JP2006046877A - Heat pump type hot water supply/heating system - Google Patents

Heat pump type hot water supply/heating system Download PDF

Info

Publication number
JP2006046877A
JP2006046877A JP2004232321A JP2004232321A JP2006046877A JP 2006046877 A JP2006046877 A JP 2006046877A JP 2004232321 A JP2004232321 A JP 2004232321A JP 2004232321 A JP2004232321 A JP 2004232321A JP 2006046877 A JP2006046877 A JP 2006046877A
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
heat exchanger
water
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232321A
Other languages
Japanese (ja)
Inventor
Shigeo Tsukue
重雄 机
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Air Conditioners Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Air Conditioners Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004232321A priority Critical patent/JP2006046877A/en
Publication of JP2006046877A publication Critical patent/JP2006046877A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-refrigerant heat exchanger for heating that can be downsized and can reduce pressure loss in a refrigerant without significantly reducing a heating surface area. <P>SOLUTION: A heat pump type hot water supply/heating system comprises: a heat pump unit comprising a refrigerant circuit having a parallel circuit of a first water-refrigerant heat exchanger for heating and a second water-refrigerant heat exchanger for hot water storage; and a tank unit having an expansion tank, a first hot water circuit where a first circulating pump operates to circulate hot water for heating between the first water-refrigerant heat exchanger 9 and a hot water heater, and a second hot water circuit where a second circulating pump circulates hot water between the second water-refrigerant heat exchanger and a hot water storage tank. The first water-refrigerant heat exchanger 9 for heating is so constructed that a plurality of small diameter refrigerant tubes 64A and 64B for conducting a refrigerant are inserted in heat exchange relation in a large diameter hot water tube 63 for conducting the hot water for heating, and is configured in helical structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヒートポンプユニットを熱源としたヒートポンプ式給湯暖房装置に関する。詳述すれば、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置に関する。   The present invention relates to a heat pump hot water supply / room heating apparatus using a heat pump unit as a heat source. Specifically, a compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a pressure reducing device, and an air heat exchanger are sequentially connected in an annular shape. A heat pump unit provided with a refrigerant circuit, an expansion tank, a first hot water circulation path for circulating hot water between the first water refrigerant heat exchanger and the hot water heating device by operation of the first circulation pump, and the first The present invention relates to a heat pump hot water supply and heating device including a tank unit having a second hot water circulation path for circulating hot water between a two-water refrigerant heat exchanger and a hot water storage tank by a second circulation pump.

従来のこの種のヒートポンプ式給湯暖房装置は、例えば特許文献1に開示されているが、膨張タンク内の水とヒートポンプユニットで使用する冷媒とを熱交換させるため、第1水冷媒熱交換器が必要不可欠であるが、この第1水冷媒熱交換器は、一本の冷媒管を温水管内に内蔵して二重管構造とすることにより、コスト削減を図っている。
特願2003−5942の願書に添付した明細書及び図面
A conventional heat pump hot water supply and heating device of this type is disclosed in, for example, Patent Document 1, but in order to exchange heat between water in the expansion tank and refrigerant used in the heat pump unit, a first water refrigerant heat exchanger is provided. Although indispensable, the first water refrigerant heat exchanger is designed to reduce costs by incorporating a single refrigerant pipe into the hot water pipe to form a double pipe structure.
Description and drawings attached to application for Japanese Patent Application No. 2003-5942

しかしながら、単に一本の冷媒管を温水管に内蔵した二重管構造としても、十分な熱交換を行うにはその長さが長くなる上、熱交換率に限界があり、コンパクト化を図りつつ、十分に熱交換が行える水冷媒熱交換器が望まれていた。   However, even with a double pipe structure in which a single refrigerant pipe is built in a hot water pipe, the length is long for sufficient heat exchange, and there is a limit to the heat exchange rate. Therefore, a water-refrigerant heat exchanger that can sufficiently perform heat exchange has been desired.

そこで本発明は、ヒートポンプユニットにおける第1水冷媒熱交換器を、暖房用の温水を通す大径の温水管に、冷媒を通す小径の冷媒管を熱交換関係に複数本内蔵して構成することにより、熱伝導面積をそれほど減少させることなく、コンパクト化が図れると共に、冷媒の圧力損失の減少させることが可能な暖房用の水冷媒熱交換器を提供することを目的としている。   Therefore, the present invention is configured such that the first water refrigerant heat exchanger in the heat pump unit includes a large-diameter hot water pipe through which hot water for heating passes and a plurality of small-diameter refrigerant pipes through which refrigerant passes for heat exchange. Accordingly, it is an object of the present invention to provide a water refrigerant heat exchanger for heating that can be made compact without reducing the heat conduction area so much and can reduce the pressure loss of the refrigerant.

請求項1に記載の発明は、圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により暖房用の温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置であって、前記暖房用の第1水冷媒熱交換器は、暖房用の温水を通す大径の温水管内に、冷媒を通す小径の冷媒管を熱交換関係に複数本挿入して構成すると共に、螺旋状に巻回したことを特徴とする。   The invention according to claim 1 includes a compressor, a parallel circuit of a first water-refrigerant heat exchanger for heating and a second water-refrigerant heat exchanger for storing hot water, each connected with a decompression device, and an air heat exchanger. A heating pump having a refrigerant circuit sequentially connected in an annular manner, and an expansion tank, a first water / refrigerant heat exchanger, and a hot water heater are used to circulate hot water for heating by operating the first circulation pump. 1. A heat pump type hot water supply and heating device comprising a hot water circulation path and a tank unit having a second hot water circulation path for circulating hot water by a second circulation pump between the second water refrigerant heat exchanger and the hot water storage tank. The first water refrigerant heat exchanger for heating is constructed by inserting a plurality of small-diameter refrigerant pipes through which refrigerant passes into a large-diameter hot water pipe through which hot water for heating passes, and a spiral It is characterized by being wound into a shape.

また、請求項2に記載の発明は、請求項1に記載のヒートポンプ式給湯暖房装置において、前記温水管内に挿入された複数の冷媒管は、互いに並列接続された少なくとも2本の細管で構成されていることを特徴とする。   The invention according to claim 2 is the heat pump hot water supply / room heating device according to claim 1, wherein the plurality of refrigerant tubes inserted into the hot water tube are composed of at least two narrow tubes connected in parallel to each other. It is characterized by.

