JP2005345006A - Heat pump type hot water heating device - Google Patents

Heat pump type hot water heating device Download PDF

Info

Publication number
JP2005345006A
JP2005345006A JP2004165260A JP2004165260A JP2005345006A JP 2005345006 A JP2005345006 A JP 2005345006A JP 2004165260 A JP2004165260 A JP 2004165260A JP 2004165260 A JP2004165260 A JP 2004165260A JP 2005345006 A JP2005345006 A JP 2005345006A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
water
refrigerant
pump unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004165260A
Other languages
Japanese (ja)
Inventor
Keiichi Mizutani
圭一 水谷
Satoshi Hoshino
聡 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sanyo Electric Co Ltd, Sanyo Air Conditioners Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2004165260A priority Critical patent/JP2005345006A/en
Publication of JP2005345006A publication Critical patent/JP2005345006A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To compact a whole body of a heat pump unit, and to effectively utilize the volume. <P>SOLUTION: This heat pump type hot water supply heating device is provided with a heat pump unit A comprising a cooling medium R provided with a compressor 21, a parallel circuit of a first water cooling medium heat exchanger 9 for heating and a second water cooling medium heat exchanger 22 for storing hot water to which expansion valves 26 and 27 are respectively connected, and an air heat exchanger 28 circularly connected in order, and a pump unit B comprising a first warm water circulation passage C1 to circulate warm water by operation of a circulation pump 7 between the first water cooling medium heat exchanger 9 and a warm water heating device, and a second warm water circulation passage C2 to circulate warm water between the second water cooling medium heat exchanger 22 and a water storage tank 31 by a circulation pump 32. The cooling tube and the warm water tube of the first water cooling medium heat exchanger 9 or the second water cooling medium heat exchanger 22 in the heat pump unit A are spirally wound in a cylindrical form. A compressor 21 is disposed in the inner space in it. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒートポンプユニットを熱源としたヒートポンプ式給湯暖房装置に関する。詳述すれば、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するポンプユニットとを備えたヒートポンプ式給湯暖房装置に関する。   The present invention relates to a heat pump hot water supply / room heating apparatus using a heat pump unit as a heat source. Specifically, a compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a pressure reducing device, and an air heat exchanger are sequentially connected in an annular shape. A heat pump unit provided with a refrigerant circuit, an expansion tank, a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operation of the first circulation pump, and the first The present invention relates to a heat pump hot water supply and heating device including a pump unit having a second hot water circulation path for circulating hot water between a two-water refrigerant heat exchanger and a hot water storage tank by a second circulation pump.

従来のこの種のヒートポンプ式給湯暖房装置は、例えば特許文献1に開示されているが、貯湯タンク内の水とヒートポンプユニットで使用する冷媒とを熱交換させるため、水冷媒熱交換器が必要不可欠であり、その大きさは給湯暖房装置の能力に大きく影響し、ヒートポンプユニット全体の容積のうち、この水冷媒熱交換器の占める割合も多い。
特願2003−5942の願書に添付した明細書及び図面
A conventional heat pump type hot water supply and heating device of this type is disclosed in, for example, Patent Document 1, but a water refrigerant heat exchanger is indispensable in order to exchange heat between water in the hot water storage tank and refrigerant used in the heat pump unit. The size greatly affects the capacity of the hot water supply and heating device, and the ratio of the water / refrigerant heat exchanger to the total volume of the heat pump unit is also large.
Description and drawings attached to application for Japanese Patent Application No. 2003-5942

しかし、前記水冷媒熱交換器を中空筒状に形成した場合には、その内側が無駄なスペースとなり、ヒートポンプユニット全体の容積効率が悪かった。   However, when the water-refrigerant heat exchanger is formed in a hollow cylindrical shape, the inside becomes a useless space, and the volume efficiency of the entire heat pump unit is poor.

そこで本発明は、ヒートポンプユニット全体の小型化を図り、容積の有効活用を図ることを目的とする。   Accordingly, an object of the present invention is to reduce the overall size of the heat pump unit and to effectively use the volume.

このため第1の発明は、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するポンプユニットとを備えたヒートポンプ式給湯暖房装置において、前記ヒートポンプユニットの前記第1水冷媒熱交換器又は第2水冷媒熱交換器の冷媒管及び温水管を螺旋状に巻回して筒状に形成し、その内側空間内に前記圧縮機を配設したことを特徴とする。   Therefore, according to the first aspect of the present invention, a compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompression device, and an air heat exchanger are sequentially provided. A heat pump unit having a refrigerant circuit connected in an annular shape, a first hot water circulation path for circulating hot water between the expansion tank, the first water refrigerant heat exchanger and the hot water heater by operating the first circulation pump And a heat pump hot water supply and heating device comprising a pump unit having a second hot water circulation path for circulating hot water by a second circulation pump between the second water refrigerant heat exchanger and the hot water storage tank. The refrigerant pipe and hot water pipe of the first water refrigerant heat exchanger or the second water refrigerant heat exchanger are spirally wound to form a cylinder, and the compressor is disposed in the inner space. And

また第2の発明は、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するポンプユニットとを備えたヒートポンプ式給湯暖房装置において、前記ヒートポンプユニットの前記第1水冷媒熱交換器及び第2水冷媒熱交換器を上下に配設し、下方に配設されたいずれかの冷媒管及び温水管を螺旋状に巻回して筒状に形成し、その内側空間内に前記圧縮機を配設したことを特徴とする。   In the second aspect of the invention, a compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompression device, and an air heat exchanger are sequentially annular. A heat pump unit provided with a refrigerant circuit connected to the expansion tank, a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operating the first circulation pump, and A heat pump type hot water supply and heating device comprising a pump unit having a second hot water circulation path for circulating hot water by a second circulation pump between the second water refrigerant heat exchanger and the hot water storage tank. The first water refrigerant heat exchanger and the second water refrigerant heat exchanger are arranged up and down, and one of the refrigerant pipes and the hot water pipe arranged below is spirally wound to form a cylinder, Arrange the compressor in the inner space Characterized in that was.

本発明によれば、ヒートポンプユニット全体の小型化を図り、容積の有効活用を図ることができる。   According to the present invention, the entire heat pump unit can be reduced in size, and the volume can be effectively utilized.

以下、本発明の実施の形態を図面に基づき説明する。図1はヒートポンプ式給湯暖房装置の全体システムを示す系統図である。図1において、Aはヒートポンプユニット、Bはタンクユニット、C1は温水暖房用の第1温水循環路、C2は貯湯用の第2温水循環路、Rは前記ヒートポンプユニットAに内蔵された冷媒回路である。この冷媒回路Rでは、HFCやCO等の冷媒を用いることができるが、本実施形態ではCOを用いる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an overall system of a heat pump hot water supply / room heating system. In FIG. 1, A is a heat pump unit, B is a tank unit, C1 is a first hot water circuit for hot water heating, C2 is a second hot water circuit for hot water storage, and R is a refrigerant circuit built in the heat pump unit A. is there. In the refrigerant circuit R, a refrigerant such as HFC or CO 2 can be used, but CO 2 is used in the present embodiment.

