制御手段91は外部報知手段にその旨を報知し、装置の運転を停止させる動作を行うことで、ユーザに漏水有りの状態を知らせて、漏水による拡大被害を抑えることができる。   As described above, in the present embodiment, the control means 91 closes the bypass control valve 9 provided in the water supply path B1B and closes the hot water supply circulation circuit 2 from the water supply path B1B at an appropriate timing according to the apparatus operating state. It can be separated to form a complete closed circuit, and the circulation pump 7 can be driven to detect the presence or absence of water leakage in the water pipe portion of the hot water supply circulation circuit 2. In addition, when it is determined that there is water leakage in the water leakage presence / absence detection operation, the control unit 91 notifies the external notification unit of the fact and performs an operation to stop the operation of the apparatus, so that the user has a state of water leakage. To prevent the damage caused by water leakage.

漏水有無検知動作が途中で解除された場合や、漏水有無検知動作が終了した場合において、装置運転が再開される時の給湯運転動作の方法については、図2に示す本実施の形態における給湯装置においては、通常の給湯運転時においても循環流量検出手段6での通水検知によって燃焼開始させるため、給水路B1Bに設けられたバイパス制御弁9が閉のままバーナ26に着火した場合の空焚き等を防止することができる。   When the water leakage presence / absence detection operation is canceled halfway or when the water leakage presence / absence detection operation is completed, the hot water supply operation method in the present embodiment shown in FIG. In order to start combustion by detecting the flow of water in the circulating flow rate detecting means 6 even during a normal hot water supply operation, the idling of the burner 26 when the bypass control valve 9 provided in the water supply channel B1B is closed is ignited. Etc. can be prevented.

(実施の形態3)
図3は、本発明の第1、第2、第3、第7、第8、第9、第10、第11、第12、および第13の実施の形態における給湯装置の構造図を示すものである。
(Embodiment 3)
FIG. 3 shows a structural diagram of a hot water supply apparatus according to the first, second, third, seventh, eighth, ninth, tenth, eleventh, twelfth and thirteenth embodiments of the present invention. It is.

図3において、前記(実施の形態2)で示した図2における給湯装置の構造と異なるところは、出湯路3の給湯循環回路2からの分岐部を利用側熱交換器である暖房用熱交換器52および風呂用熱交換器80の上流側に配置したところと、給水路B1Bを流れる水量とバイパス通路4を流れる水量を調整する機能と、給湯循環回路2を完全閉回路とする給湯循環回路閉手段の機能とを兼ね備えたバイパス制御弁9を、給水路分岐部18に配置したところである。   In FIG. 3, the difference from the structure of the hot water supply apparatus in FIG. Disposed upstream of the water heater 52 and the heat exchanger 80 for bath, a function of adjusting the amount of water flowing through the water supply passage B1B and the amount of water flowing through the bypass passage 4, and a hot water supply circulation circuit having the hot water supply circulation circuit 2 as a completely closed circuit The bypass control valve 9 having the function of the closing means is disposed in the water supply branch 18.