本発明によれば、暖房用の第1水冷媒熱交換器は、暖房用の温水を通す大径の温水管内に、冷媒を通す小径の冷媒管を熱交換関係に複数本挿入して構成すると共に、螺旋状に巻回した構成であるから、冷媒と暖房用の温水との熱伝導面積をそれほど減少させずに、温水管の全長を従来よりも短くすることが可能になり、暖房用の第1水冷媒熱交換器のコンパクト化が図れると共に、一本当たりの冷媒管の長さを従来よりも短くできるため、冷媒の圧力損失を減少させることが可能になり、エネルギー消費効率(COP)を高めることもできる。   According to the present invention, the first water-refrigerant heat exchanger for heating is configured by inserting a plurality of small-diameter refrigerant pipes through which refrigerant passes into a large-diameter hot water pipe through which hot water for heating passes. At the same time, since it is a spirally wound configuration, the total length of the hot water pipe can be made shorter than before without significantly reducing the heat conduction area between the refrigerant and the hot water for heating. The first water refrigerant heat exchanger can be made compact, and the length of the refrigerant pipe per pipe can be made shorter than before, so that the pressure loss of the refrigerant can be reduced, and the energy consumption efficiency (COP) Can also be increased.

以下、本発明の実施の形態を図面に基づき説明する。図1はヒートポンプ式給湯暖房装置の全体システムを示す系統図である。図1において、Aはヒートポンプユニット、Bはタンクユニット、C1は温水暖房用の第1温水循環路、C2は貯湯用の第2温水循環路、Rは前記ヒートポンプユニットAに内蔵された冷媒回路である。この冷媒回路Rには、HFCやCO等の冷媒を用いることができるが、本実施形態では冷媒としてCOを(二酸化炭素を)用いている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing an overall system of a heat pump hot water supply / room heating system. In FIG. 1, A is a heat pump unit, B is a tank unit, C1 is a first hot water circuit for hot water heating, C2 is a second hot water circuit for hot water storage, and R is a refrigerant circuit built in the heat pump unit A. is there. In the refrigerant circuit R, a refrigerant such as HFC or CO 2 can be used. In the present embodiment, CO 2 (carbon dioxide) is used as the refrigerant.

1及び2は前記第1温水循環路C1に設けられた床暖房パネル、3及び4は床暖房パネル1及び2に対応して設けられた床暖房リモートコントローラ(以下、「床暖房リモコン」という)であり、前記第1温水循環路C1には、熱動弁5及び6、循環ポンプ7、膨張タンク8、暖房用の第1水冷媒熱交換器9の水流路9B、バイパス管10の途中に設けられた流量調整弁であるバイパス弁11などが設けられている。   1 and 2 are floor heating panels provided in the first hot water circulation path C1, and 3 and 4 are floor heating remote controllers provided corresponding to the floor heating panels 1 and 2 (hereinafter referred to as "floor heating remote control"). In the first hot water circulation path C1, thermal valves 5 and 6, a circulation pump 7, an expansion tank 8, a water flow path 9B of the first water refrigerant heat exchanger 9 for heating, and a bypass pipe 10 are provided. A bypass valve 11 which is a provided flow rate adjusting valve is provided.

前記バイパス管10は前記第1温水循環路C1のバイパス路となるもので、例えば電動弁で構成されたバイパス弁11が開いた場合には、前記第1水冷媒熱交換器9の水流路9Bを介する戻り温水がバイパス管10を介して膨張タンク8に戻ることとなる。この膨張タンク8には水位検出センサを構成する水位電極19、20が配設されている。   The bypass pipe 10 serves as a bypass path of the first hot water circulation path C1, and when the bypass valve 11 configured by, for example, an electric valve is opened, the water flow path 9B of the first water refrigerant heat exchanger 9 is opened. The return warm water passing through is returned to the expansion tank 8 via the bypass pipe 10. The expansion tank 8 is provided with water level electrodes 19 and 20 constituting a water level detection sensor.

また、前記温水循環路C1には、暖房用の第1水冷媒熱交換器9の水流路9Bから流出した暖房用温水の温度を検出するサーミスタ12、浴室暖房装置としてのファンコイル13が設けられている。14は浴室暖房リモートコントローラ(以下、「浴室暖房リモコン」という)、15は前記ファンコイル13の入口部に設けられた熱動弁、16は前記循環ポンプ7によって膨張タンク8から流出した温水の一部を床暖房パネル1、2に供給するための混合熱動弁、18は床暖房パネル1、2に流入する温水温度を検知するサーミスタである。   The hot water circuit C1 is provided with a thermistor 12 for detecting the temperature of the hot water flowing out from the water flow path 9B of the first water refrigerant heat exchanger 9 for heating, and a fan coil 13 as a bathroom heating device. ing. 14 is a bathroom heating remote controller (hereinafter referred to as “bathroom heating remote controller”), 15 is a thermal valve provided at the inlet of the fan coil 13, and 16 is one of hot water flowing out from the expansion tank 8 by the circulation pump 7. The mixed heat valve 18 for supplying a part to the floor heating panels 1 and 2 is a thermistor 18 for detecting the temperature of hot water flowing into the floor heating panels 1 and 2.

前記冷媒回路Rは、CO冷媒を用いた能力調整が可能な2段圧縮式の圧縮機21と、共に一端が前記圧縮機21に接続される暖房用の第1開閉弁23及び貯湯用の第2開閉弁24と、前記第1開閉弁23の他端に接続される前記第1水冷媒熱交換器9の冷媒流路9A、前記第2開閉弁24の他端に接続される貯湯用の第2水冷媒熱交換器22の一次流路22A、冷媒流路9Aが接続される内部熱交換器25の一次流路25A、この一次流路25Aの他端が接続される暖房用の流量調整弁である膨張弁(減圧装置)26、一次流路22Aの他端が接続される流量調整弁である貯湯用の膨張弁(減圧装置)27、空気熱交換器28と、内部熱交換器25の二次流路25Bと、アキュムレーター29とが順次環状に配管接続されている。 The refrigerant circuit R includes a two-stage compression compressor 21 capable of capacity adjustment using a CO 2 refrigerant, a heating first on-off valve 23 whose one end is connected to the compressor 21, and a hot water storage For the hot water storage connected to the second on-off valve 24, the refrigerant passage 9A of the first water refrigerant heat exchanger 9 connected to the other end of the first on-off valve 23, and the other end of the second on-off valve 24. The primary flow path 22A of the second water refrigerant heat exchanger 22, the primary flow path 25A of the internal heat exchanger 25 to which the refrigerant flow path 9A is connected, and the heating flow rate to which the other end of the primary flow path 25A is connected. An expansion valve (pressure reducing device) 26 that is a regulating valve, an expansion valve (pressure reducing device) 27 for hot water storage that is a flow rate regulating valve to which the other end of the primary flow path 22A is connected, an air heat exchanger 28, and an internal heat exchanger The 25 secondary flow paths 25B and the accumulator 29 are sequentially connected in a circular pipe.