1及び2は前記第1温水循環路C1に設けられた床暖房パネル、3及び4は床暖房パネル1及び2に対応して設けられた床暖房リモートコントローラ(以下、「床暖房リモコン」という)であり、前記第1温水循環路C1には、熱動弁5及び6、循環ポンプ7、膨張タンク8、暖房用の第1水冷媒熱交換器9の水流路9B、バイパス管10の途中に設けられた流量調整弁であるバイパス弁11などが設けられている。   1 and 2 are floor heating panels provided in the first hot water circulation path C1, and 3 and 4 are floor heating remote controllers provided corresponding to the floor heating panels 1 and 2 (hereinafter referred to as "floor heating remote control"). In the first hot water circulation path C1, thermal valves 5 and 6, a circulation pump 7, an expansion tank 8, a water flow path 9B of the first water refrigerant heat exchanger 9 for heating, and a bypass pipe 10 are provided. A bypass valve 11 which is a provided flow rate adjusting valve is provided.

前記バイパス管10は前記第1温水循環路C1のバイパス路となるもので、例えば電動弁で構成されたバイパス弁11が開いた場合には、前記第1水冷媒熱交換器9の水流路9Bを介する戻り温水がバイパス管10を介して膨張タンク8に戻ることとなる。この膨張タンク8には水位検出センサを構成する水位電極19、20が配設されている。   The bypass pipe 10 serves as a bypass path of the first hot water circulation path C1, and when the bypass valve 11 configured by, for example, an electric valve is opened, the water flow path 9B of the first water refrigerant heat exchanger 9 is opened. The return warm water passing through is returned to the expansion tank 8 via the bypass pipe 10. The expansion tank 8 is provided with water level electrodes 19 and 20 constituting a water level detection sensor.

また、前記温水循環路C1には、暖房用の第1水冷媒熱交換器9の水流路9Bから流出した暖房用温水の温度を検出するサーミスタ12、浴室暖房装置としてのファンコイル13が設けられている。14は浴室暖房リモートコントローラ(以下、「浴室暖房リモコン」という)、15は前記ファンコイルの13の入口部に設けられた熱動弁、16は前記循環ポンプ7によって膨張タンク8から流出した温水の一部を床暖房パネル1、2に供給するための混合熱動弁、18は床暖房パネル1、2に流入する温水温度を検知するサーミスタである。   The hot water circuit C1 is provided with a thermistor 12 for detecting the temperature of the hot water flowing out from the water flow path 9B of the first water refrigerant heat exchanger 9 for heating, and a fan coil 13 as a bathroom heating device. ing. 14 is a bathroom heating remote controller (hereinafter referred to as “bathroom heating remote controller”), 15 is a thermal valve provided at the inlet of 13 of the fan coil, and 16 is hot water flowing out of the expansion tank 8 by the circulation pump 7. A mixed heat valve for supplying a part to the floor heating panels 1 and 2, 18 is a thermistor that detects the temperature of hot water flowing into the floor heating panels 1 and 2.

前記冷媒回路Rは、CO冷媒を用いた能力調整が可能な2段圧縮式の圧縮機21と、共に一端が前記圧縮機21に接続される暖房用の第1開閉弁23及び貯湯用の第2開閉弁24と、前記第1開閉弁23の他端に接続される前記第1水冷媒熱交換器9の冷媒流路9A、前記第2開閉弁24の他端に接続される貯湯用の第2水冷媒熱交換器22の一次流路22A、冷媒流路9Aが接続される内部熱交換器25の一次流路25A、この一次流路25Aの他端が接続される暖房用の流量調整弁である膨張弁(減圧装置)26、一次流路22Aの他端が接続される流量調整弁である貯湯用の膨張弁(減圧装置)27、空気熱交換器28と、内部熱交換器25の二次流路25Bと、アキュムレーター29とが順次環状に配管接続されている。 The refrigerant circuit R includes a two-stage compression compressor 21 capable of capacity adjustment using a CO 2 refrigerant, a heating first on-off valve 23 whose one end is connected to the compressor 21, and a hot water storage For the hot water storage connected to the second on-off valve 24, the refrigerant passage 9A of the first water refrigerant heat exchanger 9 connected to the other end of the first on-off valve 23, and the other end of the second on-off valve 24. The primary flow path 22A of the second water refrigerant heat exchanger 22, the primary flow path 25A of the internal heat exchanger 25 to which the refrigerant flow path 9A is connected, and the heating flow rate to which the other end of the primary flow path 25A is connected. An expansion valve (pressure reducing device) 26 that is a regulating valve, an expansion valve (pressure reducing device) 27 for hot water storage that is a flow rate regulating valve to which the other end of the primary flow path 22A is connected, an air heat exchanger 28, and an internal heat exchanger The 25 secondary flow paths 25B and the accumulator 29 are sequentially connected in a circular pipe.

前記第2温水循環路C2において、第2水冷媒熱交換器22の水流路22Bの一端と貯湯タンク31の下部とが循環ポンプ32を介して接続されると共に、水流路22Bの他端と貯湯タンク31の上部とが接続されており、また第2水冷媒熱交換器22の水流路22Bから流出した温水の温度を検知するサーミスタ33が水流路22Bの他端と貯湯タンク31の上部との間の第2温水循環路C2に設けられている。   In the second hot water circulation path C2, one end of the water flow path 22B of the second water refrigerant heat exchanger 22 and the lower part of the hot water storage tank 31 are connected via a circulation pump 32, and the other end of the water flow path 22B and the hot water storage capacity. The thermistor 33 is connected to the upper part of the tank 31 and detects the temperature of the hot water flowing out from the water flow path 22B of the second water refrigerant heat exchanger 22 between the other end of the water flow path 22B and the upper part of the hot water storage tank 31. It is provided in the 2nd warm water circulation path C2.

前記貯湯タンク31には追焚用の水々熱交換器34の一次流路34Aが循環ポンプ35を介して接続されている。また、水々熱交換器34の二次流路34Bには循環ポンプ36を介して浴槽37が接続されている。40は貯湯タンク31の上部に接続された給湯管であり、この給湯管40にはミキシングバルブ41が設けられている。42は減圧弁43が配設され水道管に接続された給水管であり、この給水管42は貯湯タンク31の下部とミキシングバルブ41とに分岐接続され、更に補給水開閉弁44を介して前記膨張タンク8に接続されている。   The hot water storage tank 31 is connected with a primary flow path 34 </ b> A for reheating water heat exchanger 34 through a circulation pump 35. A bathtub 37 is connected to the secondary flow path 34 </ b> B of the water heat exchanger 34 via a circulation pump 36. A hot water supply pipe 40 is connected to the upper part of the hot water storage tank 31, and a mixing valve 41 is provided in the hot water supply pipe 40. 42 is a water supply pipe provided with a pressure reducing valve 43 and connected to a water pipe. This water supply pipe 42 is branched and connected to the lower part of the hot water storage tank 31 and the mixing valve 41, and further via the replenishing water opening / closing valve 44. It is connected to the expansion tank 8.