図3において、給水路分岐部18に配置されたバイパス制御弁9は、弁体の駆動角度を調整することで、給水路B1Bを流れる水量とバイパス通路4を流れる水量を調整できるようになっている。図4(A)はバイパス制御弁9の弁体が、給水路B1Bを完全閉止し、給水路A1Aから供給される水が、すべてバイパス通路4に流れる状態を示している。図4(B)はバイパス制御弁9の弁体が、バイパス通路4を完全閉止し、給水路A1Aから供給される水が、すべて給水路B1Bに流れる状態を示している。バイパス制御弁9の弁体位置は、図4(A)の状態と図4(B)の状態との間でたとえば駆動パルス制御により、弁体位置を変化させることが可能である。このようにバイパス制御弁9の弁体位置を変化させることで、給水路A1Aから供給された水を給水路B1B側とバイパス通路4側に分配することが可能である。図4(C)は通常の運転待機状態のバイパス制御弁9の弁体位置を示したもので、所定の開度(たとえば中間程度の開度)を保っている。給湯運転を行う中で、給水路B1Bを流れる水量とバイパス通路4を流れる水量との割合を変化させる場合は、制御手段91は図4(C)に示した所定開度(たとえば中間程度の開度)から弁体位置を微調整することで、給水路B1Bとバイパス通路4を流れる水量調整を行う。   In FIG. 3, the bypass control valve 9 disposed in the water supply branch 18 can adjust the amount of water flowing through the water supply passage B <b> 1 </ b> B and the amount of water flowing through the bypass passage 4 by adjusting the drive angle of the valve body. Yes. 4A shows a state in which the valve body of the bypass control valve 9 completely closes the water supply channel B1B, and all the water supplied from the water supply channel A1A flows to the bypass channel 4. FIG. FIG. 4B shows a state in which the valve element of the bypass control valve 9 completely closes the bypass passage 4 and all the water supplied from the water supply channel A1A flows to the water supply channel B1B. The valve body position of the bypass control valve 9 can be changed between the state shown in FIG. 4A and the state shown in FIG. 4B by, for example, drive pulse control. By changing the valve element position of the bypass control valve 9 in this way, it is possible to distribute the water supplied from the water supply passage A1A to the water supply passage B1B side and the bypass passage 4 side. FIG. 4C shows the valve body position of the bypass control valve 9 in a normal operation standby state, and maintains a predetermined opening (for example, an intermediate opening). When the ratio of the amount of water flowing through the water supply channel B1B and the amount of water flowing through the bypass passage 4 is changed during the hot water supply operation, the control means 91 has a predetermined opening shown in FIG. The amount of water flowing through the water supply channel B1B and the bypass passage 4 is adjusted by finely adjusting the valve body position from the degree.

以上のように構成された給湯装置について、以下その動作、作用を説明する。   About the hot water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、給湯運転時には、給湯栓13を開くと給水路A1Aに配設した入水流量センサ5が通水を検知する。通常、給水路分岐部18に設けられたバイパス制御弁9は、図4(C)に示すように、ある所定の開度(たとえば中間程度の開度)を保っており、給水路1Bより供給された水は潜熱回収用熱交換器34、給湯用熱交換器33を通って循環流量検出手段6で通水が検知される。ここで循環流量検出手段6としては入水流量センサ5と同様な構成とする。循環流量検出手段6から所定値(たとえば1L/min)以上の通水信号が検出されると、燃焼用ファン25が動作し同時にガス元電磁弁22、ガス比例弁23が開き、バーナ26に燃料ガスと燃焼用空気が供給され、点火器27による点火プラグ28の火花放電により着火し、フレームロッド29による着火認識動作によって燃焼が開始する。前記(実施の形態1)では入水流量センサ5の通水信号により燃焼動作を開始していたが、本実施の形態では前記(実施の形態2)と同様に、循環流量検出手段6の通水信号により燃焼動作を開始させている。バイパス制御弁9を給水路分岐部18に設けているため、バイパス制御弁9の弁体が給水路B1Bを全閉とする位置のまま故障していた場合、給湯用熱交換器33には通水が行われない。この状態で燃焼動作が開始すると空焚きが発生して危険であるため、これを防止することが目的である。入水流量センサ5の通水検知から所定時間(たとえば1秒)以内に循環流量検出手段6での通水検知が得られない場合、制御手段91はバイパス制御弁9の故障を判定して燃焼動作は行わない。   First, during the hot water supply operation, when the hot water tap 13 is opened, the incoming water flow rate sensor 5 disposed in the water supply channel A1A detects water flow. Normally, as shown in FIG. 4C, the bypass control valve 9 provided in the water supply branching section 18 maintains a predetermined opening (for example, an intermediate opening) and is supplied from the water supply 1B. The water passing through the latent heat recovery heat exchanger 34 and the hot water supply heat exchanger 33 is detected by the circulating flow rate detecting means 6. Here, the circulating flow rate detecting means 6 has the same configuration as the incoming water flow rate sensor 5. When a water flow signal of a predetermined value (for example, 1 L / min) or more is detected from the circulating flow rate detection means 6, the combustion fan 25 operates and at the same time, the gas source solenoid valve 22 and the gas proportional valve 23 are opened and fuel is supplied to the burner 26. Gas and combustion air are supplied, ignition is performed by spark discharge of the spark plug 28 by the igniter 27, and combustion is started by an ignition recognition operation by the frame rod 29. In (Embodiment 1), the combustion operation is started by the water flow signal of the incoming water flow rate sensor 5, but in this embodiment, the water flow rate of the circulating flow rate detection means 6 is the same as (Embodiment 2). The combustion operation is started by the signal. Since the bypass control valve 9 is provided in the water supply branch 18, when the valve body of the bypass control valve 9 has failed in a position where the water supply path B 1 B is fully closed, the bypass is not passed through the hot water supply heat exchanger 33. There is no water. If the combustion operation is started in this state, airing occurs and it is dangerous, and the purpose is to prevent this. When the water flow detection in the circulating flow rate detection means 6 is not obtained within a predetermined time (for example, 1 second) from the water flow detection of the incoming water flow rate sensor 5, the control means 91 determines the failure of the bypass control valve 9 and performs the combustion operation. Do not do.