前記第2温水循環路C2において、第2水冷媒熱交換器22の水流路22Bの一端と貯湯タンク31の下部とが循環ポンプ32を介して接続されると共に、水流路22Bの他端と貯湯タンク31の上部とが接続されており、また第2水冷媒熱交換器22の水流路22Bから流出した温水の温度を検知するサーミスタ33が水流路22Bの他端と貯湯タンク31の上部との間の第2温水循環路C2に設けられている。   In the second hot water circulation path C2, one end of the water flow path 22B of the second water refrigerant heat exchanger 22 and the lower part of the hot water storage tank 31 are connected via a circulation pump 32, and the other end of the water flow path 22B and the hot water storage capacity. The thermistor 33 is connected to the upper part of the tank 31 and detects the temperature of the hot water flowing out from the water flow path 22B of the second water refrigerant heat exchanger 22 between the other end of the water flow path 22B and the upper part of the hot water storage tank 31. It is provided in the 2nd warm water circulation path C2.

前記貯湯タンク31には追焚用の水々熱交換器34の一次流路34Aが循環ポンプ35を介して接続されている。また、水々熱交換器34の二次流路34Bには循環ポンプ36を介して浴槽37が接続されている。40は貯湯タンク31の上部に接続された給湯管であり、この給湯管40にはミキシングバルブ41が設けられている。42は減圧弁43が配設され水道管に接続された給水管であり、この給水管42は貯湯タンク31の下部とミキシングバルブ41とに分岐接続され、更に補給水開閉弁44を介して前記膨張タンク8に接続されている。   The hot water storage tank 31 is connected with a primary flow path 34 </ b> A for reheating water heat exchanger 34 through a circulation pump 35. A bathtub 37 is connected to the secondary flow path 34 </ b> B of the water heat exchanger 34 via a circulation pump 36. A hot water supply pipe 40 is connected to the upper part of the hot water storage tank 31, and a mixing valve 41 is provided in the hot water supply pipe 40. 42 is a water supply pipe provided with a pressure reducing valve 43 and connected to a water pipe. This water supply pipe 42 is branched and connected to the lower part of the hot water storage tank 31 and the mixing valve 41, and further via the replenishing water opening / closing valve 44. It is connected to the expansion tank 8.

そして、前記貯湯タンク31には、湯温検出センサ45が設けられ、沸き上げ可能温度が85℃までのため、前記湯温検出センサ45の検出湯温が55℃以上の場合には残湯ありと判断し、55℃未満の場合には湯切れ寸前の緊急事態と判断される。このとき、湯温検出センサ45の配置箇所は使用できる残湯量が例えば50リットルの位置である。   The hot water storage tank 31 is provided with a hot water temperature detection sensor 45. Since the boiling temperature is up to 85 ° C., there is residual hot water when the hot water temperature detected by the hot water temperature detection sensor 45 is 55 ° C. or higher. If the temperature is lower than 55 ° C., it is determined that the emergency is about to run out. At this time, the location where the hot water temperature detection sensor 45 is disposed is a position where the amount of remaining hot water that can be used is 50 liters, for example.

なお、部屋が暖まってくると、床暖房パネル1、2ではそれほど放熱されなくなり、膨張タンク8から第1水冷媒熱交換器9へは50〜60℃の高温水が供給されることとなるため、第1水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となり、圧縮機21に高負荷が掛かることとなる。そこで、高温となった冷媒の冷却機構として前記第1水冷媒熱交換器9の他に設けたのが前記内部熱交換器25である。この内部熱交換器25での放熱分は同じ冷媒回路R内の空気熱交換器28を通過した後の冷媒に取込まれるので、冷媒回路Rの吸熱効率をも向上させている。さらに、サーミスタ50は冷媒が所定の高温度に達したことを検知すると、圧縮機21の保護のため、この圧縮機21を停止させるように制御するためのものである。   When the room is warmed up, the floor heating panels 1 and 2 do not radiate much heat, and high temperature water of 50 to 60 ° C. is supplied from the expansion tank 8 to the first water refrigerant heat exchanger 9. The first water refrigerant heat exchanger 9 does not exchange much heat, the refrigerant temperature becomes high, and a high load is applied to the compressor 21. Therefore, the internal heat exchanger 25 is provided in addition to the first water refrigerant heat exchanger 9 as a cooling mechanism for the refrigerant having reached a high temperature. Since the heat radiation in the internal heat exchanger 25 is taken into the refrigerant after passing through the air heat exchanger 28 in the same refrigerant circuit R, the heat absorption efficiency of the refrigerant circuit R is also improved. Further, the thermistor 50 is for controlling the compressor 21 to be stopped in order to protect the compressor 21 when detecting that the refrigerant has reached a predetermined high temperature.

なお、46は台所リモートコントローラ(以下、「台所リモコン」という)、47は風呂リモートコントローラ(以下、「風呂リモコン」という)である。   Reference numeral 46 is a kitchen remote controller (hereinafter referred to as “kitchen remote control”), and 47 is a bath remote controller (hereinafter referred to as “bath remote control”).

また、ヒートポンプユニットAとタンクユニットBにはそれぞれプリント基板K1、K2が配設され、このプリント基板K1にはマイクロコンピュータから成る制御装置(制御手段)S1が搭載され、またプリント基板K2にはタイマTが接続されたマイクロコンピュータから成る制御装置(制御手段)S2が搭載されている。   The heat pump unit A and the tank unit B are provided with printed circuit boards K1 and K2, respectively. The printed circuit board K1 is equipped with a control device (control means) S1 composed of a microcomputer, and the printed circuit board K2 has a timer. A control device (control means) S2 comprising a microcomputer to which T is connected is mounted.

次に、図2において、ヒートポンプユニットAのヒートポンプユニット本体51内の空間は、仕切板により左右に仕切られており、大きく分けて右の空間内には下から前記第2水冷媒熱交換器22、第1水冷媒熱交換器9及びプリント基板K1を収納する電装ボックス54などが配設され、左の空間内には前記内部熱交換器25及び空気熱交換器28などが配設される。   Next, in FIG. 2, the space in the heat pump unit main body 51 of the heat pump unit A is divided into left and right by a partition plate, and is roughly divided into the second water refrigerant heat exchanger 22 from below in the right space. The first water refrigerant heat exchanger 9 and the electrical box 54 for storing the printed circuit board K1 are disposed, and the internal heat exchanger 25 and the air heat exchanger 28 are disposed in the left space.

55は前記ヒートポンプユニット本体51の裏面に設けられたタンクユニットBとの間で前記第2温水循環路C2を形成するための温水入口継手で、56は同じく温水出口継手である。また、57は前記ヒートポンプユニット本体51の裏面に設けられたタンクユニットBとの間で前記第1温水循環路C1を形成するための温水入口継手で、58は同じく温水出口継手である。   55 is a hot water inlet joint for forming the second hot water circulation path C2 with the tank unit B provided on the back surface of the heat pump unit main body 51, and 56 is also a hot water outlet joint. Reference numeral 57 denotes a hot water inlet joint for forming the first hot water circulation path C1 with the tank unit B provided on the back surface of the heat pump unit main body 51, and 58 denotes a hot water outlet joint.