そして、前記貯湯タンク31には、湯温検出センサ45が設けられ、沸き上げ可能温度が85℃までのため、前記湯温検出センサ45の検出湯温が55℃以上の場合には残湯ありと判断し、55℃未満の場合には湯切れ寸前の緊急事態と判断される。このとき、湯温検出センサ45の配置箇所は使用できる残湯量が例えば50リットルの位置である。   The hot water storage tank 31 is provided with a hot water temperature detection sensor 45. Since the boiling temperature is up to 85 ° C., there is residual hot water when the hot water temperature detected by the hot water temperature detection sensor 45 is 55 ° C. or higher. If the temperature is lower than 55 ° C., it is determined that the emergency is about to run out. At this time, the location where the hot water temperature detection sensor 45 is disposed is a position where the amount of remaining hot water that can be used is, for example, 50 liters.

なお、部屋が暖まってくると、床暖房パネル1、2ではそれほど放熱されなくなり、膨張タンク8から水冷媒熱交換器9へは50〜60℃の高温水が供給されることとなるため、水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となり、圧縮機21に高負荷が掛かることとなる。そこで、高温となった冷媒の冷却機構として前記水冷媒熱交換器9の他に設けたのが前記内部熱交換器25である。この内部熱交換器25での放熱分は同じ冷媒回路R内の空気熱交換器28を通過した後の冷媒に取込まれるので、冷媒回路Rの吸熱効率をも向上させている。さらに、サーミスタ50は冷媒が所定の高温度に達したことを検知すると、圧縮機21の保護のため、この圧縮機21を停止させるように制御するためのものである。   When the room is warmed up, the floor heating panels 1 and 2 are not radiated so much, and high temperature water of 50 to 60 ° C. is supplied from the expansion tank 8 to the water refrigerant heat exchanger 9. The refrigerant heat exchanger 9 does not exchange much heat, the refrigerant temperature becomes high, and the compressor 21 is heavily loaded. Therefore, the internal heat exchanger 25 is provided in addition to the water-refrigerant heat exchanger 9 as a cooling mechanism for the refrigerant having reached a high temperature. Since the heat radiation in the internal heat exchanger 25 is taken into the refrigerant after passing through the air heat exchanger 28 in the same refrigerant circuit R, the heat absorption efficiency of the refrigerant circuit R is also improved. Further, the thermistor 50 is for controlling the compressor 21 to be stopped in order to protect the compressor 21 when detecting that the refrigerant has reached a predetermined high temperature.

なお、46は台所リモートコントローラ(以下、「台所リモコン」という)、47は風呂リモートコントローラ(以下、「風呂リモコン」という)である。   Reference numeral 46 is a kitchen remote controller (hereinafter referred to as “kitchen remote control”), and 47 is a bath remote controller (hereinafter referred to as “bath remote control”).

また、ヒートポンプユニットAとタンクユニットBにはそれぞれプリント基板K1、K2が配設され、このプリント基板K1にはマイクロコンピュータから成る制御装置(制御手段)S1が搭載され、またプリント基板K2にはタイマTが接続されたマイクロコンピュータから成る制御装置(制御手段)S2が搭載されている。   The heat pump unit A and the tank unit B are provided with printed circuit boards K1 and K2, respectively. The printed circuit board K1 is equipped with a control device (control means) S1 composed of a microcomputer, and the printed circuit board K2 has a timer. A control device (control means) S2 comprising a microcomputer to which T is connected is mounted.

次に、ヒートポンプユニットAの構造について、図2乃至図5に基づいて説明する。先ず、51は前面が開口された箱状を呈して背壁に複数の空気導入口(図示せず)が開設されたヒートポンプユニット本体で、このヒートポンプユニット本体51の前面には前面開口を閉塞すると共に複数の吹出口が開設された扉体(図示せず)が取り外し可能に設けられている。   Next, the structure of the heat pump unit A will be described with reference to FIGS. First, 51 is a heat pump unit main body having a box shape with an open front and a plurality of air inlets (not shown) opened in the back wall. The front opening of the heat pump unit main body 51 is closed. In addition, a door body (not shown) having a plurality of air outlets is detachably provided.

そして、前記ヒートポンプユニット本体51内の空間は、仕切板53により左右に仕切られており、大きく分けて右の空間内には下から前記第2水冷媒熱交換器22、第1水冷媒熱交換器9及びプリント基板K1を収納する電装ボックス54などが配設され、左の空間内には前記内部熱交換器25及び空気熱交換器28などが配設される(図3参照)。   The space in the heat pump unit main body 51 is divided into left and right by a partition plate 53, and roughly divided into the right space from the bottom, the second water refrigerant heat exchanger 22 and the first water refrigerant heat exchange. An electrical box 54 and the like for storing the container 9 and the printed board K1 are disposed, and the internal heat exchanger 25 and the air heat exchanger 28 are disposed in the left space (see FIG. 3).

55は前記ヒートポンプユニット本体51の裏面に設けられたタンクユニットBとの間で前記第2温水循環路C2を形成するための入口継手で、56は同じく出口継手である。また、57は前記ヒートポンプユニット本体51の裏面に設けられたタンクユニットBとの間で前記第1温水循環路C1を形成するための入口継手で、58は同じく出口継手である(図2参照)。   55 is an inlet joint for forming the second hot water circulation path C2 with the tank unit B provided on the back surface of the heat pump unit main body 51, and 56 is an outlet joint. Further, 57 is an inlet joint for forming the first hot water circulation path C1 with the tank unit B provided on the back surface of the heat pump unit main body 51, and 58 is also an outlet joint (see FIG. 2). .

次に、前記第2水冷媒熱交換器22について説明すると、図4に示す60は前記水流路22Bを形成する銅製で太径の温水管で、この温水管60の外周囲に形成された窪みに前記冷媒流路22Aを形成する銅製の断面が円形の3本の冷媒管61が埋設されて熱交換し易いように接触して(熱交換関係に構成して)、これらの温水管60及び冷媒管61が一体化された状態で、螺旋状に巻回されて、全体形状として中空の略角筒状に形成されている(図5参照)。   Next, the second water refrigerant heat exchanger 22 will be described. 60 shown in FIG. 4 is a copper-made large-diameter hot water pipe forming the water flow path 22B, and a depression formed in the outer periphery of the hot water pipe 60. Three refrigerant pipes 61 having a circular copper cross section forming the refrigerant flow path 22A are embedded and contacted so as to facilitate heat exchange (configured in a heat exchange relationship), and the hot water pipes 60 and In a state where the refrigerant pipe 61 is integrated, the refrigerant pipe 61 is spirally wound to form a hollow, generally rectangular tube shape as a whole (see FIG. 5).