なお、本実施の形態においては、出湯路3の給湯循環回路2からの分岐部を利用側熱交換器である暖房用熱交換器52および風呂用熱交換器80の上流側に配置させることで、給湯回路を単独で利用する場合には、出湯路3の流路圧力損失を小さくでき、かつ早く出湯路3に湯を供給することができる。   In the present embodiment, the branch portion from the hot water supply circulation circuit 2 of the hot water supply passage 3 is arranged upstream of the heating heat exchanger 52 and the bath heat exchanger 80 which are use side heat exchangers. When the hot water supply circuit is used alone, the flow pressure pressure loss of the hot water supply passage 3 can be reduced, and hot water can be supplied to the hot water supply passage 3 quickly.

燃焼負荷に応じたバーナ26での燃焼量は、ガス切替弁24を開閉することで調節される。この燃焼ガスの排気動作の過程において、燃焼室30に配設した給湯用熱交換器33と排気通路31に配設した潜熱回収用熱交換器34で給水路B1Bより供給される水が加熱される。   The amount of combustion in the burner 26 according to the combustion load is adjusted by opening and closing the gas switching valve 24. In the process of exhausting the combustion gas, the water supplied from the water supply passage B1B is heated by the hot water supply heat exchanger 33 provided in the combustion chamber 30 and the latent heat recovery heat exchanger 34 provided in the exhaust passage 31. The

給湯用熱交換器33で加熱された湯水は、給水路分岐部18に設けられたバイパス制御弁9の弁体位置により調整されたバイパス通路4を通る入水側の水と混合される。混合された湯は、浴室リモコン92や台所リモコン93などの遠隔操作用リモートコントローラで設定した給湯設定温度になるように出湯サーミスタ17の信号によりバイパス制御弁9の開度を調節し、給湯栓13より給湯される。   The hot water heated by the hot water supply heat exchanger 33 is mixed with the water on the incoming side passing through the bypass passage 4 adjusted by the valve body position of the bypass control valve 9 provided in the water supply passage branching section 18. The opening of the bypass control valve 9 is adjusted by a signal from the hot water thermistor 17 so that the mixed hot water has a hot water supply set temperature set by a remote controller for remote operation such as a bathroom remote controller 92 or a kitchen remote controller 93, and the hot water tap 13 More hot water is supplied.

このように、給湯単独運転を選択する場合は、遠隔操作用リモートコントローラで所望の温度を設定し、給湯栓13を開くことで自動的に設定された湯温の給湯温水を確保することができる。   Thus, when selecting hot water supply independent operation, a desired temperature can be set with the remote controller for remote operation, and the hot water supply hot water set automatically can be secured by opening the hot water tap 13. .