次に、前記第1水冷媒熱交換器9について、図3乃至図5に基づき詳述すると、前記第1水冷媒熱交換器9は、暖房用の温水を通す太径(大径)で銅管にてなる温水管63と、この温水管63の内部に挿入されて配設され、かつ、少なくとも2本の銅の細管で構成された細径(小径)の冷媒管64A、64Bとで構成されている。そして、前記冷媒管64A、64Bは、互いに並列接続されており、また、図3に示すように、前記第1水冷媒熱交換器9は、螺旋状に巻回されて全体として中空の略角筒状に形成さている。   Next, the first water refrigerant heat exchanger 9 will be described in detail with reference to FIGS. 3 to 5. The first water refrigerant heat exchanger 9 has a large diameter (large diameter) through which hot water for heating passes and is made of copper. A hot water pipe 63 formed of a pipe, and small diameter (small diameter) refrigerant pipes 64A and 64B that are inserted into the hot water pipe 63 and are configured by at least two copper thin pipes. Has been. The refrigerant pipes 64A and 64B are connected in parallel to each other, and as shown in FIG. 3, the first water refrigerant heat exchanger 9 is spirally wound so as to be generally hollow. It is formed in a cylindrical shape.

また、前記温水管63は、それの下端側の一端部が温水往き管60を介して前記温水往き継手57に接続される一方、それの上端側の他端部が温水戻り管67を介して前記温水戻り継手58に接続されており、そして、この温水管63の内部は、第1水冷媒熱交換器9の水流路9Bを構成している。   The warm water pipe 63 has one end on the lower end side connected to the warm water going joint 57 via a warm water going pipe 60, and the other end on the upper end side via a hot water return pipe 67. It is connected to the warm water return joint 58, and the inside of the warm water pipe 63 constitutes a water flow path 9B of the first water refrigerant heat exchanger 9.

一方、互いに並列接続された複数の冷媒管64A、64Bは、それらの一端部が分岐する前において、前記第1開閉弁23を介して圧縮機21に連通している共に、それらの他端部が、合流した後に前記内部熱交換器25の一次流路25Aに連通している。これら複数の冷媒管64A、64Bは、前記第1水冷媒熱交換器9の冷媒流路9Aを構成している。   On the other hand, the refrigerant pipes 64A and 64B connected in parallel with each other communicate with the compressor 21 via the first on-off valve 23 before the one end of each of the refrigerant pipes 64A and 64B branches. However, after joining, it communicates with the primary flow path 25A of the internal heat exchanger 25. The plurality of refrigerant pipes 64 </ b> A and 64 </ b> B constitute a refrigerant flow path 9 </ b> A of the first water refrigerant heat exchanger 9.

また、前記第1水冷媒熱交換器9において、前記冷媒管64A、64B内を流れる冷媒の流れと、前記温水管63内を流れる温水の流れは、互いに逆に流れる対向流となっている。   In the first water-refrigerant heat exchanger 9, the refrigerant flow flowing in the refrigerant pipes 64A and 64B and the hot water flow flowing in the hot water pipe 63 are counterflows that flow in opposite directions.

そして、前記制御装置S1、S2は床暖房リモコン3、4、浴室暖房リモコン14、台所リモコン46、風呂リモコン47からの運転信号やサーミスタ12、18、33、50の温度信号とに応じて、圧縮機21の運転及び周波数制御、循環ポンプ7、32の運転制御、熱動弁5、6、16の開閉制御、膨張弁26、27の開度制御などを行うものであり、以下その動作を説明する。   The control devices S1 and S2 are compressed according to the operation signals from the floor heating remote controllers 3 and 4, the bathroom heating remote controller 14, the kitchen remote controller 46, and the bath remote controller 47 and the temperature signals of the thermistors 12, 18, 33, and 50. The operation and frequency control of the machine 21, the operation control of the circulation pumps 7 and 32, the opening and closing control of the thermal valves 5, 6 and 16, the opening control of the expansion valves 26 and 27, etc. are described below. To do.

〈給湯運転〉
台所リモコン46や風呂リモコン47からの運転信号が制御装置S2に入力されると、その信号が制御装置S2から制御装置S1に伝達され、貯湯タンク31への貯湯が行なわれる。即ち、制御装置S1により循環ポンプ32が運転し、第2温水循環路C2では、貯湯タンク31→循環ポンプ32→第2水冷媒熱交換器22の水流路22B→貯湯タンク31の順に給湯用の温水が流れ、貯湯タンク31内に貯湯される。
<Hot-water supply operation>
When an operation signal from the kitchen remote controller 46 or the bath remote controller 47 is input to the control device S2, the signal is transmitted from the control device S2 to the control device S1, and hot water is stored in the hot water storage tank 31. That is, the circulation pump 32 is operated by the control device S1, and in the second hot water circulation path C2, the hot water storage tank 31 → the circulation pump 32 → the water flow path 22B of the second water refrigerant heat exchanger 22 → the hot water storage tank 31 in this order. Hot water flows and the hot water is stored in the hot water storage tank 31.

一方、ヒートポンプユニットAでは制御装置S1が圧縮機21を運転させて、第2開閉弁24及び貯湯用の膨張弁27を開かせ、冷媒回路Rでは、圧縮機21→第2開閉弁24→貯湯用の第2水冷媒熱交換器22の冷媒流路22A→貯湯用の膨張弁27→空気熱交換器28→内部熱交換器25のニ次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。このとき、暖房は行われないので、第1開閉弁23及び暖房用の膨張弁26は閉じている。   On the other hand, in the heat pump unit A, the control device S1 operates the compressor 21 to open the second opening / closing valve 24 and the hot water storage expansion valve 27. In the refrigerant circuit R, the compressor 21 → second opening / closing valve 24 → hot water storage. Refrigerant flow path 22A of the second water refrigerant heat exchanger 22 for hot water → expansion valve 27 for hot water storage → air heat exchanger 28 → secondary flow path 25B of the internal heat exchanger 25 → accumulator 29 → compressor 21 in this order. The refrigerant flows. At this time, since heating is not performed, the first on-off valve 23 and the heating expansion valve 26 are closed.

貯湯タンク31へ供給される温水温度は65℃〜85℃であるが、サーミスタ33が検知する温度がこの温度になるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。   The temperature of the hot water supplied to the hot water storage tank 31 is 65 ° C. to 85 ° C. The frequency of the compressor 21 is controlled so that the temperature detected by the thermistor 33 becomes this temperature, and the valve opening of the expansion valve 27 for hot water storage. Control is performed by the control device S1.