そして、この中空角筒状に形成された第2水冷媒熱交換器22の中の内側空間内に前記圧縮機21を配設して、ヒートポンプユニット本体51の底面上に固定する。これにより、ヒートポンプユニットA全体の小型化を図り、容積の有効活用を図ることができる。しかも、発熱する圧縮機21により、第2水冷媒熱交換器22自体が温められ、圧縮機21の運転時間が短縮でき省エネとなる。また、第2水冷媒熱交換器22の外周囲を断熱材62で囲むように配設し、熱交換効率を高めている。   And the said compressor 21 is arrange | positioned in the inner side space in the 2nd water-refrigerant heat exchanger 22 formed in this hollow square cylinder shape, and it fixes on the bottom face of the heat pump unit main body 51. FIG. Thereby, size reduction of the whole heat pump unit A can be achieved, and effective utilization of a volume can be aimed at. Moreover, the second water refrigerant heat exchanger 22 itself is heated by the compressor 21 that generates heat, and the operation time of the compressor 21 can be shortened, resulting in energy saving. Moreover, it arrange | positions so that the outer periphery of the 2nd water refrigerant | coolant heat exchanger 22 may be enclosed with the heat insulating material 62, and the heat exchange efficiency is improved.

前記第2水冷媒熱交換器22の上方には、水流路9B及び冷媒流路9Aを形成する銅製で太径の温水管及び同じく銅製で細径の冷媒管が二重管構造とされて螺旋状に巻回され、全体形状として中空の略角筒状に形成された第1水冷媒熱交換器9が配設され、その内側空間内に前記アキュムレーター29が配設されて、第2水冷媒熱交換器22と同様に、ヒートポンプユニットA全体の小型化を図っている。ここで、前記第1水冷媒熱交換器9と第2水冷媒熱交換器22とは、略同一平面形状となされている。   Above the second water-refrigerant heat exchanger 22, a copper-made large-diameter hot water pipe and a copper-made thin-diameter refrigerant pipe that form the water flow path 9B and the refrigerant flow path 9A have a double-pipe structure and spiral. The first water-refrigerant heat exchanger 9 is formed in a hollow, substantially rectangular tube shape as a whole, and the accumulator 29 is disposed in the inner space thereof. Similar to the refrigerant heat exchanger 22, the entire heat pump unit A is reduced in size. Here, the first water refrigerant heat exchanger 9 and the second water refrigerant heat exchanger 22 have substantially the same planar shape.

左の空間内に配設された内部熱交換器25も、高圧側の冷媒管と低圧側の冷媒管とが高圧側の冷媒管を内部とした二重管構造とされている。そして、ヒートポンプユニット本体51の背壁及び側壁の一部の内側面には、前記空気熱交換器(エバポレータ)28が取付けられ、その前方には熱交換を促進するファン63が上下に2つ配設されており、ファン63が回転するとヒートポンプユニット本体51の背壁に開設された複数の空気導入口より外気が導入されて空気熱交換器28を通過した後、扉体に開設された複数の吹出口からヒートポンプユニット本体51外へ排気される構成である。   The internal heat exchanger 25 disposed in the left space also has a double-pipe structure in which the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe are inside the high-pressure side refrigerant pipe. The air heat exchanger (evaporator) 28 is attached to the inner surface of the back wall and a part of the side wall of the heat pump unit main body 51, and two fans 63 for promoting heat exchange are arranged on the upper and lower sides in front of the air heat exchanger (evaporator) 28. When the fan 63 is rotated, outside air is introduced from a plurality of air inlets opened on the back wall of the heat pump unit main body 51 and passes through the air heat exchanger 28, and then a plurality of doors opened on the door body. It is the structure exhausted out of the heat pump unit main body 51 from a blower outlet.

そして、前記制御装置S1、S2は床暖房リモコン3、4、浴室暖房リモコン14、台所リモコン46、風呂リモコン47からの運転信号やサーミスタ12、18、33、50の温度信号とに応じて、圧縮機21の運転及び周波数制御、循環ポンプ7、32、35、36の運転制御、熱動弁5、6、15、16の開閉制御、膨張弁26、27の開度制御などを行うものであり、以下その動作を説明する。   The control devices S1 and S2 are compressed according to the operation signals from the floor heating remote controllers 3 and 4, the bathroom heating remote controller 14, the kitchen remote controller 46, and the bath remote controller 47 and the temperature signals of the thermistors 12, 18, 33, and 50. Operation of the machine 21 and frequency control, operation control of the circulation pumps 7, 32, 35, 36, opening / closing control of the thermal valves 5, 6, 15, 16 and opening degree control of the expansion valves 26, 27 are performed. The operation will be described below.

〈給湯運転〉
台所リモコン46や風呂リモコン47からの運転信号が制御装置S2に入力されると、その信号が制御装置S2から制御装置S1に伝達され、貯湯タンク31への貯湯が行なわれる。即ち、制御装置S1により循環ポンプ32が運転し、第2温水循環路C2では、貯湯タンク31→循環ポンプ32→第2水冷媒熱交換器22の水流路22B→貯湯タンク31の順に給湯用の温水が流れ、貯湯タンク31内に貯湯される。
<Hot-water supply operation>
When an operation signal from the kitchen remote controller 46 or the bath remote controller 47 is input to the control device S2, the signal is transmitted from the control device S2 to the control device S1, and hot water is stored in the hot water storage tank 31. That is, the circulation pump 32 is operated by the control device S1, and in the second hot water circulation path C2, the hot water storage tank 31 → the circulation pump 32 → the water flow path 22B of the second water refrigerant heat exchanger 22 → the hot water storage tank 31 in this order. Hot water flows and the hot water is stored in the hot water storage tank 31.

一方、ヒートポンプユニットAでは制御装置S1が圧縮機21を運転させて、第2開閉弁24及び貯湯用の膨張弁27を開かせ、冷媒回路Rでは、圧縮機21→第2開閉弁24→貯湯用の第2水冷媒熱交換器22の冷媒流路22A→貯湯用の膨張弁27→空気熱交換器28→内部熱交換器25のニ次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。このとき、暖房は行われないので、第1開閉弁23及び暖房用の膨張弁26は閉じている。   On the other hand, in the heat pump unit A, the control device S1 operates the compressor 21 to open the second opening / closing valve 24 and the hot water storage expansion valve 27. In the refrigerant circuit R, the compressor 21 → second opening / closing valve 24 → hot water storage. Refrigerant flow path 22A of the second water refrigerant heat exchanger 22 for hot water → expansion valve 27 for hot water storage → air heat exchanger 28 → secondary flow path 25B of the internal heat exchanger 25 → accumulator 29 → compressor 21 in this order. The refrigerant flows. At this time, since heating is not performed, the first on-off valve 23 and the heating expansion valve 26 are closed.