なお、暖房運転時および風呂追い焚き運転時の各運転時における装置動作については、前記(実施の形態1)と同様であり省略する。また、給湯運転、暖房運転、風呂追い焚き運転はそれぞれの組合せで同時に行うことが可能である。また、給湯回路と利用側熱交換器の1次側回路である給湯循環回路を1つの加熱経路で構成することで、配管構成を含む本体構成の簡素化により装置の小型・軽量化を実現できることや、利用側熱交換器として複数個設ける場合、給湯循環回路に対して各利用側熱交換器を並列に接続することで給湯用熱交換器から供給される湯水温度が略同一とすることができることや、潜熱回収により効率アップを図ることで、給湯性能と利用側熱交換器の加熱性能を同時に確保することができる効果においても、前記(実施の形態1)と同様である。   In addition, about the apparatus operation | movement at the time of each operation | movement at the time of heating operation and a bath chase operation, it is the same as that of the above (Embodiment 1), and abbreviate | omits. Further, the hot water supply operation, the heating operation, and the bath reheating operation can be performed simultaneously in each combination. In addition, the hot water supply circuit and the hot water supply circulation circuit, which is the primary circuit of the use side heat exchanger, are configured by a single heating path, so that the apparatus configuration can be reduced in size and weight by simplifying the main body configuration including the piping configuration. In addition, when a plurality of use side heat exchangers are provided, the temperature of hot water supplied from the hot water supply heat exchanger may be substantially the same by connecting each use side heat exchanger in parallel to the hot water supply circulation circuit. This is also the same as the above (Embodiment 1) in the effect that the hot water supply performance and the heating performance of the use side heat exchanger can be secured at the same time by improving the efficiency by recovering latent heat.

次に、給湯循環回路2を給水路B1Bから切り離して独立した閉回路とし、循環ポンプ7を駆動させることで前記給湯循環回路2の破損による漏水有無を検知する方法について述べる。   Next, a method of detecting the presence or absence of water leakage due to breakage of the hot water supply circulation circuit 2 by driving the circulation pump 7 by separating the hot water supply circulation circuit 2 from the water supply path B1B and making it an independent closed circuit will be described.

(実施の形態1)で述べたような装置運転状態に応じた適切なタイミングで給湯循環回路2の漏水有無検知動作を行う場合、制御手段91は、給水路分岐部18に設けられたバイパス制御弁9の開度を図4(A)に示すようにして給水路B1Bを閉とする。そして、前記(実施の形態1)のように、制御手段91は、潜熱回収用熱交換器34の水管部破損による漏水有無検知、暖房用熱交換器52の水管部破損による漏水有無検知、風呂用熱交換器80の水管部破損による漏水有無検知、の各漏水有無検知動作を行い、漏水有りと検知された場合には、浴室リモコン92や台所リモコン93などの遠隔操作用リモートコントローラに代表される外部報知手段に報知し、装置の運転を停止させる。   When performing the water leakage presence / absence detection operation of the hot water supply circulation circuit 2 at an appropriate timing according to the apparatus operating state as described in the first embodiment, the control means 91 is a bypass control provided in the water supply branch 18. As shown in FIG. 4A, the opening of the valve 9 is closed to close the water supply channel B1B. Then, as in the first embodiment, the control means 91 detects the presence or absence of water leakage due to breakage of the water pipe portion of the latent heat recovery heat exchanger 34, the presence or absence of water leakage due to breakage of the water pipe portion of the heating heat exchanger 52, the bath Detecting the presence or absence of water leakage by detecting the presence or absence of water leakage due to damage to the water pipe part of the heat exchanger 80. If it is detected that there is water leakage, it is represented by a remote controller for remote operation such as the bathroom remote control 92 or the kitchen remote control 93. To the external notification means to stop the operation of the apparatus.