貯湯タンク31に貯湯された高温水は給水管42からの15℃程度の水道水が加えられミキシングバルブ41にて適度な温度に調整され、給湯管40から台所や浴槽37へのお湯張り等に利用される。そして、給湯が行われると、給水管42から貯湯タンク31に給水が行われる。また、循環ポンプ35、36を運転することにより、貯湯タンク31の高温水と浴槽37の温水を追焚用の水々熱交換器34で熱交換し、浴槽37の温水の追焚きを行うこともできる。   The hot water stored in the hot water storage tank 31 is added with tap water of about 15 ° C. from the water supply pipe 42, adjusted to an appropriate temperature by the mixing valve 41, and filled with hot water from the hot water supply pipe 40 to the kitchen or bathtub 37. Used. When hot water is supplied, water is supplied from the water supply pipe 42 to the hot water storage tank 31. In addition, by operating the circulation pumps 35 and 36, the hot water in the hot water storage tank 31 and the hot water in the bathtub 37 are exchanged by the water heat exchanger 34 for replenishment, and the hot water in the bathtub 37 is replenished. You can also.

以上のような通常の給湯運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば効率の良い6.0kW程度となるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。しかし、使用できる残湯量が50リットルとなって、前記湯温検出センサ45による検出湯温が55℃未満となって湯切れ寸前の緊急事態と判断され場合には、ヒートポンプユニットAの圧縮機21の能力が、9.0kWとなるように、圧縮機21の周波数制御、貯湯用の膨張弁27の弁開度制御が制御装置S1により行われる。   In the case of the normal hot water supply operation as described above, the frequency control of the compressor 21 is performed so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW becomes, for example, about 6.0 kW which is efficient. The valve opening control of the hot water storage expansion valve 27 is performed by the control device S1. However, if the amount of remaining hot water that can be used is 50 liters, the hot water temperature detected by the hot water temperature detection sensor 45 is less than 55 ° C., and it is determined that there is an emergency just before the hot water runs out, the compressor 21 of the heat pump unit A The control device S1 performs frequency control of the compressor 21 and control of the opening degree of the expansion valve 27 for hot water storage so that the capacity becomes 9.0 kW.

〈床暖房運転〉
次に、床暖房パネル1又は2による床暖房を行う場合、その部屋の壁面等に取り付けられた床暖房リモコン3又は4の運転スイッチをオンにする。すると、運転信号を受けた制御装置S2によりこれに対応した熱動弁5又は6が徐々に開かれ、循環ポンプ7が運転する。従って、この熱動弁5又は6が完全に開かれるまでの間は(全開までの間)、制御装置S2はバイパス弁11を例えば半開状態となるように制御する。
<Floor heating operation>
Next, when performing floor heating by the floor heating panel 1 or 2, the operation switch of the floor heating remote control 3 or 4 attached to the wall surface or the like of the room is turned on. Then, the control valve S2 that has received the operation signal gradually opens the corresponding thermal valve 5 or 6 and the circulation pump 7 operates. Therefore, until the thermal valve 5 or 6 is fully opened (until fully opened), the control device S2 controls the bypass valve 11 to be in a half-open state, for example.

即ち、前記熱動弁5又は6は開き動作を開始してから全開状態となるのに所定時間が掛かるので、タイマTにその時間を設定して、この設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。   That is, since it takes a predetermined time for the thermal valve 5 or 6 to be fully opened after starting the opening operation, the time is set in the timer T, and the timer T determines the elapse of the set predetermined time. When the time is counted, the control device S2 controls the bypass valve 11 so as to be changed from the half-open state to the closed state.

このため、前記タイマTが計時を開始して所定時間を経過するまでの間は、制御装置S2はバイパス弁11を半開状態となるように制御し、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→バイパス弁(半開状態)11→膨張タンク8の順に温水が流れる。   For this reason, the control device S2 controls the bypass valve 11 to be in a half-open state until the predetermined time elapses after the timer T starts counting, and in the first hot water circulation path C1, the expansion tank 8 The hot water flows in the order of the circulation pump 7, the water flow path 9 B of the first water refrigerant heat exchanger 9, the bypass valve (half-open state) 11, and the expansion tank 8.

そして、設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。このため、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に温水が流れ、高温水全てを床暖房パネル1又は2に供給することができる。   Then, when the timer T counts the set predetermined time, the control device S2 controls the bypass valve 11 so as to change from the half-open state to the closed state. Therefore, in the first hot water circulation path C1, the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water refrigerant heat exchanger 9 → the thermal valve 5 or 6 → the floor heating panel 1 or 2 → the expansion tank 8 Hot water flows in sequence, and all of the hot water can be supplied to the floor heating panel 1 or 2.

一方、前記床暖房リモコン3又は4の運転スイッチをオンにした際に、制御装置S2から運転信号が伝達された制御装置S1によりヒートポンプユニットAの圧縮機21が運転すると共に第1開閉弁23が開き、冷媒回路Rでは、圧縮機21→第1開閉弁23→暖房用の第1水冷媒熱交換器9の冷媒流路9A→内部熱交換器25の一次流路25A→暖房用の膨張弁26→空気熱交換器28→内部熱交換器25の二次流路25B→アキュムレーター29→圧縮機21の順に冷媒が流れる。このとき、貯湯は行われないので、第2開閉弁24及び貯湯用の膨張弁27は閉じており、貯湯用の水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   On the other hand, when the operation switch of the floor heating remote controller 3 or 4 is turned on, the compressor 21 of the heat pump unit A is operated by the control device S1 to which the operation signal is transmitted from the control device S2, and the first on-off valve 23 is In the refrigerant circuit R, the compressor 21 → the first on-off valve 23 → the refrigerant flow path 9A of the first water / refrigerant heat exchanger 9 for heating → the primary flow path 25A of the internal heat exchanger 25 → the expansion valve for heating The refrigerant flows in the order of 26 → air heat exchanger 28 → secondary flow path 25B of internal heat exchanger 25 → accumulator 29 → compressor 21. At this time, since hot water is not stored, the second on-off valve 24 and the hot water expansion valve 27 are closed, and no refrigerant flows through the primary flow path 22A of the hot water water refrigerant heat exchanger 22.

また、前記床暖房パネル1又は2に供給される温水の温度は60〜70℃であるが、サーミスタ12が検知する温水温度がこの温度になるように圧縮機21の周波数制御、暖房用の膨張弁26の弁開度制御が制御装置S1により行われる。   The temperature of the hot water supplied to the floor heating panel 1 or 2 is 60 to 70 ° C., but the frequency control of the compressor 21 and the expansion for heating are performed so that the hot water temperature detected by the thermistor 12 becomes this temperature. The valve opening degree control of the valve 26 is performed by the control device S1.

床暖房制御は、床暖房リモコン3又は4に搭載された室温サーミスタ(図示せず)により室温を検知し、設定温度と室温との偏差に基づき熱動弁5又は6を開閉制御し、床暖房パネル1又は2への温水量を制御装置S2が制御する。   In the floor heating control, a room temperature thermistor (not shown) mounted on the floor heating remote controller 3 or 4 detects the room temperature, and controls the opening or closing of the thermal valve 5 or 6 based on the deviation between the set temperature and the room temperature. The control device S2 controls the amount of hot water to the panel 1 or 2.