貯湯タンク31へ供給される温水温度は65℃〜85℃であるが、サーミスタ33が検知する温度がこの温度になるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。   The temperature of the hot water supplied to the hot water storage tank 31 is 65 ° C. to 85 ° C. The frequency of the compressor 21 is controlled so that the temperature detected by the thermistor 33 becomes this temperature, and the valve opening of the expansion valve 27 for hot water storage. Control is performed by the control device S1.

貯湯タンク31に貯湯された高温水は給水管42からの15℃程度の水道水が加えられミキシングバルブ41にて適度な温度に調整され、給湯管40から台所や浴槽37へのお湯張り等に利用される。そして、給湯が行われると、給水管42から貯湯タンク31に給水が行われる。また、循環ポンプ35、36を運転することにより、貯湯タンク31の高温水と浴槽37の温水を追焚用の水々熱交換器34で熱交換し、浴槽37の温水の追焚きを行うこともできる。   The hot water stored in the hot water storage tank 31 is added with tap water of about 15 ° C. from the water supply pipe 42, adjusted to an appropriate temperature by the mixing valve 41, and filled with hot water from the hot water supply pipe 40 to the kitchen or bathtub 37. Used. When hot water is supplied, water is supplied from the water supply pipe 42 to the hot water storage tank 31. In addition, by operating the circulation pumps 35 and 36, the hot water in the hot water storage tank 31 and the hot water in the bathtub 37 are exchanged by the water heat exchanger 34 for replenishment, and the hot water in the bathtub 37 is replenished. You can also.

以上のような通常の給湯運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば効率の良い6.0kW程度となるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。しかし、使用できる残湯量が50リットルとなって、前記湯温検出センサ45による検出湯温が55℃未満となって湯切れ寸前の緊急事態と判断され場合には、ヒートポンプユニットAの圧縮機21の能力が、9.0kWとなるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。   In the case of the normal hot water supply operation as described above, the frequency control of the compressor 21 is performed so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW becomes, for example, about 6.0 kW which is efficient. The valve opening control of the hot water storage expansion valve 27 is performed by the control device S1. However, if the amount of remaining hot water that can be used is 50 liters, the hot water temperature detected by the hot water temperature detection sensor 45 is less than 55 ° C., and it is determined that there is an emergency just before the hot water runs out, the compressor 21 of the heat pump unit A The control device S1 performs frequency control of the compressor 21 and valve opening control of the hot water storage expansion valve 27 so that the capacity of the engine is 9.0 kW.

〈床暖房運転〉
次に、床暖房パネル1又は2による床暖房を行う場合、その部屋の壁面等に取り付けられた床暖房リモコン3又は4の運転スイッチをオンにする。すると、運転信号を受けた制御装置S2によりこれに対応した熱動弁5又は6が徐々に開かれ、循環ポンプ7が運転する。従って、この熱動弁5又は6が完全に開かれるまでの間は(全開までの間)、制御装置S2はバイパス弁11を例えば半開状態となるように制御する。
<Floor heating operation>
Next, when performing floor heating by the floor heating panel 1 or 2, the operation switch of the floor heating remote control 3 or 4 attached to the wall surface or the like of the room is turned on. Then, the control valve S2 that has received the operation signal gradually opens the corresponding thermal valve 5 or 6 and the circulation pump 7 operates. Therefore, until the thermal valve 5 or 6 is fully opened (until fully opened), the control device S2 controls the bypass valve 11 to be in a half-open state, for example.

即ち、前記熱動弁5又は6は開き動作を開始してから全開状態となるのに所定時間が掛かるので、タイマTにその時間を設定して、この設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。   That is, since it takes a predetermined time for the thermal valve 5 or 6 to be fully opened after starting the opening operation, the time is set in the timer T, and the timer T determines the elapse of the set predetermined time. When the time is counted, the control device S2 controls the bypass valve 11 so as to be changed from the half-open state to the closed state.

このため、前記タイマTが計時を開始して所定時間を経過するまでの間は、制御装置S2はバイパス弁11を半開状態となるように制御し、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→バイパス弁(半開状態)11→膨張タンク8の順に温水が流れる。   For this reason, the control device S2 controls the bypass valve 11 to be in a half-open state until the predetermined time elapses after the timer T starts counting, and in the first hot water circulation path C1, the expansion tank 8 The hot water flows in the order of the circulation pump 7, the water flow path 9 B of the first water refrigerant heat exchanger 9, the bypass valve (half-open state) 11, and the expansion tank 8.

そして、設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。このため、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に温水が流れ、高温水全てを床暖房パネル1又は2に供給することができる。   Then, when the timer T counts the set predetermined time, the control device S2 controls the bypass valve 11 so as to change from the half-open state to the closed state. Therefore, in the first hot water circulation path C1, the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water refrigerant heat exchanger 9 → the thermal valve 5 or 6 → the floor heating panel 1 or 2 → the expansion tank 8 Hot water flows in sequence, and all of the hot water can be supplied to the floor heating panel 1 or 2.

一方、前記床暖房リモコン3又は4の運転スイッチをオンにした際に、制御装置S2から運転信号が伝達された制御装置S1によりヒートポンプユニットAの圧縮機21が運転すると共に第1開閉弁23が開き、冷媒回路Rでは、圧縮機21→第1開閉弁23→暖房用の第1水冷媒熱交換器9の冷媒流路9A→内部熱交換器25の一次流路25A→暖房用の膨張弁26→空気熱交換器28→内部熱交換器25の二次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。このとき、貯湯は行われないので、第2開閉弁24及び貯湯用の膨張弁27は閉じており、貯湯用の水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   On the other hand, when the operation switch of the floor heating remote controller 3 or 4 is turned on, the compressor 21 of the heat pump unit A is operated by the control device S1 to which the operation signal is transmitted from the control device S2, and the first on-off valve 23 is In the refrigerant circuit R, the compressor 21 → the first on-off valve 23 → the refrigerant flow path 9A of the first water / refrigerant heat exchanger 9 for heating → the primary flow path 25A of the internal heat exchanger 25 → the expansion valve for heating The refrigerant flows in the order of 26 → air heat exchanger 28 → secondary flow path 25B of internal heat exchanger 25 → accumulator 29 → compressor 21. At this time, since hot water is not stored, the second on-off valve 24 and the hot water expansion valve 27 are closed, and no refrigerant flows through the primary flow path 22A of the hot water water refrigerant heat exchanger 22.

前記床暖房パネル1又は2に供給される温水の温度は60〜70℃であるが、サーミスタ12が検知する温水温度がこの温度になるように圧縮機21の周波数制御、暖房用の膨張弁26の弁開度制御が制御装置S1により行われる。   The temperature of the hot water supplied to the floor heating panel 1 or 2 is 60 to 70 ° C., but the frequency control of the compressor 21 and the heating expansion valve 26 are performed so that the temperature of the hot water detected by the thermistor 12 becomes this temperature. Is controlled by the control device S1.