以上のように本実施の形態においては、制御手段91は、装置運転状態に応じた適切なタイミングで、給水路分岐部18に設けられたバイパス制御弁9の弁体位置を図4(A)に示すように給水路B1Bが閉となるようにして給湯循環回路2を給水路B1Bから切り離して完全な閉回路とし、循環ポンプ7を駆動させて給湯循環回路2の水管部における漏水有無を検出することができる。また、この漏水有無検知動作で漏水有りと判定された場合には、制御手段91は外部報知手段にその旨を報知し、装置の運転を停止させる動作を行うことで、ユーザに漏水有りの状態を知らせて、漏水による拡大被害を抑えることができる。   As described above, in the present embodiment, the control unit 91 determines the valve body position of the bypass control valve 9 provided in the water supply branching section 18 at an appropriate timing according to the apparatus operating state as shown in FIG. As shown in Fig. 4, the hot water supply circuit B2B is closed so that the hot water supply circuit 2 is disconnected from the water supply line B1B to form a complete closed circuit, and the circulation pump 7 is driven to detect the presence or absence of water leakage in the water pipe portion of the hot water supply circuit 2 can do. In addition, when it is determined that there is water leakage in the water leakage presence / absence detection operation, the control unit 91 notifies the external notification unit of the fact and performs an operation to stop the operation of the apparatus, so that the user has a state of water leakage. To prevent the damage caused by water leakage.

漏水有無検知動作が途中で解除された場合や、漏水有無検知動作が終了した場合において、装置運転が再開される時の給湯運転動作の方法については、図3に示す本実施の形態
における給湯装置においては、通常の給湯運転時においても循環流量検出手段6での通水検知によって燃焼開始させるため、給水路B1Bに設けられたバイパス制御弁9の弁体位置が給水路B1Bを閉とした状態のままバーナ26に着火した場合の空焚き等を防止することができる。
When the water leakage presence / absence detection operation is canceled halfway or when the water leakage presence / absence detection operation is completed, the hot water supply operation method in the present embodiment shown in FIG. In order to start combustion by detecting water flow in the circulating flow rate detecting means 6 even during normal hot water supply operation, the valve body position of the bypass control valve 9 provided in the water supply path B1B is in a state where the water supply path B1B is closed. When the burner 26 is ignited as it is, it is possible to prevent air blow or the like.

以上のように、本発明にかかる給湯装置は、給湯循環回路を主回路として給湯と暖房、または給湯と風呂、または給湯と暖房と風呂を単一の熱源とすることにより、器具の小型化・軽量化ができ、設置スペースの余裕確保、施工性の向上と、潜熱回収熱交換器を備えることにより、高効率化を実現しランニングコストの低減による省エネルギー化を図ることが可能となるため、ガス、石油の給湯風呂装置、給湯暖房機等の用途にも適用できる。   As described above, the hot water supply apparatus according to the present invention has a hot water supply and heating system, a hot water supply and a bath, or a hot water supply and a heating and a bath as a single heat source. Since it is possible to reduce the weight, the installation space is secured, the workability is improved, and the latent heat recovery heat exchanger is provided, so it is possible to achieve high efficiency and save energy by reducing running costs. It can also be applied to uses such as petroleum hot water bath equipment and hot water heaters.

本発明の実施の形態1における給湯装置の構造図Structure diagram of hot water supply apparatus in Embodiment 1 of the present invention 本発明の実施の形態2における給湯装置の構造図Structure diagram of hot water supply apparatus in Embodiment 2 of the present invention 本発明の実施の形態3における給湯装置の構造図Structure diagram of hot water supply apparatus in Embodiment 3 of the present invention (A)本発明の実施の形態3におけるバイパス制御弁9の弁体位置図(B)本発明の実施の形態3におけるバイパス制御弁9の弁体位置図(C)本発明の実施の形態3におけるバイパス制御弁9の弁体位置図(A) Valve body position diagram of bypass control valve 9 in Embodiment 3 of the present invention (B) Valve body position diagram of bypass control valve 9 in Embodiment 3 of the present invention (C) Embodiment 3 of the present invention Of valve body position of bypass control valve 9