また、床暖房パネル1及び2で同時に床暖房を行う場合、床暖房リモコン3及び4の運転スイッチをオンにすることにより、同様に熱動弁5及び6が開閉制御され、床暖房パネル1及び2に温水が供給され、床暖房パネル1及び2への温水量を個別に制御することにより、床暖房の個別制御が可能となっている。   In addition, when floor heating is simultaneously performed on the floor heating panels 1 and 2, the operation valves of the floor heating remote controllers 3 and 4 are turned on to similarly control the opening and closing of the thermal valves 5 and 6, so that the floor heating panel 1 and Warm water is supplied to 2 and individual control of floor heating is possible by individually controlling the amount of warm water to the floor heating panels 1 and 2.

このような床暖房運転を行う場合、床暖房する部屋が暖まってくると、床暖房パネル1、2からの放熱量が小さくなり、膨張タンク8から水冷媒熱交換器9の水流路9Bへは50〜60℃の温水が供給されることとなる。このため、水冷媒熱交換器9ではそれほど熱交換されず、冷媒温度も高温となって圧縮機21に負荷がかかる。このような場合の冷媒の冷却機構として設けたのが内部熱交換器25であり、内部熱交換器25の一次流路25Aでの放熱分は同じ冷媒回路Rにある内部熱交換器25の二次流路25Bで再度吸収されるため、無駄なく、効率を落とすことなく、冷媒回路Rを構成できる。   When such a floor heating operation is performed, when the floor heating room is warmed, the amount of heat released from the floor heating panels 1 and 2 is reduced, and the expansion tank 8 to the water flow path 9B of the water refrigerant heat exchanger 9 50-60 degreeC warm water will be supplied. For this reason, the water refrigerant heat exchanger 9 does not exchange much heat, and the refrigerant temperature becomes high and a load is applied to the compressor 21. The internal heat exchanger 25 is provided as a cooling mechanism for the refrigerant in such a case, and the heat release in the primary flow path 25A of the internal heat exchanger 25 is two of the internal heat exchanger 25 in the same refrigerant circuit R. Since it is absorbed again by the next flow path 25B, the refrigerant circuit R can be configured without waste and without reducing efficiency.

〈浴室暖房運転〉
次に、ファンコイル13による浴室の温風暖房を行う場合、浴室暖房リモコン14の運転スイッチをオンにする。すると、制御装置S2はファンコイル13入口部の熱動弁15を開くと共に前記バイパス弁11を半開状態となるように制御し、循環ポンプ7を運転させるように制御する。従って、第1温水循環路C1では、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→バイパス弁11(半開状態)→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。
<Bathroom heating operation>
Next, when performing hot air heating of the bathroom by the fan coil 13, the operation switch of the bathroom heating remote controller 14 is turned on. Then, the control device S2 opens the thermal valve 15 at the inlet of the fan coil 13 and controls the bypass valve 11 to be in a half-open state, thereby controlling the circulation pump 7 to operate. Accordingly, in the first hot water circulation path C1, the hot water flows in the order of the expansion tank 8, the circulation pump 7, the water flow path 9B of the first water refrigerant heat exchanger 9 for heating, the bypass valve 11 (half-open state), and the expansion tank 8. At the same time, the hot water flows in the order of the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water-refrigerant heat exchanger 9 for heating → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転と同様であり、貯湯は行われないので、第2開閉弁24及び熱動弁27は閉じており、水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as in the floor heating operation, and hot water is not stored. Therefore, the second on-off valve 24 and the thermal valve 27 are closed, and the primary flow path 22A of the water-refrigerant heat exchanger 22 is closed. Does not flow refrigerant.

前記ファンコイル21に供給される温水の温度は80℃であるが、そのための温水制御は床暖房運転の場合と同様である。また、制御装置S2による浴室暖房制御はファンコイル13に搭載された室温サーミスタ(図示せず)により室温を検知し、ファン回転数を制御し、熱動弁15を開閉制御することにより行われる。   The temperature of the hot water supplied to the fan coil 21 is 80 ° C., and the hot water control for that is the same as in the floor heating operation. Further, the bathroom heating control by the control device S2 is performed by detecting the room temperature by a room temperature thermistor (not shown) mounted on the fan coil 13, controlling the fan rotational speed, and controlling the opening and closing of the thermal valve 15.

以上のような床暖房運転又は浴室暖房運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、暖房用の膨張弁26の弁開度制御が制御装置S1により行われる。   In the case of floor heating operation or bathroom heating operation as described above, the frequency control of the compressor 21 is performed so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW is, for example, about 7.0 kW. The valve opening control of the heating expansion valve 26 is performed by the control device S1.

〈床暖房と浴室暖房の同時運転〉
床暖房パネル1、2による床暖房と、ファンコイル13による浴室温風暖房を同時に行う場合、それぞれのリモコン3、4、14の運転スイッチをオンにする。すると、運転信号を受けた制御装置S2によりこれに対応した熱動弁5又は6が徐々に開かれると共に熱動弁15が開き、循環ポンプ7が運転する。従って、制御装置S2は前記熱動弁5又は6が完全に開かれるまでの間、即ち前記タイマTによる所定時間が経過するまでの間はバイパス弁11を半開状態となるように制御する。
<Simultaneous operation of floor heating and bathroom heating>
When floor heating by the floor heating panels 1 and 2 and bath room temperature heating by the fan coil 13 are performed simultaneously, the operation switches of the respective remote controllers 3, 4 and 14 are turned on. Then, the control valve S2 that has received the operation signal gradually opens the corresponding thermal valve 5 or 6 and opens the thermal valve 15 so that the circulation pump 7 operates. Therefore, the control device S2 controls the bypass valve 11 to be in a half-open state until the thermal valve 5 or 6 is completely opened, that is, until a predetermined time by the timer T elapses.

このため、前記タイマTが計時を開始して所定時間を経過するまでの間は、制御装置S2はバイパス弁11を半開状態となるように制御し、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→バイパス弁(半開状態)11→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。   For this reason, the control device S2 controls the bypass valve 11 to be in a half-open state until the predetermined time elapses after the timer T starts counting, and in the first hot water circulation path C1, the expansion tank 8 The hot water flows in the order of the circulation pump 7 → the water flow path 9B of the first water / refrigerant heat exchanger 9 → the bypass valve (half-open state) 11 → the expansion tank 8 and the expansion tank 8 → the circulation pump 7 → the first water for heating. Hot water flows in the order of the water flow path 9B of the refrigerant heat exchanger 9 → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

そして、設定された所定時間経過をタイマTが計時したら、前記バイパス弁11を半開状態から閉状態となるように制御装置S2が制御する。このため、第1温水循環路C1では、膨張タンク8→循環ポンプ7→第1水冷媒熱交換器9の水流路9B→熱動弁5又は6→床暖房パネル1又は2→膨張タンク8の順に温水が流れると共に、膨張タンク8→循環ポンプ7→暖房用の第1水冷媒熱交換器9の水流路9B→熱動弁15→ファンコイル13→膨張タンク8の順に温水が流れる。   Then, when the timer T counts the set predetermined time, the control device S2 controls the bypass valve 11 so as to change from the half-open state to the closed state. Therefore, in the first hot water circulation path C1, the expansion tank 8 → the circulation pump 7 → the water flow path 9B of the first water refrigerant heat exchanger 9 → the thermal valve 5 or 6 → the floor heating panel 1 or 2 → the expansion tank 8 While warm water flows in order, the warm water flows in the order of the expansion tank 8 → the circulation pump 7 → the water flow path 9 </ b> B of the first water refrigerant heat exchanger 9 for heating → the thermal valve 15 → the fan coil 13 → the expansion tank 8.