また、床暖房制御は、床暖房リモコン3又は4に搭載された室温サーミスタ(図示せず)により室温を検知し、設定温度と室温との偏差に基づき熱動弁5又は6を開閉制御し、床暖房パネル1又は2への温水量を制御装置S2が制御する。   In addition, the floor heating control detects the room temperature by a room temperature thermistor (not shown) mounted on the floor heating remote controller 3 or 4, and controls the opening or closing of the thermal valve 5 or 6 based on the deviation between the set temperature and the room temperature. The control device S2 controls the amount of hot water to the floor heating panel 1 or 2.

また、床暖房パネル1及び2で同時に床暖房を行う場合、床暖房リモコン3及び4の運転スイッチをオンにすることにより、同様に熱動弁5及び6が開閉制御され、床暖房パネル1及び2に温水が供給され、床暖房パネル1及び2への温水量を個別に制御することにより、床暖房の個別制御が可能となっている。   In addition, when floor heating is simultaneously performed on the floor heating panels 1 and 2, the operation valves of the floor heating remote controllers 3 and 4 are turned on to similarly control the opening and closing of the thermal valves 5 and 6, so that the floor heating panel 1 and Warm water is supplied to 2 and individual control of floor heating is possible by individually controlling the amount of warm water to the floor heating panels 1 and 2.

このような床暖房運転を行う場合、床暖房する部屋が暖まってくると、床暖房パネル1、2からの放熱量が小さくなり、膨張タンク8から水冷媒熱交換器9の水流路9Bへは50〜60℃の温水が供給されることとなる。このため、水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となって圧縮機21に負荷がかかる。このような場合の冷媒の冷却機構として設けたのが内部熱交換器25であり、内部熱交換器25の一次流路25Aでの放熱分は同じ冷媒回路Rにある内部熱交換器25の二次流路25Bで再度吸収されるため、無駄なく、効率を落とすことなく、冷媒回路Rを構成できる。   When such a floor heating operation is performed, when the floor heating room is warmed, the amount of heat released from the floor heating panels 1 and 2 is reduced, and the expansion tank 8 to the water flow path 9B of the water refrigerant heat exchanger 9 50-60 degreeC warm water will be supplied. For this reason, the water refrigerant heat exchanger 9 does not exchange much heat, and the refrigerant temperature becomes high and a load is applied to the compressor 21. The internal heat exchanger 25 is provided as a cooling mechanism for the refrigerant in such a case, and the heat release in the primary flow path 25A of the internal heat exchanger 25 is two of the internal heat exchanger 25 in the same refrigerant circuit R. Since it is absorbed again by the next flow path 25B, the refrigerant circuit R can be configured without waste and without reducing efficiency.

〈浴室暖房運転〉
次に、ファンコイル13による浴室の温風暖房を行う場合、浴室暖房リモコン14の運転スイッチをオンにする。すると、制御装置S2はファンコイル13入口部の熱動弁15を開くと共に前記バイパス弁11を半開状態となるように制御し、循環ポンプ7を運転させるように制御する。従って、第1温水循環路C1では、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→バイパス弁11(半開状態)→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。
<Bathroom heating operation>
Next, when performing hot air heating of the bathroom by the fan coil 13, the operation switch of the bathroom heating remote controller 14 is turned on. Then, the control device S2 opens the thermal valve 15 at the inlet of the fan coil 13 and controls the bypass valve 11 to be in a half-open state, thereby controlling the circulation pump 7 to operate. Accordingly, in the first hot water circulation path C1, the hot water flows in the order of the expansion tank 8, the circulation pump 7, the water flow path 9B of the first water refrigerant heat exchanger 9 for heating, the bypass valve 11 (half-open state), and the expansion tank 8. At the same time, the hot water flows in the order of the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water-refrigerant heat exchanger 9 for heating → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転と同様であり、貯湯は行われないので、第2開閉弁24及び熱動弁27は閉じており、水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as in the floor heating operation, and hot water is not stored. Therefore, the second on-off valve 24 and the thermal valve 27 are closed, and the primary flow path 22A of the water-refrigerant heat exchanger 22 is closed. Does not flow refrigerant.

前記ファンコイル21に供給される温水の温度は80℃であるが、そのための温水制御は床暖房運転の場合と同様である。また、制御装置S2による浴室暖房制御はファンコイル13に搭載された室温サーミスタ(図示せず)により室温を検知し、ファン回転数を制御し、熱動弁15を開閉制御することにより行われる。   The temperature of the hot water supplied to the fan coil 21 is 80 ° C., and the hot water control for that is the same as in the floor heating operation. The bathroom heating control by the control device S2 is performed by detecting the room temperature by a room temperature thermistor (not shown) mounted on the fan coil 13, controlling the fan rotation speed, and controlling the opening and closing of the thermal valve 15.

以上のような床暖房運転又は浴室暖房運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、暖房用の膨張弁26の弁開度制御が制御装置S1により行われる。   In the case of floor heating operation or bathroom heating operation as described above, the frequency control of the compressor 21 is performed so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW is, for example, about 7.0 kW. The valve opening control of the heating expansion valve 26 is performed by the control device S1.

〈床暖房と浴室暖房の同時運転〉
床暖房パネル1、2による床暖房と、ファンコイル13による浴室温風暖房を同時に行う場合、それぞれのリモコン3、4、14の運転スイッチをオンにする。すると、運転信号を受けた制御装置S2によりこれに対応した熱動弁5又は6が徐々に開かれると共に熱動弁15が開き、循環ポンプ7が運転する。従って、制御装置S2は前記熱動弁5又は6が完全に開かれるまでの間、即ち前記タイマTによる所定時間が経過するまでの間はバイパス弁11を半開状態となるように制御する。
<Simultaneous operation of floor heating and bathroom heating>
When floor heating by the floor heating panels 1 and 2 and bath room temperature heating by the fan coil 13 are performed simultaneously, the operation switches of the respective remote controllers 3, 4 and 14 are turned on. Then, the control valve S2 that has received the operation signal gradually opens the corresponding thermal valve 5 or 6 and opens the thermal valve 15 so that the circulation pump 7 operates. Therefore, the control device S2 controls the bypass valve 11 to be in a half-open state until the thermal valve 5 or 6 is completely opened, that is, until a predetermined time by the timer T elapses.