符号の説明Explanation of symbols

1A 給水路A
1B 給水路B
2 給湯循環回路
3 出湯路
4 バイパス通路
7 循環ポンプ
9 バイパス制御弁
18 給水路分岐部
26 バーナ
33 給湯用熱交換器
34 潜熱回収用熱交換器
91 制御手段
1A Water supply channel A
1B Water supply channel B
DESCRIPTION OF SYMBOLS 2 Hot water supply circulation circuit 3 Hot water supply path 4 Bypass path 7 Circulation pump 9 Bypass control valve 18 Water supply path branch part 26 Burner 33 Heat exchanger for hot water supply 34 Heat exchanger for latent heat recovery 91 Control means

Claims (13)

給水路より供給される水をバーナの燃焼により加熱し出湯路に湯水を供給する給湯用熱交換器と、前記バーナの燃焼排ガス経路中に配置し燃焼排ガスの潜熱を回収する潜熱回収用熱交換器とを備え、前記給湯用熱交換器と潜熱回収用熱交換器を直列に接続して、潜熱回収用熱交換器から給湯用熱交換器を通り循環ポンプを介して利用側熱交換器に至る給湯循環回路を形成するとともに、前記給湯循環回路から分岐し出湯路に至る給湯回路を形成し、前記給湯循環回路と給湯回路のどちらか一方を利用するか、または、給湯循環回路と給湯回路を同時に利用するか、を選択できるようにし、前記給水路に前記給湯循環回路を完全閉回路とするための給湯循環回路閉手段と、前記給湯循環回路に循環流量を検出するための循環流量検出手段とを設け、制御手段は前記給湯循環回路閉手段を閉とし、前記循環ポンプを所定の条件で駆動させ、その時の前記給湯循環回路内の循環流量を前記循環流量検出手段で検出することで、前記給湯循環回路の破損による漏水有無を検知できるようにした給湯装置。 A hot water supply heat exchanger that heats the water supplied from the water supply passage by combustion of the burner and supplies hot water to the hot water supply passage, and heat exchange for latent heat recovery that is arranged in the combustion exhaust gas passage of the burner and recovers the latent heat of the combustion exhaust gas A hot water supply heat exchanger and a latent heat recovery heat exchanger connected in series, from the latent heat recovery heat exchanger through the hot water supply heat exchanger to the user side heat exchanger via a circulation pump Forming a hot water supply circulation circuit, forming a hot water supply circuit branching from the hot water supply circulation circuit to a hot water supply path, and using either the hot water supply circulation circuit or the hot water supply circuit, or a hot water supply circulation circuit and a hot water supply circuit A hot water supply circuit closing means for making the hot water supply circuit completely closed in the water supply passage, and a circulating flow rate detection for detecting a circulating flow rate in the hot water supply circuit Means The control means closes the hot water supply circulation circuit closing means, drives the circulation pump under a predetermined condition, and detects the circulation flow rate in the hot water supply circulation circuit at that time by the circulation flow rate detection means. A water heater that can detect the presence or absence of water leakage due to circuit damage. 利用側熱交換器として複数個設ける場合、給湯循環回路に対して各利用側熱交換器を並列に接続し、給湯用熱交換器から供給される湯水温度が略同一となるようにした請求項1項記載の給湯装置。 In the case where a plurality of use side heat exchangers are provided, the use side heat exchangers are connected in parallel to the hot water supply circulation circuit so that the hot water temperatures supplied from the hot water supply heat exchangers are substantially the same. 1. A hot water supply apparatus according to item 1. 出湯路の給湯循環回路からの分岐部は、利用側熱交換器の上流側に配置された請求項1または2記載の給湯装置。 The hot water supply apparatus according to claim 1 or 2, wherein the branch portion from the hot water supply circulation circuit of the hot water supply passage is arranged on the upstream side of the use side heat exchanger. 出湯路の給湯循環回路からの分岐部は、利用側熱交換器の下流側に配置された請求項1または2項記載の給湯装置。 The hot water supply apparatus according to claim 1 or 2, wherein a branch portion from the hot water supply circulation circuit of the hot water supply passage is disposed on the downstream side of the use side heat exchanger. 給湯循環回路閉手段は、給水路において、給湯用熱交換器と潜熱回収用熱交換器を迂回するように前記給水路と出湯路を連通して設けたバイパス通路との分岐部より下流側に配置された請求項1〜4のいずれか1項記載の給湯装置。 