このときのサーミスタ12による温水温度制御は80℃であるが、これでは床暖房パネル1、2用の温水としては温度が高すぎることになる。これを解決するために、混合熱動弁16を開くことで80℃の温水に膨張タンク8からの中温水を混ぜ、サーミスタ18にて検知される温水の温度が60〜70℃になるように制御している。また、中温水を混ぜすぎて低温になった場合は混合熱動弁16を閉じ、サーミスタ18の検知温度に基づく熱動弁16の開閉制御を制御装置S2が行う。   Although the hot water temperature control by the thermistor 12 at this time is 80 ° C., the temperature is too high as hot water for the floor heating panels 1 and 2. In order to solve this problem, the mixing heat valve 16 is opened to mix the warm water from the expansion tank 8 with the warm water at 80 ° C. so that the temperature of the warm water detected by the thermistor 18 is 60 to 70 ° C. I have control. Further, when the temperature of the medium temperature water becomes excessively low and the temperature becomes low, the mixing heat valve 16 is closed, and the control device S2 performs opening / closing control of the heat valve 16 based on the temperature detected by the thermistor 18.

ヒートポンプユニットAの動作と冷媒循環は床暖房運転又は浴室暖房運転と同様であり、貯湯は行われないので、第2開閉弁24及び貯湯用の熱動弁27は閉じており、貯湯用の水冷媒熱交換器22の一次流路22Aには冷媒は流れない。   The operation of the heat pump unit A and the refrigerant circulation are the same as the floor heating operation or the bathroom heating operation, and no hot water is stored. Therefore, the second on-off valve 24 and the thermal valve 27 for hot water storage are closed, and the hot water storage water is stored. The refrigerant does not flow in the primary flow path 22A of the refrigerant heat exchanger 22.

以上のような床暖房及び浴室暖房の同時運転動作の場合では、9.0kWの能力があるヒートポンプユニットAの圧縮機21の能力が、例えば7.0kW程度となるように、圧縮機21の周波数制御、貯湯用の膨張弁26の弁開度制御が制御装置S1により行われる。   In the case of the simultaneous operation of floor heating and bathroom heating as described above, the frequency of the compressor 21 is set so that the capacity of the compressor 21 of the heat pump unit A having the capacity of 9.0 kW is, for example, about 7.0 kW. Control and control of the opening degree of the expansion valve 26 for hot water storage are performed by the control device S1.

以上説明したように、ヒートポンプユニットAの第1水冷媒熱交換器9は、暖房用の温水を通す大径の銅管にてなる温水管63内に、互いに並列接続された少なくとも2本の細管で構成され、冷媒を通す小径の冷媒管64A、64Bを挿入して構成すると共に、螺旋状に巻回して全体として中空の略角筒状に形成しているから、冷媒管の熱伝導面積を従来よりもそれほど減少させることなく、温水暖房に十分な熱交換を行うことができ、第1水冷媒熱交換器9のコンパクト化が図れる上、第1水冷媒熱交換器9における一本当たりの冷媒管の長さを従来よりも短くできるため、冷媒の圧力損失を減少させることが可能なり、エネルギー消費効率(COP)を高めることができる。   As described above, the first water-refrigerant heat exchanger 9 of the heat pump unit A has at least two narrow tubes connected in parallel with each other in a hot water pipe 63 made of a large-diameter copper pipe through which hot water for heating passes. Since the refrigerant pipes 64A and 64B with small diameters through which the refrigerant passes are inserted and formed into a hollow, generally rectangular tube as a whole, the heat conduction area of the refrigerant pipe is reduced. Heat exchange sufficient for hot water heating can be performed without reducing so much as compared with the prior art, and the first water refrigerant heat exchanger 9 can be made more compact. Since the length of the refrigerant pipe can be made shorter than before, the pressure loss of the refrigerant can be reduced, and the energy consumption efficiency (COP) can be increased.

以上本発明の実施態様について説明したが、上述の説明に基づいて当業者にとって種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。   Although the embodiments of the present invention have been described above, various alternatives, modifications, and variations can be made by those skilled in the art based on the above description, and the various alternatives and modifications described above are within the scope of the present invention. Or a modification is included.

ヒートポンプ式給湯暖房装置の全体系統図である。It is a whole system diagram of a heat pump type hot water supply and heating device. 扉体を外した状態のヒートポンプユニットの側面図である。It is a side view of a heat pump unit in the state where a door was removed. 第1水冷媒熱交換器の正面図である。It is a front view of the 1st water refrigerant heat exchanger. 図3のA−A断面の拡大断面図である。It is an expanded sectional view of the AA cross section of FIG. 第1水熱交換器の要部の拡大断面図である。It is an expanded sectional view of the important section of the 1st water heat exchanger.

符号の説明Explanation of symbols

7 循環ポンプ(第1循環ポンプ)
9 第1水冷媒熱交換器
9A 冷媒流路
9B 温水流路
21 圧縮機
22 第2水冷媒熱交換器
26 暖房用の膨張弁
27 貯湯用の膨張弁
31 貯湯タンク
32 循環ポンプ(第2循環ポンプ)
63 温水管
64A 冷媒管
64B 冷媒管
A ヒートポンプユニット
B タンクユニット
C1 温水暖房用の第1温水循環路
C2 貯湯用の第2温水循環路
R 冷媒回路
7 Circulation pump (first circulation pump)
DESCRIPTION OF SYMBOLS 9 1st water refrigerant heat exchanger 9A Refrigerant flow path 9B Hot water flow path 21 Compressor 22 2nd water refrigerant heat exchanger 26 Expansion valve for heating 27 Expansion valve for hot water storage 31 Hot water storage tank 32 Circulation pump (2nd circulation pump) )
63 Hot water pipe 64A Refrigerant pipe 64B Refrigerant pipe A Heat pump unit B Tank unit C1 First hot water circulation path for hot water heating C2 Second hot water circulation path for hot water storage R Refrigerant circuit

Claims (2)