このため、前記タイマTが計時を開始して所定時間を経過するまでの間は、制御装置S2はバイパス弁11を半開状態となるように制御し、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→バイパス弁(半開状態)11→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。   For this reason, the control device S2 controls the bypass valve 11 to be in a half-open state until the predetermined time elapses after the timer T starts counting, and in the first hot water circulation path C1, the expansion tank 8 The hot water flows in the order of the circulation pump 7 → the water flow path 9B of the first water / refrigerant heat exchanger 9 → the bypass valve (half-open state) 11 → the expansion tank 8 and the expansion tank 8 → the circulation pump 7 → the first water for heating. Hot water flows in the order of the water flow path 9B of the refrigerant heat exchanger 9 → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

そして、設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。このため、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。   Then, when the timer T counts the set predetermined time, the control device S2 controls the bypass valve 11 so as to change from the half-open state to the closed state. Therefore, in the first hot water circulation path C1, the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water refrigerant heat exchanger 9 → the thermal valve 5 or 6 → the floor heating panel 1 or 2 → the expansion tank 8 While warm water flows in order, the warm water flows in the order of the expansion tank 8 → the circulation pump 7 → the water flow path 9 </ b> B of the first water refrigerant heat exchanger 9 for heating → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

このときのサーミスタ12による温水温度制御は80℃であるが、これでは床暖房パネル1、2用の温水としては温度が高すぎることになる。これを解決するために、混合熱動弁16を開くことで80℃の温水に膨張タンク8からの中温水を混ぜ、サーミスタ18にて検知される温水の温度が60〜70℃になるように制御している。また、中温水を混ぜすぎて低温になった場合は混合熱動弁16を閉じ、サーミスタ18の検知温度に基づく熱動弁16の開閉制御を制御装置S2が行う。   Although the hot water temperature control by the thermistor 12 at this time is 80 ° C., the temperature is too high as hot water for the floor heating panels 1 and 2. In order to solve this problem, the mixing heat valve 16 is opened to mix the medium temperature water from the expansion tank 8 into the 80 ° C. warm water so that the temperature of the warm water detected by the thermistor 18 is 60 to 70 ° C. I have control. Further, when the temperature of the medium temperature water becomes excessively low and the temperature becomes low, the mixing heat valve 16 is closed, and the control device S2 performs opening / closing control of the heat valve 16 based on the temperature detected by the thermistor 18.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転又は浴室暖房運転と同様であり、貯湯は行われないので、第2開閉弁24及び貯湯用の熱動弁27は閉じており、貯湯用の水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as the floor heating operation or the bathroom heating operation, and no hot water is stored. Therefore, the second on-off valve 24 and the thermal valve 27 for hot water storage are closed, and the hot water storage water is stored. The refrigerant does not flow in the primary flow path 22A of the refrigerant heat exchanger 22.

以上のような床暖房及び浴室暖房の同時運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、貯湯用の膨張弁26の弁開度制御が制御装置S1により行われる。   In the case of simultaneous operation of floor heating and bathroom heating as described above, the frequency of the compressor 21 is set so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW is, for example, about 7.0 kW. The control device S1 controls the opening degree of the expansion valve 26 for control and hot water storage.

なお、本実施形態では、ヒートポンプユニット本体51の右の空間内に配設した第2水冷媒熱交換器22及び第1水冷媒熱交換器9の冷媒管及び温水管を螺旋状に巻回して中空角筒状に形成したが、これに限らず中空円筒状に形成してよい。また、第1水冷媒熱交換器9の下方に第2水冷媒熱交換器22を配設したが、これに限らず第2水冷媒熱交換器22の下方に第1水冷媒熱交換器9を配設してもよく、この場合に下方に配設した第1水冷媒熱交換器9を中空筒状に形成し、その内側空間内に前記圧縮機21を配設してもよい。更には、下方に配設した第1水冷媒熱交換器9又は第2水冷媒熱交換器22の周囲を囲むように断熱材62を配設してもよい。   In the present embodiment, the second water refrigerant heat exchanger 22 and the first water refrigerant heat exchanger 9 disposed in the right space of the heat pump unit main body 51 are wound spirally around the refrigerant pipe and the hot water pipe. Although it was formed in a hollow rectangular tube shape, it is not limited to this and may be formed in a hollow cylindrical shape. Moreover, although the 2nd water refrigerant heat exchanger 22 was arrange | positioned under the 1st water refrigerant heat exchanger 9, it is not restricted to this, The 1st water refrigerant heat exchanger 9 is provided under the 2nd water refrigerant heat exchanger 22. In this case, the first water refrigerant heat exchanger 9 disposed below may be formed in a hollow cylindrical shape, and the compressor 21 may be disposed in the inner space. Furthermore, you may arrange | position the heat insulating material 62 so that the circumference | surroundings of the 1st water refrigerant | coolant heat exchanger 9 or the 2nd water refrigerant | coolant heat exchanger 22 arrange | positioned below may be enclosed.

以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。   Although the embodiments of the present invention have been described above, various alternatives, modifications, and variations can be made by those skilled in the art based on the above description, and the various alternatives and modifications described above are within the scope of the present invention. Or a modification is included.

ヒートポンプ式給湯暖房装置の全体系統図である。It is a whole system diagram of a heat pump type hot water supply and heating device. 扉体を外した状態のヒートポンプユニットの側面図である。It is a side view of a heat pump unit in the state where a door was removed. 扉体を外した状態のヒートポンプユニットの正面図である。It is a front view of a heat pump unit in the state where a door was removed. 第2水冷媒熱交換器の冷媒管及び温水管の断面図である。It is sectional drawing of the refrigerant | coolant pipe | tube and warm water pipe | tube of a 2nd water refrigerant | coolant heat exchanger. 第2水冷媒熱交換器の平面図である。It is a top view of the 2nd water refrigerant heat exchanger.

符号の説明Explanation of symbols

7 循環ポンプ
9 第1水冷媒熱交換器
21 圧縮機
22 第2水冷媒熱交換器
26 暖房用の膨張弁
27 貯湯用の膨張弁
31 貯湯タンク
32 循環ポンプ
51 ヒートポンプユニット本体
60 温水管
61 冷媒管
S1 制御装置
S2 制御装置
A ヒートポンプユニット
B タンクユニット
C1 温水暖房用の第1温水循環路
C2 貯湯用の第2温水循環路
R 冷媒回路
DESCRIPTION OF SYMBOLS 7 Circulation pump 9 1st water refrigerant heat exchanger 21 Compressor 22 2nd water refrigerant heat exchanger 26 Expansion valve for heating 27 Expansion valve for hot water storage 31 Hot water storage tank 32 Circulation pump 51 Heat pump unit main body 60 Hot water pipe 61 Refrigerant pipe S1 control device S2 control device A heat pump unit B tank unit C1 first hot water circulation path for hot water heating C2 second hot water circulation path for hot water storage R refrigerant circuit

Claims (2)

圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交
換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するポンプユニットとを備えたヒートポンプ式給湯暖房装置において、前記ヒートポンプユニットの前記第1水冷媒熱交換器又は第2水冷媒熱交換器の冷媒管及び温水管を螺旋状に巻回して筒状に形成し、その内側空間内に前記圧縮機を配設したことを特徴とするヒートポンプ式給湯暖房装置。
A compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompressor, and a refrigerant circuit formed by sequentially connecting an air heat exchanger in an annular shape A heat pump unit comprising: an expansion tank; a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operating a first circulation pump; and the second water refrigerant heat exchange A heat pump hot water supply / heater apparatus comprising: a pump unit having a second hot water circulation path for circulating hot water between a water heater and a hot water storage tank by a second circulation pump, wherein the first water refrigerant heat exchanger of the heat pump unit Alternatively, a heat pump hot water supply and heating apparatus, wherein the refrigerant pipe and the hot water pipe of the second water refrigerant heat exchanger are spirally wound to form a cylinder, and the compressor is disposed in the inner space.
圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するポンプユニットとを備えたヒートポンプ式給湯暖房装置において、前記ヒートポンプユニットの前記第1水冷媒熱交換器及び第2水冷媒熱交換器を上下に配設し、下方に配設されたいずれかの冷媒管及び温水管を螺旋状に巻回して筒状に形成し、その内側空間内に前記圧縮機を配設したことを特徴とするヒートポンプ式給湯暖房装置。   A compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompressor, and a refrigerant circuit formed by sequentially connecting an air heat exchanger in an annular shape A heat pump unit comprising: an expansion tank; a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operating a first circulation pump; and the second water refrigerant heat exchange A heat pump hot water supply / heater apparatus comprising: a pump unit having a second hot water circulation path for circulating hot water between a water heater and a hot water storage tank by a second circulation pump, wherein the first water refrigerant heat exchanger of the heat pump unit And the second water refrigerant heat exchanger is arranged up and down, one of the refrigerant pipes and the hot water pipe arranged below is spirally wound to form a cylinder, and the compressor is placed in the inner space thereof It is characterized by having arranged Heat pump hot water heating system.
JP2004165260A 2004-06-03 2004-06-03 Heat pump type hot water heating device Pending JP2005345006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004165260A JP2005345006A (en) 2004-06-03 2004-06-03 Heat pump type hot water heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165260A JP2005345006A (en) 2004-06-03 2004-06-03 Heat pump type hot water heating device

Publications (1)

Publication Number Publication Date
JP2005345006A true JP2005345006A (en) 2005-12-15

Family

ID=35497559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004165260A Pending JP2005345006A (en) 2004-06-03 2004-06-03 Heat pump type hot water heating device

Country Status (1)

Country Link
JP (1) JP2005345006A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198659A (en) * 2006-01-25 2007-08-09 Fuji Koki Corp Auxiliary cooling device, and cooling method of condenser by auxiliary cooling device
JP2008202826A (en) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2008309404A (en) * 2007-06-14 2008-12-25 Denso Corp Heat pump type hot water storage water heating device
JP2009236396A (en) * 2008-03-27 2009-10-15 Toshiba Carrier Corp Heat pump type hot water supply device
KR100923373B1 (en) 2007-05-01 2009-10-23 히타치 어플라이언스 가부시키가이샤 Heat pump type hot water supply and floor heating device
JP2015034671A (en) * 2013-08-09 2015-02-19 株式会社アタゴ製作所 Heat exchanger for heat pump type water heater
JP2015172473A (en) * 2014-03-12 2015-10-01 三菱電機株式会社 Heat pump hot water supply outdoor unit
JP2016138697A (en) * 2015-01-27 2016-08-04 三菱電機株式会社 Hot water supply system with bathroom heating function
WO2016157305A1 (en) * 2015-03-27 2016-10-06 三菱電機株式会社 Heat pump hot-water-supply outdoor device, and hot-water-supply device
WO2018042482A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Heat pump system
WO2019167136A1 (en) * 2018-02-27 2019-09-06 三菱電機株式会社 Heat pump apparatus
CN111457609A (en) * 2020-06-22 2020-07-28 烟台和裕机电工程有限公司 Compression type refrigerating machine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198659A (en) * 2006-01-25 2007-08-09 Fuji Koki Corp Auxiliary cooling device, and cooling method of condenser by auxiliary cooling device
JP2008202826A (en) * 2007-02-19 2008-09-04 Matsushita Electric Ind Co Ltd Heat pump type water heater
KR100923373B1 (en) 2007-05-01 2009-10-23 히타치 어플라이언스 가부시키가이샤 Heat pump type hot water supply and floor heating device
JP2008309404A (en) * 2007-06-14 2008-12-25 Denso Corp Heat pump type hot water storage water heating device
JP2009236396A (en) * 2008-03-27 2009-10-15 Toshiba Carrier Corp Heat pump type hot water supply device
JP2015034671A (en) * 2013-08-09 2015-02-19 株式会社アタゴ製作所 Heat exchanger for heat pump type water heater
JP2015172473A (en) * 2014-03-12 2015-10-01 三菱電機株式会社 Heat pump hot water supply outdoor unit
JP2016138697A (en) * 2015-01-27 2016-08-04 三菱電機株式会社 Hot water supply system with bathroom heating function
WO2016157305A1 (en) * 2015-03-27 2016-10-06 三菱電機株式会社 Heat pump hot-water-supply outdoor device, and hot-water-supply device
JPWO2016157305A1 (en) * 2015-03-27 2017-06-29 三菱電機株式会社 Heat pump hot water outdoor unit and water heater
EP3276279A4 (en) * 2015-03-27 2018-11-07 Mitsubishi Electric Corporation Heat pump hot-water-supply outdoor device, and hot-water-supply device
WO2018042482A1 (en) * 2016-08-29 2018-03-08 三菱電機株式会社 Heat pump system
JPWO2018042482A1 (en) * 2016-08-29 2018-11-15 三菱電機株式会社 Heat pump system
WO2019167136A1 (en) * 2018-02-27 2019-09-06 三菱電機株式会社 Heat pump apparatus
CN111457609A (en) * 2020-06-22 2020-07-28 烟台和裕机电工程有限公司 Compression type refrigerating machine

Similar Documents

Publication Publication Date Title
JP4436771B2 (en) Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device
JP2005345006A (en) Heat pump type hot water heating device
JP2005274132A (en) Hot-water storage type water heating system
JP4215699B2 (en) Heat pump water heater / heater
JP4715439B2 (en) Heat pump water heater
JP5245217B2 (en) Hot water storage hot water heater
JP2001153458A (en) Hot water supplier
JP2006266665A (en) Heat pump type heating device
JP2004218912A (en) Heat pump type hot water heating device
JP2008196794A (en) Heat pump hot water supply cooling/heating apparatus
JP2006046877A (en) Heat pump type hot water supply/heating system
JP3869798B2 (en) Heat pump water heater / heater
JP2009085565A (en) Heat pump water heater
JP2002048420A (en) Heat pump hot water heater
JP2005315480A (en) Heat pump type water heater
JP4215661B2 (en) Heat pump water heater / heater
JP3869801B2 (en) Heat pump water heater / heater
JP2005257161A (en) Heat pump type hot water supply heater
JP3864378B2 (en) Heat pump water heater
JP2005273958A (en) Hot-water supply and heating apparatus
JP4279725B2 (en) Heat pump water heater / heater
JP2004218911A (en) Heat pump type hot-water supply heating device
JP2003056905A (en) Water heater
JP4058447B2 (en) Heat pump hot water heater
JP4148909B2 (en) Heat pump water heater / heater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407