The hot water supply circuit closing means is disposed downstream of the branch portion of the water supply passage and the bypass passage provided by connecting the water supply passage and the hot water supply passage so as to bypass the hot water supply heat exchanger and the latent heat recovery heat exchanger. The hot-water supply apparatus of any one of Claims 1-4 arrange | positioned. 給湯循環回路閉手段は、閉止機能を有し、バイパス通路の流量を制御するためのバイパス制御弁で、給湯循環回路を完全閉回路とする機能を兼ねた請求項5に記載の給湯装置。 6. The hot water supply apparatus according to claim 5, wherein the hot water supply circulation circuit closing means has a closing function, and is a bypass control valve for controlling the flow rate of the bypass passage, and also has a function of making the hot water supply circulation circuit completely closed. 給湯循環回路閉手段は、給水路において、給湯用熱交換器と潜熱回収用熱交換器を迂回するように前記給水路と出湯路を連通して設けたバイパス通路との分岐部に配置された請求項1〜4のいずれか1項記載の給湯装置。 The hot water supply circuit closing means is disposed in the water supply passage at a branch portion between the hot water supply heat exchanger and the bypass passage provided to communicate the hot water supply passage so as to bypass the latent heat recovery heat exchanger. The hot-water supply apparatus of any one of Claims 1-4. 給湯循環回路閉手段は、給水路側の閉止機能を有し、バイパス通路の流量を制御するためのバイパス制御弁で、給湯循環回路を完全閉回路とする機能を兼ねた請求項7に記載の給湯装置。 The hot water supply circuit closing means has a water supply channel side closing function, and is a bypass control valve for controlling the flow rate of the bypass passage, and also serves as a function to make the hot water supply circuit completely closed. apparatus. 循環ポンプはDC駆動方式とし、制御手段は給湯循環回路閉手段を閉とし、制御手段は、前記循環ポンプを所定の条件で駆動させ、前記循環ポンプの駆動負荷の大きさで給湯循環回路の破損による漏水有無を検知できるようにした請求項1〜8のいずれか1項記載の給湯装置。 The circulation pump is a DC drive system, the control means closes the hot water supply circulation circuit closing means, the control means drives the circulation pump under predetermined conditions, and the hot water supply circulation circuit is damaged due to the driving load of the circulation pump. The hot-water supply apparatus of any one of Claims 1-8 which enabled it to detect the presence or absence of the water leak by. 制御手段は、装置運転状態に応じた適切なタイミングで、給湯循環回路閉手段を閉とし、循環ポンプを駆動させることで給湯循環回路の破損による漏水有無を検知する機能を備えた請求項1〜9のいずれか1項記載の給湯装置。 The control means has a function of detecting the presence or absence of water leakage due to breakage of the hot water supply circulation circuit by closing the hot water supply circulation circuit closing means and driving the circulation pump at an appropriate timing according to the apparatus operating state. The hot water supply apparatus according to any one of 9. 制御手段は、給湯循環回路からの漏水有りと判断した場合に、その旨を外部報知手段で報
知し、装置の運転停止をさせる機能を備えた請求項10記載の給湯装置。
11. The hot water supply apparatus according to claim 10, wherein the control means has a function of notifying the external notification means to that effect and stopping the operation of the apparatus when it is determined that there is water leakage from the hot water supply circulation circuit.
循環流量検出手段は、給湯循環回路において出湯路との分岐部より上流側に配置された請求項1〜4のいずれか1項記載の給湯装置。 The hot water supply apparatus according to any one of claims 1 to 4, wherein the circulation flow rate detecting means is arranged upstream of a branching portion with the hot water supply path in the hot water supply circulation circuit. 制御手段は、循環流量検出手段で検出される流量が所定値以上になった時に、バーナの燃焼を開始させる機能を備えた請求項12記載の給湯装置。 13. The hot water supply apparatus according to claim 12, wherein the control means has a function of starting combustion of the burner when the flow rate detected by the circulating flow rate detection means exceeds a predetermined value.
JP2005304182A 2005-10-19 2005-10-19 Water heater Expired - Fee Related JP4696835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304182A JP4696835B2 (en) 2005-10-19 2005-10-19 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304182A JP4696835B2 (en) 2005-10-19 2005-10-19 Water heater