圧縮機、それぞれ減圧装置が接続された暖房用の第1水冷媒熱交換器と貯湯用の第2水冷媒熱交換器との並列回路、空気熱交換器を順次環状に接続してなる冷媒回路を備えたヒートポンプユニットと、膨張タンク、前記第1水冷媒熱交換器と温水暖房装置との間で第1循環ポンプの運転により暖房用の温水を循環させる第1温水循環路及び前記第2水冷媒熱交換器と貯湯タンクとの間で第2循環ポンプにより温水を循環させる第2温水循環路とを有するタンクユニットとを備えたヒートポンプ式給湯暖房装置であって、
前記暖房用の第1水冷媒熱交換器は、暖房用の温水を通す大径の温水管内に、冷媒を通す小径の冷媒管を熱交換関係に複数本挿入して構成すると共に、螺旋状に巻回したことを特徴とするヒートポンプ式給湯暖房装置。
A compressor, a parallel circuit of a first water refrigerant heat exchanger for heating and a second water refrigerant heat exchanger for hot water storage, each connected to a decompressor, and a refrigerant circuit formed by sequentially connecting an air heat exchanger in an annular shape A heat pump unit comprising: an expansion tank; a first hot water circulation path for circulating hot water for heating by operating a first circulation pump between the first water refrigerant heat exchanger and the hot water heating device; and the second water A heat pump type hot water supply and heating device comprising a tank unit having a second hot water circulation path for circulating hot water between a refrigerant heat exchanger and a hot water storage tank by a second circulation pump,
The first water refrigerant heat exchanger for heating is configured by inserting a plurality of small-diameter refrigerant pipes through which refrigerant passes into a large-diameter hot water pipe through which hot water for heating passes, and in a spiral shape. A heat pump hot water supply and heating device characterized by being wound.
前記温水管内に挿入された複数の冷媒管は、互いに並列接続された少なくとも2本の細管で構成されていることを特徴とする請求項1に記載のヒートポンプ式給湯暖房装置。   The heat pump hot water supply / room heating apparatus according to claim 1, wherein the plurality of refrigerant tubes inserted into the hot water tubes are configured by at least two narrow tubes connected in parallel to each other.
JP2004232321A 2004-08-09 2004-08-09 Heat pump type hot water supply/heating system Pending JP2006046877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232321A JP2006046877A (en) 2004-08-09 2004-08-09 Heat pump type hot water supply/heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232321A JP2006046877A (en) 2004-08-09 2004-08-09 Heat pump type hot water supply/heating system

Publications (1)

Publication Number Publication Date
JP2006046877A true JP2006046877A (en) 2006-02-16

Family

ID=36025620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232321A Pending JP2006046877A (en) 2004-08-09 2004-08-09 Heat pump type hot water supply/heating system

Country Status (1)

Country Link
JP (1) JP2006046877A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175519A (en) * 2006-12-22 2008-07-31 Matsushita Electric Ind Co Ltd Heat pump water heater
WO2008142661A2 (en) * 2007-05-23 2008-11-27 Trieco - Climatização, Lda. 'acclimatization system with high energy efficiency'
WO2009125700A1 (en) 2008-04-08 2009-10-15 サンデン株式会社 Heat exchanger and hot-water supply device using same
WO2010016615A1 (en) 2008-08-07 2010-02-11 サンデン株式会社 Heat exchanger and heat pump device using same
JP2010078239A (en) * 2008-09-26 2010-04-08 Tokyo Electric Power Co Inc:The Water heater and method of preventing scale deposition
JP4517057B1 (en) * 2009-03-30 2010-08-04 株式会社Gf技研 Heat exchange method and heat exchange apparatus
JP2012047224A (en) * 2010-08-25 2012-03-08 Daikin Industries Ltd Pipe joint, and hot water supply device, air conditioning device and floor heating device using the same
CN102563871A (en) * 2010-12-23 2012-07-11 东莞市蓝冠环保节能科技有限公司 High-efficiency and energy-saving water box of household air-powered water heater

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008175519A (en) * 2006-12-22 2008-07-31 Matsushita Electric Ind Co Ltd Heat pump water heater
WO2008142661A2 (en) * 2007-05-23 2008-11-27 Trieco - Climatização, Lda. 'acclimatization system with high energy efficiency'
WO2008142661A3 (en) * 2007-05-23 2009-02-05 Trieco Climatizacao Lda 'acclimatization system with high energy efficiency'
WO2009125700A1 (en) 2008-04-08 2009-10-15 サンデン株式会社 Heat exchanger and hot-water supply device using same
WO2010016615A1 (en) 2008-08-07 2010-02-11 サンデン株式会社 Heat exchanger and heat pump device using same
JP2010078239A (en) * 2008-09-26 2010-04-08 Tokyo Electric Power Co Inc:The Water heater and method of preventing scale deposition
JP4517057B1 (en) * 2009-03-30 2010-08-04 株式会社Gf技研 Heat exchange method and heat exchange apparatus
JP2010230285A (en) * 2009-03-30 2010-10-14 Gf Giken:Kk Heat exchange method and heat exchange device
JP2012047224A (en) * 2010-08-25 2012-03-08 Daikin Industries Ltd Pipe joint, and hot water supply device, air conditioning device and floor heating device using the same
CN102563871A (en) * 2010-12-23 2012-07-11 东莞市蓝冠环保节能科技有限公司 High-efficiency and energy-saving water box of household air-powered water heater

Similar Documents

Publication Publication Date Title
JP4436771B2 (en) Heat exchanger, heat pump type hot water supply device and heat pump type hot water supply and heating device
JP3977382B2 (en) Hot water storage water heater
JP2005345006A (en) Heat pump type hot water heating device
KR20100003544A (en) Hot water preheating apparatus of a boiler
JP2007205697A (en) Hot water supply system
JP2006046877A (en) Heat pump type hot water supply/heating system
JP2006105434A (en) Heat pump hot water supply heating device
JP2004218912A (en) Heat pump type hot water heating device
JP3869798B2 (en) Heat pump water heater / heater
JP2005257161A (en) Heat pump type hot water supply heater
JP2002048420A (en) Heat pump hot water heater
JP4215661B2 (en) Heat pump water heater / heater
JP3864378B2 (en) Heat pump water heater
JP3869801B2 (en) Heat pump water heater / heater
JP2009264714A (en) Heat pump hot water system
JP2005273958A (en) Hot-water supply and heating apparatus
JP4279725B2 (en) Heat pump water heater / heater
JP4148909B2 (en) Heat pump water heater / heater
JP3970221B2 (en) Heat pump water heater
JP2004218911A (en) Heat pump type hot-water supply heating device
JP4351967B2 (en) Hot water storage water heater
JP4155162B2 (en) Hot water storage water heater
JP2009250542A (en) Water heater
JP2006266590A (en) Heat pump water heater
JP2006118752A (en) Storage type water heater

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051206

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217