Publications (2)

Publication Number Publication Date
JP2007113811A JP2007113811A (en) 2007-05-10
JP4696835B2 true JP4696835B2 (en) 2011-06-08

Family

ID=38096166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304182A Expired - Fee Related JP4696835B2 (en) 2005-10-19 2005-10-19 Water heater

Country Status (1)

Country Link
JP (1) JP4696835B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689228B2 (en) * 2009-04-27 2015-03-25 アイシン精機株式会社 Solid oxide fuel cell system
JP5259527B2 (en) * 2009-08-19 2013-08-07 株式会社コロナ Water heater
ES2662524T3 (en) 2009-10-28 2018-04-06 Mitsubishi Electric Corporation Air conditioning apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041579A (en) * 1999-07-28 2001-02-16 Noritz Corp Hot water supplier
JP2002267262A (en) * 2001-03-07 2002-09-18 Osaka Gas Co Ltd Hot-water supply apparatus
JP2003336800A (en) * 2002-05-20 2003-11-28 Matsushita Electric Ind Co Ltd Fluid circulating supplying device
JP2005147579A (en) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd Gas combustion room heater and water heater

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025595B2 (en) * 1993-03-05 2000-03-27 東京瓦斯株式会社 Hot water heater
JPH10267410A (en) * 1997-03-26 1998-10-09 Matsushita Electric Ind Co Ltd Hot water heater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041579A (en) * 1999-07-28 2001-02-16 Noritz Corp Hot water supplier
JP2002267262A (en) * 2001-03-07 2002-09-18 Osaka Gas Co Ltd Hot-water supply apparatus
JP2003336800A (en) * 2002-05-20 2003-11-28 Matsushita Electric Ind Co Ltd Fluid circulating supplying device
JP2005147579A (en) * 2003-11-18 2005-06-09 Matsushita Electric Ind Co Ltd Gas combustion room heater and water heater

Also Published As

Publication number Publication date
JP2007113811A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP4880386B2 (en) Hot water supply equipment
JP3931162B2 (en) Hot water heater
JP4696835B2 (en) Water heater
JP5814643B2 (en) Hot water storage system
JP4867282B2 (en) Water heater
JP4400407B2 (en) Water heater
JP5612994B2 (en) Hot water bath equipment
JP5061153B2 (en) Hot water storage hot water supply system and cogeneration system
JP4994291B2 (en) Heat source machine
JP2008082633A (en) Hot water supply device and plate type heat exchanger
JP4220684B2 (en) Method for preventing freezing of heating device
JP4867274B2 (en) Water heater
JP2007278599A (en) Hot-water supply apparatus
JP4784266B2 (en) Water heater
JP2005147579A (en) Gas combustion room heater and water heater
JP2007278653A (en) Hot water supplier
JP4715438B2 (en) Water heater
JP4752452B2 (en) Water heater
JP4770381B2 (en) Water heater
JP4501700B2 (en) Water heater
JP2007101052A (en) Hot water supply apparatus
JP2007113813A (en) Water heater
JP4602062B2 (en) Water heater
JP2008185302A (en) Hot water supply device
JP6192473B2 (en) Bath bathing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110214

LAPS Cancellation because of no payment of annual fees